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Abstract

An innovation (e.g., new product or idea) spreads like a virus, transmitted by

those who have previously adopted it. Agents update their beliefs about innova-

tion quality based on private signals and when they hear about the innovation. We

characterize equilibrium adoption dynamics and the resulting lifecycle of virally-

spread innovations. Herding on adoption can occur but only early in the innova-

tion lifecycle, and adoption eventually ceases for all virally-spread innovations. A

producer capable of advertising directly to consumers finds it optimal to wait and

allow awareness to grow virally initially after launch.
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When a novel virus enters a population, infected hosts expose others who, if suc-

cessfully infected, will start spreading the virus as well. In such an infectious-disease epi-

demic, virus strains that are more successful at causing infection spread more quickly

through the population. In the same way, when a new product is launched, a new

idea espoused, or a new method developed, an epidemic diffusion process ensues

in which those who have purchased the product, accepted the idea, or adopted the

method spread awareness and cause others to consider it as well. During such an

adoption epidemic, consumers can make inferences about quality based on how long it

took for them to be exposed, in addition to their private signals. For example, hearing

about a movie long after it has been released is a sign that it is unlikely to be very good

since, if it were, you would likely have heard about it sooner.

Our economic-epidemic model adapts the Susceptible-Infected (SI) model of viral

epidemiology1 to an economic context in which consumers receive informative private

signals about quality and decide whether to adopt a new innovation. There is a unit-

mass population of consumers and an “innovation” that is “good” with probability α

and “bad” with probability 1− α. When first exposed to the innovation, each consumer

i receives a conditionally independent private signal si ∈ {G, B} that matches the true

state with probability ρ ∈ (1/2, 1). Consumer i then decides whether to adopt the in-

novation, preferring to adopt whenever she believes that the innovation is more likely

to be good than bad. Those who adopt are “infected” and subsequently expose oth-

ers, while those who choose not to adopt are “immune/removed” and do not expose

anyone else to the innovation.

Our first main finding is that the adoption epidemic has a unique equilibrium epi-

demic trajectory, which depends on (i) consumers’ ex ante belief α ∈ [0, 1] about the

likelihood that the innovation is good, (ii) the precision ρ ∈ (1/2, 1) of consumers’ pri-

vate signals, and (iii) the fraction L of the consumer population that learns about the

innovation at “launch” at time t = 0. The case with L = 1 is relatively trivial since

all consumers are exposed to the innovation at time t = 0 and simultaneously decide

whether to adopt; we refer to this as a “traditional ad campaign.” By contrast, when

L ≈ 0, almost all consumers encounter the innovation socially; we refer to this case as

1In the SI model, hosts progress from susceptible (state S) to infected (state I) once they are exposed to
the virus, i.e., infectivity equals 100%. Our epidemiological model is a variation in which some exposed
consumers do not become infected (because they choose not to adopt) and are henceforth immune.
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a “viral campaign.”

The qualitative features of the equilibrium trajectory of a viral campaign depend

on whether or not the innovation is more likely to be good than bad, i.e., is α > 1/2

or α < 1/2? When 1/2 < α < ρ,2 we show that consumers adopt regardless of their

private signal (“herd on adoption”) immediately after launch, but this herding phase

eventually ends and is followed by subsequent phases in which newly-exposed con-

sumers are less and less likely to adopt—until eventually all adoption ceases, an en-

dogenous obsolescence. By contrast, when 1− ρ < α < 1/2, consumers do not herd on

adoption immediately after launch and newly-exposed consumers’ belief about inno-

vation quality initially rises over time. However, as when 1/2 < α < ρ, newly-exposed

consumers eventually become sufficiently pessimistic about quality that all adoption

ceases.

In an extension, we allow the producer of the innovation to launch it virally but

then end the viral campaign at any time T ∈ [0, ∞) with an ad that reaches all still-

unexposed consumers. Our main finding in this extension is that a traditional ad cam-

paign (corresponding to T = 0) leads to strictly less overall adoption than an optimal-

length viral campaign.3 On the other hand, we also show that it is never optimal in

our model to run a viral campaign forever.

Relation to the literature. The idea that ideas can spread like a virus is widely appre-

ciated4 and well-studied, with some going even further to explore how ideas mutate

as they circulate through a population; see e.g., Adamic et al. (2016) and Jackson et al.

(2022). We abstract from the possibility of mutation, but push the literature forward

by modeling becoming infected as an economic choice. In doing so, we characterize

the equilibrium dynamics of the epidemic diffusion process and show how these dy-

namics change over time, passing through several phases with distinctive patterns of

adoption.

2If α > ρ (or α < 1 − ρ), then consumer behavior is trivial with everyone (or no one) adopting.
3The producer in our analysis seeks to maximize the mass of consumers who adopt the innovation. If

quicker adoption is more valuable, such as when the innovation may become obsolete or when adoption
corresponds to purchasing a new product and the producer is a firm that discounts profits, then the
producer may prefer running a traditional ad campaign even though doing so leads to less overall
adoption.

4See e.g., “The Age of the Viral Idea” by Bill Davidow, The Atlantic, Nov 17, 2011 and “The Internet
Catches a Viral Epidemic” by Bill Wasik, Wired, April 16, 2013.
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Most closely related is Banerjee (1993), who pioneered the study of adoption epi-

demics in the context of rumors, when only those exposed at launch have informative

private signals about quality. Because those exposed after launch do not have any pri-

vate information, their likelihood of adopting upon being exposed (“infectivity”) at

any given time is the same for low- and high-quality rumors. Moreover, the pattern

of adoption is especially simple, with all socially-exposed consumers adopting the ru-

mor until a critical moment after which no one adopts. By contrast, infectivity in our

model depends on innovation quality and the epidemic transitions through up to four

distinct phases.

Because awareness of the innovation spreads by word of mouth, this paper con-

nects with the broader economic literature on diffusion; see e.g., Campbell (2013),

Campbell et al. (2017), Leduc et al. (2017), and Sadler (2020). The main difference

is that this literature mostly focuses on consumers’ search technology and social net-

work, whereas we focus on the impact of consumers’ private information about quality.

There is also a literature in marketing and consumer behavior on the diffusion of new

products through influentials, e.g. Dodson and Muller (1978) and Van den Bulte and

Joshi (2007). This literature also develops compartmental models where consumers

transit between different states marking their awareness of the product and/or their

adoption behavior. However, consumers in these models typically make decisions ac-

cording to rules governed by exogenous parameters; see Watts and Dodds (2007) for a

comprehensive survey. By contrast, the consumers in our analysis are Bayesian utility

maximizers.

An extensive literature endogenizes the diffusion dynamics of an infectious pathogen;

see e.g., Newman (2002) on disease spread over a social network, Laxminarayan and

Brown (2001) and McAdams (2017) on when to switch to a new antibiotic in the face

of rising resistance, and Farboodi et al. (2021) and McAdams et al. (2023) on the im-

pact of social distancing during the outbreak and endemic phases of an epidemic. The

basic difference with this literature is that agents in an infectious-disease epidemic pre-

fer to avoid infection, whereas being “infected” in our model may or may not benefit

consumers depending on whether the innovation is good or bad.

Finally, the paper relates indirectly to the literature on social learning. In the clas-

sic social learning model (Bikhchandani et al. (1992), Banerjee (1992)), infinitely-many
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agents are arrayed in a line and sequentially decide whether to adopt, based on their

own private signal and all decisions made by those before them. By contrast, in our

model, only those who have chosen to adopt expose others to the innovation and,

when deciding whether to adopt, consumers do not know the length of the chain of

exposures that led to their own exposure.5

The rest of the paper is organized as follows. Section 1 presents the model. Section

2 characterizes the equilibrium epidemic trajectory of innovation adoption over time.

Section 3 extends the analysis to allow the producer to choose when to end the viral

campaign with an ad that reaches all remaining consumers. Section 4 concludes by

discussing the important assumptions of the model and a few interesting directions

for future research. Formal proofs omitted in the main text are in the Appendix.

1 Model

There is an “innovation” which may be either “good” or “bad” and a continuum of

consumers having unit mass. Each consumer i gets payoff +1 when adopting a good

innovation, −1 when adopting a bad innovation, or zero when not adopting, and seeks

to maximize their own expected payoff. Each consumer therefore strictly prefers to

adopt if and only if they believe that the innovation’s likelihood of being good exceeds

1/2. Let α ∈ [0, 1] be the ex ante probability that the innovation is good.

Epidemiological dynamics. Innovation awareness spreads through the consumer

population following a variation of the classic Susceptible-Infected (SI) model of vi-

ral epidemiology (Kermack and McKendrick (1927)). At each point in time t ≥ 0, each

consumer is in one of three epidemiological states: Susceptible (state S), if not yet ex-

posed to the innovation; Infected (state I), if previously exposed and chose to adopt; or

Immune/Removed (state R), if previously exposed and chose not to adopt. We assume

that mass L > 0 of consumers are exposed to the innovation at time t = 0 regard-

less of innovation quality. Each consumer who adopts becomes infected and spreads

5Classic social learning reemerges within a variation of our model if one instead assumes (i) all in-
fected and immune consumers expose others at the same rate and (ii) each consumer is able to observe
the history of decisions made along the entire chain of consumers leading to their exposure. In that
context, consumers along each exposure chain behave exactly as in the classic model.
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innovation awareness virally by exposing other randomly-selected consumers to the

innovation; each infected consumer initiates such exposure events at rate normalized

to one.6 If an exposed consumer is susceptible, they receive a private signal and de-

cide whether or not to adopt, transitioning immediately either to the infected state (if

adopting) or to the immune state (if not adopting). If an exposed consumer is infected

or immune, they remain in the same state; by assumption, adoption decisions are per-

manent.

Let Sω(t), Iω(t), and Rω(t) denote the mass of susceptible, infected, and immune

consumers at time t, conditional on the unobserved innovation-quality state ω ∈ {g, b}.

