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Abstract

Many economic models incorporate finiteness assumptions that, while

introduced for simplicity, play a real role in the analysis. We provide a

principled framework for scaling results from such models by removing these

finiteness assumptions. Our sufficient conditions are on the theorem state-

ment only, and not on its proof. This results in short proofs, and even

allows us to use the same argument to scale similar theorems that were
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proven using distinctly different tools. We demonstrate the versatility of

our approach via an array of examples from revealed-preference theory.



“More is good. . . all is better.”

—Ferengi Rule of Acquisition #242, Star Trek

1 Introduction

In economic theory, we frequently make finiteness assumptions for simplicity and/

or tractability—and those assumptions can play a real role in the analysis. Of

course, the real world is itself finite, so there is in some sense no “loss” from assum-

ing finiteness in our models. But finiteness assumptions nevertheless sometimes

lead to conceptual problems—if our understanding of economic theory hinges on

finiteness, then our models may not quite tell the whole story.

For example, in decision theory, revealed preference analysis seeks to under-

stand what we can infer about agents from their choice behavior. While a list of

observed choices is always finite, if we make parametric assumptions such as homo-

theticity, then each data point becomes infinitely many data points. Even without

such assumptions, we would like to reason about possible demand functions—

defined everywhere—that are consistent with the data, and this requires conjec-

turing about behavior over an infinite dataset. Furthermore, theorizing about ob-

serving infinite datasets lets us separate the limitations of inference about agents’

preferences that are just imposed by data finiteness from those that are inher-

ent even with access to every possible observation. As another example, if a

game-theoretic finding is true only when the set of agents is finite, then there is

an implicit discontinuity, possibly relying on an edge effect or a specific starting

condition that may not be robust to small frictions or perturbations.1 Thus finite-

market results that also hold in infinite markets are in some sense more robust.

In this paper, we present a general framework for strengthening results that

assume finiteness, by scaling them to infinite settings.2 Our approach, by rely-

ing on results in Propositional Logic, implicitly leverages topological properties

of the space of theorem statements rather than any features or techniques from

their proofs. As such, it allows us to prove results along the lines of “if a certain

statement holds when assuming finiteness (regardless of how one would prove it),

then—due merely to the structure of this statement—it must hold even if the

finiteness assumption is dropped.”

Our methods allow us to relax various finiteness assumptions, such as dataset

size and market size. In this paper we focus on applications to decision theory,

where the infinity that we tackle is the infinity of data. To demonstrate the versa-

tility of our approach across disparate fields, we also demonstrate an application

1For an example of a different kind of discontinuity—between a finite and a continuum
setting—see the work of Miralles and Pycia (2015), showing that a continuum model may rule
out important phenomena that are observed in the finite models that converge to it.

2As a side note: economic theory sometimes also turns to infinite models when their finite ana-
logues are hard to analyze—for example, to smooth out integer effects. That is not our focus here.
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to game theory, where the infinity that we tackle is that of the market size.

In Section 2, we state and prove our general scaling lemma that we apply

throughout the paper. Section 3 presents a “warm up,” applying our approach

to scale a fundamental result for which the proof of the finite case is consider-

ably simpler than that of the infinite case. Specifically, this is that any dataset

satisfying the strong axiom of revealed preferences (SARP) is rationalizable, for

which the finite case is simple and the infinite case is usually proven by appeal-

ing to Zorn’s lemma. In Section 4, we proceed with using a proof very similar

to the simple proof from the warm-up, to relax a finiteness assumption in a re-

sult for which the infinite case has not been previously proven. Specifically, we

prove a novel infinite-data version of Masatlioglu et al.’s (2012) characterization

of limited-attention rationalizability. The finite-case proofs for this result and for

the warm-up are starkly different. Nonetheless, the statements of these two results

are similar, and this enables us to scale them using essentially the same proof. We

furthermore show that since our approach only relies on theorem statements (and

not on how they are proven) one can use it to conditionally scale a rich family of

not-yet-proven results (i.e., conditional on the finite case being true).

At first glance, our approach might seem limited to proving results that are

discrete in nature (see discussion below). Nonetheless, in Section 5 we use our

approach to prove results regarding objects that are nondiscrete (coming from a

continuum space). Specifically, here we reprove Reny’s (2015) infinite-data version

of Afriat’s (1967) theorem, where utilities come from a continuum space, as well

as Caplin, Dean, and Leahy’s (2017) infinite-data version of Caplin and Dean’s

(2015) characterization of having a costly information acquisition representation,

where priors come from a continuum space. Again, our scaling proofs for both

of these theorems are nearly identical. In Section 6, we discuss limitations of our

approach in the context of decision theory.

In Section 7, we conclude with an application to a different field and with a

different notion of infinity, reproving the existence of a Nash equilibrium in infi-

nite games on graphs. We then discuss limitations of our approach more broadly.

Additional results can be found in the working paper (Gonczarowski, Kominers,

and Shorrer, 2023).

As already mentioned, some of the results that we prove in this paper are

novel to this work. Other results that we (re-)prove have already been obtained

using other, very different methods, which allows us to compare and contrast the

previous proof techniques with ours. As our illustrative applications demonstrate,

proofs that use our framework have several notable features. First, they use one

tool rather than having to choose from various setting-specific tools. Second, the

proof structure is modular: our conditions for scaling the finite-case result to
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the infinite case depend only on the statement of the finite-case result and are

completely agnostic to the argument/methods used to prove that result. Fur-

thermore, the proofs are robust in that even their dependence on the details of

the model is quite weak, and essentially the same proof can sometimes be used in

quite different models.

1.1 Technique

Our general approach, formulated by Lemma 2.5 in Section 2, requires that prob-

lems have what we call a well description, and that this well description satisfies

what we call the finite-subset property. We define these concepts precisely in Sec-

tion 2.2, after reviewing preliminaries in Propositional Logic in Section 2.1. Here,

we provide an informal description and an illustrative application (which we later

formalize): showing that infinite datasets that satisfy SARP are rationalizable.

A well description specifies for each problem a (potentially infinite) set of in-

dividually finite logical statements over Boolean variables, such that the problem

has a solution if and only if there is an assignment of truth values to these Boolean

variables under which all these statements hold simultaneously.3 For example,4

in a revealed-preferences setting, we can encode a rationalizing preference order

using a set of Boolean variables {agtb} (“a greater than b”), each being True if

a ≻ b for the corresponding a, b. We can then express all the required properties

of a rationalizing order (completeness, transitivity, antisymmetry, and consistency

with whichever outcomes are revealed preferred to others) using logical state-

ments phrased in terms of these variables (infinitely many such statements, but

each statement individually finite). An assignment of truth values to the variables

under which all statements hold simultaneously corresponds exactly to a solution

(a rationalizing order), and vice versa. In particular, for each problem, our set of

logical statements has such an assignment if and only if the problem has a solution,

and therefore this is a well description.

The preceding well description captures finite and infinite problems equally:

the only difference that arises is in the cardinalities of the sets of Boolean variables

and logical statements. When the problem is infinitary (e.g., infinite dataset or

infinitely many agents), the associated set of logical statements is infinite as well.

Yet, each of the logical statements we construct is nonetheless individually finite,

that is, it contains only finitely many of the Boolean variables.

Fix a well description, and call the set of logical statements associated with

each problem “the description of the problem.” The well description satisfies the

3The reader may think of an assignment of truth values to the Boolean variables as a “state
of the world.” In the language of Mathematical Logic, such an assignment under which all state-
ments hold is called amodel for the statements (perhaps confusingly within an economics setting).

4We further elaborate on this example in Section 3.
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finite-subset property if every finite subset of the description of any problem be-

longs to the description of a problem that has a solution. In our example, we

identify such a problem that has a solution by restricting the original problem to

the data points “mentioned” in the given finite subset. The given finite subset is

indeed part of the well description of the restricted problem, and since this prob-

lem is finite, it can be solved by known existence results for finite problems, so long

as we verify that it “inherits” from the infinite problem any properties required

by these results (namely, for our example, satisfying SARP). Lemma 2.5 therefore

guarantees the existence of an appropriate solution of the infinite problem.

We prove Lemma 2.5 using Logical Compactness (see Section 2.1), a central

result in the theory of Propositional Logic. While the above example demonstrates

the applicability of our approach to existence results of inherently discrete objects,

we also show how to use this approach to scale economic results that go beyond

discrete solutions into infinite settings.

2 Framework

In this section, we provide a brief introduction to Propositional Logic (in Sec-

tion 2.1),5 and use it to state and prove our main technical lemma (in Section 2.2).

2.1 Propositional Logic Preliminaries

In Propositional Logic, we work with a set of Boolean variables, and study the

truth values of statements—called formulae—made up of those variables. We

construct formulae by conjoining variables with simple logical operators such as

or, not, and implies. Variables are abstract, and do not have meaning on their

own—but we can imbue them with “semantic” meaning by introducing formulae

that reflect the structure of economic (or other) problems. Once given semantic

meaning, the truth or falsity of statements in our Propositional Logic model imply

the corresponding results in the associated economic model.

We start by formalizing the idea of (well-formed propositional) formulae. To

define the set of formulae at our disposal, we first introduce a basic (finite or infi-

nite) set of (Boolean) variables. In each section of this paper we introduce a differ-

ent set of variables built around the economic setting that we model in that section.

Once we have introduced a (finite or infinite) set V of variables, we can define

the set of all well-formed formulae inductively:

• ‘ϕ’ is a well-formed formula for every variable ϕ ∈ V .

• ‘¬ϕ’ is a well-formed formula for every well-formed formula ϕ.

5For a more in-depth look at Propositional Logic primitives and at the Compactness The-
orem, see a textbook on Mathematical Logic (e.g., Enderton, 2001; Gonczarowksi and Nisan,
2022). Propositional logic formulae are also used for stating Boolean satisfiability problems.
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• ‘(ϕ ∨ ψ)’, ‘(ϕ ∧ ψ)’, ‘(ϕ → ψ)’, and ‘(ϕ ↔ ψ)’ are well-formed formulae for

every two well-formed formulae ϕ and ψ.

