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Abstract

We present a unified duality approach to Bayesian persuasion. The optimal dual

variable, interpreted as a price function on the state space, is shown to be a supergra-

dient of the concave closure of the objective function at the prior belief. Strong duality

holds when the objective function is Lipschitz continuous.

When the objective depends on the posterior belief through a set of moments, the

price function induces prices for posterior moments that solve the corresponding dual

problem. Thus, our general approach unifies known results for one-dimensional moment

persuasion, while yielding new results for the multi-dimensional case. In particular, we

provide a necessary and sufficient condition for the optimality of convex-partitional sig-

nals, derive structural properties of solutions, and characterize the optimal persuasion

scheme in the case when the state is two-dimensional and the objective is quadratic.
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1 Introduction

Kamenica and Gentzkow (2011) show that the optimal signal in a Bayesian persuasion

problem concavifies the objective function in the space of posterior beliefs over the state (see

Bergemann and Morris, 2019 and Kamenica, 2019 for excellent overviews of the burgeoning

literature on Bayesian persuasion). Although conceptually attractive, concavification is not

always a tractable approach. Thus, several recent papers (see Kolotilin, 2018, Dworczak and

Martini, 2019, Dizdar and Kováč, 2020, Galperti et al., 2024, and Kolotilin et al., 2024) used

duality theory to characterize the optimal signal.

In this paper, we present a unified duality approach to the Bayesian persuasion problem.

Our approach builds on and extends the geometric duality of Gale (1967). The primal and

the dual problems correspond to finding, respectively, the concave closure and the concave

envelope of the objective function. We show that the optimal dual variable is a supergradient

of the concave closure of the objective function at the prior belief (Section 3). Moreover,

the dual variable can be represented as a price function on the state space. Because concave

functions on finite-dimensional spaces have a supergradient at any interior point, strong

duality always holds when the state space is finite. It may fail, however, when the state

space is infinite; we prove that strong duality holds if the objective function is Lipschitz.

If the objective function depends only on a finite set of moments of the posterior dis-

tribution (the “moment persuasion” case analyzed in Section 4), prices for states induce

prices for moments. The resulting price function is convex, lies above the graph of the ob-

jective function, and exhibits all other properties of the optimal dual variable known from

the analysis of one-dimensional moment persuasion. Thus, our results generalize and unify

the duality results established by Kolotilin (2018), Dworczak and Martini (2019), Dizdar

and Kováč (2020), and Kolotilin et al. (2024) for the one-dimensional case. When the state

space is multi-dimensional or the objective function depends on more than one moment,

our generalized duality approach yields new results and insights. If the objective function is

differentiable, the price function can be constructed explicitly as the upper envelope of hy-

perplanes that are tangent to the objective function at the conjectured support of moments.

Using this construction, we derive a necessary and sufficient condition for the optimality

of a convex-partitional signal (an extension of the one-dimensional notion of a monotone-
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partitional signal), and establish a multi-dimensional analog of the bi-pooling result due to

Arieli et al. (2023b) and Kleiner et al. (2021).

We use these tools to characterize the optimal signal in the classical model of Rayo and

Segal (2010) in which the state is two-dimensional and the objective function is a quadratic

form (Section 5). We show that the “bait and switch” pooling strategy of Rayo and Segal

results from a trade-off between the conflicting goals of disclosing as much information as

possible about a sum of two variables, while disclosing as little information as possible about

their difference. Under regularity conditions, duality permits us to represent the optimal

signal as a convex partition of the two-dimensional state space into negative-sloped line

segments. That is, the optimal signal discloses a weighted sum of the two dimensions, with a

weight that may depend on the induced posterior moment. We further characterize cases in

which the weight is constant, such as when the optimal signal is a sum of the two dimensions.

A contemporaneous paper Malamud and Schrimpf (2022) also made progress on analyzing

multi-dimensional moment persuasion, relying on different tools.1 While some of our results

in Section 4.4.1 are related to theirs, we believe the two approaches to be complementary:

for example, Malamud and Schrimpf allow the state space to be non-compact, while we cover

cases when optimal signals are non-deterministic. The precise relationship to this and other

papers is discussed in more detail throughout the paper in the context of specific results.

We briefly note that—despite our focus on Bayesian persuasion as the leading application—

the methods we develop can be applied in any problem in which a linear objective is max-

imized over distributions of posteriors subject to a Bayes-plausibility constraint. Such op-

timization programs arise in various models with multiple interacting Receivers and in the

analysis of rational-inattention and information-acquisition problems. We further discuss

alternative applications and directions for future research in Section 6.

2 Model

Let (Ω, ρ) be a compact metric space, where ρ is a metric on Ω. We will also refer to Ω as a

measurable space, in which case the σ−algebra should be understood as the Borel σ−algebra

1Using the theory of real analytic functions, Malamud and Schrimpf establish a remarkably powerful
result that, under a regularity condition on the prior and the objective function, there exists an optimal
deterministic signal. This result forms the foundation of their analysis. Relying on metric geometry and the
theory of the Hausdorff dimension, they show that optimal signals correspond to low-dimensional manifolds.
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induced by the metric ρ. The set of Lipschitz functions on Ω, denoted by Lip(Ω), is the set

of functions p : Ω → R such that

∥p∥L := sup

{
|p(ω) − p(ω′)|

ρ(ω, ω′)
: ω, ω′ ∈ Ω, ω ̸= ω′

}
< ∞.

A function p ∈ Lip(Ω) is L-Lipschitz if ∥p∥L ≤ L. Let Lip1(Ω) denote the set of 1-Lipschitz

functions on Ω.

Let M(Ω) be the set of finite signed Borel measures on Ω, and ∆(Ω) be the subset of

probability measures. On the linear space M(Ω), we define the Kantorovich-Rubinstein

norm: for each µ ∈ M(Ω),

∥µ∥KR := |µ(Ω)| + sup

{ˆ
Ω

p(ω)dµ(ω) : p ∈ Lip1(Ω), p(ω0) = 0

}
,

where ω0 is an arbitrary fixed element of Ω. Since (Ω, ρ) is a compact metric space, Theorem

6.9 and Remark 6.19 in Villani (2009) yield that ∥·∥KR metrizes the weak⋆ topology on

∆(Ω) and that (∆(Ω), ∥·∥KR) is a compact metric space. Let ∆(∆(Ω)) be the set of Borel

probability measures on ∆(Ω), endowed with the Kantorovich-Rubinstein distance. Then,

∆(∆(Ω)) is also a compact metric space.

We now formally define the persuasion problem, as in Kamenica and Gentzkow (2011).

The state space is Ω, and there is a prior belief µ0 ∈ ∆(Ω). An objective function V :

∆(Ω) → R is bounded and upper semi-continuous. We will be imposing increasingly stronger

assumptions on V to derive increasingly stronger results throughout the paper.

The persuasion problem is to find a distribution of posterior beliefs τ ∈ ∆(∆(Ω)) to2

maximize

ˆ
∆(Ω)

V (µ)dτ(µ)

subject to

ˆ
∆(Ω)

µdτ(µ) = µ0.

(P)

We will denote by T (µ0) the set of feasible distributions of posteriors, that is,

T (µ0) =

{
τ ∈ ∆(∆(Ω)) :

ˆ
∆(Ω)

µdτ(µ) = µ0

}
.

2Formally,
´
∆(Ω)

µdτ(µ) = µ0 is understood as
´
∆(Ω)

µ(B)dτ(µ) = µ0(B) for all measurable B ⊂ Ω. The

same comment applies whenever we integrate functions with values in the space of measures. An alternative
approach is to use the Bochner integral instead of the familiar Lebesgue integral.
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We define the concave closure of V at µ0 to be the value of the persuasion problem:

V̂ (µ0) := sup
τ∈T (µ0)

ˆ
∆(Ω)

V (µ)dτ(µ).

That is, V̂ (µ0) is the supremum of z ∈ R over all (z, µ0) that can be expressed as a convex

combination of (V (µ), µ) with µ ∈ ∆(Ω).3

The dual problem is to find a price function p ∈ Lip(Ω) to

minimize

ˆ
Ω

p(ω)dµ0(ω)

subject to V (µ) ≤
ˆ
Ω

p(ω)dµ(ω) for all µ ∈ ∆(Ω).

(D)

We will denote by P(V ) the set of feasible price functions, that is,4

P(V ) =

{
p ∈ Lip(Ω) : V (µ) ≤

ˆ
Ω

p(ω)dµ(ω) for all µ ∈ ∆(Ω)

}
.

We define the concave envelope of V at µ0 to be the value of the dual problem:

V (µ0) := inf
p∈P(V )

ˆ
Ω

p(ω)dµ0(ω).

By Definition 7.4 in Aliprantis and Border (2006), the concave envelope of V at µ0 is the

infimum of values taken at µ0 by all continuous affine functions on M(Ω) that bound V

from above on ∆(Ω). Our definition is equivalent: By Theorem 0 in Hanin (1992),5 the

space dual to (M(Ω), ∥·∥KR) is the space Lip(Ω), modulo the constant functions. Hence,

any continuous linear function on (M(Ω), ∥·∥KR) can be represented as
´
Ω
p(ω)dµ(ω) for

some p ∈ Lip(Ω).6 The construction of the concave closure and the concave envelope are

illustrated in Figure 1 (in the binary-state case).

We interpret the persuasion problem as a linear production problem of Gale (1960). The

3Kamenica and Gentzkow (2011) define the concave closure of V as the smallest concave function that
lies above V . Instead, we defined it as the value of the persuasion problem. In the general case of compact
metric Ω, the equivalence of these definitions follows from Proposition 3 in the Online Appendix of Kamenica
and Gentzkow (2011).

4In an earlier draft Dworczak and Kolotilin (2019), we considered a dual problem with a continuous p
(but not necessarily Lipschitz). While that approach allowed for strong duality to hold under slightly more
permissive assumptions, we could not find any economic applications exploiting that additional generality.
The current formulation, inspired by a comment from Doron Ravid, leads to a more elegant exposition.

5Hanin (1992) credits the result to Kantorovich and Rubinstein (1958). The version of the result that we
use is formulated in Exercise 8.10.143 in Bogachev (2007); see also Theorem 7.3 in Edwards (2011).

6The distinction between affine and linear functions is immaterial here since a continuous affine function´
Ω
p(ω)dµ(ω) + c coincides with the continuous linear function

´
Ω
(p(ω) + c)dµ(ω) on ∆(Ω).
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Figure 1: The concave closure and the concave envelope at µ0 in the binary-state case.
The concave closure is the inner construction of the convex hull of the graph of V : It
involves maximizing the value at µ0 over all convex combinations of points on the graph of
V (exemplified by blue lines in the figure). The concave envelope is the outer construction
of the convex hull of the graph of V : It involves minimizing the value at µ0 over all affine
functions lying above the graph of V (exemplified by the red lines in the figure).

states are economic resources, and the probability measure µ0 is a producer’s endowment

of resources. The set ∆(Ω) is the set of linear production processes available to the pro-

ducer. A process µ ∈ ∆(Ω) operated at unit level consumes the measure µ of resources and

generates income V (µ). A production plan τ describes the level at which each process µ is

operated. The primal problem is for the producer to find a production plan that exhausts

the endowment µ0 and maximizes the total income.