Since the population has unit mass, Rω(t) = 1− Sω(t)− Iω(t) and the overall epidemi-

ological process is described by (Sω(t), Iω(t) : t ≥ 0, ω = g, b). Let qω(t) denote time-t

consumers’ likelihood of adopting when the state is ω ∈ {g, b}.

Epidemiological dynamics are characterized by the system of differential equations

S′
ω(t) = −Iω(t)Sω(t) (1)

I′ω(t) = qω(t)Iω(t)Sω(t) (2)

Equation (1) follows from the fact that each infected consumer meets another con-

sumer at rate 1 and fraction Sω(t) of others remain suspectible, generating a state-

dependent flow Iω(t)Sω(t) of newly-exposed consumers who are then no longer sus-

ceptible. Equation (2) follows from the fact that fraction qω(t) of these newly-exposed

consumers choose to adopt. Note that epidemiological dynamics are completely deter-

mined by the adoption process (qω(t) : t ≥ 0, ω = g, b) and the mass L of consumers

exposed at time t = 0.

Consumer belief formation. Let p(t) be the probability that the innovation is good

conditional on first encountering it socially at time t, what we refer to as the “interim

belief” of consumers exposed socially at time t. Let f (t|ω) denote the endogenous7

p.d.f. of consumers’ time of exposure conditional on the state ω ∈ {g, b}. By Bayes’

6The transmission rate being equal to one is without loss. Given any transmission rate β ̸= 1, equi-
librium epidemiological dynamics are exactly the same but happen β times faster than in our model.

7We characterize the equilibrium distribution of t|ω, showing that f (t|ω) exists and is continuous in
t at all but finitely-many points when the innovation lifecycle transitions from one phase to the next.
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Rule, p(t) = α f (t|ω=g)
α f (t|ω=g)+(1−α) f (t|ω=b) or, equivalently,

p(t)
1 − p(t)

=
α

1 − α
× f (t|ω = g)

f (t|ω = b)
(3)

Once exposed to the innovation, each consumer i observes private signal si ∈
{G, B}. These signals are conditionally i.i.d. with Pr(si = G|ω = g) = Pr(si = B|ω =

b) = ρ ∈ (1/2, 1).8

A consumer i exposed at launch (ti = 0) with signal si ∈ {G, B} updates to “ex post

belief” p(0; si), where

p(0; G)

1 − p(0; G)
=

α

1 − α
× ρ

1 − ρ
and

p(0; B)
1 − p(0; B)

=
α

1 − α
× 1 − ρ

ρ
. (4)

A consumer i exposed socially at time ti updates her belief based on both her own

private signal si ∈ {G, B} and when she is exposed, forming “ex post belief” p(ti; si).

Again by Bayes Rule,

p(ti; G)

1 − p(ti; G)
=

p(ti)

1 − p(ti)
× ρ

1 − ρ
and

p(ti; B)
1 − p(ti; B)

=
p(ti)

1 − p(ti)
× 1 − ρ

ρ
. (5)

By assumption, all consumers receive equally-informative private signals, regardless

of whether they encountered the innovation direction at launch or indirectly through

a social interaction.

Belief dynamics. Since the consumer population has unit mass, the flow of newly-

exposed consumers can be interpreted as the density of the time-until-exposure t, i.e.,

f (t|ω) = |S′
ω(t)| = Sω(t)Iω(t), where |S′

ω(t)| is the flow of consumers exposed at time

t (“time-t consumers”) when the innovation is good (ω = g) or bad (ω = b). Thus,

time-t consumers’ interim belief is given by

p(t)
1 − p(t)

=
α

1 − α
×

Sg(t)Ig(t)
Sb(t)Ib(t)

. (6)

8The fact that consumers receive binary private signals is not essential. In Appendix B of the working-
paper version (McAdams and Song (2023)), we extend the analysis to a setting in which consumers
receive continuous private signals satisfying the monotone likelihood ratio property.
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Adoption dynamics. Let asi(t) denote the likelihood that each time-t consumer chooses

to adopt given private signal si ∈ {G, B}. Time-t consumers are said to “herd on adop-

tion” if aG(t) = aB(t) = 1 and to “herd on non-adoption” if aG(t) = aB(t) = 0. On

the other hand, they are said to be “sensitive to signals” if aG(t) = 1 but aB(t) = 0.

Note that time-t consumers find it optimal to herd on adoption whenever p(t) > ρ,

to herd on non-adoption when p(t) < 1 − ρ, and to be sensitive to signals when

1− ρ < p(t) < ρ. Time-t consumers are indifferent whether to adopt after a bad private

signal if p(t) = ρ and indifferent whether to adopt after a good signal if p(t) = 1 − ρ.

Equilibrium. Our solution concept is Bayesian Nash equilibrium (or simply “equi-

librium”). We will show by construction that an equilibrium exists and that generically

this equilibrium is essentially unique, in the sense that all equilibria generate the same

population-wide epidemiological dynamics (Sω(t), Iω(t) : t ≥ 0; ω ∈ {g, b}).

1.1 Discussion of modeling assumptions.

Two key features of our model are that (i) only those who have adopted spread aware-

ness of the innovation, causing high-quality innovations to spread more rapidly,9 and

(ii) newly-exposed consumers can determine how long the innovation has been in cir-

culation before deciding whether to adopt themselves. For example, word of mouth

about a new movie spreads naturally from those who have chosen to go see it, caus-

ing people to hear about great movies more quickly than bad ones. Similarly, after a

new scientific method is published, other scientists spread awareness by using it in

their own published work. In each case, consumers (moviegoers, scientists) can deter-

mine when the innovation was launched (theatrical release, scientific publication) and

update their own beliefs about its likely quality based on its recency before deciding

whether to adopt themselves.

Other substantive economic assumptions play an important simplifying role in the

analysis. In particular, (iii) consumers decide whether to adopt when they are first ex-

posed to the innovation, (iv) adoption is irreversible and (v) those who adopt transmit

awareness forever. Assumptions (iii-iv) dramatically simplify the analysis by allowing

9If those who have rejected the innovation spread awareness at the same rate as those who have
adopted it, then consumers would learn nothing from the time at which they are exposed.
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us to focus on consumers’ beliefs only at the time of initial exposure, while (v) ensures

that all consumers are eventually exposed to the innovation regardless of quality. Of

course, in practice, consumers can often choose to wait before adopting and may only

spread the word for a limited period of time. For instance, a moviegoer might wait un-

til she hears about a movie from several people before seeing it and, even if she loves

it, only gush to friends about it while it remains fresh in her mind.

The easiest of these assumptions to relax is (ii). Suppose that only fraction 1 −
η of consumers are able to observe the time t since launch. Since all consumers are

eventually exposed to the innovation, a consumer who is unable to observe the time

since launch will not make any inference about innovation quality and so will decide

whether to adopt as if encountering the innovation at launch. The overall likelihood

that a consumer exposed at time t > 0 will adopt in innovation-quality state ω ∈ {g, b}
is therefore q̃ω(t) = ηqω(0) + (1 − η)qω(t), where qω(0) and qω(t) are the likelihoods

that consumers who can observe the time will adopt, respectively, at time 0 and time

t. The rest of our analysis then carries over, with more complex formulas but little

additional insight.

In the concluding remarks, we discuss how to modify the analysis to allow for tem-

porary infectiousness, relaxing assumption (v). In the working-paper version McAdams

and Song (2023), we also suggest some directions for future work in models that give

consumers the option to wait or to “rent” the innovation, relaxing assumptions (iii)

and (iv). Yet another valuable direction for future work would be to allow susceptible

consumers to learn from more than just their meetings with infected individuals. For

instance, in a standard random-meetings model, susceptible individuals would meet

infected, immune, and other susceptible individuals (not just infected people, as in our

model) and be able to learn from all of these meetings.10

2 Adoption Epidemic Dynamics

This section characterizes the unique equilibrium trajectory of the adoption epidemic

throughout a viral campaign, from launch through endogenous obsolescence, in the

10As an example, suppose that a new movie is released on Thursday and you hear about it on Friday
night from someone who saw it. What you infer about its quality on Friday night will depend on how
many other people you have talked to since Thursday who did not mention the movie.
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most interesting case with intermediate prior belief α ∈ (1 − ρ, ρ).11

Consumer behavior at and immediately after launch. We begin by considering how

consumers must behave at the very beginning of the viral campaign, at launch (t = 0)

and shortly afterward. Since 1 − ρ < α < ρ, we have p(0; B) < 1/2 < p(0; G) and

any consumer exposed at launch finds it optimal to adopt after getting a good signal

but not after a bad signal, i.e., they are sensitive to signals. Since good signals are

more likely for good innovations, more consumers adopt at launch and word of mouth

spreads more rapidly for good innovations. Hearing quickly about an innovation is

therefore good news about its quality. More precisely, Ig(t) ≈ ρL, Ib(t) ≈ (1 − ρ)L,

and Sg(t) ≈ Sb(t) ≈ 1 − L for all t ≈ 0, where L is the mass of consumers exposed at

launch. By equation (6), we conclude that

p(t)
1 − p(t)

≈ α

1 − α
× ρ

1 − ρ
for all t ≈ 0, (7)

regardless of L. That is, consumers’ interim belief shortly after launch is the same as if

they have gotten a good private signal of precision ρ. Because α > 1 − ρ, equation (7)

implies that (i) p(0+) ≡ limt→0 p(t) > 1/2 and (ii) p(0+) > ρ if and only if α > 1/2.

Consumers exposed immediately after launch will therefore herd on adoption if α >

1/2 but remain sensitive to signals if α < 1/2.