Example 2.1. We could start with a set of four variables V = {P, Q, R, S}. Then,
each of the following is a well-formed formula:

‘P’ (1) ‘(P ∨ Q)’ (2) ‘¬(P ∧ Q)’ (3) ‘((P ∧ R) → S)’ (4)

We sometimes abuse notation by omitting parentheses and writing, e.g., ‘ϕ∨ψ∨
ξ’ when any arbitrary placement of parentheses in the formula (e.g., ‘((ϕ∨ψ)∨ ξ)’
or ‘(ϕ ∨ (ψ ∨ ξ))’) will not make a difference. We sometimes abuse notation even

further by writing, e.g., ‘
∨10

i=1 ϕi’ to mean ‘ϕ1∨ϕ2∨· · ·∨ϕ10’ (once again, only when

the precise placement of omitted parentheses is of no consequence to our analysis).

We note that while well-formed formulae can be arbitrarily long, each well-

formed formula is always finite in length. Thus, for example, a disjunction ‘ϕ1 ∨
ϕ2 ∨ · · · ’ of infinitely many formulae is not a well-formed formula. We therefore

take special care when we claim that formulae of the form ‘
∨

ϕ∈Ψ ϕ’ are well-formed,

as this is true only if Ψ is finite.

A model is a mapping from the set V of all variables to Boolean values, i.e.,

each variable is mapped either to being True or to being False. This induces a

truth value for every formula ‘ϕ’ where ϕ ∈ V . A model also induces a truth value

for all other formulae, defined inductively as follows:

• ‘¬ϕ’ is True iff ϕ is False;

• ‘(ϕ ∨ ψ)’ is True iff either or both of ϕ and ψ is True;

• ‘(ϕ ∧ ψ)’ is True iff both ϕ and ψ are True;

• ‘(ϕ→ ψ)’ is True iff either ϕ is False or ψ is True or both (that is, ‘(ϕ→ ψ)’

is False iff both ϕ is True and ψ is False); and

• ‘(ϕ↔ ψ)’ is True iff ϕ and ψ are either both True or both False.

Example 2.2. Given the concept of truth values, we can reinterpret the formulae

(1)–(4) as follows:

‘P’ “ P [ is True]”, (1)

‘(P ∨ Q)’ “ P or Q [ is True]”, (2)

‘¬(P ∧ Q)’ “not ( P and Q [ are both True])”, (3)

‘((P ∧ R) → S)’ “ P and R [ both being True], implies S [ being True]”. (4)

The formula in (2) is True in a model if and only if either ‘P’ or ‘Q’ (or both) are

True in that model; the formula in (3) is True in a model unless both ‘P’ and ‘Q’

are True in that model; and the formula in (4) is True in a model unless both ‘P’

and ‘R’ are True in that model while ‘S’ is False in that model.
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We say that a formula is satisfied by a model if it is True under that model.

For example, each of the formulae (1), (2), and (4) is satisfied by the model that

assigns value True to all variables, however the formula (3) is not satisfied by that

model. We say that a (possibly infinite) set of formulae is satisfied by a model

if every formula in the set is satisfied by the model. For example, the set of the

formulae (1)–(4) is satisfied by the model that assigns value True to all variables

except Q. We say that a (possibly infinite) set of formulae is satisfiable, or that it

has a model, if it is satisfied by some model. For example, the set containing ‘P’

and ‘¬P’ is not satisfiable.
Clearly, if a (finite or infinite) set of formulae Φ is satisfiable, then every subset

of Φ is also satisfiable (by the same model), and in particular every finite sub-

set of Φ is satisfiable; the Compactness Theorem for Propositional Logic gives a

surprising and nontrivial converse to this statement.

Theorem 2.3 (Compactness Theorem for Propositional Logic (Gödel, 1930; Mal-

cev, 1936)). A set of formulae Φ is satisfiable if (and only if) every finite subset

Φ′ ⊆ Φ is satisfiable.

2.2 A Scaling Lemma for Economic Theories

In this section, we use Propositional Logic to derive a sufficient condition for scal-

ability of an economic theorem to infinite cases. This condition, formalized in

Lemma 2.5, is at the heart of all of our proofs.

Let S be a set to which we refer as a set of (potential) solutions. Let P be

a set to which we refer as a set of (economic) problems whose solutions (if such

exist) are in S. For example, for the consumer choice rationalization example from

Section 1.1, S is the set of all consumer preferences over some set of objects, and

a problem P ∈ P is to rationalize a specific dataset D.

Define I : P × S → {True,False} such that I(P, S) is True if and only if S is a

solution for P . Note that given a problem P , even if we can easily determine for

any given S whether S is a solution of P (i.e., whether I(P, S) is True), it may

not be clear just from examining P (and I) whether or not it has any solution

(i.e., whether there exists S ∈ S such that I(P, S) is True). For example, while

it is easy to describe when given preferences rationalize a given dataset, it is

not immediate from examining a dataset whether there exist preferences that

rationalize it. Similarly, while it is easy to describe when a given strategy profile

constitutes a Nash equilibrium in a given game, it is not immediate from examining

a game whether it admits a Nash equilibrium. Regardless of the economic setting,

given a problem, our goal will be to ascertain whether a solution for it indeed exists.

We say that the set P of problems is a set of well-describable problems if for

every P ∈ P there exists a set ΦP of well-formed formulae such that P has a
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solution if and only if ΦP has a model. We call a collection (ΦP )P∈P of such sets

a well description of P .

Example 2.4. Consider a set P of problems where for each problem P = (X ′, D) ∈
P , the set of solutions of P consists of all strict preferences over the universe X ′

that rationalize the given choice data D. To well describe P , one may use the

variable of the form agtb from Section 1.1 (where agtb has the semantic interpre-

tation “a is preferred to b”). Specifically, for each P ∈ P , one may have the set

of formulae ΦP consist of:

1. for all distinct a and b such that in the given choice data, a is chosen from a

menu that contains b, the formula ‘agtb’, requiring that the preferences (that

correspond to any model of the formulae) rationalize the given choice dataD;

2. for all distinct a, b ∈ X ′, the formula ‘agtb ∨ bgta’, requiring that the pref-

erences be complete;

3. for all distinct a, b ∈ X ′, the formula ‘¬(agtb ∧ bgta)’, requiring that the

preferences be antisymmetric;

4. for all distinct a, b, c ∈ X ′, the formula ‘(agtb∧ bgtc) → agtc’, requiring that

the preferences be transitive.

By construction, (ΦP )P∈P is a well description of P .6 (The preceding formulae cor-

respond exactly with the formulae (1)–(4) from Section 2.1 upon taking P = agtb,

Q = bgta, R = bgtc, and S = agtc.)

Given a well description of P , we say that a problem P ∈ P satisfies the finite-

subset property (with respect to the given well description of P) if for every finite

subset Φ′ ⊂ ΦP there exists a problem P ′ ∈ P that has a solution and for which

Φ′ ⊆ ΦP ′ . By Theorem 2.3, we then have:

Lemma 2.5 (Scaling Lemma). Let P be a set of well-describable problems and

let (ΦP )P∈P be a well description of P. Let P ∈ P. If P satisfies the finite-subset

property, then P has a solution.

Proof. Let P ∈ P be a problem satisfying the finite-subset property. By well

describability, it is enough to show that ΦP is satisfiable. By Theorem 2.3, it is

therefore enough to show that every finite Φ′ ⊂ ΦP is satisfiable. Let Φ′ be such

a finite subset. Since P satisfies the finite-subset property, there exists P ′ ∈ P
that has a solution such that Φ′ ⊆ ΦP ′ . Since P ′ has a solution, by our well-

describability assumption, we have that ΦP ′ is satisfiable by some model. Since

Φ′ ⊆ ΦP ′ , the same model also satisfies Φ′, and so Φ′ is satisfiable as required.

6In fact, an even stronger property holds: the set of solutions of P is in one-to-one corre-
spondence with the set of models of ΦP (see Section 3 for more details on this correspondence).
While such a one-to-one correspondence holds in many of our applications, this is not required
for our arguments.
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As demonstrated in Section 1.1, in many cases of interest, the existence of a

solution for an appropriate P ′ for any Φ′ can be established by finite-case theo-

rems (for example, on rationalizability of finite datasets or stable matching in finite

markets). Thus by Lemma 2.5 we obtain existence of solutions for the infinite case

of such problems as well. In this paper, we demonstrate the wide applicability of

Lemma 2.5 to a wide range of economic problems.

3 Warm Up: Rational Choice Functions

We begin with a classic revealed preference setup. Let X be a (possibly infi-

nite) set of goods. The set of menus includes all finite subsets of X. A dataset

D ⊆
{
(S, a) ∈ 2X×X

∣∣ a ∈ S
}
consists of the (unique) respective choices made by

an agent in a (possibly infinite) subset of menus. A pair (S, a) ∈ D is interpreted

to mean that the agent selected a ∈ S when presented with the menu S. We

say that a dataset D is rationalized by a strict preference relation ≻ (complete,

antisymmetric, and transitive) over X, if for every (S, a) ∈ D, the agent’s choice

a is the maximal element from S according to ≻. A dataset is rationalizable if it

is rationalized by some strict preference relation over X.

Given a dataset and a pair of goods, x, y ∈ X, we say that x is revealed pre-

ferred to y (x ≻R y) if x is chosen from a menu that includes y. A dataset satisfies

the strong axiom of revealed preferences (SARP) if ≻R is acyclic (i.e., there does

not exist k > 1 and x1, . . . , xk ∈ X such that xi ≻R xi+1 for all i, and in addition

xk ≻R x1). Clearly, satisfying SARP is a necessary condition for a dataset to be

rationalizable. A classic result due to Richter (1966) and Hansson (1968) is that

satisfying SARP is also sufficient. Theorem 3.1 states this result for the special

case of a finite dataset.

Theorem 3.1. A finite dataset is rationalizable if and only if it satisfies SARP.