To interpret the dual problem, imagine that there is a wholesaler who wants to buy out

the producer. The wholesaler sets a unit price p(ω) for each resource ω. The producer’s

(opportunity) cost of operating a process µ at unit level is thus
´
Ω
p(ω)dµ(ω). A price

function p is feasible for the wholesaler if the income generated by each process of the

producer is not greater than the cost of operating the process, which makes the producer

willing to sell all the resources. The dual problem is for the wholesaler to find feasible prices

that minimize the total cost of buying up all the resources.7

7In the persuasion context, similar interpretations of the dual variable as a price function appear in
Dworczak and Martini (2019), Galperti et al. (2024), and Kolotilin et al. (2024).
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3 Duality

In this section, we establish weak and strong duality for the persuasion problem:

• Weak duality states that V̂ (µ0) ≤ V (µ0), that is, the concave closure is bounded

above by the concave envelope.

• No duality gap requires the equality V̂ (µ0) = V (µ0), that is, the concave closure and

the concave envelope coincide.

• Primal and dual attainment additionally require existence of solutions to the primal

and the dual problems, respectively. We use the term strong duality when both

primal and dual attainment (and hence also no duality gap) hold.8

For the case of a binary state, these properties are illustrated in Figure 1. Weak duality

follows from the fact that any red line (any affine function lying above the graph of V )

achieves a higher value at µ0 than any blue line (any convex combination of points on the

graph of V ). No duality gap states that the infimum over values that red lines can take at

µ0 is equal to the supremum over values that the blue lines can take at µ0. Finally, strong

duality requires that these extrema are attained (as depicted by the bold red and blue lines

in the figure).

Weak duality serves as a verification tool. If we can find a feasible τ ∈ T (µ0) and a

feasible p ∈ P(V ) such that
´
∆(Ω)

V (µ)dτ(µ) =
´
Ω
p(ω)dµ0(ω), then τ is optimal. Within

our interpretation, weak duality states that the total income generated by the producer

cannot exceed the total cost of the resources under feasible prices, which make the producer

willing to sell the resources. Thus, if there exists a plan for the producer and feasible prices

for the wholesaler that equalize the total income with the total cost, then this plan must be

optimal for the producer, and the prices must be optimal for the wholesaler. However, weak

duality does not guarantee that such solutions can be found.

No duality gap ensures that the bound imposed by weak duality is tight. Thus, a feasible

τ ∈ T (µ0) is optimal if and only if it achieves the value of the concave envelope V (µ0). The

8The exact use of these terms varies across authors. For example, Villani (2009) uses the term strong
duality to refer to primal attainment and no duality gap. Our convention is consistent with the economics
literature where strong duality typically includes existence of solutions to the dual problem (see Daskalakis
et al., 2017 and Kleiner and Manelli, 2019 for recent examples).
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absence of a duality gap still does not guarantee that the optimality of τ can be verified by

finding a feasible price function p.

Finally, primal and dual attainment ensure that the solutions to both the primal and

the dual problems exist, and hence optimality of the primal solution can be demonstrated

by exhibiting a dual solution. Within our interpretation, strong duality states that there

exists a feasible plan for the producer and feasible prices for the wholesaler such that the

cost of each operated process is equal to the income it generates. In the remainder of this

section, we establish weak duality, no duality gap, primal attainment, and—under additional

conditions—dual attainment.

Theorem 1 (Weak Duality). V̂ (µ0) ≤ V (µ0).

Proof. The proof is relegated to Appendix A.1.

As the (standard) proof reveals, weak duality does not even require the weak assumptions

on V that we imposed (it is only needed that the primal and the dual problems are well

defined). Under our assumptions, weak duality is subsumed by the following stronger claim.

Theorem 2 (No duality gap and primal attainment). There is no duality gap,

V̂ (µ0) = V (µ0), (O)

and the value of the concave closure V̂ (µ0) is attained by some feasible τ ∈ T (µ0).

Proof. The proof is relegated to Appendix A.3.

The primal problem (P) corresponds to maximizing an upper semi-continuous function

V over the compact set of feasible distributions T (µ0), so existence of a solution follows

from the Weierstrass Theorem. No duality gap is a consequence of hyperplane separation.

However, instead of explicitly relying on a version of the hyperplane separation theorem, we

show that the second concave conjugate (double Legendre transform) of the concave closure

equals the concave envelope. The Fenchel-Moreau Theorem then establishes the absence of a

duality gap (O). Theorem 2 thus implies that the concave closure and the concave envelope

coincide, and hence we can use the two notions interchangeably.9

9When Ω is finite, this follows from Corollary 12.1.1 in Rockafellar (1970).

8



One consequence of duality in the persuasion setting is that we can provide a verification

result for the persuasion problem and its dual. Within our interpretation, a feasible plan

and supporting prices are optimal if and only if the cost of each operated process is equal to

the income it generates.

Corollary 1 (Complementary Slackness). Distribution τ ∈ T (µ0) and price p ∈ P(V ) are

optimal solutions to (P) and (D), respectively, if and only if

V (µ) =

ˆ
Ω

p(ω)dµ(ω), for all µ ∈ supp(τ). (C)

Proof. The proof is relegated to Appendix A.4.

In applications, Corollary 1 can be used to infer properties of solutions to the persuasion

problem. However, for this approach to be applicable, we must ensure that a solution to the

dual problem exists. Our final goal is to establish conditions under which dual attainment

holds. Contrary to previous results, additional regularity conditions on V are needed.

We say that V̂ is superdifferentiable at µ0 if there exists a continuous linear function

H on M(Ω) (called a supporting hyperplane of V̂ at µ0) represented by p ∈ Lip(Ω) (called

a supergradient of V̂ at µ0) such that V̂ (µ0) = H(µ0) and V̂ (µ) ≤ H(µ) =
´
Ω
p(ω)dµ(ω)

for all µ ∈ ∆(Ω). Note that the concave closure V̂ is a concave function. When Ω is

finite, a concave function on ∆(Ω) is also continuous on the interior of the domain, and

hence it is superdifferentiable at all interior points (Theorems 7.12 and 7.24 in Aliprantis

and Border, 2006). Interior points in case of finite Ω correspond to priors µ0 that have full

support on Ω. However, when Ω is infinite, the set of probability measures ∆(Ω) has an

empty (relative) interior—any µ0 ∈ ∆(Ω) is a boundary point. As a result, the hyperplane

separating (µ0, V̂ (µ0)) from the graph of V̂ may be vertical, and hence the required linear

function H may fail to exist.10

Following Gale (1967), we say that V̂ has bounded steepness at µ0 if there exists a constant

L such that
V̂ (µ) − V̂ (µ0)

∥µ− µ0∥KR

≤ L, for all µ ∈ ∆(Ω).

Intuitively, bounded steepness says that the marginal increase in the value of the persuasion

problem is bounded above for a small perturbation of the prior.

10For an analogy, consider a concave and continuous function f(x) =
√
x on [0, 1]. This function is not

superdifferentiable at the boundary point x = 0 because the supporting hyperplane would have to be vertical.
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Theorem 3 (Dual Attainment). The following statements are equivalent:

1. The problem (D) has an optimal solution.

2. V̂ is superdifferentiable at µ0.

3. V̂ has bounded steepness at µ0.

Proof. The proof is relegated to Appendix A.5.

Equivalence of properties 2 and 3 is established by the Duality Theorem in Gale (1967),

which we can apply because we represented the space of distributions as a normed space

(by using the Kantorovich-Rubinstein norm).11 Equivalence of properties 1 and 2 follows

from the fact that continuous linear functions on M(Ω) can be identified with Lipschitz

functions on Ω. Intuitively, superdifferentiability of V̂ at the prior means that we can find a

supporting hyperplane at µ0. Due to the representation theorem, a supporting hyperplane

can be identified with a Lipschitz price function on the state space. By definition of a

supporting hyperplane, this price function is feasible and touches the graph of V̂ at µ0—it

must therefore be optimal by weak duality (Theorem 1). This argument shows that the

optimal price function is in fact a supergradient of the concave closure V̂ at the prior µ0.

Geometrically, any price function p defines a hyperplane in ∆(Ω)×R by specifying what

values it takes on extreme points (δω, p(ω)) (as depicted by the red lines in Figure 1). The

price function p is feasible for (D) if the hyperplane lies above V on ∆(Ω). The dual problem

is to find a hyperplane that lies above V and whose value at the prior µ0 is minimized. Thus,

the optimal hyperplane supports V̂ at µ0, and the optimal price p⋆(ω) of each state ω is the

value of the supporting hyperplane at the Dirac probability measure δω at ω.

While Theorem 3 provides a necessary and sufficient condition for dual attainment, the

condition is stated in terms of a non-primitive object, the concave closure of V . Next, we

present a useful sufficient condition on the primitive objective function V .

Theorem 4 (Lipschitz Preservation). Let V be Lipschitz on ∆(Ω). Then V̂ is also Lipschitz

on ∆(Ω). Consequently, V̂ has bounded steepness at each µ0 ∈ ∆(Ω).

11Holmes (1975) and Gretsky et al. (2002) extend Gale’s theorem from normed spaces to locally convex
spaces, which may be useful for future generalizations of our results.
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Proof. The proof is relegated to Appendix A.2.

Corollary 2 (Strong duality). When V is Lipschitz on ∆(Ω), strong duality holds for the

persuasion problem (P).

While the statement of Theorem 4 may seem intuitive, its proof is quite involved in

the general (infinite-dimensional) case.12 Informally, we show that given two priors, µ0

and η0, and an optimal distribution τ ∈ T (µ0), we can find a perturbation η(µ) of each

posterior belief µ ∈ supp(τ) such that the perturbed posteriors η(µ) average out to η0

under the distribution τ . Moreover, the average distance between the posteriors µ and their

perturbations η(µ) is equal to the distance between µ0 and η0. This implies that the value of

the persuasion problem under the prior µ0 cannot exceed the value of the persuasion problem

under the prior η0 by more than L ∥µ0 − η0∥KR when V is L-Lipschitz. Reversing the roles

of µ0 and η0 leads to the desired conclusion.

To the best of our knowledge, Theorems 3 and 4 provide the first general dual attain-

ment result for Bayesian persuasion.13 Theorem 3 is mathematically more general than the

existing strong duality results in the sense that it applies on a larger domain of problems;

in fact, bounded steepness of the concave closure is shown to be necessary and sufficient

for dual attainment so it must imply all existing sufficient conditions. However, verifying

bounded steepness of the concave closure may be difficult in applications. Our Theorem 4

identifies Lipschitz continuity of V as a simple sufficient condition for strong duality; while

this condition is stronger than the most permissive sufficient condition identified for one-

dimensional moment persuasion (Dizdar and Kováč, 2020), it has the advantage of being

fully universal—it applies to any persuasion problem.