Interim belief dynamics after launch. Equation (6) characterizes consumers’ interim

belief p(t) at time t, depending on the ex ante likelihood α that the innovation is good

and the ratio Sg(t)Ig(t)
Sb(t)Ib(t)

. Rather than focusing on p(t) directly, we find it convenient to

consider the percentage rate of change of the likelihood ratio p(t)
1−p(t) , gotten by taking

the log of both sides of (6) and differentiating:

X(t) ≡
dlog

(
p(t)

1−p(t)

)
dt

=
S′

g(t)
Sg(t)

−
S′

b(t)
Sb(t)

+
I′g(t)
Ig(t)

−
I′b(t)
Ib(t)

= −Ig(t) + Ib(t) + qg(t)Sg(t)− qb(t)Sb(t) (8)

11Agents herd on adoption forever if α > ρ and herd on non-adoption forever if α < 1 − ρ. The cases
when α = ρ and α = 1 − ρ are more complex because consumers are sometimes indifferent whether to
adopt at launch, but this extra complexity does not lead to any additional insight.
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where S′
ω(t)

Sω(t)
= −Iω(t) and I′ω(t)

Iω(t)
= qω(t)Sω(t) by equations (1-2). Since p(t)

1−p(t) grows

exponentially at rate X(t), we have p′(t) ≷ 0 iff X(t) ≷ 0.

Lemma 1 summarizes some implications of equation (8), depending on whether

consumers herd on adoption, are sensitive to signals, or herd on non-adoption. (All

omitted proofs are provided in the Appendix.)

Lemma 1. (i) Suppose that consumers herd on adoption at time t. p′(t) < 0 if Sg(t) < Sb(t)

and Ig(t) > Ib(t). (ii) Suppose that consumers are sensitive to signals at time t. p′(t) > 0 if

and only if the following inequality holds:

ρSg(t)− (1 − ρ)Sb(t) > Ig(t)− Ib(t). (SS)

(We refer to this as “Condition SS,” mnemonic for “sensitive to signal.”) (iii) Suppose that

consumers herd on non-adoption at time t. p′(t) < 0 if Ig(t) > Ib(t).

Proof. p′(t) ≷ 0 iff X(t) ≷ 0 in equation (8). (i) Herding on adoption: When qg(t) =

qb(t) = 1, X(t) = −
(
Sb(t)− Sg(t)

)
−

(
Ig(t)− Ib(t)

)
which is negative so long as

Sg(t) < Sb(t) and Ig(t) > Ib(t). (ii) Sensitive to signals: When qg(t) = ρ and qb(t) =

1− ρ, X(t) = ρSg(t)− (1− ρ)Sb(t)−
(

Ig(t)− Ib(t)
)

which is positive iff condition (SS)

holds. (iii) Herding on non-adoption: When qg(t) = qb(t) = 0, X(t) = −
(

Ig(t)− Ib(t)
)

which is negative so long as Ig(t) > Ib(t).

Discussion of Lemma 1. The conditions Sg(t) < Sb(t) and Ig(t) > Ib(t) capture the

idea that good innovations will reach more people and be adopted by more people

by time t than bad innovations. As we show later in Proposition 4, these intuitive

conditions must always hold in any equilibrium. Lemma 1(i) can therefore be restated

more simply as “p′(t) < 0 whenever consumers herd on adoption” while Lemma 1(iii)

is “p′(t) < 0 whenever consumers herd on non-adoption.”

To gain intuition, recall from equation (6) that p(t) co-moves with the ratio Sg(t)Ig(t)
Sb(t)Ib(t)

.

Suppose that consumers herd on non-adoption. With no new infections, Ig(t)
Ib(t)

is

constant. But since Ig(t) > Ib(t), each susceptible agent is exposed at a faster rate

when the innovation is good; so, Sg(t) falls at a faster percentage rate than Sb(t) and
Sg(t)
Sb(t)

decreases over time. Thus, the ratio Sg(t)Ig(t)
Sb(t)Ib(t)

and hence p(t) must fall.
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Next, suppose that consumers herd on adoption. Since Sg(t) < Sb(t), each infected

agent exposes others at a slower rate when the innovation is good; so, Ig(t) rises at a

slower percentage rate than Ib(t) and the ratio Ig(t)
Ib(t)

decreases over time. Since the ratio
Sg(t)
Sb(t)

also declines (for the same reason as before), the overall effect is that Sg(t)Ig(t)
Sb(t)Ib(t)

and

hence p(t) must fall even more quickly.12

Finally, suppose that consumers are sensitive to signals. Although infected agents

encounter susceptible agents less frequently when the innovation is good, each of these

exposure events is more likely to convert into an infection because newly-exposed

agents are more likely to get a positive signal. In particular, each infected agent causes a

new infection at rate ρSg(t) when the innovation is good, compared to rate (1− ρ)Sb(t)

when it is bad. So long as ρSg(t) > (1 − ρ)Sb(t), the ratio Ig(t)
Ib(t)

rises over time. And so

long as condition (SS) holds, the resulting “upward pressure” on beliefs overwhelms

the “downward pressure” due to the ratio Sg(t)
Sb(t)

falling over time, and p(t) will rise.

However, as soon as condition (SS) fails, the downward pressure dominates and p(t)

must fall.

2.1 Equilibrium Lifecycle of an Innovation

This section characterizes equilibrium economic-epidemiological dynamics, focusing

on the case of a very small launch (L ≈ 0) so that essentially all consumers are exposed

socially.13 Our main finding is that consumer behavior transitions over time through

up to four distinct phases, what we refer to collectively as the “innovation lifecycle”;

see Figure 1. Behavior immediately after launch (Phase I) depends on whether the

innovation is more likely to be good (α > 1/2) or bad (α < 1/2). Subsequent behavior

then passes through a period of partial herding (Phase II), a period in which consumers

are sensitive to signals (Phase III), and a final period with zero adoption (Phase IV).

12By this reasoning, consumers’ interim belief p(t) must fall whenever qg(t) = qb(t), i.e., whenever
good and bad innovations have equal infectivity. This is true at all times t > 0 in Banerjee (1993), since
socially-exposed consumers in his model of virally-spread rumors do not receive private signals. This
explains why the interim belief is monotone decreasing in Banerjee (1993), but may be increasing in our
model during periods when consumers are sensitive to signals.

13Some qualitative features of the equilibrium epidemic trajectory only hold when L is sufficiently
small. In particular, condition (SS) fails immediately after launch whenever L > 1

2 , causing consumer
beliefs to fall even if consumers are sensitive to signals.
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Theorem 1. Suppose that α ∈ (1 − ρ, ρ) and L ≈ 0. Equilibrium epidemiological dynam-

ics (Sω(t), Iω(t) : t ≥ 0; ω ∈ {g, b}) are uniquely determined, with consumers’ post-launch

equilibrium behavior transitioning through four phases at times 0 ≤ t1 < t2 < t3 < ∞.

Phase I: (i) If α ∈ (1/2, ρ), then consumers herd on adoption after launch and interim

belief p(t) > ρ decreases until time t1 ∈ (0, ∞) at which p(t1) = ρ. (ii) If α ∈
(1 − ρ, 1/2), then consumers are sensitive to signals after launch and p(t) ∈ (1/2, ρ)

increases until time t1 ∈ (0, ∞) at which p(t1) = ρ. (iii) If α = 1/2, then t1 = 0 and

p(0+) ≡ limϵ→0 p(ϵ) = ρ.

Phase II: After time t1, consumers partially herd on adoption, adopting always after

a good signal and with probability aB(t) ∈ (0, 1) after a bad signal, where aB(t) is

decreasing in t, until time t2 ∈ (t1, ∞) at which aB(t2) = 0. Consumers’ interim belief

p(t) = ρ for all t ∈ [t1, t2].

Phase III: After time t2, consumers are sensitive to signals and interim belief p(t) ∈
(1 − ρ, ρ) is decreasing in t until time t3 ∈ (t2, ∞) is reached at which p(t3) = 1 − ρ.

Phase IV: After time t3, consumers herd on non-adoption, what we refer to as “viral

obsolescence,” and consumers’ interim belief p(t) < 1 − ρ continues to decline with

limt→∞ p(t) = 0.

Figure 1: Visual summary of equilibrium adoption behavior and interim beliefs over
the innovation lifecycle, when consumers’ ex ante belief α ∈ (1 − ρ, ρ).

The rest of this section establishes Theorem 1 through a series of five propositions.
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(a) α = 0.55 and ρ = 0.65

(b) α = 0.45 and ρ = 0.65

Figure 2: Dynamics of interim beliefs (p(t)) and innovation adoption (Ig(t), Ib(t)) in
the equilibrium adoption epidemic in two examples with (a) α > 1

2 and (b) α < 1
2 .
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Phase I: herding on adoption case. Suppose first that α ∈ (1/2, ρ), as in the nu-

merical example illustrated in Figure 2(a). By previous analysis around equation (7),

p(0+) > ρ and consumers must initially herd on adoption.

Proposition 1 (Phase I: herding on adoption). Suppose that α ∈ (1/2, ρ). There exists

t1 ∈ (0, ∞) such that, in any equilibrium trajectory, (i) consumers herd on adoption for all

t ∈ (0, t1), (ii) p(t) is strictly decreasing over t ∈ (0, t1), and (iii) p(t1) = ρ.

The fact that consumers’ interim belief must fall follows immediately from Lemma 1(i)

due to herding on adoption. The critical time t1 is the first moment after launch at

which newly-exposed consumers no longer strictly prefer to herd on adoption.

Phase I: sensitive to signals case. Suppose next that α ∈ (1 − ρ, 1/2), as in the nu-

merical example illustrated in Figure 2(b). By previous analysis, p(0+) ∈ (1/2, ρ) and

consumers are sensitive to signals after launch.

Proposition 2 (Phase I: sensitive to signals). Suppose that α ∈ (1 − ρ, 1/2) and L ≈ 0.

There exists t1 ∈ (0, ∞) such that, in any equilibrium trajectory, (i) consumers are sensitive to

signals for all t ∈ (0, t1), (ii) p(t) is strictly increasing over t ∈ (0, t1), and (iii) p(t1) = ρ.