The general version of Theorem 3.1, due to Richter (1966) and Hansson (1968),

builds on Szpilrajn’ Extension Theorem, a fundamental result whose variants are

used to prove many key results in the theory of revealed preferences (Chambers

and Echenique, 2009). Ok (2007, p. 17) explains that “[a]lthough it is possi-

ble to prove this [fundamental result of order theory] by mathematical induction

when X is finite,7 the proof in the general case is built on a relatively advanced

method[. . . ].” Indeed, the standard way to prove an infinite-dataset version of

Theorem 3.1 (equivalently, to prove Szpilrajn’s Extension Theorem) as well as to

prove variant results, is to use Zorn’s Lemma (see, e.g., Richter, 1966; Duggan,

1999; Mas-Colell, Whinston, and Green, 1995, Proposition 3.J.1; Chambers and

7I.e., the setting corresponding to Theorem 3.1; for an explicit proof see, e.g., Lahiri (2002).
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Echenique, 2016, Theorems 1.4 and 1.5).8

As a warm-up, we use Lemma 2.5 to scale Theorem 3.1 to also apply to infinite

datasets (implicitly reproving Szpilrajn’s Extension Theorem). While Lemma 2.5

relies on Logical Compactness, which, like Zorn’s Lemma, relies on some variant of

the Axiom of Choice,9 we suspect that the proof we present here may complement

the standard approach. In particular, our argument may in some ways be more

accessible to students than the traditional proof because it avoids the “overhead”

of understanding the full statement of Zorn’s Lemma.10

Theorem 3.2 (Richter, 1966; Hansson, 1968). A (possibly infinite) dataset is

rationalizable if and only if it satisfies SARP.

Proof of Theorem 3.2. As noted, the “only if” direction is immediate, so we prove

the “if” direction using Lemma 2.5.

Definition of P : Fixing X, let P be the set of all pairs (X ′, D) such that X ′ ⊆ X

and D is a dataset with menus over goods in X ′ that satisfies SARP. A solution

for a pair (X ′, D) ∈ P is a strict preference order over X ′ that rationalizes D.

Well describability: We introduce a variable agtb for every pair of distinct a, b ∈ X.

In what follows, for each (X ′, D) ∈ P we define a set Φ(X′,D) of formulae over these

variables so that models (over the variables that appear in Φ(X′,D)) of Φ(X′,D) are

in one-to-one correspondence with the (not-yet-proven-to-be-nonempty) set of so-

lutions for (X ′, D). The correspondence is obtained by endowing the variable agtb

with the semantic interpretation “a is preferred to b.” That is, it maps a model

for Φ(X′,D) to the preference ≻ such that for every distinct a, b ∈ X ′, we have that

a ≻ b if and only if the variable agtb is True in that model. We define the set

Φ(X′,D) to consist of the formulae from Example 2.4.

Finite-subset property: Let (X̄,D) ∈ P . Let Φ′ ⊂ Φ(X̄,D) be a finite subset. Since

Φ′ is finite, it “mentions” (through variables used) only finitely many elements

of X̄; denote the set of these elements by X ′ ⊂ X̄. Let

D′ ≜
{
(S ∩X ′, a)

∣∣ (S, a) ∈ D and a ∈ X ′}.
By definition, Φ′ ⊆ Φ(X′,D′). Furthermore,D′ satisfies SARP since had a cycle been

induced by D′, it would have also been induced by D, however D satisfies SARP,

so it induces no cycles. Hence, by Theorem 3.1, D′ is rationalizable by some strict

preference order over X ′. Therefore, (X̄,D) satisfies the finite-subset property.

Thus, by Lemma 2.5, D is rationalizable by a strict preference order over X̄.
8Mandler (2020) provides an alternative simple proof of Richter and Hansson’s result.
9Strictly speaking, under ZF set theory, Logical Compactness is weaker than Choice.

10Mas-Colell, Whinston, and Green (1995), similarly to Ok (2007), label their proof (which
uses Zorn’s Lemma) as “advanced.”
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4 Applicability of the Same Proof to Other Set-

tings: Limited Attention

A notable strength of our approach is that it is agnostic to the methods used to

prove the finite result being scaled. Therefore, the same argument can be used to

scale similar statements even when the finite-case proofs of these statements hinge

on very different tools. As an illustration, we use essentially the same proof as in

Section 3 to scale the WARP-limited attention (WARP-LA) result of Masatlioglu

et al. (2012) to infinite datasets, despite the Masatlioglu et al. proof using ap-

proaches that are quite different from those used to prove the result of Theorem 3.1.

The setup resembles that of Section 3: let X be a (possibly infinite) set of

goods. A menu is a finite nonempty subset of X. A dataset is full if it consists of

the (unique) respective choices made by an agent in all possible (infinitely many, if

X is infinite) menus. Unlike in Section 3, in this setting a rational agent might fail

to choose her favorite object from a menu if this object does not capture her atten-

tion. The objects that capture the agent’s attention in each menu are described by

an attention filter. Formally, a filter is a function Γ that maps each menu S to a

menu Γ(S) ⊆ S. A filter is an attention filter if Γ
(
S\{x}

)
= Γ(S) for every menu S

and x ∈ S\Γ(S). A dataset is limited-attention rationalizable if there exist a strict

preference relation ≻ and an attention filter Γ such that for every menu S in the

dataset, the agent’s choice is the most-preferred element in Γ(S) according to ≻.

Analogously to Theorem 3.1, Masatlioglu et al. (2012) uncover a condition,

WARP-LA,11 that is necessary and sufficient for limited-attention rationalizability:

Theorem 4.1 (Masatlioglu et al., 2012). A full finite dataset is limited-attention

rationalizable if and only if it satisfies WARP-LA.

As is the case for SARP, if a certain dataset satisfies WARP-LA, then so does

any sub-dataset. This suffices for us to scale Theorem 4.1 to infinite datasets using

the same approach we used in Section 3.

Theorem 4.2. A full (possibly infinite) dataset is limited-attention rationalizable

if and only if it satisfies WARP-LA.

The well description that we build to prove Theorem 4.2 is conceptually similar

to the one from our proof of Theorem 3.2, but requires slight modification due to

the addition of the attention filter. The idea is to have, as before, for every pair

a, b ∈ X a variable agtb that will be True in a model if and only if a precedes b

in the preference relation corresponding to the model. But furthermore, for every

11 A full dataset satisfies WARP-LA if, for any menu S, there exists x∗ ∈ S such that for any
menu T that includes x∗, if (T, x) ∈ D for some x ∈ S and (T \ {x∗}, x) /∈ D, then (T, x∗) ∈ D.
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menu S and ∅ ̸= T ⊆ S, we introduce a variable attn(S,T ) that will be True in a

model if and only if Γ(S) = T for the attention filter corresponding to the model,

and upon whose value the formulae that represent the dataset observations will

be conditioned. So, if a is chosen from S in the dataset, for every b ∈ S \ {a}
instead of having a single formula agtb mandating that a precede b in the prefer-

ence relation, we have for each b ∈ T ⊆ S a formula that says “if Γ(S) = T then

a precedes b in the preference relation,” i.e., ‘attn(S,T ) → agtb’. Additionally, we

introduce formulae that say that for each menu S, there exists precisely one T

such that attn(S,T ) holds. Finally, for each menu S, each T ⊂ S and x ∈ S \T we

introduce the formula ‘attn(S,T ) → attn(S\{x},T )’, requiring that the filter be an

attention filter. Except for these additions, the proof runs along the same lines as

that of Theorem 3.2; we relegate the details to Appendix A.

4.1 Conditional Scaling

Limited-attention rationalizability, as defined above, flexibly accommodates a wide

array of attention filters. But, in some cases, one may wish to impose additional

structure (e.g., requiring that the agent always pays attention to at least two

options), or to consider filters that fall outside the domain of attention filters

(Masatlioglu et al., 2012, discuss a wide array of examples from the literature). In

many cases of interest, the constraint on the filters to be considered takes the form

∀S1∀S2 · · · ∀Sn : H
(
S1,Γ(S1), S2,Γ(S2), . . . , Sn,Γ(Sn)

)
= True for some predicate

H that takes 2n menus, where all Si are menus.12 Such restrictions can be encoded

into our well description (in the same fashion that we encoded the restriction that

Γ is an attention filter in our proof of Theorem 4.2).13

This provides an opportunity to point out that our framework is agnostic not

only to how the finite-case theorem being scaled was proven (as already discussed),

but furthermore, to whether it has even been proven. Indeed, even absent a proof

for the finite-case theorem, our framework can yield conditional statements. Con-

sider a result (potentially, one that could be uncovered in the future) that, for

some predicate H, determines that a finite dataset is H-rationalizable (i.e., ra-

tionalizable using a filter that meets the above requirement with respect to H) if

and only if it satisfied some given condition WARP-H defined on finite datasets.

Extend the definition of WARP-H to infinite datasets by defining that an infi-

nite dataset satisfies WARP-H if and only if every finite sub-dataset of it satisfies

12For example, requiring that the agent always pays attention to at least two options can be
expressed with n = 1, setting H(S1, T1) to be True unless |S1| > 1 yet |T1| = 1. As another
example, the filter being an attention filter could have been expressed in this form with n = 2,
setting H(S1, T1, S2, T2) to be True unless S1 = S2 ∪ {x}, x /∈ T1, and yet T1 ̸= T2.

13The only change to the well description would be to add one more (finite) formula type, for
every S1, . . . , Sn: ‘

∨
T1⊆S1,...,Tn⊆Sn:H(S1,T1,...,Sn,Tn)

∧n
i=1 attn(Si,Ti)’.
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WARP-H.14 A proof completely analogous to our proof of Theorem 4.2 then also

proves it imediately applies to infinite datasets:

Theorem 4.3. If it holds that a finite dataset is H-ratiolalizable iff it satisfies

WARP-H, then it also holds that an infinite dataset is H-ratiolalizable iff it sat-

isfies WARP-H.

5 Handling Nondiscrete Solution Concepts:

Rationalizing Consumer Demand

We now move to rationalizing consumption behavior in the presence of prices. For

the most part, in this section we follow the notation of Reny (2015). Fix a number

of goods m ∈ N. A dataset D ⊂
(
Rm

+ \ {0̄}
)
×Rm

+ with generic element (p̄, x̄) ∈ D

represents a set of observations, where in each, a consumer with a budget faces

a price vector p̄ ̸= 0̄ and chooses to consume the bundle x̄. A utility function

u : Rm
+ → R rationalizes the dataset D if for every (p̄, x̄) ∈ D and every ȳ ∈ Rm

+ ,

it holds that if p̄ · ȳ ≤ p̄ · x̄ (i.e., ȳ can also be bought with the budget) then

u(ȳ) ≤ u(x̄), and if p̄ · ȳ < p̄ · x̄ (i.e., ȳ can be bought without spending the entire

budget) then u(ȳ) < u(x̄).15 If only the former implication holds for every such

(p̄, x̄) and ȳ, then we say that u weakly rationalizes D.