We conclude the section with an illustration of duality by studying conditions for optimal-

ity of two extreme information structures: full disclosure (distribution τF ∈ T (µ0) uniquely

characterized by attaching probability one to the set of Dirac probability measures on Ω)

12Theorem 4 extends Lemma 1 and Corollary 2 in Guo and Shmaya (2021) from the case of finite Ω to
the general case. Theorem 1.17(f) in Laraki (2004) establishes a version of Theorem 4 for the total variation
norm on ∆(Ω), which is not suitable for our analysis because there is no tractable characterization of the
space that is dual to ∆(Ω) under the total variation norm.

13At the same level of generality, Section 8 of Dworczak and Martini (2019) establishes weak duality by
defining a price function on the space of beliefs ∆(Ω) and requiring it to be “outer-convex” (a relaxation of
convexity). Theorems 3 and 4 demonstrate that such a price function exists when V is Lipschitz, and that
the price function can in fact be taken to be linear on ∆(Ω).
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and no disclosure (distribution τN ∈ T (µ0) that attaches probability one to the prior µ0).

We argue that strong duality makes the well-known sufficient conditions necessary.

Suppose that µ0 has full support on Ω and let V be Lipschitz on ∆(Ω) so that, by

Theorems 3 and 4, dual attainment holds. Then, full disclosure τF is optimal if and only if

V lies below a linear function that passes through each extreme point (δω, V (δω)):

V (µ) ≤
ˆ
Ω

V (δω)dµ(ω) for all µ ∈ ∆(Ω). (F)

No disclosure τN is optimal if and only if

V is superdifferentiable at µ0. (N)

Theorem 3 implies that the dual problem (D) has an optimal solution. Thus, by Corollary 1,

a feasible distribution τ ∈ T (µ0) is optimal if and only if the optimal price function p ∈ P(V )

satisfies (C). The support of τF is the set of all Dirac probability measures δω on Ω, so (C)

simplifies to p(ω) = V (δω) for all ω ∈ Ω. Thus, τF is optimal if and only if V (δω), treated as a

function of ω, belongs to P(V )—this simplifies to (F). Similarly, the condition for optimality

of τN follows from the observation that feasibility of p along with (C) is equivalent to p being

the supergradient of V at the prior, yielding (N).

Because sufficiency follows from weak duality, conditions (F) and (N) are sufficient even

without the assumptions on V and µ0. In Appendix B.1 of Dworczak and Kolotilin (2024),

we show that these intuitive conditions are no longer necessary when dual attainment fails.

4 Moment persuasion

In this section, we apply the general duality approach developed in Section 3 to a persuasion

problem in which the objective function depends on the posterior belief through a finite set of

moments—what we refer to as “moment persuasion.” This case arises naturally in persuasion

problems in which the Sender’s preferences only depend on the Receiver’s action, and the

Receiver’s optimal action depends only on aggregate statistics such as the (potentially mul-

tivariate) mean, variance, or skewness of the posterior belief.14 Multi-dimensionality allows

for applications with multiple Receivers (under public communication), potentially caring

14Even with a one-dimensional state, this nests the settings of Zhang and Zhou (2016) and Nikandrova
and Pancs (2017), as well as a separable special case of Kolotilin et al. (2024).
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about different moments of the public belief. For another example, suppose that there are

N + 1 primitive states of the world but a Sender only observes a partially revealing signal

about the primitive state. The Sender sends a signal informative about her own posterior

belief to a Receiver. As long as the Receiver maximizes expectation of a utility function that

depends on the primitive state—by the law of iterated expectations—her payoff will only

depend on the expectation of the Sender’s belief, which can be represented as an element of

an N -dimensional simplex.15 Finally, moment persuasion captures information acquisition

problems for certain well-behaved utility functions of the agent acquiring information (e.g.,

representing mean-variance preferences).

Weak duality for (multi-dimensional) moment persuasion can be established directly and

is often sufficient to solve instances of persuasion problems. However, our approach has two

distinct advantages. First, by deriving duality for moment persuasion from the general case,

we unify existing approaches (differing in the representation of the constraints in the moment

persuasion problem), demonstrate how the dual variables in these alternative approaches

relate to one another (Theorem 5), and extend them to the multidimensional case. More

substantially—due to strong duality—we are able to derive general predictions about the

structure of solutions (Theorems 6, 7, 8, as well as Propositions 1 and 2 in the application in

Section 5). In particular, strong duality implies that the complementary slackness conditions

(C) must always hold; even if the optimal p is unknown, these conditions impose restrictions

on the optimal persuasion scheme.

4.1 Formulation

We assume that, given some underlying state space Ω̃ and prior µ̃0,

Ṽ (µ̃) = v

(ˆ
Ω̃

m(ω̃)dµ̃(ω̃)

)
, for all µ̃ ∈ ∆(Ω̃),

for some measurable m : Ω̃ → RN and some real-valued function v. It will be convenient to

redefine the state space as Ω = m(supp(µ̃0)) with the prior µ0 given by µ0(B) = µ̃0(m
−1(B))

for any measurable B ⊂ Ω, so that

V (µ) = v

(ˆ
Ω

ωdµ(ω)

)
, for all µ ∈ ∆(Ω).

15Arieli et al. (2023b) offer an analogous interpretation of the one-dimensional moment persuasion problem.
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We then define the space of “moments” X as the convex hull of Ω.16 We assume that X

is a compact convex set with non-empty interior17 and that v : X → R is Lipschitz with

constant L.

The next lemma ensures that we can rely on dual attainment from Theorems 3 and 4.

Lemma 1. If v is Lipschitz, then V is also Lipschitz.

Proof. The proof is relegated to Appendix A.6.

In moment persuasion, a distribution τ of posterior beliefs µ ∈ ∆(Ω) influences the

objective only through the induced distribution of moments. By Strassen’s Theorem (for

example, Theorem 7.A.1 in Shaked and Shanthikumar, 1994), a distribution πX ∈ ∆(X)

of moments is feasible (that is, induced by some Bayes-plausible distribution of posterior

beliefs) if and only if µ0 is a mean-preserving spread of πX . However, anticipating our

results and following Kolotilin (2018), we will formulate the moment persuasion problem as

optimization over joint distributions of moments and states. Formally, we call a distribution

π ∈ ∆(X × Ω) feasible, denoted π ∈ Π(µ0), if
ˆ
X×B

dπ(x, ω) =

ˆ
B

dµ0(ω), for all measurable B ⊂ Ω,

ˆ
B×Ω

(x− ω)dπ(x, ω) = 0, for all measurable B ⊂ X.

The first equation is the Bayes-plausibility constraint, which says that the marginal distri-

bution of states induced by π is µ0. The second equation is the martingale constraint, which

says that the conditional expectation Eπ[ω|x] induced by π is x.

We let πX denote the marginal distribution of moments induced by π. The primal

problem (P) simplifies to finding a joint distribution π ∈ ∆(X × Ω) to

maximize

ˆ
X

v(x)dπX(x)

subject to π ∈ Π(µ0).

(PM)

When discussing intuitions, we will sometimes refer to π informally as a “signal.”

16By redefining the state space, we have converted a general case of moment persuasion to a problem in
which the objective function only depends on a multi-dimensional vector of posterior means.

17This is without loss of generality: As a convex set in RN , X has a non-empty relative interior, so we can
always embed X in a (possibly lower-dimensional) Euclidean space such that X has non-empty interior.
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4.2 Prices for moments

Our first major result of this section derives the implications of the general duality from

Section 3 for the special case of moment persuasion.

Theorem 5. Suppose that v is L-Lipschitz and fix an optimal solution p : Ω → R to the

dual problem (D). There exists an extension p̄ : X → R of p to X (i.e., p and p̄ coincide on

Ω) such that, for any optimal solution π ∈ Π(µ0) to (PM),

1. p̄ is convex, L-Lipschitz, satisfies p̄ ≥ v, and
ˆ
X

v(x)dπX(x) =

ˆ
Ω

p̄(ω)dµ0(ω);

2. there exists a measurable function q : X → RN such that ∥q(x)∥ ≤ L for all x ∈ X,

p̄(y) = sup
x∈X

{v(x) + q(x) · (y − x)} , for all y ∈ X,

p̄(ω) = v(x) + q(x) · (ω − x), for π-almost all (x, ω).

Conversely, if there exists a feasible π ∈ Π(µ0) and a price function p̄ : X → R satisfying

any one of conditions 1 or 2, then π is optimal for (PM). (The last claim is true under a

weaker assumption that v is measurable and bounded.)

Theorem 5 provides sufficient and necessary conditions for optimality of a candidate

solution π ∈ Π(µ0). The main insight is that “prices for states” can be extended to “prices

for moments.” Additionally, condition 1 shows that optimal prices must be convex in moment

persuasion. To see that intuitively, note that in our interpretation of the dual problem (D)

from Section 2, a measure µ ∈ ∆(Ω) of resources and one unit of resource x = Eµ[ω] are now

equivalent for the producer. If prices failed to be convex, the producer could sell at effectively

higher prices by engaging in such “mean-preserving” transformations of the resources. Thus,

the wholesaler offers convex prices to begin with.

Theorem 5 recovers (under a stronger assumption) the duality results for one-dimensional

moment persuasion from Kolotilin (2018), Dworczak and Martini (2019), and Dizdar and

Kováč (2020), and establishes strong duality for multi-dimensional moment persuasion. By

providing the two conditions 1 and 2 that are jointly necessary but individually sufficient,

the theorem unifies two alternative approaches to moment persuasion. The price function
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from condition 1 is a direct analog of prices for moments in Dworczak and Martini (2019)

who derive them as a multiplier on the mean-preserving spread constraint (represented in

its integral form for the one-dimensional case). The price function from condition 2, along

with the function q, are analogs of the dual variables from Kolotilin (2018) and Kolotilin

et al. (2024) who derive them as multipliers on the two constraints defining the set Π(µ0) of

joint distributions of moments and states. In particular, q is the multiplier on the martingale

constraint. Thus, the two existing duality formulations for moment persuasion are a conse-

quence of two alternative representations of feasible distributions for the primal problem.18

Theorem 5 shows that both formulations are a special case of our general duality, and that

both can be extended to the multi-dimensional case.

Next, we give an overview of the proof of Theorem 5. Because we have guaranteed dual

attainment (by the assumption that v is Lipschitz), there exists a solution p to the dual

problem (D), and there is no duality gap: Equality (O) simplifies to
ˆ
X

v(x)dπX(x) =

ˆ
Ω

p(ω)dµ0(ω),

for any π optimal for (PM). We can extend p (prices for states) from Ω to X (prices for

moments) using the so-called “convex-roof” construction (Bucicovschi and Lebl, 2013):

p̌(x) := inf

{ˆ
Ω

p(ω)dµ(ω) : µ ∈ ∆(Ω),

ˆ
Ω

ωdµ(ω) = x

}
, for all x ∈ X. (R)

It is easy to show that p̌ is convex, p̌ ≥ v, and hence p̌ satisfies the constraint in (D).

Moreover, by definition, p̌ is pointwise smaller than p on Ω. If we could show that p̌ is

Lipschitz, then p̌ restricted to Ω would be a solution to the dual (D), and condition 1 in

Theorem 5 would hold.