Consumers being sensitive to signals and our small-launch assumption (L ≈ 0) ensure

that condition (SS) is initially satisfied. Consumers’ interim belief p(t) must therefore

rise initially. The proof in the Appendix shows that, in fact, p(t) continues to rise until

a critical time t1 at which p(t1) = ρ. We refer to the period up to time t1 as “Phase I.”

Phase II: Partial herding. After time t1, consumers randomize whether to adopt af-

ter a bad private signal (and always adopt after a good signal), what we call “partial

herding.” Consumers’ interim belief p(t) remains constant ρ and the likelihood aB(t)

that consumers adopt after a bad signal declines continuously until, at a critical time

t2, aB(t) = 0 and consumers become sensitive to signals. We refer to the period from t1

until t2 as “Phase II”.

Proposition 3 (Phase II). Suppose that α ∈ (1 − ρ, ρ) and L ≈ 0. There exists t2 ∈ (t1, ∞)

such that, in any equilibrium trajectory, (i) consumers partially herd with adoption probability

15



aB(t) ∈ (0, 1) after a bad signal for all t ∈ (t1, t2), where

aB(t) =
ρSg(t)− (1 − ρ)Sb(t)−

(
Ig(t)− Ib(t)

)
ρSb(t)− (1 − ρ)Sg(t)

(9)

and (ii) p(t) = ρ for all t ∈ (t1, t2). Moreover, aB(t) is continuously decreasing over t ∈
(t1, t2) with aB(t1) < 1 and aB(t2) = 0.

The intuition for why there must be partial herding after time t1 is that, if consumers

were to herd on adoption, then the interim belief p(t) would fall below ρ and they

would strictly prefer to be sensitive to signals, a contradiction. On the other hand,

if consumers were sensitive to signals, then p(t) would rise above ρ and they would

strictly prefer to herd on adoption, another contradiction. Mixing after a bad signal

balances the upward and downward pressure on interim beliefs so that p(t) is able

to remain constant over time.14 The time t2 at which Phase II ends is the first time

at which ρSg(t) − (1 − ρ)Sb(t) = Ig(t) − Ib(t), so that Condition SS is satisfied with

equality. After that point, there is overall downward pressure on consumer beliefs

even if they become sensitive to signals. And indeed, that is what happens next.

Phases III and IV: End of the innovation lifecycle. After time t2, consumers are sen-

sitive to signals and interim belief p(t) falls until a critical time t3 at which p(t3) = 1− ρ

(Proposition 4). Consumers then herd on non-adoption after time t3, what we refer to

as “viral obsolescence” (Proposition 5). We refer to the period from t2 to t3 as “Phase

III” and the obsolescent period after t3 as “Phase IV”.

The fact that consumers suddenly stop adopting at time t3 is a consequence of our

assumption of binary private signals. In the working-paper version McAdams and

Song (2023), we extend the analysis to a richer setting with continuous private signals.

In that context, there is never full herding on adoption or full herding on non-adoption,

and newly-exposed consumers’ likelihood of adopting falls continuously to zero dur-

ing the last part of the epidemic.

Proposition 4 (Phase III). Suppose that α ∈ (1 − ρ, ρ) and L ≈ 0. There exists t3 ∈
(t2, ∞) such that, in any equilibrium trajectory, (i) consumers are sensitive to signals for all

14The equilibrium mixed strategies here can be “purified” by augmenting the model so that con-
sumers’ private signals have differing precision. See the working-paper version for details.
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t ∈ (t2, t3), (ii) p(t) is strictly decreasing over t ∈ (t2, t3), and (iii) p(t3) = 1 − ρ. Moreover,

Sg(t) < Sb(t) and Ig(t) > Ib(t) for all t ∈ [0, t3].

Proposition 5 (Phase IV). Suppose that α ∈ (1 − ρ, ρ) and L ≈ 0. In any equilibrium

trajectory, consumers herd on non-adoption after time t3 and p(t) is strictly decreasing with

limt→∞ p(t) = 0.

The proofs of Propositions 4-5 are the most technically challenging in the paper, but

the intuition underlying these results is easy to explain. After Phase II, the epidemic

is sufficiently mature that the downward pressure on consumer beliefs is so large that

p(t) must fall over time no matter what newly-exposed consumers do. Phase III is the

period of time while p(t) is falling from ρ to 1 − ρ, causing consumers to be sensitive

to signals, while Phase IV is the final period when p(t) is below 1 − ρ.

3 Stopping the Viral Campaign

Here we extend the analysis to allow the producer to decide how long to continue the

viral campaign. Suppose that, at any time T ≥ 0, the producer can stop the viral cam-

paign by running a “broadcast advertisement” (or simply “broadcast”) that reaches

all still-unexposed consumers. T = ∞ corresponds to a purely-viral campaign as ana-

lyzed in Section 2, while T = 0 corresponds to a “traditional ad campaign” in which all

consumers are exposed non-socially and must decide independently whether to adopt.

In this section, we characterize the optimal time at which to run the broadcast. To

keep the analysis as simple as possible, we assume that the producer must choose the

broadcast time T ∈ [0, ∞] before launch and before knowing whether its innovation

will be good or bad; running the broadcast is costless; and the producer’s objective is

to maximize the expected mass of consumers who adopt the innovation.15

Consumers who encounter the innovation socially before the broadcast make the

same inference and the same adoption decision as in a purely-viral campaign. The dif-

ference is that consumers who would encounter the innovation socially after T now see

the broadcast. Depending on how broadcast-exposed consumers update their beliefs,

this may increase or decrease overall adoption relative to a purely-viral campaign.

15For simplicity, we assume that the producer does not care about the timing of adoption. Introducing
discounting complicates the analysis but does not generate any additional insight.
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Broadcast-updated beliefs. Consumers who see the broadcast at time T update their

belief about innovation quality based on the fact that they did not encounter the inno-

vation during the preceding viral campaign. Let pBR(T) denote consumers’ updated

belief after seeing the broadcast at time T. Conditional on the innovation being good

or bad, each consumer will encounter the innovation via broadcast with ex ante prob-

ability Sg(T) or Sb(T), respectively. By Bayes’ Rule:

pBR(T)
1 − pBR(T)

=
α

1 − α
×

Sg(T)
Sb(T)

. (10)

Lemma 2 establishes several useful facts about broadcast-updated beliefs.

Lemma 2. Suppose that α ∈ (1 − ρ, ρ) and L ≈ 0. (i) pBR(T) < p(T) for all T > 0. (ii)

pBR(0+) = α and pBR(T)
1−pBR(T)

falls exponentially at rate Ig(T)− Ib(T) > 0 for all T. Define T

implicitly by pBR(T) = 1 − ρ. (iii) T ∈ (t1, t3). (iv) If α ∈ (1/2, ρ), then T ∈ (t2, t3).

Discussion of Lemma 2: Since awareness spreads more widely during the viral campaign

when the innovation is good, seeing the broadcast is bad news about innovation qual-

ity. Moreover, broadcast-exposed consumers’ negative inference gets worse as time

goes on (Lemma 2(ii)) and is worse than the inference they would make if encounter-

ing the innovation socially at the same time (Lemma 2(i)).

The threshold time T is the moment at which broadcast-exposed consumers are

indifferent whether to adopt with a good private signal. We refer to this moment as

“broadcast obsolescence” since any broadcast after time T will generate zero adoption.

Lemma 2(iii) states that broadcast obsolescence always occurs during Phase II or Phase

III, after partial herding has begun but before viral obsolescence. When α ∈ (1/2, ρ) so

that the epidemic begins in a herding phase, Lemma 2(iv) implies further that broad-

cast obsolescence must occur during Phase III, after partial herding has ended.

Optimal-length viral campaigns. We are now ready to characterize the optimal stop-

ping time for the viral campaign, in terms of the threshold times t1, t2, and t3 derived

in the proof of Theorem 1. Note that, by definition, T ≷ t2 iff pBR(t2) ≷ 1 − ρ.

Theorem 2. Suppose that α ∈ (1 − ρ, ρ) and L ≈ 0, and let T ∗ denote the set of optimal

stopping times. (i) If T ≥ t2, then T ∗ = [t2, T]. (ii) If T < t2, then either T ∗ = T or
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T ∗ = [t3, ∞]. Moreover, T ∗ = [t3, ∞] if and only if pBR(t2) < 1 − ρ and

α

(∫ t2

T
aB(t)(1 − ρ)|S′

g(t)|dt−ρSg(t3)

)
+(1 − α)

(∫ t2

T
aB(t)ρ|S′

b(t)|dt−(1 − ρ)Sb(t3)

)
≥ 0

(11)

where
(
Sg(t), Sb(t), aB(t) : t ≥ 0

)
were derived in the proof of Theorem 1.

Theorem 2 lays out three basic possibilities, depending on whether broadcast obso-

lescence T occurs in Phase II or Phase III and on whether inequality (11) holds:

(a) If T is in Phase III (always true when α ∈ (1/2, ρ) by Lemma 3(iv)), then T is

optimal and stopping prior to Phase III or after T is suboptimal.

(b) If T is in Phase II and (11) holds, then a purely-viral campaign is optimal and

stopping prior to Phase IV is suboptimal.

(c) If T is in Phase II and (11) fails, then T is the unique optimal stopping time.

The proof of Theorem 2 is provided below, after some discussion.

Intuition for Theorem 2. Focus first on the case when most innovations are good, i.e.,

α ∈ (1/2, ρ) and compare three options: T = 0, a traditional ad campaign; T = T; and

T = ∞, a purely-viral campaign. When T = 0, all consumers are sensitive to signals;

so, the producer gets adoption from all consumers with a good private signal and none

with a bad signal. When T = ∞, consumers herd on adoption during Phase I, partially

herd on adoption during Phase II, are sensitive to signals during Phase III, and herd

on non-adoption during Phase IV. Compared to T = 0, the producer is more likely to

get consumers who are exposed during Phases I-II, equally likely to get those exposed

during Phase III, and less likely to get those exposed during Phase IV.