A dataset D satisfies the Generalized Axiom of Revealed Preference (GARP) if

for every (finite) sequence (p̄1, x̄1), . . . , (p̄k, x̄k) ∈ D, if for every i ∈ {1, 2, . . . , k−1}
it holds that p̄i · x̄i+1 ≤ p̄i · x̄i, then p̄k · x̄1 ≥ p̄k · x̄k. It is straightforward from the

definitions that satisfying GARP is a precondition for rationalizability (indeed,

otherwise we would have that u(x̄1) ≥ u(x̄2) ≥ · · · ≥ u(x̄k) > u(x̄1) for any ra-

tionalizing utility function u). In a celebrated result, Afriat (1967) showed that

GARP is also a sufficient condition for rationalizability of a finite dataset—and

furthermore GARP is a sufficient condition for rationalizability of such a dataset

by a utility function with many properties that are often assumed in simple eco-

nomic models. This finding implies that the standard economic model of consumer

choice has no testable implications beyond GARP.

Theorem 5.1 (Afriat, 1967). A finite dataset D ⊆
(
Rm

+ \ {0̄}
)
× Rm

+ satisfies

GARP if and only if it is rationalizable. Moreover, when GARP holds, there exists

a utility function that rationalizes D that is continuous, concave, nondecreasing,

and strictly increasing when all coordinates strictly increase.

14If for finite datasets, WARP-H is a “no cycles of some form” condition (like SARP, WARP,
or WARP-LA), then extending it to infinite datasets results in the same condition for infinite
datasets as well: no (finite) cycles of that form.

15This assumption rules out trivial rationalizations such as constant utility functions. See
Chambers and Echenique (2016) for a more detailed discussion.
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There are well-known examples of infinite datasets that are generated by qua-

siconcave utility functions but may not be rationalized by a concave utility func-

tion (see Aumann, 1975; Reny, 2013). Kannai (2004) and Apartsin and Kannai

(2006) provide necessary conditions, stronger than GARP, for rationalizability

by a concave function. Recently, Reny (2015) unified the literature and clarified

the boundaries of Afriat’s theorem by showing that GARP is indeed necessary

and sufficient for rationalization of even infinite datasets—and in fact, GARP also

guarantees rationalizability by a utility function with many desired properties (yet

not all the properties that are attainable in the finite case).

Theorem 5.2 (Reny, 2015). A (possibly infinite) dataset D ⊆
(
Rm

+ \ {0̄}
)
× Rm

+

satisfies GARP if and only if it is rationalizable. Moreover, when GARP holds,

there exists a utility function that rationalizes D that is quasiconcave, nondecreas-

ing, and strictly increasing when all coordinates strictly increase.

Reny (2015) provided examples showing that continuity and concavity (the

properties of the rationalizing utility function from Theorem 5.1 that are absent

from Theorem 5.2) cannot be guaranteed to be attainable for any rationalizable

dataset. Reny (2015) then proved Theorem 5.2 using a novel construction that—

unlike Afriat’s construction—applies also to infinite data sets. We instead give a

concise alternative proof of Theorem 5.2 by scaling Theorem 5.1 as a black box

using Lemma 2.5.16 One of the challenges in our argument is that utility functions

have an (uncountably) infinite range, so it is not a priori obvious how to encode

such a function by a model defined via individually finite formulae (e.g., how to

require that each bundle is associated with some real number that represents the

utility from it); to overcome this challenge, our well description encodes the utility

from each bundle as the limit of a sequence of discrete utilities. This approach,

in turn, introduces additional challenges, such as how to make sure, using only

constraints on these discrete functions, that the limit utilities satisfy all desired

properties. This is particularly challenging with properties that are not preserved

by limits, such as being strictly increasing.

Proof of Theorem 5.2. As noted, the “only if” direction is immediate, so we prove

the “if” direction using Lemma 2.5.

Definition of P : Fixing m, let P be the set of all datasets D ⊆
(
Rm

+ \ {0̄}
)
× Rm

+

satisfying GARP. A solution for a dataset D ∈ P is a utility function that ra-

16While we prove the result of Reny (2015) in its full generality, it is worth noting that Reny’s
proof does not use the Axiom of Choice, while ours does to some extent. More specifically, the
Compactness Theorem, which we use for proving Lemma 2.5, is equivalent (under ZF) to the
Boolean Prime Ideal (BPI) Theorem (equivalently, to the Ultrafilter Lemma), which is known
to be a “weaker form of the Axiom of Choice” in the sense that ZF+BPI is strictly weaker than
ZFC but strictly stronger than ZF (see, e.g., Halbeisen, 2017, Theorems 6.7 and 8.16).
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tionalizes D that is quasiconcave, nondecreasing, and strictly increasing when all

coordinates strictly increase.

Well describability: We set εn ≜ 2−n for every n ∈ N. We introduce a variable

utilitynx̄,v for every n ∈ N, every x̄ ∈ Rm
+ , and every v ∈ Vn ≜ {0, εn, 2 ·εn, . . . , 1}.

In what follows, for each D ∈ P we define a set ΦD of formulae over these variables

so that models of ΦD are in one-to-one correspondence with the (not-yet-proven-

to-be-nonempty) set of solutions for D that satisfy certain properties (we then

have to show that the existence of any solution implies the existence of a so-

lution with such properties). The correspondence is obtained by endowing the

variable utilitynx̄,v with the semantic interpretation “⌊u(x̄)⌋εn = v for the cor-

responding utility function u,” where for every n ∈ N and every x we denote by

⌊x⌋εn ≜ 2−n · ⌊2n ·x⌋ the rounding-down of x to the nearest multiple of εn. Fixing

an enumeration (q̄k1 , q̄
k
2)

∞
k=1 of the countable set

{
(q̄1, q̄2) ∈ Qm ×Qm | q̄1 ≪ q̄2

}
,17

we define the set ΦD to consist of the following formulae:

1. for all n ∈ N and all x̄ ∈ Rm
+ , the (finite!) formula ‘

∨
v∈Vn

utilitynx̄,v’,

requiring that x̄ have a rounded-down-to-εn utility in [0, 1];

2. for all n ∈ N, all x̄ ∈ Rm
+ , and all distinct v, w ∈ Vn, the formula ‘utilitynx̄,v →

¬utilitynx̄,w’, requiring that the rounded-down-to-εn utility from x̄ be unique;

3. for all n ∈ N, all x̄ ∈ Rm
+ , and all v ∈ Vn, the formula ‘utilitynx̄,v →(

utilityn+1
x̄,v ∨ utilityn+1

x̄,v+εn+1

)
’, requiring that ⌊u(x̄)⌋εn = ⌊⌊u(x̄)⌋εn+1⌋εn ;

4. for all n ∈ N, all x̄, ȳ ∈ Rm
+ , all convex combinations z̄ ∈ Rm

+ of x̄, ȳ,

and all v, w ∈ Vn, the (finite) formula ‘
(
utilitynx̄,v ∧ utilitynȳ,w

)
→∨

v′∈Vn:v′≥min{v,w} utility
n
z̄,v′ ’, requiring that the rounded-down-to-εn utility

function be quasiconcave;

5. for all n ∈ N, all x̄, ȳ ∈ Rm
+ s.t. x̄ ≤ ȳ, and all v ∈ Vn, the (finite) formula

‘utilitynx̄,v →
∨

w∈Vn:w≥v utility
n
ȳ,w’, requiring that the rounded-down-to-

εn utility function be nondecreasing;

6. for all k ∈ N and all n > k, the (finite) formula ‘utilityn
q̄k1 ,v

→∨
w∈Vn:w≥v+2−k−1 utility

n
q̄k2 ,w

’, requiring that starting at some n, the

rounded-down-to-εn utility from q̄k2 be greater by at least 2−k−1 than the

rounded-down-to-εn utility from q̄k1 ;

7. for all n ∈ N, all datapoints (p̄, x̄) ∈ D, all ȳ ∈ Rm
+ s.t. p̄ · ȳ ≤ p̄ · x̄, and all

v ∈ Vn, the (finite) formula ‘utilitynx̄,v →
∨

w∈Vn:w≤v utility
n
ȳ,w’, requiring

that the rounded-down-to-εn utility weakly rationalize D.

We now argue that (ΦD)D∈P is a well description of P . Let D ∈ P .

We first claim that every model that satisfies ΦD corresponds to a solution for

D. Fix a model for ΦD. For every x̄ ∈ Rm
+ and every n ∈ N, let vn ∈ Vn be the value

17For x̄, ȳ ∈ Rm, we write x̄ ≪ ȳ to denote that xi < yi for every i = 1, . . . ,m.
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such that utilitynx̄,vn is True in the model (well defined by the first and second

formula-types above), and define u(x̄) = limn→∞ vn (well defined, e.g., by the third

formula-type above since vn is a Cauchy sequence). The resulting utility function u

is a limit of nondecreasing quasiconcave functions (by the fourth and fifth formula-

types above) that weakly rationalize the data (by the seventh formula-type above).

Hence, u itself is a nondecreasing quasiconcave function that weakly rationalizes

the data. Furthermore, for every x̄, ȳ ∈ Rm
+ s.t. x̄ ≪ ȳ, there exist two rational

number vectors “in between” them, i.e., there exists k ∈ N s.t. x̄≪ q̄k1 ≪ q̄k2 ≪ ȳ.

Therefore, we have that u(x̄) ≤ u(q̄k1) ≤ u(q̄k2)− 2−k−1 < u(q̄k2) ≤ u(ȳ) (the second

inequality stems from this inequality holding for almost all functions of which u

is the limit, by the sixth formula-type above), so u is strictly increasing when

all coordinates strictly increase. Finally, since u weakly rationalizes D and is also

strictly increasing when all coordinates strictly increase, then u also rationalizesD.