However, p̌ does not even have to be continuous when N—the dimension of the space of

moments—is three or higher (even though p is Lipschitz).19 There are moment-persuasion

problems in which p ∈ Lip(Ω) solves (D) but its convex roof is discontinuous. Furthermore,

for non-Lipschitz v, one can construct examples in which there does not exist any convex

18In Appendix B.2 of Dworczak and Kolotilin (2024), we formally introduce the problem dual to (PM),
show that the price function p̄ from Theorem 5 is indeed a solution to that problem, and formalize the
connection to previous duality formulations in Appendix B.3.

19A careful reader might notice that this implies that some assumption of Berge’s Maximum Theorem must
be violated. Indeed, it turns out that the feasibility correspondence Φ(x) =

{
µ ∈ ∆(Ω) :

´
Ω
ωdµ(ω) = x

}
is

not necessarily lower hemi-continuous in RN for N > 2. However, because Φ is an upper hemi-continuous
correspondence, p̌ is lower semi-continuous, by Lemma 17.30 in Aliprantis and Border (2006).
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continuous extension of optimal prices for states to prices for moments. These cases help

explain why our assumptions on the objective v are stronger than those imposed by Dworczak

and Martini (2019) and Dizdar and Kováč (2020) in the one-dimensional case. In fact, the

additional complications are a direct consequence of a multi-dimensional space of moments:

It can be shown that p̌ is Lipschitz when Ω contains the boundary of X—a condition that

holds trivially in the one-dimensional case.20

To circumvent these difficulties, we prove a lemma showing that the graph of p̌ can be

separated by a hyperplane (with a properly bounded gradient, as captured by the function

q(x) from condition 2 ) from any point (x, v(x)) on the graph of the objective function v.

We can then define a new price function p̄ : X → R that is the supremum of all such

hyperplanes. The resulting price function is a convex and Lipschitz extension of p that is

“sandwiched” between p̌ and v. It follows that p̄ solves (D) (viewed as a function on Ω) and

that condition 1 of Theorem 5 holds. Additionally, using the function q(x), we can show

that the complementary-slackness condition (C) takes a particularly simple form described

in condition 2 of Theorem 5.

In the remainder of this section, we leverage Theorem 5 to derive structural properties

of solutions to (PM). Even though Theorem 5 guarantees existence of prices for moments, it

does not provide a direct way to construct them. We show next that when v is continuously

differentiable, we can take q(x) from condition 2 of Theorem 5 to be equal to the gradient

of v at x on the support of any optimal πX .

4.3 Constructing solutions in the differentiable case

To derive tighter implications of duality for the properties of optimal solutions, we further

strengthen our assumptions on the objective function. We assume that v is continuously

differentiable on X, and thus has a continuous gradient ∇v on X.21 We will show that, in

this case, solving the problem (PM) can be reduced to finding the support of the optimal

distribution of moments.

For any closed set S ⊂ X (candidate support of the optimal distribution of moments),

20Formal arguments supporting the claims made in this paragraph can be found in Appendix B.4 of
Dworczak and Kolotilin (2024).

21We say that v is differentiable at x ∈ X if there exists a gradient ∇v(x) ∈ RN such that f(x + h) =
f(x) +∇v(x) · h+ o(∥h∥) for all h ∈ RN such that x+ h ∈ X, in which case ∇v(x) is unique.
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we define the function pS on Ω by

pS(ω) := max
x∈S

{v(x) + ∇v(x) · (ω − x)} , for all ω ∈ Ω. (S)

In case Ω is not convex, we extend pS from Ω to X using the convex-roof construction:22

pS(x) := inf

{ˆ
Ω

pS(ω)dµ(ω) : µ ∈ ∆(Ω),

ˆ
Ω

ωdµ(ω) = x

}
, for all x ∈ X \ Ω.

Figure 2 illustrates these definitions: The function pS(ω) is found as the maximum over

hyperplanes tangent to the graph of the function v at points in the set S. The convex-roof

construction extends pS from Ω to X by minimizing the value achieved at any x ∈ X \ Ω of

any convex combination of points belonging to the graph of pS on Ω.

Finally, for any feasible π ∈ Π(µ0), consider the condition:

pS(x) ≥ v(x), for all x ∈ X,

pS(ω) = v(x) + ∇v(x) · (ω − x), for all (x, ω) ∈ supp(π).
(M)

The following theorem connects condition (M) to optimality of π.

Theorem 6. Suppose that v is continuously differentiable. A joint distribution π ∈ Π(µ0)

is an optimal solution to (PM) if and only if condition (M) holds with S = supp(πX).

Proof. The proof is relegated to Appendix A.8.

Theorem 6 gives rise to a “guess and verify” procedure that can be used to identify optimal

solutions to (PM). The “guess” involves conjecturing the optimal support S of moments.

Fixing S, prices pS can be computed mechanically, and then condition (M) becomes necessary

and sufficient for optimality of π with support S.

In general, different solutions to (PM) may have different supports S of posterior moments.

However, duality implies that one can define a maximal set S⋆ of posterior moments that can

be induced by an optimal signal. In other words, any optimal signal must induce posterior

22Note that because pS is convex on Ω by definition, it does not matter whether we use the convex roof
for x ∈ X \ Ω or for all x ∈ X. The reader might be surprised that we rely on the convex roof construction
after arguing that it sometimes fails to properly extend prices for states to the prices for moments. And
indeed, the price function pS we construct does not necessarily satisfy all of the conditions of Theorem 5.
Nevertheless, it turns out that pS satsifies the conditions that are relevant for deriving properties of optimal
solutions to (PM) which is our ultimate goal.
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Figure 2: The construction of the function pS(x) in the one-dimensional case. The gray area
in the x-axis represents the non-convex domain Ω. The left panel depicts the price function
induced by a suboptimal, discrete set S (indicated in blue)—the induced price function fails
the first condition in (M). The right panel depicts the price function induced by a set S
that satisfies condition (M) (for some π). The dashed red line depicts the extension of the
function pS(ω) from Ω to X obtained by applying formula (S) outside of Ω, while the red
solid line is obtained by applying the convex-roof construction.

moments that belong to S⋆. Moreover, this set S⋆ can be easily found as long as we have

one solution to (PM)—we formalize this in the following remark.

Remark 1. Suppose that π⋆ ∈ Π(µ0) is optimal for (PM), and let

S⋆ = {x ∈ X : psupp(π⋆
X)(x) = v(x)}.

Then, π ∈ Π(µ0) is optimal for (PM) if and only if supp(πX) ⊂ S⋆ and condition (M) holds

with S = S⋆.23

Proof. The proof is relegated to Appendix A.8.

Remark 1 is useful when proving uniqueness and characterizing properties of an optimal

solution. We turn to these issues next.

4.4 Structure of solutions

In this subsection, we focus on deriving the implications of Theorem 6 for the structure of

optimal solutions to (PM). We provide a condition under which there exists a unique optimal

solution π to (PM) that partitions the state space into convex sets, and pools the states in

each element of the partition. This is a natural extension of the idea of monotone-partitional

23It is easy to see that pS ≥ v in this case, so only the second condition in (M) is relevant.
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solutions from one-dimensional moment persuasion to the multi-dimensional case. We also

generalize a result proven by Arieli et al. (2023b) and Kleiner et al. (2021): In the one-

dimensional case, there exists an optimal signal π ∈ Π(µ0) with a bi-pooling structure. We

derive a multi-dimensional analog of this property.

To simplify exposition and obtain tighter results, we assume that Ω is a convex set (so

that Ω = X). In Appendix A.9, we extend the analysis to the general case.

4.4.1 Optimality of convex-partitional signals

We first address the problem of when it is without loss of optimality to restrict attention to

convex-partitional signals. Formally, we say that π ∈ Π(µ0) is convex-partitional if there is

a measurable function χ : Ω → X such that, for all measurable sets A ⊂ X and B ⊂ Ω,

π(A, B) =

ˆ
B

1{χ(ω) ∈ A}dµ0(ω),

and the set χ−1(x) is convex for all x. Intuitively, χ represents a distribution that pools all

states in χ−1(x) into the moment x.

Theorem 7. Suppose that v is continuously differentiable and that µ0 has a density on Ω

with respect to the Lebesgue measure.24 Suppose there do not exist distinct x, y ∈ X with

∇v(x) = ∇v(y),

v(x) −∇v(x) · x = v(y) −∇v(y) · y,

λv(x) + (1 − λ)v(y) ≥ v(λx + (1 − λ)y), for all λ ∈ [0, 1].

Then, there is a unique optimal solution to (PM), and that solution is convex-partitional.

Proof. The proof is relegated to Appendix A.10.

Theorem 7 gives an easy-to-verify condition on the objective function v under which

the optimal distribution is unique and convex-partitional. The condition can be seen as an

extension of the affine-closure property from Dworczak and Martini (2019) that guarantees

optimality of a monotone partition in the one-dimensional case.

24The assumption that µ0 is a continuous distribution allows us to circumvent the thorny issue of how to
define a convex partition when there are atoms in the distribution of states—in this case, some of the atoms
may need to be split among multiple elements of the partition.
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In Appendix B.5 of Dworczak and Kolotilin (2024), we state a version of Theorem 7

that imposes a slightly weaker sufficient condition, which turns out to be necessary; if that

weaker condition fails, then for at least some priors there exist optimal signals that are not

convex-partitional. To the best of our knowledge, these results provide the most permissive

conditions guaranteeing a convex-partitional signal for multi-dimensional moment persua-

sion. Prior to the current version of this paper, Malamud and Schrimpf (2022) obtained a

stronger sufficient condition (requiring that ∇v(x) ̸= ∇v(y) for x ̸= y).

In the remainder of this subsection, we give an overview of the proof of Theorem 7. The

first part of the proof investigates the structure of optimal solutions, and does not rely on

any of the assumptions of Theorem 7. Thus, our goal in the overview is to present these

additional results; they will be useful for subsequent analysis. The second part of the proof

gives an explicit construction of the elements of the optimal convex partition from Theorem 7.

We begin by introducing some additional notation. Fix an optimal solution π⋆ ∈ Π(µ0)

to (PM), and define the set S⋆ as in Remark 1:

S⋆ :=
{
x ∈ X : psupp(π⋆

X)(x) = v(x)
}
.

Recall that we can interpret S⋆ as the maximal set of posterior moments that can be induced

by an optimal solution. To simplify notation, let p⋆(x) := pS⋆(x), for all x ∈ X. Next, we

define the set Γ that encodes the second property in condition (M):

Γ := {(x, ω) ∈ S⋆ × Ω : p⋆(ω) = v(x) + ∇v(x) · (ω − x)} .

The set Γ is called the contact set in the linear programming literature. In light of Theorem

6 and Remark 1, a feasible π ∈ Π(µ0) is optimal if and only if supp(π) ⊂ Γ. Finally, we

define the x-section of Γ,

Γx := {ω ∈ Ω : (x, ω) ∈ Γ}.

Intuitively, the set Γx contains states that can appear together with x in the support of an

optimal solution—states in Γx (and only these states) can be pooled into the moment x.