Whether T = 0 or T = ∞ is better is unclear, as it depends on how the extra

adoptions from consumers exposed during Phases I-II compares to the lost adoptions

from those exposed during Phase IV. But waiting until T is better than both of these

options, as it allows the producer to get all the extra adoptions associated with Phases

I-II of a purely-viral campaign while also still inducing consumers who would have

been exposed during Phase IV to adopt after a good signal. Indeed, T = T is always

an optimal stopping time in the case when α ∈ (1/2, ρ).
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What about the case when α ∈ (1 − ρ, 1/2)? Waiting until T = T remains superior

to a traditional ad campaign, but now the comparison between T = T and a purely-

viral campaign is unclear. The reason is that, if broadcast obsolescence occurs during

Phase II, ending the viral campaign at T forces the producer to forgo some extra adop-

tions that otherwise would occur due to partial herding during the rest of Phase II. The

two terms in (11) capture this new tradeoff between lost adoptions from those who

would be exposed during Phase II after T versus the gain from those who would be

exposed during Phase IV.

Numerical exploration of the case α ∈ (1 − ρ, 1/2). Given the theoretical ambiguity

in this case, we conducted an exhaustive numerical exploration to determine when

T = T is optimal and when T = ∞ is optimal, given every possible ρ ∈ (1/2, 1) and

every possible α ∈ (1− ρ, 1/2). For each such (α, ρ) pair, we computed the equilibrium

epidemic trajectory and compared the overall mass of consumers who adopt when

T = T versus a purely-viral campaign. We found that stopping the campaign at time T

is strictly better across the entire parameter space, increasing adoption by as much as

72% for some parameter values; see Figure 3. Thus, a purely-viral campaign is never

optimal (and setting T = T is always optimal) given any model parameters.

Consumer welfare implications. Being exposed virally to an innovation provides

an informative “social signal” about its quality. Thus, consumers’ ex ante expected

payoff is higher when an innovation is marketed virally (for any T > 0) than in a

traditional ad campaign in which they get no social signal at all. That said, consumers

exposed to the broadcast at time T get zero expected payoff, since they are indifferent

whether to adopt even after a positive private signal. By contrast, in a purely-viral

campaign, all those exposed socially after T but before viral obsolescence at time t3 get

positive expected payoff. Thus, a purely-viral campaign is better for consumers than

an optimal-length campaign.16

16The seller’s choice of when to run the broadcast can be viewed as a limited Bayesian-persuasion
problem (Kamenica (2019)). Let ti be the time that consumer i encounters the innovation in a purely-
viral campaign, which serves as i’s social signal about quality. Running the broadcast at time T changes
the distribution of this signal, revealing only “ti ≥ T” to all those with ti ≥ T. Viewed in this light, the
fact that consumers are worse off under the optimal-length campaign is unsurprising.
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Figure 3: Percentage increase in the producer’s expected measure of adopting con-
sumers, denoted π(T), when stopping the viral campaign at broadcast obsolescence
(T = T) versus a purely-viral campaign (T = ∞). For all combinations of (α, ρ), stop-
ping at T = T is more profitable.

Proof of Theorem 2. Should the viral campaign continue until time T, the producer

must decide whether to run the broadcast right at that moment, so that still-unexposed

consumers are willing to adopt after a good signal (“go”), or never run the broadcast

at all, allowing the campaign to continue until viral obsolescence (“no-go”).

Case #1: when T ≥ t2, always “go”. Suppose first that T ≥ t2. In this case, the producer

unambiguously prefers to run the broadcast at time T rather than allowing the viral

campaign to continue. Why? Consumers who are socialy exposed after time T are ei-

ther sensitive to signals (if exposed in Phase III) or herd on non-adoption (if exposed

during Phase IV). By comparison, if the producer runs the broadcast at (or infinites-

imally before) time T, all of these consumers are be sensitive to signals—leading to

strictly more adoption, whether the innovation is good or bad.

Case #2: when T < t2, “no go” if and only if inequality (11) holds. Suppose next that

T < t2. Running the broadcast at time T still ensures that all remaining consumers

will be sensitive to signals, avoiding the downside that consumers exposed in Phase

IV never adopt. However, there is also a benefit associated with continuing to run

the viral campaign, that consumers exposed in the remainder of Phase II (at times

t ∈ (T, t2)) will sometimes adopt after getting a negative private signal as well as after
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a positive signal.17 Whether the producer prefers to continue the viral campaign past

time T depends on the magnitudes of these countervailing effects.

The downside of continuing the viral campaign is that all consumers who get a

positive signal and would have been exposed during Phase IV choose to adopt under

the time-T broadcast but not under the continued viral campaign. These consumers

have mass ρSg(t3) when the innovation is good and mass (1 − ρ)Sb(t3) when it is bad.

Overall, then, the “viral downside” equals αρSg(t3) + (1 − α)(1 − ρ)Sb(t3).

The upside of continuing the viral campaign is that some consumers who get a neg-

ative signal and would have been exposed during the remainder of Phase II choose

to adopt under the continued viral campaign but not under the time-T broadcast.

These consumers have mass
∫ t2

T aB(t)(1− ρ)|S′
g(t)|dt when the innovation is good and

mass
∫ t2

T aB(t)ρ|S′
b(t)|dt when it is bad, where aB(t) is consumers’ equilibrium likeli-

hood of adopting after a bad signal during Phase II. Overall, then, the “viral upside”

equals α
∫ t2

T aB(t)(1 − ρ)|S′
g(t)|dt + (1 − α)

∫ t2
T aB(t)ρ|S′

b(t)|dt, and the upside exceeds

the downside if and only if inequality (11) holds.

The analysis thus far has shown: (a) any stopping time T ∈ (T, t3) is always worse

than T = T and all stopping times T ∈ [t3, ∞] generate identical adoption since no

one exposed after t3 ever adopts; (b) when T ≥ t2, T is optimal and all stopping times

T ∈ [t2, T] generate identical adoption; and (c) when T ≥ t2, a purely-viral campaign

is better than stopping at T if and only if inequality (11) holds.

Next, we show that all stopping times prior to min{t2, T} are strictly worse than T.

The reason is simple: stopping at some time T′ < min{t2, T} causes consumers who

would have otherwise encountered the innovation between max{T′, t1} and min{t2, T}
(the portion of Phase II that is after T′ and before T) to adopt less often—they are sensi-

tive to signals rather than partially herding on adoption—without inducing any other

consumer to adopt more often. Thus, lengthening the viral campaign from T′ until

time min{t2, T} unambiguously increases overall adoption.

Putting these pieces together allows us to complete the proof. First, when T ≥ t2,

we have shown that T is strictly better than all stopping times before t2 or after T. Since

all stopping times in [t2, T] generate identical adoption, T = [t2, T]. This completes the

17We can ignore the consumers exposed in Phase III, since they are sensitive to signals and hence
adopt exactly as they would have under a time-T broadcast.
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proof of Theorem 2(i). Next, when T < t2, we have shown that T is strictly better

than all stopping times before T and strictly better than all those between T and t3.

Moreover, stopping at T is better than a purely-viral campaign (T = ∞) if and only if

inequality (11) fails. Since all stopping times after viral obsolescence generate identical

adoption, we conclude that T = T when inequality (11) fails and T = [t3, ∞] when

inequality (11) holds.18 This completes the proof of Theorem 2(ii).

4 Concluding remarks

This paper introduces and analyzes an economic-epidemiological model of innova-

tion diffusion and adoption, in which awareness of an innovation (e.g., new product

or practice, scientific finding, etc.) spreads by word of mouth from those who have al-

ready adopted it. The paper follows Banerjee (1993) in bridging the economic literature

on social learning and the epidemiological literature on social transmission, combin-

ing ideas and methods from both fields. Because agents choose whether to adopt in

our model, we endogenize the infectivity of a virally-spread innovation and show how

infectivity changes over the course of the adoption epidemic.

In future work, our methodology could be extended in several directions to endo-

genize other key parameters of the innovation diffusion process, including the trans-

mission rate (if agents choose how actively to meet others) and the informativeness of

agents’ private signals (if they choose how intensively to examine the innovation). In-

teresting future work could also seek to relax some of our simplifying assumptions, to

build more detailed and realistic models of adoption epidemics. Here we highlight one

such extension, relaxing the assumption that adopters remain permanently infectious.

Temporary infectiousness. In practice, consumers who adopt an innovation may only

remain infectious for a limited period of time. For example, people may eventually get

bored of a new game and stop telling others about it as they stop playing themselves.

To model this possibility, suppose that each adopter “recovers” from the transmissive

infectious state I to a quiescent state Q at rate γ ≥ 0. The differential equation (2)

18When we say “inequality (11) fails,” we mean that it holds in the opposite direction. If inequality
(11) holds with equality, then stopping at time T generates equal expected adoption as a purely-viral
campaign and T = T ∪ [t3, ∞].
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governing the dynamics of infection changes to

I′ω(t) = qω(t)Iω(t)Sω(t)− γIω(t), (2’)

with Q′(t) = γI(t) and limt→∞ Q(t) being the mass of consumers who eventually

adopt. An important difference in this variation of our model is that the innovation will

only reach a fraction of the population, with good innovations reaching more people

than bad ones. Thus, even for consumers who cannot observe the time since launch,

simply being exposed to the innovation is a positive signal about its quality.
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Appendix: Omitted Proofs

The following lemma is useful in several of the proofs that follow.

Lemma 3. Fix any α ∈ (1 − ρ, ρ). Suppose that p(t) > α for all t ∈
(
0, t̂

]
for some t̂ along

some equilibrium epidemic trajectory. Then Ig(t) > Ib(t), I′g(t) > I′b(t), Sg(t) < Sb(t), and

S′
g(t) < S′

b(t) for all t ∈
(
0, t̂

]
.