Second, we claim that if D has a solution, then ΦD has a model. Fix a so-

lution u for D, and let ū(x̄) ≜ 1/4 + (1/2π) · arctan(u(x̄)) +
∑

k:q̄k2≤x̄ 2
−k−1 for

every x̄ ∈ Rm
+ . As this transformation of utilities is strictly monotone, the re-

sulting function ū still rationalizes the data, and is quasiconcave, nondecreasing,

and strictly increasing when all coordinates strictly increase. Furthermore, the

sum of the first two summands is in [0, 1/2], and so is the third summand, so the

overall sum is in [0, 1]. Finally, due to the third summand, ū(q̄k2) > ū(q̄k1) + 2−k−1

for every k ∈ N. Using ū we can therefore construct a model for ΦD (by setting

each utilitynx̄,v to be True iff v = ⌊ū(x)⌋εn), and so ΦD has a model. To sum up,

(ΦD)D∈P is a well description of P .

Finite-subset property: Let D ∈ P . Let Φ′ ⊂ ΦD be a finite subset. Since Φ′ is

finite, there are only finitely many formulae of the above seventh type (the only

formula type that depends on the dataset) in Φ′. Let D′ ⊂ D be the set of dat-

apoints that induce these formulae. By definition, Φ′ ⊆ ΦD′ . Furthermore, D′

satisfies GARP since any sub-dataset of D satisfies GARP, and hence, by The-

orem 5.1, D′ is rationalizable. Therefore, D satisfies the finite-subset property.

Thus, by Lemma 2.5, D is rationalizable.

A natural question is why the same argument cannot be used to scale Theo-

rem 5.1 while maintaining concavity rather than quasiconcavity. The short answer

is that—due to the requirement that u be strictly monotone, and the inherent need

to make each formula finite—our proof of Theorem 5.2 relies heavily on the fact

that quasiconcavity, unlike concavity, is maintained under weakly monotone trans-

formations (such as the mapping of u to ū); we discuss this further in Section 6.
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5.1 Additional Application of the Same Proof: Rational

Inattention

Our proof of Theorem 5.2 is quite a bit more flexible than one might imagine. In

Appendix B, we use essentially the same well description to scale—from finite to

infinite datasets—the seminal result of Caplin and Dean (2015) in quite a different

rationalization domain: a state-dependent stochastic choice dataset has a costly

information acquisition representation if and only if it satisfies the No Improving

Action Switches (NIAS) and No Improving Attention Cycles (NIAC) conditions.

Caplin et al. (2017) recently proved the infinite version of this result via a novel

proof that diverges from Caplin and Dean’s proof of the finite case.18 We reprove

this result using essentially the same well description as in our proof of Theo-

rem 5.2, despite the differences between the two settings considered, and despite

the fact that neither the original proofs of the finite versions nor the original proofs

of the infinite versions of any of these quite different theorems share any common

core technique. The main difference between the two well descriptions is that this

application does not require strict monotonicity. Therefore, the sixth formula-type

of the above well description is not required, and the proof that a solution implies

a model is simpler as it does not require carefully “massaging” the function u into

ū as above.

6 Remarks and Limitations

In the preceding sections, we demonstrated the versatility of our approach across

several revealed-preference settings. Our approach can be used to scale many addi-

tional finite-data results to encompass infinite datasets. For example, it may allow

us to scale results such as those of Cattaneo et al. (2020) on the existence of ran-

dom attention representation, or Filiz-Ozbay and Masatlioglu (2020) on progres-

sive random choice.19 In addition to scaling a wide array of finite-data results to

encompass infinite datasets, our approach can also be used to adapt finite-data ra-

tionalization results to support parametric restrictions, as in Hu et al. (2021), since

such restrictions often translate into infinitely many constraints. Our approach,

however, is not without limitations. In this section, we provide some remarks on

limitations of our proofs within revealed preference. A more high-level discussion

of settings in which our approach is not applicable is provided in Section 7.2.

Afriat’s theorem (Theorem 5.1) guarantees that finite demand datasets sat-

isfying GARP can be rationalized using a concave utility function. But, there

are well-known examples of quasiconcave utility functions whose full (infinite)

18de Oliveira et al. (2017) provide a similar result for infinite datasets of a different kind.
19We thank Yusufcan Masatlioglu for proposing these applications.
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demand dataset (which satisfies GARP since it is derived from the choices of a

utility function) cannot be rationalized using a concave utility function. In Sec-

tion 5, we reproved the main result of Reny (2015) that unified these settings: any

demand dataset, finite or infinite, that satisfies GARP can be rationalized using

a quasiconcave utility function (Theorem 5.2).

By Lemma 2.5, the existence of a counterexample, together with the correct-

ness of Afriat’s theorem for finite datasets, implies that the existence of a concave

rationalizing utility function (as guaranteed by Afriat’s theorem) has no well de-

scription that satisfies the finite-subset property. This might seem puzzling since

a simple modification to the fourth formula type in our proof (which imposes qua-

siconcavity) can be used to impose concavity (as in our similar scaling proof in

Appendix B), and so should seemingly result in a well description as required.

The answer to this puzzle is that this well description does not, in fact, satisfy

the finite-subset property. Specifically, the sixth formula type in our proof makes

a stronger monotonicity requirement than the monotonicity that is guaranteed by

Afriat’s theorem, and therefore Afriat’s theorem cannot be used to show that the

finite-subset property required by Lemma 2.5 holds.

To address this issue, a natural approach would be to change the monotonic-

ity requirement that we use to require only strict monotonicity, as guaranteed by

Afriat’s theorem. But, it is not possible to well-describe strict monotonicity with

our variables (since strict inequalities are not preserved in the limit). Our way

around this limitation was to make a stronger requirement that is well-describable.

But in order to use Afriat’s theorem to show that the finite-subset property holds,

we had to relax the concavity requirement (recall that our proof applied monotonic

transformations to the utility function; while these transformations do not preserve

concavity, they do preserve quasiconcavity). We note that while this may appear

to be an artefact of using Lemma 2.5, the existence of the abovementioned coun-

terexample guarantees that no other approach could circumvent this issue. The

tradeoff between strengthening monotonicity and weakening concavity, so that well

describability and the finite-subset property are satisfied, sheds some new light on

what breaks in the infinite case, which at first glance might look like an issue with

concavity, but at a deeper look reveals itself as an issue with strict monotonic-

ity. This affords some degree of intuition for “why” the concavity assumption in

Theorem 5.1 must be relaxed to quasiconcavity when scaling it to infinite datasets.

We note that when we use a very similar proof in Appendix B to scale a result

by Caplin and Dean (2015), we do require concavity rather than merely quasi-

concavity. This is possible because in that result only weak (rather than strict)

monotonicity (in information) is required, which can be well described without

being strengthened. Contrasting these two proofs provides yet another example
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of the power of our approach to very tangibly pinpoint why certain conditions can

be maintained when some theorems are scaled but not when others are.

Meanwhile, Theorem 5.2 illustrates some of the limitations of our framework. A

Propositional Logic formulation precludes the use of quantifiers (e.g., “there exists

a positive gap by which the utility from q̄2 is greater than the utility from q̄1”), and

also precludes infinitely long formulae such as infinite disjunctions (e.g., “the utility

from q̄2 is greater than the utility from q̄1 by at least one of the following infinitely

many positive gaps”). This prohibits the well description of certain properties of

interest (e.g., strict monotonicity, unless strengthened) without the use of variables

that refer to infinitely many objects. But such variables oftentimes hinder the

ability to invoke finite theorems to show that the finite-subset property holds.

The requirement of strict monotonicity underlies another well-known coun-

terexample. While a strict preference order over a finite set of objects can always

be represented by a utility function, the same need not be true when the set of

objects is uncountable.20 Accordingly, any attempt to use our strengthened mono-

tonicity requirement to scale the finite case is of course bound to fail when the set

of objects is uncountable. It is instructive to consider how it would fail. Recall

that our strengthened monotonicity requires fixed positive gaps between various

utility values. In the case of Afriat’s theorem, requiring countably many such gaps

sufficed, and hence the required gap lengths could be chosen so that their sum is

finite. By contrast, scaling the existence of a utility representation for strict pref-

erences to uncountable sets would involve requiring uncountably many positive

gaps. This means that the sum of lengths of required gaps would be infinite, and

so some objects would not be associated with a finite utility.

7 Beyond Revealed Preferences

Our approach is not in any way limited to revealed preferences. In this section, we

illustrate its applicability in another domain: non-cooperative game theory. We

furthermore provide examples where our framework is inapplicable.21

7.1 Nash Equilibria in Games on Infinite Graphs

In this section, we turn to the setting of games on graphs (see, e.g., Kearns, 2007,

and the references therein),which includes overlapping-generations models, even

with infinite time. We use Lemma 2.5 to show the existence of a Nash equilibrium

in games on infinite graphs. Our result here is covered by Peleg (1969) (who di-

rectly scales the seminal existence result of Nash, 1951), but we give a new proof

20For example, lexicographic preferences over R2 or any strict preference order over 2R.
21Our working paper (Gonczarowski, Kominers, and Shorrer, 2023) includes applications in

other domains.
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that uses the same principled approach we use throughout this paper.

Here, we use Lemma 2.5 to scale the existence of arbitrarily good approximate

Nash equilibria, and then show that the existence of such approximate equilibria

implies the existence of an exact equilibrium. This two-step proof strategy is cho-

sen for convenience: with additional variables, it is easy to encode the second step

of the proof into the logical formulation just like we did in Section 5.22

In a game on a graph, there is a (potentially infinite) set of players I, each

having a finite set of pure strategies Si. Each player i ∈ I is linked to a finite set

of neighbors N(i) ⊂ I with i ∈ N(i), and her utility only depends on the strategies

played by players in the set N(i).23 This setting occurs, for example, in infinite-

horizon overlapping-generations models, where at each point in time there are only

finitely many players alive, and a player’s utility depends only on the behavior of

contemporary players. For any player i we denote by Σi ≜ ∆(Si) the set of mixed

strategies (i.e., distributions over pure strategies) of player i. A mixed-strategy

profile (σi)i∈I is a specification of a mixed strategy σi ∈ Σi for every player i ∈ I.

A mixed-strategy profile (σi)i∈I is a Nash equilibrium if for every i ∈ I and every

possible deviating strategy σ′
i ∈ Σi, it holds that ui(σN(i)) ≥ ui(σ

′
i, σN(i)\{i}).

Games on finite graphs have finitely many players and finitely many strategies

per player; hence, the seminal analysis of Nash (1951) implies that they have Nash

equilibria.

Theorem 7.1 (Follows from Nash (1951)). Every game on a finite graph has a

Nash equilibrium.