Geometrically, Γx is the projection of the face of the epigraph of p⋆ exposed by the direction

(−1,∇v(x)) on the state space, Γx = arg maxω∈Ω{∇v(x) · ω − p⋆(ω)}. A more intuitive

statement of this property is that states can be pooled (in an arbitrary way as long as the

induced posterior moments belong to S⋆) within regions where the price function is affine;
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at the same time, the optimal solution cannot pool together states that do not belong to a

region on which p⋆ is affine. We can thus think of Γx as the “pooling region” of moment x.

The sets Γx can intersect in general. If ω ∈ Γx ∩ Γy, then ω could appear in the support

of π both conditional on x and conditional on y—this is possible when the signal is random

conditional on ω. However, an important consequence of the above geometric characteriza-

tion is that each Γx is convex, and that relint(Γx) ∩ relint(Γy) ̸= ∅ implies Γx = Γy, where

relint(·) stands for the relative interior of a set. Thus, the set Γ generates a partition of Ω

consisting of relatively open convex components {relint(Γx)}x∈S⋆ and the set of points on

the boundaries of these components: X \
⋃

x∈S⋆ relint(Γx). If x ̸= y implies that Γx ̸= Γy,

then π has a very simple structure: For any x ∈ S⋆, states in relint(Γx) are pooled together

into the posterior mean x.

This is where the conditions of Theorem 7 come in. When the conditions on v hold, it

is indeed true that x ̸= y implies that Γx ̸= Γy. When µ0 has a continuous distribution, we

can ignore the measure-zero set of states on the boundaries of the convex elements of the

partition. Thus, a convex-partitional signal is optimal. Moreover, the optimal χ : X → X

is uniquely determined, for µ0-almost all ω ∈ Ω, by

χ(ω) = {x ∈ S⋆ : ω ∈ Γx} = {x ∈ S⋆ : ∇p⋆(ω) = ∇v(x)}.

We illustrate this discussion with an application in the next section.

4.4.2 Beyond convex-partitional signals

In this subsection, we turn attention to the structure of solutions when the conditions of

Theorem 7 fail. In the one-dimensional case, the bi-pooling result of Arieli et al. (2023b)

and Kleiner et al. (2021) shows that even if no optimal signal is monotone-partitional, there

still exist optimal signals with a relatively simple structure. Namely, the state space is

partitioned into intervals, and conditional on any interval, an additional binary signal may

be sent. We will derive a multi-dimensional version of this result. Our generalization is a

direct consequence of duality, while Arieli et al. (2023b) and Kleiner et al. (2021) rely on an

extreme-point characterization of optimal signals.

For a set A ⊂ X, let cl(A) denote the closure of A, and ext(A) denote the set of extreme
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points of the closed convex hull of A. Fixing a solution π to (PM), let

Sx := cl(supp(πX) ∩ relint(Γx)),

for any x ∈ supp(πX). Recall that Γx is the set of states that can be pooled into the posterior

moment x by an optimal signal. Thus, conditional on x being the realized posterior moment

under some optimal signal π, the set Sx contains all posterior moments in the support of πX

that could be generated by an optimal signal. For example, if the conditions of Theorem

7 hold, then the (unique) optimal signal π satisfies Sx = {x} for almost all x ∈ supp(πX).

This means that any state in the support of the optimal signal conditional on x must be

pooled into x; thus, the optimal signal is deterministic (and convex-partitional since each

Γx is convex). The bi-pooling result of Arieli et al. (2023b) and Kleiner et al. (2021) in the

one-dimensional case can be reformulated as stating that there exists an optimal solution

such that Sx has at most two elements. That is, for any realized posterior moment x, there

exists at most one other posterior moment y ∈ supp(πX) such that Γx = Γy. In this case,

states in the interval Γx can be pooled into either x or y, and we have Sx = Sy = {x, y}.

The following result extends that conclusion to the multi-dimensional case.

Theorem 8. Suppose that v is continuously differentiable and that µ0 has a density on Ω

with respect to the Lebesgue measure. There exists an optimal solution π ∈ Π(µ0) to (PM)

such that Sx = ext(Sx) for πX-almost all x.

Proof. The proof is relegated to Appendix A.10.

The conclusion Sx = ext(Sx) means that no posterior mean in Sx can be expressed as a

convex combination of other posterior means in Sx. This generalizes the bi-pooling result

of Arieli et al. (2023b) and Kleiner et al. (2021) because in the one-dimensional case, for

any set S ⊂ R, | ext(S)| ≤ 2. In higher dimensions, Theorem 8 guarantees that we can

divide the state space into convex “pooling regions” (up to a measure-zero set) and find an

optimal signal that only pools states inside pooling regions; moreover, the posterior moments

induced from a given pooling region form a set that only consists of extreme points (of its

own convex hull).

The proof of Theorem 8 relies on the fact that supp(π) ⊂ Γ is both necessary and sufficient

for the optimality of π ∈ Π(µ0). As shown in Section 4.4.1, Γ defines (up to a measure zero
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set) a convex partition of the state space, with a representative element Γx, which could in

general coincide with Γy for y ̸= x. That is, optimality of a signal requires that states in Γx

are mapped only into posterior moments y for which Γy = Γx. We can modify the solution on

Γx and it will remain optimal as long as we preserve the above property. Formally—to deal

with the fact that sets Γx may have measure zero—we introduce an auxiliary optimization

problem in which we minimize the average norm of induced posterior moments subject

to maintaining the condition supp(π) ⊂ Γ. The auxiliary problem then picks an optimal

solution in which Sx = ext(Sx) must be satisfied, as otherwise the value of the auxiliary

problem could be lowered by shifting probability mass towards some posterior mean y ∈ Sx

that can be expressed as a convex combination of other posterior means in Sx.

For one-dimensional problems, the geometric property Sx = ext(Sx) implies the cardinal-

ity restriction |Sx| ≤ 2. This is no longer the case when the dimension N of the state space

is two or more. In fact, one can construct an example in which Sx is infinite for any choice

of optimal π.25 The example implies that our result is tight if one works with the partition

of the state space defined by the price function through the contact set Γ, as is implicitly

assumed in our definition of Sx. However, that partition may sometimes be unnecessarily

coarse; intuitively, the price function may be affine over a region that could be further subdi-

vided into smaller “pooling regions” (sets of states that are only pooled with one another but

not with states from other pooling regions). Ob lój and Siorpaes (2017) and De March and

Touzi (2019) show how to define the finest partition into pooling regions relying directly on

the distribution of posterior moments.26 If one defines an analog of Sx for the finest partition

(by replacing Γx in the definition of Sx by the element of the finest partition containing x),

then it might be possible to tighten the conclusion of Theorem 8, perhaps by showing that

there are at most N + 1 posterior means induced from every pooling region (as is loosely

suggested by Carathéodory’s Theorem). Since duality does not seem immediately useful in

pursuing this direction, we leave it for future research.

25We provide one such example in Appendix B.6 of Dworczak and Kolotilin (2024).
26In the one-dimensional case, their construction can be understood through the integral characterization

of mean-preserving spreads: An element of a partition (in this case, an interval) is pinned down by two
consecutive points at which the integral constraint binds. In the multi-dimensional case, the construction is
significantly more complicated since there exists no convenient representation of mean-preserving spreads.
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5 Application: Quadratic Objective

In this section, we show how our duality approach developed in the preceding section can

be used to solve a class of persuasion problems in which µ0 has a density on Ω that is a

compact convex set in R2 with non-empty interior (so that Ω = X), the objective function

depends on a pair of moments x = (x1, x2), and v(x) is a quadratic form: v(x) = xΛxT .

Variants of this model received considerable attention in the literature. The case v(x) =

x1x2 is equivalent to the model of Rayo and Segal (2010), who analyzed it under the as-

sumption that Ω is a finite set. Nikandrova and Pancs (2017) studied this problem under

the assumption that Ω is a strictly convex curve. These two papers mostly focus on deriving

necessary conditions for optimality.27 Tamura (2018) considers the case where v is a general

quadratic form in RN but imposes strong symmetry assumptions on the prior distribution.

Kramkov and Xu (2022) consider a problem (inspired by the insider trading model of Rochet

and Vila, 1994) that turns out to be mathematically equivalent to a generalized version of

our problem where the assumption Ω = X is not imposed—their analysis is limited in its

economic predictions since their methods are designed to handle even fairly pathological

distributions of the state. Our marginal contribution is to provide a tighter characterization

of optimal solutions for the well-behaved case when Ω is a compact convex set (that is,

when Ω = X). Relative to Rayo and Segal (2010) and Nikandrova and Pancs (2017), we

show that a set of necessary conditions taken from these two papers become jointly suffi-

cient for optimality in our case. Prior to the current version of this paper, Malamud and

Schrimpf (2022) provided an alternative (less explicit) characterization of solutions under

weaker assumptions.

We first argue that the case of a general quadratic form can easily be reduced to the

special case v(x) = x1x2. Indeed, for any quadratic form, there exists a basis such that the

quadratic form is diagonal: v(x) = λ1x
2
1 + λ2x

2
2. If λ1, λ2 ≥ 0 (respectively, λ1, λ2 ≤ 0), then

full disclosure (respectively, no disclosure) is optimal. If λ1 and λ2 have opposite signs, then

there exists yet another basis such that v(x) = x1x2, which we assume henceforth.

It is known from Rayo and Segal (2010) that the posterior means induced by an optimal

signal must belong to a monotone set. Using duality, we can establish a stronger claim.

27Rayo (2013) and Onuchic and Ray (2023) restrict attention to monotone partitional signals in the setting
of Nikandrova and Pancs (2017).
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Formally, we will say that a set S ⊂ X is

• monotone if (x1 − y1)(x2 − y2) ≥ 0, for all x, y ∈ S;

• maximal monotone in X if it is monotone, and for each y ∈ X \ S, there exists x ∈ S

such that (x1 − y1)(x2 − y2) < 0.

• almost-maximal monotone in X if it is monotone, compact, and, for each y ∈ X \ S,

there exists x ∈ S such that (x1 − y1)(x2 − y2) ≤ 0.

Intuitively, a monotone set S in R2 has the property that if x ∈ S, then S cannot intersect the

interiors of either the upper-left or the lower-right quadrants centered at x. A monotone set

is maximal in X if it is not a proper subset of any monotone set in X. A maximal monotone

set must be compact (when X is compact, as assumed). An almost-maximal monotone set

S is a compact subset of a maximal monotone set S ′ such that S ′ \ S is a collection of open

line segments that are either horizontal or vertical.

Proposition 1. If π⋆ ∈ Π(µ0) is optimal, then the support of moments supp(π⋆
X) induced

by π⋆ is an almost-maximal monotone set in X.

Proof. Suppose that π⋆ ∈ Π(µ0) is optimal. To simplify notation, let p⋆ := psupp(π⋆
X) as

defined by (S). By Remark 1, p⋆ ≥ v and supp(π⋆
X) ⊂ S⋆, where S⋆ = {x ∈ X : p⋆(x) =

v(x)}; moreover, p⋆ = pS⋆ , and hence, since Ω = X and v(x) = x1x2, we have, for all x ∈ X,

p⋆(x) = max
y∈S⋆

{x1y2 + x2y1 − y1y2}.