Proof. By equation (6), p(t)
1−p(t) = α

1−α × Ig(t)Sg(t)
Ib(t)Sb(t)

= α
1−α × |S′

g(t)|
|S′

b(t)|
. Since p(t) > α by

assumption, |S′
g(t)| > |S′

b(t)| and hence S′
g(t) < S′

b(t) < 0 for all t ∈
(
0, t̂

]
. By

equations (1-2), I′ω(t) = −qω(t)S′
ω(t). Since qg(t) ≥ qb(t) at all times, we conclude

that I′g(t) > I′b(t) > 0 for all t ∈
(
0, t̂

]
. Finally, because launch-exposed consumers

are sensitive to signals (due to α ∈ (1 − ρ, ρ)), we have Sg(0) = Sb(0) = 1 − L and

Ig(0) > Ib(0). Since S′
g(t) < S′

b(t) and I′g(t) > I′b(t), we conclude as desired that

Sg(t) < Sb(t) and Ig(t) > Ib(t) for all t ∈ (0, t̂].

Proof of Proposition 1. Because α ∈ (1/2, ρ), p(0+) > ρ and socially-exposed con-

sumers herd on adoption until the first time t1 at which p(t1) = ρ. Prior to t1, X(t) =

−
(

Ig(t)− Ib(t)
)
−

(
Sb(t)− Sg(t)

)
and p(t) > ρ > α. By Lemma 3, Ig(t)− Ib(t) and

Sb(t) − Sg(t) are each strictly increasing from time 0 (when X(0) = L(2ρ − 1) > 0)

until t1. The likelihood ratio p(t)
1−p(t) therefore falls exponentially at an increasing rate,

implying that p(t) reaches the threshold ρ in finite time.

Proof of Proposition 2. Because α ∈ (1 − ρ, 1/2), p(0+) ∈ (1/2, ρ) and socially-

exposed consumers are sensitive to signals until the first time t1 at which either p(t1) =

ρ or p(t1) = 1 − ρ. Since launch-exposed consumers are also sensitive to signals,

Ig(t) = ρ(1 − Sg(t)) and Ib(t) = ρ(1 − Sb(t)). Prior to time t1, condition (SS) in the

main text can now be simplified to

2
(

Ig(t)− Ib(t)
)
< 2ρ − 1 (SS’)

If the launch size L > 1
2 , then Ig(0)− Ib(0) = L(2ρ − 1) and condition (SS’) would fail

and p(t) would fall after launch. However, because of our small-launch assumption,

Ig(t)− Ib(t) ≈ 0 and p(t) must rise after launch. In particular, p(t)
1−p(t) rises exponentially

at rate X(t) = 2ρ − 1 −
(

Ig(t)− Ib(t)
)
, which equals (2ρ − 1)(1 − L) ≈ 2ρ − 1 at t = 0.
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Let t̂ be the time at which p(t) would reach the threshold ρ in a hypothetical situa-

tion in which X(t) = X̂ ≡ ρ − 1
2 > 0 at all times. We have shown that X(0) ≈ 2X̂ and

X(t) > X̂ so long as Ig(t)− Ib(t) < X̂. But Ig(t)− Ib(t) < Ig(t) < ρLeρt.19 Thus, for

all L small enough that ρLeρt̂ < X̂, X(t) remains strictly above X̂ and p(t) continues to

increase until reaching the threshold ρ in finite time, i.e., p(t1) = ρ, as desired.

Proof of Proposition 3. We begin by showing that p(t) = ρ for some period of time

after t1. If p(t) were to rise above ρ after t1, then consumers would herd on adoption

and p(t) must fall by Lemma 1(i), a contradiction. On the other hand, if p(t) were to

fall below ρ, consumers would then be sensitive to signals. As discussed in the proof

of Proposition 2, our assumption of a small launch (L ≈ 0) guarantees that only a

small mass of consumers are exposed to the innovation during Phase I;20 in particular,

Sg(t1), Sb(t1) ∈ (1 − ϵ, 1) and Ig(t1), Ib(t1) ∈ (0, ϵ) for some small ϵ. Consequently,

Condition (SS) holds and p(t) must rise after time t1 by Lemma 1(ii), a contradiction.

By equation (6), interim belief p(t) = ρ requires that ρ
1−ρ =

αIg(t)Sg(t)
(1−α)Ib(t)Sb(t)

or, equiv-

alently, Ig(t)Sg(t)
Ib(t)Sb(t)

= (1−α)ρ
α(1−ρ)

. In order for this ratio not to change over time, the ratio of

derivatives (Ig(t)Sg(t))′

(Ib(t)Sb(t))′
must also equal (1−α)ρ

α(1−ρ)
. Taking derivatives, using equations (1-2),

and re-arranging yields

(1 − α)ρ

α(1 − ρ)
=

I′g(t)Sg(t) + Ig(t)S′
g(t)

I′b(t)Sb(t) + Ib(t)S′
b(t)

=
Ig(t)S2

g(t)qg(t)− I2
g(t)Sg(t)

Ib(t)S2
b(t)qb(t)− I2

b (t)Sb(t)

=
Ig(t)Sg(t)(Sg(t)qg(t)− Ig(t))
Ib(t)Sb(t)(Sb(t)qb(t)− Ib(t))

Since Ig(t)Sg(t)
Ib(t)Sb(t)

= (1−α)ρ
α(1−ρ)

, this condition holds iff

Sg(t)qg(t)− Ig(t) = Sb(t)qb(t)− Ib(t). (12)

Let aB(t) denote the likelihood that consumers exposed at time t adopt after a bad
19ρLeρt is the mass of consumers who would be infected if (i) each infected agent encounters a suscep-

tible agent at rate one and (ii) newly-exposed consumers are sensitive to signals. In fact, each infected
agent encounters some agent at rate one, but fraction Ig(t) of these encounters are with someone already
infected.

20If L is not sufficiently small, condition (SS) may not hold at time t1. In that case, Phase II has zero
length and the epidemic progresses directly to Phase III, with consumers sensitive to signals and p(t)
falling immediately after t1.
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signal, resulting in overall adoption likelihoods qg(t) = ρ + (1 − ρ)aB(t) and qb(t) =

1− ρ+ ρaB(t) that good and bad innovations, respectively. Equation (12) now becomes

(
ρSg(t)− (1 − ρ)Sb(t)

)
−

(
Ig(t)− Ib(t)

)
+ aB(t)

(
(1 − ρ)Sg(t)− ρSb(t)

)
= 0 (13)

or, equivalently,

aB(t) =
ρSg(t)− (1 − ρ)Sb(t)−

(
Ig(t)− Ib(t)

)
ρSb(t)− (1 − ρ)Sg(t)

. (14)

Equation (14) uniquely determines aB(t1+). Note that so long as p(t) = ρ, Lemma

3 implies that Ig(t1) > Ib(t1) and Sb(t1) > Sg(t1); we conclude by equation (14),

aB(t) < 1 so long as p(t) remains at ρ. Moreover, because Condition SS holds at time

t1 (discussed earlier), the numerator in (14) is positive; so, aB(t1+) > 0.

Equations (1,2,14) now uniquely determine the path of
(
aB(t), Sg(t), Sb(t), Ig(t), Ib(t)

)
,

starting at time t1 and so long as aB(t) ∈ [0, 1]. Let t2 be the first time after t1 at which

aB(t) = 0, or t2 = ∞ if aB(t) remains forever between zero and one. To complete the

proof, we need to show that aB(t) is strictly decreasing after t1 and reaches zero in

finite time.

Let t2 denote the first time after t1 at which aB(t2) = 0, or t2 = ∞ if consumers

partially herd forever. Since p(t) > α throughout Phase I and ρ > α, Lemma 3 implies

that Sb(t) > Sg(t), ensuring that the denominator of (14) remains positive. Moreover,

t2 is the first time as which the numerator of (14) equals zero, i.e., when Condition SS

holds with equality.

Next, note that

a′B(t) =

(ρS′
g(t)− (1 − ρ)S′

b(t)− (I′g(t)− I′b(t))(ρSb(t)− (1 − ρ)Sg(t))

−(ρSg(t)− (1 − ρ)Sb(t)− (Ig(t)− Ib(t)))(ρS′
b(t)− (1 − ρ)S′

g(t))

(ρSb(t)− (1 − ρ)Sg(t))2 .
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Rearranging and simplifying the numerator, we have

numerator = (ρ2 − (1 − ρ)2)(S′
g(t)Sb(t)− S′

b(t)Sg(t))

− (I′g(t)− I′b(t))(ρSb(t)− (1 − ρ)Sg(t))

+ (Ig(t)− Ib(t))(ρS′
b(t)− (1 − ρ)S′

g(t)).

By (1-2), the second term above can be re-written as

− (I′g(t)− I′b(t))(ρSb(t)− (1 − ρ)Sg(t))

=− (Ig(t)Sg(t)(ρ + (1 − ρ)aB(t))− Ib(t)Sb(t)(1 − ρ + ρaB(t)))(ρSb(t)− (1 − ρ)Sg(t))

=− Ib(t)(Ig(t)− Ib(t))(ρSb(t)− (1 − ρ)Sg(t))

− (Ig(t)− Ib(t))Sg(t)(ρ + (1 − ρ)aB(t))(ρSb(t)− (1 − ρ)Sg(t)) (15)

Similarly, the third term above can be re-written as

(Ig(t)− Ib(t))(ρS′
b(t)− (1 − ρ)S′

g(t))

=− (Ig(t)− Ib(t))(ρIb(t)Sb(t)− (1 − ρ)Ig(t)Sg(t))

=− Ib(t)(Ig(t)− Ib(t))(ρSb(t)− (1 − ρ)Sg(t))

+ (Ig(t)− Ib(t))Sg(t)(1 − ρ)(Ig(t)− Ib(t)) (16)

To establish that the entire numerator is negative, we will show that the first term

is negative and that the sum of the second term (15) and third term (16) is negative.