Our main result of this section is that Nash equilibria are guaranteed to exist

even in games on infinite graphs.

Theorem 7.2 (Follows from Peleg (1969)). Every game on a (possibly infinite)

graph has a Nash equilibrium.

As already noted, we prove Theorem 7.2 by first using Lemma 2.5 to prove

the existence of arbitrarily good approximate Nash equilibria, and then show-

ing that the existence of such approximate Nash equilibria implies Theorem 7.2.

For a given ε > 0, a mixed-strategy profile (σi)i∈I is an ε-Nash equilibrium if

for every i ∈ I and every possible deviating strategy σ′
i ∈ Σi, it holds that

ui(σN(i)) ≥ ui(σ
′
i, σN(i)\{i})− ε.

Lemma 7.3. For any ε > 0, every (possibly infinite) game on a graph has an

ε-Nash equilibrium.
22The converse does not hold for the analysis in that section, though: The proof there hinges

on a full infinite sequence of approximations being encoded by a single model.
23Readers familiar with Peleg (1969) will note that even on graphs, Peleg’s assumptions are

weaker than those stated here. Our analysis can be generalized to cover such weaker assumptions.
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Proof. Let ε > 0. For each player i ∈ I, it will be convenient to consider the space

of profiles of mixed-strategies of players in N(i) as a metric space with the ℓ∞

metric. Note that this metric space is compact. As each player i has a continuous

utility function whose domain is this compact metric space, players’ utility func-

tions are uniformly continuous by the Heine–Cantor theorem. Thus, there exists

δ̂i > 0 that assures that if two profiles of mixed strategies of players in N(i) are

less than δ̂i apart, then the utilities they yield to i differs by no more than ε/2.

For each player i, choose δi ≜ min
{
δ̂j

∣∣ j ∈ N(i)
}
> 0. Recall that Σi denotes

the space of player i’s mixed strategies, and let Σδi
i ⊂ Σi be a finite set of strategies

that includes all of i’s pure strategies, and includes for any mixed strategy in Σi a

strategy that is at most δi away from it; such a set exists by the compactness of Σi.

We prove the lemma by proving that the given game admits an ε-Nash equilirbium

in which each player i plays a strategy in Σδi
i . We prove this using Lemma 2.5.

Definition of P : Let P be all the subsets of I. A solution for I ′ ∈ P is a strategy

profile for I that is a ε-Nash equilibrium in the induced game between all players

in I ′ (where all other “players” play any arbitrary strategy), in which each player

i ∈ I plays a strategy in Σδi
i .

Well describability: We introduce a variable plays(i,σi)
for every player i ∈ I and

discretized strategy σi ∈ Σδi
i . In what follows, for each I ′ ∈ P we define a set ΦI′

of formulae over these variables so that models of ΦI′ are in one-to-one correspon-

dence with the (not-yet-proven-to-be-nonempty) set of solutions for I ′. The corre-

spondence is obtained by endowing the variable plays(i,σi)
with the semantic inter-

pretation “i plays the strategy σi.” That is, it maps a model for ΦI to the strategy

profile such that for every i ∈ I ′, we have that i plays the strategy σi if and only if

the variable plays(i,σi)
is True in that model. For every player i and every profile

σN(i)\{i} of mixed-strategies for N(i)\{i}, we define the set of ε-best responses of i:

BRε
i (σN(i)\{i}) ≜

{
σi

∣∣∣ ui(σi, σN(i)\{i}) ≥ max
σ′
i∈Σi

{
ui(σ

′
i, σN(i)\{i})

}
− ε

}
.

We define the set ΦI′ to consist of the following formulae:

1. for all i ∈ I, the (finite!) formula ‘
∨

σ∈Σδi
i
plays(i,σ)’, requiring that i plays

some (discretized) strategy (this formula is finite because Σδi
i is);

2. for all i ∈ I and all distinct σi, σ
′
i ∈ Σδi

i , the formula ‘plays(i,σi)
→ ¬plays(i,σ′

i)
’,

requiring that the strategy that player i plays be unique;

3. for all i ∈ I ′ and all profiles σ = (σj)j∈N(i)\{i} ∈×j∈N(i)\{i}Σ
δi
i of discretized
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mixed strategies of N(i) \ {i}, the (finite!) formula( ∧
j∈N(i)\{i}

plays(j,σj)

)
→

( ∨
σi∈Σ

δi
i ∩BRε

i (σ)

plays(i,σi)

)
,

requiring that i ε-best-responds to the strategies played by the other players.

By construction, (ΦI′)I′∈P is a well description of P .

Finite-subset property: Let Φ′ ⊂ ΦI be a finite subset. Since Φ′ is finite, it “men-

tions” (through variables used) only finitely many players; denote the set of these

players by I ′ ⊂ I. By definition, Φ′ ⊆ ΦI′ . Consider the induced game on I ′

obtained by having each player i ∈ I \ I ′ mechanically play some fixed strategy

in Σδi
i . By Theorem 7.1, this game has a Nash equilibrium. By choosing for each

player i ∈ I ′ a closest strategy in Σδi
i to the one she plays at this Nash equilibrium,

each player’s utility changes by at most ε/2 (by uniform continuity), and so does

the utility attainable by best responding. Therefore, since we started with a Nash

equilibrium, it is assured that each player is now playing an ε-best response, so the

resulting strategy profile is a solution to I ′. Therefore, I satisfies the finite-subset

property. Thus, by Lemma 2.5, there exists an ε-Nash equilibrium in the grand

game (among all player in I), as required.

Now, we can use Lemma 7.3 to prove Theorem 7.2 by way of a diagonalization

argument.

Proof of Theorem 7.2. Since each player in the graph has finitely many neighbors,

every connected component of the graph consists of at most countably many play-

ers. As it is enough to show the existence of a Nash equilibrium in each connected

component separately (we use the Axiom of Choice here), let us focus on one

connected component. By Lemma 7.3 there exists a sequence (σn)∞n=1 of 1
n
-Nash

equilibria in the game on this connected component. Since each of the at-most-

countably-many coordinates of each element in this sequence lies in [0, 1], we can

choose a subsequence (a “diagonal subsequence”) that converges in all coordinates;

let σ∗ denote the limit of that subsequence.

We claim that σ∗ is a Nash equilibrium. To see this, note that for every i ∈ I

and σ′
i ∈ Σi, we have for the nth elements of the sequence that

ui(σ
n
N(i)) ≥ ui(σ

′
i, σ

n
N(i)\{i})− 1

n
.

By the continuity of ui, this means that for every i ∈ I and σ′
i ∈ Σi, we have

ui(σ
∗
N(i)) ≥ ui(σ

′
i, σ

∗
N(i)\{i}),
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so no player has a profitable deviation under the profile σ∗. Hence, σ∗ is indeed a

Nash equilibrium—and in particular, we see that a Nash equilibrium exists in the

game, as desired.

7.2 Non-Applications

When using our framework, one faces an inherent tension. On the one hand,

each formula in a well description must use finitely many variables. On the other

hand, to be able to use finite results to establish the finite-subset property, each

variable must be semantically related only to a finite set of elements in the eco-

nomic problem. At first glance, this seems to preclude applications in which the

desired solution has a parameter with an infinite domain, since requiring that the

parameter take some value would require an infinite disjunction. Indeed, it is

simpler to handle parameters with finite domains (which, as we have seen, nat-

urally occur in many applications). Nevertheless, we have successfully applied

Lemma 2.5 also to settings with infinite-domain parameters, such as utilities (Sec-

tion 5), costs/prices (Appendix B), or probabilities (Section 7.1). Still, as the fol-

lowing examples demonstrate, in seemingly similar problems, this approach could

not possibly work, since the infinite case has no solution.

Example 7.4 (Splitting the dollar). A dollar must be split between a set I of

agents. A solution is an efficient and envy-free division. When |I| < ∞ splitting

the dollar equally is a solution. But the case I = N has no solution.

Example 7.5 (Higher number wins). Two players can state a number in S ⊆ R.
The player whose stated number is higher wins a prize (which is shared in case of

a tie). A solution is a pure-strategy Nash equilibrium. When |S| <∞, a solution

exists (each player states maxS), but the case S = N has no solution.

What are the limitations of our approach that prevent it from covering these

two examples? Our approach for well-describing problems with infinite-domain

parameters is to “encode” these parameters via a sequence of values, each from a

finite domain. Specifically, we have encoded each of the abovementioned param-

eters using a sequence of increasingly fine discretizations.

Two features are critical for the success of this approach. First, that the

desiderata on the encoded parameter can be imposed by individually finite for-

mulae on the discretizations. For example, in Section 5, a utility function weakly

rationalizes the data if and only if each of its discretizations weakly rationalize

the data. This allowed us to represent a utility function that weakly rationalizes

the data by a sequence of discretizations that each weakly rationalizes the data.

The second critical feature is that not only each parameter value can be encoded

by such a sequence of values (discretizations), but also each such sequence from
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any valid model encode a valid parameter value (i.e., in the parameter domain).

In Section 5, since the sequence of discretized utilities is pointwise increasing and

bounded, it has a finite limit. In our scaling of the rational inattention result of

Caplin and Dean (2015) in Appendix B, since discretized costs are increasing, they

have a limit, which is in R≥0 ∪ {∞}—the domain of costs in that problem. For

each of the above examples, there is no encoding that has both of these features.

In splitting the dollar, if, for example, we encode each player’s allocation using

discretizations, there is no set of individually finite formulae on the discretizations

that holds if and only if the limit division is efficient. Hence, the first feature is

missing. Any encoding that has this feature would lose the second feature.

In higher number wins, if, for example, we encode each player’s number using

discretizations, there is no set of individually finite formulae on the discretizations

that holds if and only if the limit is finite. Hence, the second feature is missing.

Any encoding that has this feature would lose the first feature.

8 Related Literature

In decision theory, both finite- and infinite-data models are important and com-

mon.24 Reny (2015) showed how to unify these two approaches in the setting of

Afriat (1967). In our view, our main contribution to this literature is in general-

izing beyond any specific setting by providing a way to systematically unify these

approaches. In Section 4, we proved that the result of Masatlioglu et al. (2012)

scales to infinite datasets using essentially the same proof we used to reprove the

classic result of Richter (1966) and Hansson (1968) that SARP suffices for ratio-

nalization by strict preferences. Like Masatlioglu et al., our infinite version of

their theorem applies to full datasets. de Clippel and Rozen (2021) provide an

analogous theorem for finite datasets that need not necessarily be full; our proof

can be used to similarly scale their theorem to infinite datasets.