We claim that the set S⋆ is monotone: Otherwise, we would have x, y ∈ S⋆ such that

(x1 − y1)(x2 − y2) < 0, but then

p⋆(x) ≥ x1x2 − (x1 − y1)(x2 − y2) > x1x2 = v(x),

contradicting that x ∈ S⋆. Next, we claim that the set S⋆ is maximal monotone in X.

Otherwise, there would exist x ∈ X \ S⋆ such that (x1 − y1)(x2 − y2) ≥ 0 for all y ∈ S⋆, and

thus

p⋆(x) = max
y∈S⋆

{x1x2 − (x1 − y1)(x1 − y2)} ≤ x1x2 = v(x).

But then, since p⋆ ≥ v, we would have that p⋆(x) = v(x), contradicting that x /∈ S⋆.
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Figure 3: Illustration of Proposition 2: The optimal signal pools all states in each of the
negatively sloped intervals It, and the resulting posterior means belong to Gr(f).

Since supp(π⋆
X) ⊂ S⋆, and we have shown that S⋆ is a monotone set, supp(π⋆

X) is also a

monotone set. Finally, we claim that supp(π⋆
X) is almost-maximal monotone in X. Other-

wise, there would exist x ∈ X such that (y1 − x1)(y2 − x2) > 0 for all y ∈ supp(π⋆
X), which

implies that (since supp(π⋆
X) is compact)

p⋆(x) = max
y∈supp(π⋆

X)
{x1x2 − (x1 − y1)(x1 − y2)} < x1x2 = v(x),

contradicting that p⋆ ≥ v.

In light of Remark 1, the proof of Proposition 1 implies that the optimal price function

can always be derived from some candidate support S of the distribution of moments that

is a maximal monotone set. A natural class of maximal monotone sets in X are graphs

of continuous increasing functions. The main result of this section describes necessary and

sufficient conditions for the optimality of a solution π⋆ ∈ Π(µ0) with supp(π⋆
X) equal to

the graph Gr(f) of a given well-behaved function f . By Theorem 7, the unique solution

is convex-partitional; the optimal partition divides Ω into negatively-sloped line segments;

a line segment that induces the posterior mean (t, f(t)) has slope −f ′(t), as illustrated in

Figure 3. These observations are formalized in the following proposition.

Proposition 2. Let f : [x1, x1] → R be a twice continuously differentiable function, with
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f ′(t) > 0 for all t ∈ [x1, x1], such that the graph Gr(f) is a maximal monotone subset ofX.

An optimal π⋆ ∈ Π(µ0) induces a support of moments supp(π⋆
X) equal to Gr(f) if and only

if Ω can be partitioned, up to a measure zero set,28 into a collection of disjoint open line

segments {It}t∈[x1,x1] such that

1. E[ω|ω ∈ It] = (t, f(t)), for almost all t ∈ [x1, x1];
29

2. It = relint ({ω ∈ Ω : t ∈ arg max
s∈[x1,x1]

{ω1f(s) + ω2s− sf(s)}}), for all t ∈ [x1, x1].

Whenever the above conditions hold, the optimal signal is convex-partitional and pools the

states within each It; moreover, It ⊆ {ω ∈ Ω : ω2 = f(t)− f ′(t)(ω1 − t)}, for all t ∈ [x1, x1].

Proof. We will prove that existence of the required partition of Ω is sufficient for optimality

of the corresponding π⋆. We relegate the more technical proof of necessity to Appendix A.11.

Suppose that there exists a collection of line segments {It}t∈[x1,x1] satisfying properties

1 -2. We can define π⋆ ∈ Π(µ0) as the convex-partitional signal that pools states in each It

(it is irrelevant how the signal is defined for ω ∈ Ω not belonging to any It). By the first

property, the induced posterior-mean curve supp(π⋆
X) is equal to Gr(f). Following Section

4.3, define the price function

pGr(f)(x) = max
y∈Gr(f)

{v(y) + ∇v(y) · (x− y)} = max
t∈[x1,x1]

{x1f(t) + x2t− tf(t)}.

We will verify that condition (M) holds; optimality of π⋆ will then follow from Theorem 6.

First, we argue that pGr(f)(x) ≥ v(x), for all x ∈ X. It suffices to show that there exists a

t ∈ [x1, x1] such that x1f(t)+x2t−tf(t) ≥ x1x2, or, equivalently, (t−x1)(f(t)−x2) ≤ 0. The

claim is obvious when x ∈ Gr(f), and follows from the fact that Gr(f) is maximal monotone

in X when x ∈ X \ Gr(f). To complete the proof that (M) holds, note that, by the second

property, for almost all ω ∈ It,

pGr(f)(ω) = v(x(t)) + ∇v(x(t)) · (ω − x(t)) = ω1f(t) + ω2t− tf(t).

This shows that the equality in (M) holds for all (x, ω) ∈
⋃

t∈[x1,x1]
((t, f(t)) × It); by conti-

nuity, the equality extends to the closure of this set, which is supp(π⋆).

28That is, Ω \
{⋃

t∈[x1,x1]
It

}
has zero (Lebesgue) measure.

29Since It has zero measure under the prior, E[ω|ω ∈ It] is formally defined almost everywhere via the
conditional expectation of ω conditional on a σ−algebra generated by {It}t∈[x1,x1]. We provide an explicit
formula for the conditional expectation in Appendix B.7 of Dworczak and Kolotilin (2024).
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Finally, the inclusion It ⊆ {ω ∈ Ω : ω2 = f(t) − f ′(t)(ω1 − t)}, for t ∈ (x1, x1), follows

from the observation that, by the second property, the first-order condition (ω1 − t)f ′(t) +

ω2 − f(t) = 0 must hold for all ω ∈ It.
30 For t ∈ {x1, x1}, the proof of the inclusion is more

complicated, and thus relegated to Appendix A.11.

Proposition 2 provides a tight characterization of optimal signals under the additional

regularity requirement that the induced posterior mean curve is sufficiently regular (a graph

of a twice differentiable function). If an optimal signal π⋆ induces supp(π⋆
X) = Gr(f), then it

must have a simple convex-partitional structure in which only states belonging to negatively-

sloped line segments It are pooled together. Moreover, the slopes of these line segments are

uniquely pinned down by f . The full proof in Appendix A.11 additionally reveals that the

closures of these line segments can only intersect at the endpoints; the endpoints can be

found by solving the optimization problem in the second property in Proposition 2.

As an illustration, we provide conditions under which it is optimal to reveal only some

linear combination of ω1 and ω2. A simple implication of this characterization is that it is

optimal to reveal ω1 + ω2 if the prior is symmetric around the line ω2 = ω1.

Proposition 3. The joint distribution π ∈ Π(µ0) induced by the disclosure of the realization

of aω1 + ω2, with a > 0, is optimal if and only if supp(πX) ⊂ {(t, at + b) : t ∈ R}, with

b ∈ R.

Proof. If. Let π ∈ Π(µ0) be induced by disclosure of the realization of aω1 + ω2, and

suppose that supp(πX) ⊂ {(t, at + b) : t ∈ R}. Note that π partitions Ω into parallel open

line segments {It}t∈[x1,x1], where It = relint ({ω ∈ Ω : aω1 + ω2 = 2at + b}), and the range

[x1, x1] is defined by the property that (t, at+b) ∈ Ω. Since supp(πX) ⊂ {(t, at+b) : t ∈ R},

the induced posterior mean curve is a line segment with slope a that is a monotone maximal

set in Ω. Finally, the second property in Proposition 2 holds since

{ω ∈ Ω : t ∈ arg max
s∈[x1,x1]

{ω1(as + b) + ω2s− s(as + b)}} = {ω ∈ Ω : aω1 + ω2 = 2at + b},

which is precisely our definition of It. Thus, Proposition 2 shows that π is optimal.

30This observation shows that it would suffice to require E[ω1|ω ∈ It] = t in the first property in
Proposition 1. Indeed, (ω1 − t)f ′(t) + ω2 − f(t) = 0 for all t ∈ (x1, x1) and ω ∈ It implies that
(E[ω1|ω ∈ It]−t)f ′(t)+E[ω2|ω ∈ It]−f(t) = 0, from which the second required equality E[ω2|ω ∈ It] = f(t)
follows.
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Only if. Here we prove the necessity part under a regularity condition that the support

of πX corresponding to disclosure of the realization of aω1 + ω2 is a twice continuously

differentiable function f with f ′ > 0; we relegate the complete proof (without any regularity

condition) to Appendix A.12. If disclosing aω1 + ω2 is optimal, then the open line segments

It partitioninig Ω (whose existence is guaranteed by Proposition 2 under the regularity

condition) must be parallel and have slope −a. But then, we must have that ω2 = f(t) −

f ′(t)(ω1 − t) if and only if ω2 = 2at + b − aω1, for some b, which is only possible when

f(t) = at + b.

Proposition 3 showcases two ways in which Proposition 2 can be used. First, it can be

applied to verify the optimality of a conjectured posterior mean curve. Once a posterior

mean curve is fixed, Proposition 2 allows us to construct the unique candidate solution, and

then check whether it is indeed optimal. Second, Proposition 2 provides a way to construct

the optimal signal. Suppose that we partition Ω (up to a measure-zero set) into negatively-

sloped open line segments in such a way that pooling the states within these line segments

induces a posterior mean curve that is a graph of some continuous function f . Then, this

signal is optimal as long as the second property holds. Moreover, if f is differentiable and

the closures of these line segments are disjoint, then it suffices to verify that the slope of the

line segment inducing posterior mean (t, f(t)) is −f ′(t).

Finally, we offer some intuition for our results. We can rewrite the objective function as

v(ω) = ω1ω2 =
1

a

[(
aω1 + ω2

2

)2

−
(
aω1 − ω2

2

)2
]
.

Thus, intuitively, the objective is to disclose as much information as possible about aω1 +ω2

while disclosing as little as possible about aω1 − ω2. Typically, aω1 + ω2 and aω1 − ω2 will

be correlated, leading to a trade-off. However, when E[aω1−ω2|aω1 +ω2] = E[aω1−ω2], (so

that disclosing aω1 + ω2 does not change the expectation of aω1 − ω2), it becomes optimal

to disclose aω1 + ω2. The condition supp(πX) ⊂ {(t, at + b) : t ∈ R} states precisely that

E[ω2|aω1 + ω2] = aE[ω1|aω1 + ω2] + b. Proposition 3 shows that this intuitive condition is

not only sufficient but also necessary for the optimality of disclosing aω1 +ω2. Note that no

correlation between aω1−ω2 and aω1 +ω2 requires that a = sd(ω2)/sd(ω1) (where sd stands

for standard deviation) implying that the optimal weight equalizes the contribution of the
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two states to the variability of the signal. The general case, covered by Proposition 2, can

be understood as setting the weight a locally, as captured by the condition that the slope of

It must be equal to −f ′(t).

6 Concluding remarks

We conclude with a few remarks on possible extensions and connections to other problems.