To that end, recall that Ig(t) > Ib(t), I′g(t) > I′b(t), Sg(t) < Sb(t), and S′
g(t) < S′

b(t)

at all times t < t2 (Lemma 3). The fact that the first term is negative now follows

immediately from (1-2), since S′
g(t)Sb(t)− S′

b(t)Sg(t) = −Sg(t)Sb(t)(Ig(t)− Ib(t)) < 0.

Moreover, ρSb(t) > (1 − ρ)Sg(t) because Sb(t) > Sg(t) and ρ > 1/2; so, the first part

of (15) and the first part of (16) are negative. To show that the sum of (15) and (16) is

negative, it therefore suffices to show that (ρ + (1 − ρ)aB(t))(ρSb(t)− (1 − ρ)Sg(t)) >

(1 − ρ)(Ig(t) − Ib(t)). But this follows immediately from the fact that ρSb(t) − (1 −
ρ)Sg(t) > Ig(t)− Ib(t) (since Condition SS remains satisfied) and ρ + (1 − ρ)aB(t) >

1 − ρ (since ρ > 1/2 and aB(t) ≥ 0).

Overall, we conclude that aB(t) > 0 but that a′B(t) < 0 so long as the numerator
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of equation (14) continues to be positive, i.e., so long as Condition SS continues to be

satisfied. Moreover, there is a finite time t2 at which partial herding ceases. To see

why, suppose for the sake of contradiction that consumers were to partially herd for-

ever. Because all consumers are eventually exposed to the innovation, limt→∞ Sg(t) =

limt→∞ Sb(t) = 0. On the other hand, because I′g(t) > I′b(t) so long as aB(t) > 0,

limt→∞(Ig(t)− Ib(t)) > Ig(t1)− Ig(t1) > 0. All together, then, the numerator of (14)

must eventually become negative, a contradiction.

Proofs of Propositions 4-5. We prove Propositions 4-5 together, dividing the proof

into four main steps.

Step 1: After time t2, p(t)
1−p(t) declines exponentially at an increasing rate until some time t̃ at

which p(t̃) = max{1 − ρ, α}, where α ≡ (1−ρ)α
(1−ρ)α+ρ(1−α)

∈
(

(1−ρ)2

(1−ρ)2+ρ2 , 1
2

)
.

By Lemma 1, p(t)
1−p(t) declines exponentially at rate X(t). So, it suffices to show

that X(t) < 0 and X′(t) < 0 at all times after t2 until a time t̃ is reached at which

p(t̃) = max{1 − ρ, α}. By the proof of Proposition 3: p(t2) = ρ; consumers are

sensitive to signal at time t2 (because aB(t2) = 0); and X(t2) =
(
ρSg(t2)− Ig(t2)

)
−

((1 − ρ)Sb(t2)− Ib(t2)) = 0. It suffices to show that X′(t) < 0 at all times t ∈ [t2, t̃),

since then it must also be that X(t) < 0 at all times t ∈ (t2, t̃).

According to the proof of Lemma 1(ii), X′(t) = −2
(
ρSg(t)Ig(t)− (1 − ρ)Sb(t)Ib(t)

)
while consumers are sensitive to signals. Thus, X′(t) < 0 so long as Sg(t2)Ig(t2)

Sb(t2)Ib(t2)
> 1−ρ

ρ .

By equation (6), p(t)
1−p(t) =

αSg(t2)Ig(t2)

(1−α)Sb(t2)Ib(t2)
; so, Sg(t2)Ig(t2)

Sb(t2)Ib(t2)
> 1−ρ

ρ if and only if p(t) > α or,

equivalently, p(t)
1−p(t) >

α(1−ρ)
(1−α)ρ

= α
1−α . In other words:

when consumers are sensitive to signal, X′(t) ≷ 0 iff p(t) ≷ α (17)

At time t2, consumers are sensitive to signal and p(t2) = ρ > α; so, X′(t2) <

0. Moreover, X′(t) < 0 at times t ∈ (t2, t̃) since (i) consumers remain sensitive to

signal (because p(t) ∈ (1 − ρ, ρ)) and (ii) p(t) > α. We conclude that p(t)
1−p(t) decreases

exponentially at an increasing rate from time t2 until time t̃.

What about after time t̃? There are two relevant cases. First, suppose that α ∈
(1 − ρ, 1/2], so that α ≤ 1 − ρ. In this case, p(t̃) = 1 − ρ and Phase III ends at time

t̃, i.e., t3 = t̃. Second, suppose that α ∈ (1/2, ρ). In this more challenging case, α ∈
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(1 − ρ, 1/2) and the argument so far shows that p(t)
1−p(t) declines at an increasing rate

until time t̃, when consumers’ interim belief hits α. However, we still need to show

that consumers’ interim belief continues falling long enough after time t̃ to reach 1 − ρ.

Step 2: In the case when α ∈ (1/2, ρ), p(t)
1−p(t) declines exponentially at a decreasing rate from

time t̃ until time t3 at which p(t3) = 1 − ρ.

The argument in Step 1 established that p(t̃) = α ∈ (1− ρ, 1/2) and X(t̃) < 0; thus,

consumers’ interim belief continues to fall below α right after time t̃. By condition (17),

we conclude that X′(t) > 0 right after t̃ and at all times t > t̃ so long as consumers’

interim belief remains between 1 − ρ and α.

This leaves three possibilities for what happens after time t̃: (i) p(t) decreases until

a time t3 at which point p(t3) = 1− ρ and Phase III ends; (ii) p(t) decreases forever but

never reaches 1 − ρ; or (iii) p(t) stops decreasing (and starts increasing) at some time t̂

before reaching 1 − ρ.

We will prove that possibility (i) always occurs, by ruling out (ii) and (iii).

As shorthand, define X(∞) = limt→∞ X(t), Ig(∞) = limt→∞ Ig(t), and so on.

“Possibility (ii)” cannot occur.

Suppose for the sake of contradiction that consumers’ interim belief continues falling

forever after time t2 but never reaches 1 − ρ. This is only possible if X(∞) = 0, which

in turn requires that Ig(∞) − ρSg(∞) = Ib(∞) − (1 − ρ)Sb(∞). Since all consumers

eventually encounter the innovation, Sg(∞) = Sb(∞) = 0. Thus, it must be that

Ig(∞) = Ib(∞). We will reach a contradiction by showing that Ig(∞) > Ib(∞).

Recall that we are focusing here on the case in which α ∈ (1/2, ρ). We have shown:

consumers are sensitive to signals at launch (t = 0), adopting good innovations with

probability ρ and bad ones with probability 1 − ρ; consumers herd on adoption in

Phase I (t ∈ (0, t1)), adopting all innovations with probability one; and consumers

partially herd on adoption in Phase II (t ∈ (t1, t2)), adopting good innovations with

probability ρ + aB(t)(1 − ρ) and bad ones with probability 1 − ρ + aB(t)ρ. Moreover,

given the presumption that possibility (ii) is occurring, consumers are again sensitive

to signals at all times t > t2. Overall, the mass of consumers who adopt a good inno-
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vation therefore takes the form:

Ig(∞) = ρL +
∫ t1

0
|S′

g(t)|dt +
∫ t2

t1

(ρ + (1 − ρ)aB(t))|S′
g(t)|dt +

∫ ∞

t2

ρ|S′
g(t)|dt

= ρ +
∫ t1

0
(1 − ρ)|S′

g(t)|dt +
∫ t2

t1

(1 − ρ)aB(t)|S′
g(t)|dt (18)

where |S′
g(t)| is the flow of consumers being exposed at time t and L+

∫ ∞
0 |S′

g(t)|dt = 1

because the consumer population has unit mass. Similarly, the overall share of con-

sumers who adopt a bad innovation takes the form:

Ib(∞) = (1 − ρ)L +
∫ t1

0
|S′

b(t)|dt +
∫ t2

t1

(1 − ρ + ρaB(t))|S′
b(t)|dt +

∫ ∞

t2

(1 − ρ)|S′
b(t)|dt

= (1 − ρ) +
∫ t1

0
ρ|S′

b(t)|dt +
∫ t2

t1

ρaB(t)|S′
b(t)|dt (19)

Since consumers’ interim belief exceeds ρ throughout Phase I and equals ρ throughout

Phase II, |S′
g(t)| > |S′

b(t)| for all t ∈ (0, t2) by Lemma 3. Thus,

Ib(∞) < (1 − ρ) +
∫ t1

0
ρ|S′

g(t)|dt +
∫ t2

t1

ρaB(t)|S′
g(t)|dt (20)

(18, 20) together imply

Ig(∞)− Ib(∞) > (2ρ − 1)
(

1 −
∫ t1

0
|S′

g(t)|dt −
∫ t2

t1

aB(t)|S′
g(t)|dt

)
. (21)

Finally, note that
∫ t1

0 |S′
g(t)|dt = (1 − L)− S(t1) and, since aB(t) < 1 for all t ∈ (t1, t2),∫ t2

t1
aB(t)|S′

g(t)|dt < S(t1) − S(t2). We conclude that Ig(∞) − Ib(∞) > (2ρ − 1)(L +

S(t2)) > 0; so, Ig(∞) > Ib(∞), completing the desired contradiction.

“Possibility (iii)” cannot occur.

Suppose for the sake of contradiction that there exists t′ > t2 such that X(t) < 0 for

all t ∈ (t2, t′), X(t′) = 0, and p(t′) > 1 − ρ. For future reference, note that X(t′) = 0

requires that ρSg(t′)− Ig(t′) = (1 − ρ)Sb(t′)− Ib(t′). Also recall that, since X(t1) = 0

and p(t1) = ρ > α, condition (17) implies that X′(t1) < 0 and that X(t) grows more

negative until time t̃ at which p(t̃) = α. Thus, it must be that t′ > t̃ and that p(t′) ∈
(1 − ρ, α) or equivalently, given equation (6), (1−ρ)(1−α)

ρα <
Ig(t′)Sg(t′)
Ib(t′)Sb(t′)

< 1−ρ
ρ .
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Several equations that follow are quite complex, so we introduce the following

shorthand: a = Sg(t2); b = Sb(t2); c = ρSg(t2) − Ig(t2) = (1 − ρ)Sb(t2) − Ib(t2);

and d = −(ρSg(t′)− Ig(t′)) = −((1 − ρ)Sb(t′)− Ib(t′)).