To our knowledge, we are the first to use Propositional Logic as a general

tool for scaling results in economics. It is worth mentioning within this context,

though, the work of Holzman (1984), who used Logical Compactness to relax

topological conditions in Fishburn (1984).25

Our approach was stated using Propositional logic, but, in fact, Lemma 2.5

generalizes to well descriptions using First-Order Logic as well. Propositional logic

is a special case of First-Order Logic. Importantly, it does not use quantifiers (i.e.,

∀ and ∃). We chose to focus on this special case in order to simplify the exposition,

since we were not able to identify any economic application in which the added

24For a recent example of a treatment of finite and infinite datasets, see Aguiar et al. (2020).
25Logical Compactness is frequently used to scale existence results in mathematics from finite

settings to infinite ones (See, e.g., de Bruijn and Erdős, 1951 and Halmos and Vaughan, 1950).
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generality would be beneficial.26

Other papers have used First-Order (rather than Propositional) Logic and non-

standard analysis to unify, refine, and scale results in economic theory. Examples

include Anderson (1978), Brown and Khan (1980), Anderson (1991), Khan (1993),

Blume and Zame (1994), Halpern (2009), and Halpern and Moses (2016). Cham-

bers et al. (2014) used Compactness in First-Order Logic to formalize the notion

of the empirical content of a model. Like us, that paper studies applications to

revealed preferences theory (see also Chambers et al., 2017), however it deals with

different questions from us, and uses different techniques.

Hellman and Levy (2019) use (still different) tools from mathematical logic to

prove conceptually related, yet incomparable, results: while our paper scales cer-

tain finite results to infinite settings, their paper scales certain countably infinite

results to uncountably infinite settings. Specifically, they give sufficient condi-

tions to scale certain existence results that are known to hold whenever there are

countably many possible states of the world into scenarios with uncountably many

possible states of the world. Their results are incomparable to any of our results,

and even to our existence-in-large-market results, first because they always assume

that the number of agents is finite (an infinite number of agents, even with only

two possible types for each, would already result in an uncountably infinite set of

possible states of the world to begin with), and second, because they require that

the theorems that they scale be already known to hold for the countably infinite,

rather than only the finite, case.

We have been asked about the relation to various theorems in topology.

Lemma 2.5 is stated in terms of logical propositions and its proof relies on

Logical Compactness. Logical propositions can be translated into closed sets

in an application-specific topological (product) space, in which setting Logical

Compactness follows from Tychonoff’s theorem on topological compactness.

In other words, Lemma 2.5 can be proved using Tychonoff’s theorem, and its

statement can be translated to the language of topology. However, in our view,

the resulting Lemma would be harder to directly formulate and the conditions

would be harder to verify. And while topological compactness or the language

of nets are stronger and more general approaches, in the domains we study, they

often introduce technical issues that can render arguments incorrect in subtle ways

(e.g., matchings may converge to an object that is not a matching). We therefore

26Well-describing economic problems using the full generality of First-Order Logic is Chal-
lenging. For example, fixing sets of objects (e.g., men and women) is not straightforward. In
fact, by the (upward) Löwenheim–Skolem theorem, if a first-order theory has an infinite model
(a model with an infinite domain) then it has a model of any larger cardinality, which implies
that first-order theories cannot bound the cardinality of their infinite models. Hence, constants
would have to play an important role in the well description.
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view the methodological part of our contribution as introducing a unifying

approach that is simple and intuitive to work with, and that does not require us

to look for the “right” topological space or apply topological reasoning directly.27

9 Discussion

This paper provides a novel, principled approach for scaling economic theory re-

sults from finite models to infinite ones. We identify a sufficient condition for

scaling a result: A result can be scaled if it is well-describable with a description

satisfying the finite-subset property. The bulk of this paper is dedicated to demon-

strating that many results in revealed-preference theory meet our condition, and

therefore hold even with infinite datasets. We also demonstrate a game-theoretic

application that focuses on a different “type” of scaling to infinity: allowing an

infinite (rather than finite) number of players.

Our approach is not without limitation, and may fail where other approaches

can succeed. That said, we have curated an array of applications showing that

it has merit in decision theory and beyond in proving novel results, as well as

consolidating and shortening proofs of previously known results, in a way that

oftentimes sheds new light on them.

We view the main contribution of this paper to be a methodological one: a

new, easy-to-use versatile tool for the economic theory toolbox. We hope that

readers of this paper will be able to further leverage our approach.
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A Proof of Theorem 4.2

Proof of Theorem 4.2. As with Theorem 3.2, the “only if” direction is immediate,

so we prove the “if” direction using Lemma 2.5.

Definition of P : Fixing X, let P be the set of all pairs (X ′, D) such that X ′ ⊆
X and D is a full dataset over X ′ that satisfies WARP-LA. A solution for a

pair (X ′, D) ∈ P is a pair of strict preference order over X ′ and attention filter

that rationalize D.

Well describability: We introduce a variable agtb for every pair of distinct a, b ∈ X

and a variable attn(S,T ) for each pair of finite sets S, T s.t. ∅ ≠ T ⊆ S ⊆ X. In

what follows, for each (X ′, D) ∈ P we define a set Φ(X′,D) of formulae over these

variables so that models of Φ(X′,D) are in one-to-one correspondence with the

(not-yet-proven-to-be-nonempty) set of solutions for (X ′, D). The correspondence

is obtained by endowing the variable agtb with the semantic interpretation “a is

preferred to b (when both are attention attracting),” and the variable attn(S,T )

with the semantic interpretation “T is the set of attention-attracting elements

when the menu is S.” That is, it maps a model for Φ(X′,D) to the preference ≻
such that for every distinct a, b ∈ X ′, we have that a ≻ b if and only if the variable

agtb is True in that model and to the attention filter Γ such that for every S, T such

that ∅ ≠ T ⊆ S ⊆ X ′, we have that Γ(S) = T if and only if the variable attn(S,T ) is

True in that model. We define the set Φ(X′,D) to consist of the following formulae:

1. for all distinct (S, a) ∈ D, all b ∈ S \ {a}, and all T ⊆ S s.t. b ∈ T , the for-

mula ‘attn(S,T ) → agtb’, requiring that the preferences and attention filter

rationalize D;

2. for all distinct a, b ∈ X ′, the formula ‘agtb ∨ bgta’, requiring that the pref-

erences be complete;

3. for all distinct a, b ∈ X ′, the formula ‘¬(agtb ∧ bgta)’, requiring that the

preferences be antisymmetric;

4. for all distinct a, b, c ∈ X ′, the formula ‘(agtb∧ bgtc) → agtc’, requiring that

the preferences be transitive;

5. for all menus S ⊆ X ′, the (finite!) formula ‘∨∅≠T⊆Sattn(S,T )’, requiring that

S have a set of attention-attracting elements that is a nonempty subset of S;

6. for all menus S ⊆ X ′ and all distinct T, T ′ ∈ 2S\{∅}, the formula ‘attn(S,T ) →
¬attn(S,T ′)’, requiring that the set of attention-attracting elements from S

be unique;

7. for all menus S ⊆ X ′, all T ∈ 2S \ {∅}, and all x ∈ S \ T , the formula

‘attn(S,T ) → attn(S\{x},T )’, requiring that if x is not attention attracting

from S, then S an S \ {x} have the same attention-attracting set.
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By construction, (Φ(X′,D))(X′,D)∈P is a well description of P .

Finite-subset property: Let (X̄,D) ∈ P . Let Φ′ ⊂ Φ(X̄,D) be a finite subset. Since

Φ′ is finite, it “mentions” only finitely many elements of X̄ (through variables

used, whether by mentioning these elements directly or by mentioning menus that

contain them); denote the set of these elements by X ′ ⊂ X̄. Let D′ ≜
{
(S, a) ∈

D
∣∣ S ⊆ X ′}. By definition, Φ′ ⊆ Φ(X′,D′). Furthermore, D′ is a full dataset and it

satisfies WARP-LA since any sub-dataset ofD satisfies WARP-LA. Hence, by The-

orem 4.1, D′ is rationalizable by some strict preference order over X ′ and attention

filter. Therefore, (X̄,D) satisfies the finite-subset property. Thus, by Lemma 2.5,

D is rationalizable by a strict preference order over X̄ and an attention filter.

B Rational Inattention

In this appendix, we demonstrate how our proof for Theorem 5.2 is quite a bit more

flexible than one might imagine, by using essentially the same well description to

scale quite a different rationalization result from finite to infinite datasets. For the

most part, we follow the notation of Caplin and Dean (2015). Fix a finite set Ω of

possible states of the world and a prize space X, as well as a utility function u :

X → R. An action is a mapping from Ω to X. A decision problem is a finite set of

actions. A (state-dependent stochastic choice) dataset is a collection D of decision

problems along with functions PA : Ω → ∆(A) for every A ∈ D, denoting the

observed action distribution of a decision maker in each realized state of the world.

Fix a prior belief µ ∈ ∆(Ω) for the decision maker. An information structure

is a distribution over a finite number of posteriors (distributions over Ω) for the de-

cision maker whose average is µ.28 The set of all information structures is Π. The

utility from an action a when the posterior is γ is g(a, γ) =
∑

ω∈Ω γ(ω)u(a(ω)).

The gross payoff from a decision problem A using an information structure π

is G(A, π) =
∑

γ∈suppπ π(γ)maxa∈A g(a, γ). An information cost function is a

mapping K : Π → R ∪ {∞} where not all costs are infinite.

Given a dataset (D, {PA}A∈D), for every a ∈ A by slight abuse of notation we

write PA(a) =
∑

ω∈Ω µ(ω)PA(a | ω). For each a ∈ A s.t. PA(a) > 0, we write

P ′
A(· | a) for the revealed posterior associated with the action a in the decision

problem A, defined by P ′
A(ω | a) = PA(a|ω)µ(ω)

PA(a)
for every ω ∈ Ω.