Potential applications. Several other potential applications of persuasion duality are

worth mentioning. Galperti et al. (2024) show that duality can be used to quantify the

value of “data records;” our results could thus be helpful in calculating that value. Benôıt

and Dubra (2011), Yang and Zentefis (2024), and Kolotilin and Wolitzky (2024) characterize

the set of feasible distributions of posterior quantiles ; it might be interesting to study the

consequences of general duality for the special case of “quantile persuasion”—paralleling the

developments for moment persuasion. Finally, a large literature on rational inattention and

costly-information acquisition studies optimization problems in which a linear objective is

maximized over distributions of posterior beliefs subject to Bayes-plausibility. Our analysis

applies under the assumption that the cost of information satisfies posterior-separability

(see, among many others, Caplin and Dean, 2013, 2015, Gentzkow and Kamenica, 2014, and

Denti, 2022).

Additional constraints in the persuasion problem. Doval and Skreta (2024), inspired

by an earlier contribution of Le Treust and Tomala (2019), observe that many persuasion

problems feature additional linear constraints (such as moral-hazard, inventive-compatibility,

or capacity constraints) that modify the structure of optimal persuasion schemes. Our gen-

eral duality approach easily accommodates a finite number M of additional linear constraints:

In this case, there are M new prices that enter the objective function in the dual problem

(D) (see an earlier version of the paper Dworczak and Kolotilin, 2019, for details).

Such an extension could be useful in analyzing problems with a privately informed Re-

ceiver (see, among others, Kolotilin et al., 2017 and Guo and Shmaya, 2019). Candogan

and Strack (2023) point out that the one-dimensional moment persuasion problem with a

privately informed Receiver reduces to the standard one-dimensional moment persuasion

problem with additional linear constraints. It would be interesting to see if duality could be
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fruitfully applied to such a representation of the informed-Receiver problem.

Belief-based versus recommendation-based approach. We have formulated the per-

suasion problem in terms of distributions of posterior beliefs. An alternative approach is to

explicitly introduce a Sender and a Receiver, and maximize the Sender’s utility from the re-

alized state and the Receiver’s action over joint distributions of states and recommendations,

subject to Bayes-plausibility and an obedience constraints for the Receiver.

We first note that none of these two approaches is more general—it is in fact possible to

reformulate the belief-based problem using the recommendation-based approach, and vice

versa. To illustrate this point suppose that Ω is a finite set. Consider a problem in which

the Sender’s and Receiver’s utility functions are w(a, ω) and u(a, ω), respectively, where

a is the action of the Receiver. Kamenica and Gentzkow (2011) show that this problem

can be analyzed through the belief-based approach by defining V (µ) = Eµ[w(a⋆(µ), ω)],

where a⋆(µ) ∈ arg maxa∈A Eµ[u(a, ω)]. Conversely, the problem we introduced in Section

2 is equivalent to a problem in which the action space is A = ∆(Ω), the Sender’s utility

is given by w(a, ω) = V (a), and the Receiver’s utility is u(a, ω) = 2a(ω) −
∑

ω′∈Ω a2(ω′).

Indeed, given a posterior µ, the Receiver takes an action a⋆(µ) = µ, which maximizes his

expected utility
∑

ω∈Ω(2a(ω)µ(ω) − a2(ω)), and thus the objective function is V (µ).

In the context of moment persuasion, the two approaches are unified by Theorem 5

through the lens of duality—this is because the martingale constraint in the definition of the

feasible set Π(µ0) can be regarded as an obedience constraint for a Receiver with quadratic

preferences who matches the action to the state (see Kolotilin, 2018). It is interesting to

ask whether duality analysis could similarly cast light on the relationship between the two

approaches in more general contexts, such as a multi-dimensional version of the non-linear

persuasion problem considered by Kolotilin et al. (2024).

Multiple Receivers. Perhaps the biggest limitation of our setting is that it does not

cover the case in which a Sender wishes to communicate privately with multiple interacting

Receivers. Of course, our results do apply when the Sender is restricted to public signals, as

in Inostroza and Pavan (2023). Moreover, our duality approach could be useful in analyzing

private persuasion problems in conjunction with existing results. Mathevet et al. (2020) show

how to adapt the belief-based approach to persuasion in games, by decomposing a general
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signal into its public and (purely) private part. Our results apply to the optimal design of the

public part of the signal. Additionally, in a recent contribution, Arieli et al. (2023a) apply

transportation duality to cast light on the optimal design of the purely private signal—it is

natural to ask whether our approach and theirs could be unified. Duality may also be useful

within the recommendation-based approach to information design in games (introduced by

Bergemann and Morris, 2016, and Taneva, 2019). Galperti and Perego (2018) obtain strong

duality under finite action and state spaces, while Smolin and Yamashita (2024) rely on

weak duality in their analysis of “concave games.” Obtaining conditions for strong duality

in a general environment remains an open problem.

A Appendix: Proofs

We will prove the results in Section 3 in a different order than they appear in Section 3. We

first deal with weak duality and primal attainment, as their proofs are standard. We then

prove Theorem 4. Finally, relying on Theorem 4, we prove Theorem 2 and Theorem 3.

A.1 Proof of Theorem 1 and primal attainment

We first prove Theorem 1. By the definition of the Lebesgue integral, τ belongs to T (µ0) if

and only if for any measurable and bounded p : Ω → R,
ˆ
∆(Ω)

ˆ
Ω

p(ω)dµ(ω)dτ(µ) =

ˆ
Ω

p(ω)dµ0(ω).

Thus, for any τ ∈ T (µ0) and any such p that additionally satisfies V (µ) ≤
´
Ω
p(ω)dµ(ω) for

all µ ∈ ∆(Ω), we have
ˆ
∆(Ω)

V (µ)dτ(µ) ≤
ˆ
∆(Ω)

ˆ
Ω

p(ω)dµ(ω)dτ(µ) =

ˆ
Ω

p(ω)dµ0(ω).

Taking the supremum over T (µ0) on the left-hand side and the infimum over P(V ) on the

right-hand side (any p ∈ P(V ) is measurable and bounded) yields the desired result.

Next, we prove primal attainment under the weaker assumption that V is bounded only

from above, because this stronger version will be used in the proof of Theorem 8.

Lemma 2. Let V : ∆(Ω) → R ∪ {−∞} be bounded from above and upper semi-continuous.

Then (P) has an optimal solution.
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Proof. Because the function τ →
´
∆(Ω)

µdτ(µ) is continuous, the feasible set T (µ0) is com-

pact, being a closed subset of the compact set ∆(∆(Ω)). Moreover, T (µ0) is non-empty,

as it contains the Dirac probability measure δµ0 at µ0, which corresponds to no disclosure.

Since V is bounded from above and upper semi-continuous, the function τ →
´
V (µ)dτ(µ)

is also upper semi-continuous and thus attains its maximum on the compact set T (µ0), by

the Weierstrass Theorem. Thus, an optimal solution τ ⋆ to the problem (P) exists.

A.2 Proof of Theorem 4

We start with a key lemma.

Lemma 3. Let µ0, η0 ∈ ∆(Ω) and τ ∈ T (µ0). There exists a measurable function η :

∆(Ω) → ∆(Ω) such that
ˆ
∆(Ω)

η(µ)dτ(µ) = η0 and

ˆ
∆(Ω)

∥µ− η(µ)∥KR dτ(µ) = ∥µ0 − η0∥KR .

Before proving Lemma 3, we show that it implies Theorem 4. First, since V is Lipschitz,

it is upper semi-continuous, and hence, by Lemma 2, for any µ0 ∈ ∆(Ω), there exists

τ ∈ T (µ0) that attains the concave closure of V at µ0, so that V̂ (µ0) =
´
∆(Ω)

V (µ)dτ(µ).

Next, since V is Lipschitz, there exists L ∈ R, such that, for all µ0, η0 ∈ ∆(Ω), we have

|V (µ0)− V (η0)| ≤ L ∥µ0 − η0∥KR . Then, using Lemma 3 to define the function η, we obtain

V̂ (µ0) − V̂ (η0) ≤
ˆ
∆(Ω)

V (µ)dτ(µ) −
ˆ
∆(Ω)

V (η(µ))dτ(µ)

≤
ˆ
∆(Ω)

L ∥µ− η(µ)∥KR dτ(µ) = L ∥µ0 − η0∥KR .

By reversing the roles of µ0 and η0, we conclude that V̂ is Lipschitz (with constant L). Thus,

it remains to prove Lemma 3.

Proof of Lemma 3. The idea behind the proof is to “perturb” each posterior belief µ ∈ ∆(Ω)

(with η describing the perturbation function) in such a way that perturbed posteriors η(µ)

average out to η0, and the average distance between each posterior µ and its perturbation

η(µ) is the same as the distance between the “priors” µ0 and η0. A naive approach would be to

perturb each posterior µ by the same magnitude and in the same direction η0−µ0. However,

this could easily take the perturbed beliefs outside the set ∆(Ω). Thus, our construction
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is more complicated: We rely on a property of the Kantorovich-Rubinstein norm to find

the transportation plan λ ∈ ∆(Ω × Ω) that defines the distance between µ0 and η0; we then

define the perturbation by conditioning on each realized posterior belief µ ∈ ∆(Ω), and using

a properly constructed conditional transportation plan.

Since every norm is convex, we have ∥µ0 − η0∥KR ≤
´
∆(Ω)

∥µ− η(µ)∥KR dτ(µ) for any

measurable function η : ∆(Ω) → ∆(Ω) such that
´
∆(Ω)

η(µ)dτ(µ) = η0. Thus, it suffices

to show the existence of a measurable function η : ∆(Ω) → ∆(Ω) satisfying the reverse

inequality.

By the Kantorovich-Rubinstein theorem (Theorem 8.10.45 in Bogachev, 2007),

∥µ0 − η0∥KR = min
λ∈Λ(µ0,η0)

ˆ
Ω×Ω

ρ(ω, ω′)dλ(ω, ω′),

where Λ(µ0, η0) is the set of probability measures λ ∈ ∆(Ω×Ω) such that λ(A×Ω) = µ0(A)

and λ(Ω × B) = η0(B) for all measurable sets A, B ⊂ Ω. In particular, the minimum is

attained at some λ ∈ Λ(µ0, η0), which we fix for the remainder of the proof.

Define a probability measure σ ∈ ∆(∆(Ω) × Ω) by σ(M, A) =
´
M
µ(A)dτ(µ) for all

measurable M ⊂ ∆(Ω) and A ⊂ Ω. For all measurable A ⊂ Ω, we have σ(∆(Ω), A) = µ0(A)

because
´
∆(Ω)

µdτ(µ) = µ0. For any probability measure on a product of two compact

metric spaces we can define its conditional measures (Theorem 10.4.5 in Bogachev, 2007).

Since Ω and ∆(Ω) are compact, there exists a measurable function ω → σ(·|ω), from Ω into

∆(∆(Ω)), such that σ(M, A) =
´
A
σ(M |ω)dµ0(ω) for all measurable A ⊂ Ω and M ⊂ ∆(Ω).

Similarly, there exists a measurable function ω → λ(·|ω), from Ω into ∆(Ω), such that

λ(A, B) =
´
A
λ(B|ω)dµ0(ω) for all measurable A, B ⊂ Ω.