We know that

c + d = (ρSg(t2)− Ig(t2))− (ρSg(t′)− Ig(t′))

=
∫ t′

t2

2ρIg(t)Sg(t)dt = 2(Ig(t′)− Ig(t2)) = −2ρ(Sg(t′)− Sg(t2)) (22)

=
∫ t′

t2

2(1 − ρ)Ib(t)Sb(t)dt = 2(Ib(t′)− Ib(t2)) = −2(1 − ρ)(Sb(t′)− Sb(t2)),

which implies that

Ig(t′)− Ig(t2) = Ib(t′)− Ib(t2) =
c + d

2

Sg(t′)− Sg(t2) = − c + d
2ρ

Sb(t′)− Sb(t2) = − c + d
2(1 − ρ)

.

Therefore,

Ig(t′)Sg(t′)
Ib(t′)Sb(t′)

=
(Ig(t2) + Ig(t′)− Ig(t2))(Sg(t2) + Sg(t′)− Sg(t2))

(Ib(t2) + Ib(t′)− Ib(t2))(Sb(t2) + Sb(t′)− Sb(t2))

=
(a − c+d

2ρ )((aρ − c) + c+d
2 )

(b − c+d
2(1−ρ

))((b(1 − ρ)− c) + c+d
2 )

=
a(aρ − c) + c2−d2

4ρ

b(b(1 − ρ)− c) + c2−d2

4(1−ρ)

We already know that a(aρ−c)
b(b(1−ρ)−c) =

(1−α)ρ
α(1−ρ)

> 1. Hence, no matter whether c2 − d2 ≥ 0

or c2 − d2 < 0, Ig(t′)Sg(t′)
Ib(t′)Sb(t′)

> 1−ρ
ρ , a contradiction.

Step 3: At all times t ≤ t3, Sg(t) < Sb(t) and Ig(t) > Ib(t).

Let LS(t) ≡ Sb(t)− Sg(t) denote the “exposure gap,” the extra share of consumers

who have been exposed to good innovations by time t, and let LI(t) ≡ Ig(t) − Ib(t)

denote the “adoption gap,” the extra share who have adopted. At launch, Sg(0) =
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Sb(0) = L, Ig(t) = ρL, and Ib(t) = (1 − ρ)L; so, LS(0) = 0 and LI(0) = (2ρ − 1)L > 0.

Here we will show that LS(t) > 0 and LI(t) > 0 at all times t ∈ (0, t3).

LS(t) > 0 and LI(t) > 0 for all t ≤ t2.

By Steps 1-2, consumers’ interim belief p(t) declines throughout Phase III, from ρ at

time t2 to 1 − ρ at time t3; so, there is a unique time t̂ ∈ (t2, t3) at which p(t̂) = α. Note

that p(t) exceeds consumers’ ex ante belief α at all times t ∈ (0, t2] by Propositions

1-3 and that p(t) > α for all t ∈ (t2, t̂) by definition of t̂. Lemma 3 therefore implies

that LS′(t) = S′
b(t)− S′

g(t) > 0 and LI′(t) = I′g(t)− I′b(t) > 0 for all t ∈ (0, t̂). Since

LS(0) = 0 and LI(0) > 0, we conclude that LS(t) > 0 and LI(t) > 0 for all t ∈ (0, t̂),

and thus for all t ≤ t2.

LS(t) > 0 and LI(t) > 0 for all t ∈ [t2, t3].

We begin by showing that the “adoption gap” LI(t) exceeds LI(t2) during all of

Phase III. Fix any t′ ∈ (t2, t3). Recall that X(t2) = 0 (shown in the proof of Proposition

3), X(t′) < 0 (proven in Step Two), and X(t) = (ρSg(t)− Ig(t))− ((1− ρ)Sb(t)− Ib(t))

for all t ∈ [t2, t3) (by Lemma 1, because consumers are sensitive to signals). Thus,

(ρSg(t′)− Ig(t′))− ((1 − ρ)Sb(t′)− Ib(t′)) < (ρSg(t2)− Ig(t2))− ((1 − ρ)Sb(t2)− Ib(t2)).

Rearranging and reformulating terms as in equation (22) yields

∫ t′

t2

−2ρIg(t)Sg(t)dt <
∫ t′

t2

−2(1 − ρ)Ib(t)Sb(t)dt. (23)

Since I′g(t) = ρIg(t)Sg(t) and I′b(t) = (1 − ρ)Ib(t)Sb(t), inequality (23) implies that

Ig(t′) − Ig(t2) > Ib(t′) − Ib(t2), which in turn implies that LI(t′) > LI(t2). Since

LI(t2) > 0, we conclude that LI(t′) > 0 for all t′ ∈ (t2, t3], as desired.

The “exposure gap” LS(t) = Sb(t)− Sg(t) is non-monotone during Phase III, but

we can show that LS(t) > 0 for all t ∈ (t2, t3]. Recall that p(t) > α for all t ∈ [t2, t̂)

and p(t) < α for all t ∈ (t̂, t3], where t̂ ∈ (t2, t3) is the unique time during Phase III at

which consumers’ interim belief p(t) equals their ex ante belief α. Also recall that, by

equation (6),

p(t) ≷ α iff Sg(t)Ig(t) ≷ Sb(t)Ib(t) iff − S′
g(t) ≷ −S′

b(t). (24)
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Prior to time t̂, p(t) > α and condition (24) implies that LS′(t) > 0, i.e., the exposure

gap is increasing and hence obviously still positive. After time t̂, p(t) < α and condi-

tion (24) implies that Sg(t)Ig(t) < Sb(t)Ib(t); since Ig(t) > Ib(t), this is only possible if

Sb(t) > Sg(t). Thus, even though the exposure gap tightens after time t̂, it must remain

positive throughout Phase III.

Step 4: After time t3, p(t)
1−p(t) declines exponentially at a constant rate, LI(t) is constant, and

LS(t) is decreasing but positive.

Consumers’ interim belief at time t3 equals 1 − ρ, making them indifferent whether

to adopt after a good private signal. Let aG(t3) ∈ [0, 1] be the probability with which

consumers exposed to the innovation at time t3 adopt after a good signal. Note that

X(t3) = aG(t3)
(
ρSg(t3)− (1 − ρ)Sb(t3)

)
−

(
Ig(t3)− Ib(t3)

)
.

To establish that consumers’ interim belief continues declining below 1 − ρ, it suf-

fices to show that X(t3) < 0. However, this follows immediately from the facts that

X(t3−) < 0 (proven in Step 2), Ig(t3) > Ib(t3) (proven in Step 3), and aB(t3) ∈ [0, 1].

Once consumers’ interim belief falls below 1 − ρ, immediately after time t3, con-

sumers herd on non-adoption; so, X(t3+) = −
(

Ig(t3)− Ib(t3)
)
< 0 by Step 3 and

beliefs continue to fall. Consumers therefore still herd on non-adoption, meaning that

Ig(t) = Ig(t3), Ib(t) = Ib(t3), and hence X(t) = X(t3) and LI(t) = LI(t3) for all t > t3.

We conclude that all adoption ceases after time t3 and that p(t)
1−p(t) forevermore declines

exponentially at the constant rate |X(t3)|. In particular, limt→∞ p(t) = 0.

Finally, as discussed in Step 3, the fact that p(t) < α implies that Sb(t)Ib(t) >

Sg(t)Ig(t); hence, the exposure gap must shrink during obsolescence, i.e., LS′(t) < 0

for all t > t3. At the same time, because Ig(t) > Ib(t), the condition Sb(t)Ib(t) >

Sg(t)Ig(t) is only possible if Sb(t) > Sg(t); thus, LS(t) > 0 for all t > t3.

Proof of Lemma 2. (i) In the proof of Theorem 1, we showed that Ig(t) > Ib(t) at all

times t ≥ 0 during a purely-viral campaign. Comparing equations (6,10), this implies

pBR(T) < p(T) for all T ≥ 0.

(ii) pBR(0+) = α by (10) and Sg(0+) = Sb(0+) = 1 − L.
d log(Sg(T)/Sb(T))

dT =
S′

g(T)
Sg(T)

−
S′

b(T)
Sb(T)

= −(Ig(T)− Ib(T)) by(1); thus pBR(T)
1−pBR(T)

falls exponentially at rate Ig(T)− Ib(T).
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(iii) By part (i) and Proposition 5, limT→∞ pBR(T) ≤ limT→∞ p(T) = 0. By part (ii),

pBR(0+) = α > 1 − ρ and pBR(T) is strictly decreasing and continuous. T is therefore

well-defined as the unique time at which pBR(T) = 1 − ρ. Moreover, T > t1 because

pBR(t1) ≈ α > 1 − ρ and T < t3 because pBR(t3) < p(t3) = 1 − ρ.

(iv) So far, we have shown that T must occur during Phase II or Phase III. To com-

plete the proof, we need to show that T occurs during Phase III when α ∈ (1
2 , ρ). In

Section 2.1, we showed that condition SS holds throughout Phase II (corresponding

to the intuition that there is “upward pressure” on beliefs when consumers are sensi-

tive to signals) but fails to hold throughout Phase III. When α ∈ (1
2 , ρ), the fact that

αSg(T)
(1−α)Sb(T)

= 1−ρ
ρ (by definition of T) implies Sg(T)

Sb(T)
< 1−ρ

ρ (because α > 1/2) and hence

ρSg(T)− (1 − ρ)Sb(T) < 0. Because Ig(T)− Ib(T) > 0, we conclude that condition SS

must fail at time T and hence T ∈ (t2, t3).
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