A dataset (D, {PA}A∈D) is said to have costly information acquisition repre-

sentation if there exists a cost function K such that for every problem A ∈ D:

1. For each a ∈ A with PA(a) > 0, it holds that a ∈ argmaxb∈A g(b, P
′
A(· | a)).

28Caplin and Dean (2015) define an information structure as a mapping from Ω to distribu-
tions over posteriors that satisfiy Bayes’ law with respect to the prior µ, which leads also to a
different definition of rationalization; these definitions are known to be equivalent.
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2. Letting πA be the revealed information structure for A, i.e., the information

structure such that for every a ∈ A with PA(a) > 0, the probability that

πA assigns to the posterior P ′
A(· | a) is PA(a) (note that by definition, these

probabilties sum up to 1, so this information structure is well defined), it

holds that πA ∈ argmaxπ∈Π
(
G(A, π)−K(π)

)
.

An information cost function K is weakly monotone in information if for every

two information structures π, ϕ s.t. π is a garbling of ϕ, we have thatK(ϕ) ≥ K(π).

An information cost function K is mixture feasible if for any two information

structures π, ϕ and for every α ∈ (0, 1), we have that K
(
α ◦ π + (1 − α) ◦ ϕ

)
≤

αK(π)+(1−α)K(ϕ), where α◦π+(1−α)◦ϕ is the mixture distribution assigning

to each posterior a probability equal to the α-weighted average of the probabilities

assigned to it by π and ϕ. Finally, an information cost function K is normalized

if K(1µ) = 0, where 1µ is the information structure assigning probability 1 to the

the prior µ being the posterior.

In a seminal result, Caplin and Dean (2015) showed that satisfying No Improv-

ing Action Switches (NIAS) and No Improving Attention Cycles (NIAC) is neces-

sary and sufficient for having a costly information acquisition representation for a

finite dataset—and furthermore that satisfying NIAS and NIAC is a sufficient con-

dition for such a representation by a normalized, weakly monotone in information,

and mixture feasible cost function. For our purposes, it suffices to note that when-

ever an infinite dataset satisfies NIAS and NIAC, so does any finite subset of it.

Theorem B.1 (Caplin and Dean, 2015). A finite dataset (D, {PA}A∈D) has a

costly information acquisition representation if and only if it satisfies NIAS and

NIAC. Moreover, when NIAS and NIAC hold there exists a costly information

acquisition representation function for the dataset that is weakly monotone in in-

formation, mixture feasible, and normalized.

Recently, Caplin et al. (2017) proved an infinite-dataset-size version of Theo-

rem B.1 via a novel proof that diverges from Caplin and Dean’s proof of the finite

case. As we now show, this infinite version is also readily provable via Lemma 2.5,

using Theorem B.1 for establishing the finite-subset property, with a very similar

well description to the one we used to prove Reny’s infinite-data version of Afriat’s

theorem. This is despite the differences between the two settings considered, and

despite the fact that neither the original proofs of the finite versions nor the orig-

inal proofs of the infinite versions of any of these quite different theorems share

any common core technique.

Theorem B.2 (Caplin et al., 2017). A (possibly infinite) dataset (D, {PA}A∈D)

has a costly information acquisition representation if and only if it satisfies NIAS
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and NIAC. Moreover, when NIAS and NIAC hold there exists a costly informa-

tion acquisition representation function for the dataset that is weakly monotone in

information, mixture feasible, and normalized.

Proof of Theorem B.2. As noted, the “only if” direction is immediate, so we prove

the “if” direction. Let (D, {PA}A∈D) be a dataset that satisfies NIAS and NIAC,

and let πA be the associated revealed information structure. Of the two conditions

for having a costly information acquisition representation, the first condition does

not involve K, and is in fact a condition on each decision problem in the data sep-

arately; the fact that it holds for each decision problem in the dataset separately

follows from Theorem B.1 since each decision problem in the dataset satisfies NIAS

and NIAC as a dataset by itself, and therefore has a costly information acquisition

representation by itself as the only data point therefore satisfies the first condition

for having a costly information acquisition representation.29 The challenge with

infinite data is therefore to find a cost function that satisfies the second condition

for having a costly information acquisition representation, simultaneously for all

infinitely many decision problems in the dataset. We do so using Lemma 2.5.

Definition of P : Fixing X, Ω, and u, let P be the set of all datasets satisfying

NIAS and NIAC. A solution for a dataset (D, {PA}A∈D) ∈ P is a costly informa-

tion acquisition representation function for (D, {PA}A∈D) that is weakly monotone

in information, mixture feasible, and normalized.

Well describability: We set εn ≜ 2−n for every n ∈ N. We introduce a vari-

able costnπ,c for every n ∈ N, every information structure π, and every c ∈
Cn ≜ {0, εn, 2 · εn, . . . , n} (note that unlike in our proof of Theorem 5.2, this

set goes up to n rather than only up to 1, so both the fineness of the discretiza-

tion and the upper bound depend on n in this proof). In what follows, for each

(D, {PA}A∈D) ∈ P we define a set Φ(D,{PA}A∈D) of formulae over these variables so

that models of Φ(D,{PA}A∈D) are in one-to-one correspondence with the (not-yet-

proven-to-be-nonempty) set of solutions for (D, {PA}A∈D). The correspondence

is obtained by endowing the variable costnπ,c with the semantic interpretation

“⌊K(π)⌋Cn = c for the corresponding cost function K,” where for every n ∈ N
and every x ∈ R∪{∞} we denote by ⌊x⌋Cn the rounding-down of x to the nearest

number in Cn. (Note that in particular, ⌊x⌋Cn = n for every x > n.) We define

the set Φ(D,{PA}A∈D) to consist of the following formulae (which, except for the

sixth formula-type, mirror those from our proof of Theorem 5.2):

1. for all n ∈ N and all information structures π, the (finite!) formula

‘
∨

c∈Cn
costnπ,c’, requiring that π have a rounded-down-to-Cn cost;

29In fact, only NIAS is required here, but we are intentionally stating the proof in a way that
is agnostic to the details of NIAS and NIAC.

32



2. for all n ∈ N, all information structures π, and all distinct c, d ∈ Cn, the

formula ‘costnπ,c → ¬costnπ,d’, requiring that the rounded-down-to-Cn cost

of π be unique;

3. for all n ∈ N, all information structures π, and all c ∈ Cn, the following

formula:

• if c < n, the formula ‘costnπ,c →
(
costn+1

π,c ∨ costn+1
π,c+εn+1

)
’,

• if c = n, the (finite) formula ‘costnπ,c →
∨

d={n,n+εn+1,...,n+1} cost
n+1
π,d ’,

requiring that ⌊K(π)⌋Cn = ⌊⌊K(π)⌋Cn+1⌋Cn ;

4. For all n ∈ N, all pairs of information structures π, ϕ s.t. π is a garbling

of ϕ, and all c ∈ Cn, the (finite) formula ‘costnπ,c →
∨

d∈Cn:d≥c cost
n
ϕ,d’, re-

quiring that the rounded-down-to-Cn cost function be weakly monotone in

information;

5. for all n ∈ N, all pairs of information strucures π, ϕ, all α ∈ (0, 1),

and all c, d ∈ Cn, the (finite) formula ‘
(
costnπ,c ∧ costnϕ,d

)
→∨

c′∈Cn:c′≤αc+(1−α)d+εn
costnα◦π+(1−α)◦ϕ,c′ ’, requiring that the rounded-

down-to-Cn cost function be mixture feasible, up to an error of at most εn;

6. for all n ∈ N, the formula ‘costn
1µ,0’, requiring that the rounded-down-to-

Cn cost function be normalized (and, in particular, that not all costs are

infinite);

7. for all decision problems A ∈ D, all n ∈ N, all information struc-

tures ϕ, and all c ∈ Cn \ {n}, the (finite) formula ‘costnϕ,c →∨
d∈Cn:d≤c−(G(A,ϕ)−G(A,πA))+εn

costnπA,d’, requiring that choosing πA maximizes

gross payoff minus rounded-down-to-Cn costs, up to an error of at most εn.

We now argue that (Φ(D,{PA}A∈D))(D,{PA}A∈D)∈P is a well description of P . Let

(D, {PA}A∈D) ∈ P .

We first claim that every model that satisfies Φ(D,{PA}A∈D) corresponds to a

solution for (D, {PA}A∈D). Fix a model for Φ(D,{PA}A∈D). For every information

structure π and every n ∈ N, let cn ∈ Cn be the value such that costnπ,cn is True

in the model (well defined by the first and second formula-types above), and de-

fine K(π) = limn→∞ cn (well defined, e.g., by the third formula-type above since

cn is monotone nondecreasing). The resulting cost function K is a limit of nor-

malized functions that are weakly monotone in information (by the fourth and

sixth formula-types above) and that up to an error that tends to 0, both (1) are

mixture feasible (by the fifth formula-type above), and, (2) choosing πA for each

A ∈ D maximizes gross payoff minus costs according to them (by the seventh

formula-type above). Hence, K itself is normalized, weakly monotone in informa-

tion, mixture feasible, and choosing πA for each A ∈ D maximizes gross payoff

minus costs according to it (i.e., is a costly information acquisition representation

33



function for (D, {PA}A∈D)).

Second, if (D, {PA}A∈D) has a solution K, then using it we can construct a

model for Φ(D,{PA}A∈D) (by setting each costnπ,c to be True iff c = ⌊K(π)⌋Cn), and

so Φ(D,{PA}A∈D) has a model. To sum up, (Φ(D,{PA}A∈D))(D,{PA}A∈D)∈P is a well

description of P .

Finite-subset property: Let (D, {PA}A∈D) ∈ P . Let Φ′ ⊂ Φ(D,{PA}A∈D) be a fi-

nite subset. Since Φ′ is finite, there are only finitely many formulae of the

above seventh type (the only formula type that depends on the dataset) in Φ′.

For each of these formulae, select some decision problem in D that induces it,

and let D′ ⊂ D be the set of these (at most |Φ′|) problems. By definition,

Φ′ ⊆ Φ(D′,{PA}A∈D′ ). Furthermore, (D′, {PA}A∈D′) satisfies NIAS and NIAC since

any sub-dataset of (D, {PA}A∈D) satisfies NIAS and NAIC, and hence, by The-

orem B.1, (D′, {PA}A∈D′) has a solution. Therefore, (D, {PA}A∈D) satisfies the

finite-subset property. Thus, by Lemma 2.5, (D, {PA}A∈D) has a solution.
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