Define a probability measure ζ ∈ ∆(Ω×Ω×∆(Ω)) by ζ(A, B, M) =
´
A
λ(B|ω)σ(M |ω)dµ0(ω)

for all measurable A, B ⊂ Ω, and M ⊂ ∆(Ω). For all measurable A, B ⊂ Ω, and M ⊂ ∆(Ω),

we have ζ(A, B, ∆(Ω)) = λ(A, B) and ζ(A,Ω, M) = σ(M, A), by construction. Since

Ω × Ω and ∆(Ω) are compact, there exists a measurable function µ → ζ(·|µ), from ∆(Ω)

into ∆(Ω × Ω), such that ζ(A, B, M) =
´
M
ζ(A,B|µ)dτ(µ) for all measurable A, B ⊂ Ω,

and M ⊂ ∆(Ω).

Finally, define a measurable function µ → η(µ), from ∆(Ω) into ∆(Ω), by η(µ)(B) =

ζ(Ω, B|µ) for all µ ∈ ∆(Ω) and all measurable B ⊂ Ω. Notice that the conditional measure

ζ(· , · |µ) on Ω × Ω is a feasible transportation plan between µ and η(µ), for τ -almost all
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µ ∈ ∆(Ω). Indeed, ζ(Ω, · |µ) = η(µ)(·) by construction, and for any measurable A ⊂ Ω and

M ⊂ ∆(Ω),
ˆ
M

ζ(A, Ω|µ)dτ(µ) = ζ(A, Ω, M) = σ(M, A) =

ˆ
M

µ(A)dτ(µ),

establishing that ζ(· ,Ω|µ) = µ(·) for τ -almost all µ ∈ ∆(Ω).

To show that the constructed function η satisfies the required properties, note first that,

for any measurable B ⊂ Ω,
ˆ
∆(Ω)

η(µ)(B)dτ(µ) =

ˆ
∆(Ω)

ζ(Ω, B|µ)dτ(µ) = ζ(Ω, B, ∆(Ω)) = λ(Ω, B) = η0(B),

and hence
´
∆(Ω)

η(µ)dτ(µ) = η0. Moreover,

ˆ
∆(Ω)

∥µ− η(µ)∥KR dτ(µ) ≤
ˆ
∆(Ω)

[ˆ
Ω×Ω

ρ(ω, ω′)dζ(ω, ω′|µ)

]
dτ(µ)

=

ˆ
Ω×Ω

ρ(ω, ω′)dλ(ω, ω′) = ∥µ0 − η0∥KR ,

where the inequality follows from the Kantorovich-Rubinstein theorem and the fact that the

conditional measure ζ(· , · |µ) on Ω×Ω is a feasible transportation plan between µ and η(µ),

for τ -almost all µ ∈ ∆(Ω), as shown above.

A.3 Proof of Theorem 2

Existence of an optimal solution to the primal problem follows from Lemma 2.

To prove the rest of the theorem, we introduce some basic tools from convex analysis,

used in the proof of the next lemma.31 Let E be a normed vector space and E⋆ its topological

dual space, that is, the space of all continuous linear functions on E. Let φ : E → R∪{+∞}

be an extended-valued function that is not identically {+∞}. The Legendre transform of φ

is the function φ⋆ : E⋆ → R ∪ {+∞} given by

φ⋆(z⋆) = sup
z∈E

{⟨z⋆, z⟩ − φ(z)} for all z⋆ ∈ E⋆,

where ⟨·, ·⟩ is the duality product between E and E⋆. It is easy to verify that φ⋆ is convex,

lower semi-continuous, and not identically {+∞}. Next, define the function φ⋆⋆ : E →
31See Chapter 1.4 in Brezis (2011) for further details.
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R ∪ {+∞} as the Legendre transform of φ⋆, restricted from E⋆⋆ to E,

φ⋆⋆(z) = sup
z⋆∈E⋆

{⟨z⋆, z⟩ − φ⋆(z⋆)} for all z ∈ E.

Clearly, φ⋆⋆ is a convex and lower semi-continuous function satisfying φ⋆⋆(z) ≤ φ(z) for all

z ∈ E. The Fenchel-Moreau Theorem states that if φ : E → R∪ {+∞} is convex and lower

semi-continuous, and not identically {+∞}, then φ⋆⋆ = φ. We remark that the Fenchel-

Moreau Theorem is a consequence of an appropriate hyperplane separation theorem.32

We prove the theorem in two steps. First, we show the conclusion for Lipschitz objective

functions. Here, we rely on the (already proven) Theorem 4. Second, we use an approxima-

tion argument to extend the conclusion to all bounded and upper semi-continuous objectives.

Lemma 4. Let V ∈ Lip(∆(Ω)). Then (O) holds.

Proof. Let E = (M(Ω), ∥·∥KR); then, as argued in the main text, E⋆ = Lip(Ω). Define the

function φ on M(Ω) as

φ(η) =

− supτ∈T (η)

´
∆(Ω)

V (µ)dτ(µ), η ∈ ∆(Ω),

+∞, η /∈ ∆(Ω).

First, we note that φ is convex. Indeed, let η1, η2 ∈ M(Ω) and λ ∈ (0, 1). If η1, η2 ∈ ∆(Ω),

then, by Lemma 2, there exist τ1 ∈ T (η1) and τ2 ∈ T (η2) such that

φ(η1) = −
ˆ
∆(Ω)

V (µ)dτ1(µ) ∈ R and φ(η2) = −
ˆ
∆(Ω)

V (µ)dτ2(µ) ∈ R.

By the definition of T ,

λτ1 + (1 − λ)τ2 ∈ T (λη1 + (1 − λ)η2)

and hence, by the definition of φ,

φ(λη1 + (1 − λ)η2) ≤ −
ˆ
∆(Ω)

V (µ)d(λτ1 + (1 − λ)τ2) = λφ(η1) + (1 − λ)φ(η2).

If η1 /∈ ∆(Ω) or η2 /∈ ∆(Ω), then, trivially,

φ(λη1 + (1 − λ)η2) ≤ λφ(η1) + (1 − λ)φ(η2) = +∞.

32Indeed, an earlier version of this paper Dworczak and Kolotilin (2019) contained a proof of strong duality
that directly relied on a hyperplane separation theorem.

37



Second, we note that φ : M(Ω) → R∪{+∞} is lower semi-continuous, because φ is Lipschitz

on the compact set ∆(Ω), by Theorem 4.

Let us compute the Legendre transform of φ. For each g ∈ Lip(Ω),

φ⋆(g) = sup
η∈M(Ω)

{ˆ
Ω

g(ω)dη(ω) − φ(η)

}
= sup

η∈∆(Ω),τ∈T (η)

{ˆ
Ω

g(ω)dη(ω) +

ˆ
∆(Ω)

V (µ)dτ(µ)

}
= sup

η∈∆(Ω),τ∈T (η)

{ˆ
∆(Ω)

(ˆ
Ω

g(ω)dµ(ω) + V (µ)

)
dτ(µ)

}
= sup

η∈∆(Ω)

{ˆ
Ω

g(ω)dη(ω) + V (η)

}
,

where the last equality follows from the fact that by treating Ṽ (µ) :=
´
Ω
g(ω)dµ(ω) + V (µ)

as an objective function, we obtain a persuasion problem in which we choose both a prior η

and a distribution τ of posteriors, which averages out to the prior, so it is optimal to choose

a prior η ∈ arg maxµ∈∆(Ω) Ṽ (µ) and a degenerate distribution τ = δη.
33

Let us, finally, compute φ⋆⋆(µ0),

φ⋆⋆(µ0) = sup
p∈Lip(Ω)

{ˆ
Ω

p(ω)dµ0(ω) − φ⋆(p)

}
= sup

p∈Lip(Ω)

{ˆ
Ω

p(ω)dµ0(ω) − sup
η∈∆(Ω)

{ˆ
Ω

p(ω)dη(ω) + V (η)

}}

= − inf
p∈Lip(Ω)

{ˆ
Ω

p(ω)dµ0(ω) + sup
η∈∆(Ω)

{
V (η) −

ˆ
Ω

p(ω)dη(ω)

}}

= − inf
p∈Lip(Ω)

{ˆ
Ω

p(ω)dµ0(ω) : sup
η∈∆(Ω)

{
V (η) −

ˆ
Ω

p(ω)dη(ω)

}
= 0

}

= − inf
p∈P(V )

{ˆ
Ω

p(ω)dµ0(ω)

}
,

where the third equality follows from substituting p for −p as the optimization variable,

and the fourth follows because, for any fixed η, adding a constant to p does not change the

value of the outer infimum—it is thus without loss of generality to normalize p by insisting

that the inner supremum is equal to 0 (note that the inner supremum is attained and finite

at each p ∈ Lip(Ω)). The Fenchel-Moreau Theorem implies that φ = φ⋆⋆, so (O) follows

from φ(µ0) = φ⋆⋆(µ0).

33This observation is also made in the proof of Theorem 2 in Dworczak (2020).
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Lemma 5. Let V be bounded and upper semi-continuous. Then, (O) holds.

Proof. This follows from a standard approximation argument, as, for example, in the proof

of Theorem 1.3 in Villani (2003). By Baire’s Theorem (see, for example, Box 1.5 in Santam-

brogio, 2015), there exists a non-increasing sequence of Lipschitz functions Vk ∈ Lip(∆(Ω))

converging pointwise to V . That is, Vk(µ) ≥ Vk+1(µ) for all µ ∈ ∆(Ω) and k ∈ N, and

limk→∞ Vk(µ) = V (µ) for all µ ∈ ∆(Ω). Let τ ⋆k denote an optimal solution to (P) with the

objective function Vk. For each k ∈ N, we have
ˆ
∆(Ω)

V (µ)dτ ⋆(µ) ≤ inf
p∈P(V )

ˆ
Ω

p(ω)dµ0(ω) ≤ inf
p∈P(Vk)

ˆ
Ω

p(ω)dµ0(ω) =

ˆ
∆(Ω)

Vk(µ)dτ ⋆k (µ),

where the first inequality holds by Theorem 1, the second inequality holds by P(Vk) ⊂ P(V )

for Vk ≥ V , and the equality holds by Lemma 4 for Lipschitz Vk. To establish (O) for upper

semi-continuous V , it is thus sufficient to show that

lim
k→∞

ˆ
∆(Ω)

Vk(µ)dτ ⋆k (µ) ≤
ˆ
∆(Ω)

V (µ)dτ ⋆(µ).

Thanks to compactness of T (µ0), up to extraction of a subsequence, we can suppose that τ ⋆k

converges weakly to some τ ∈ T (µ0). Then, for each j ∈ N, we have

lim
k→∞

ˆ
∆(Ω)

Vk(µ)dτ ⋆k (µ) ≤ lim
k→∞

ˆ
∆(Ω)

Vj(µ)dτ ⋆k (µ) =

ˆ
∆(Ω)

Vj(µ)dτ(µ),

where the first inequality holds because Vk ≤ Vj for k ≥ j, and the equality holds because

Vj is (Lipschitz) continuous and τ ⋆k → τ . Then, letting j go to infinity and invoking the

monotone convergence theorem,

lim
j→∞

ˆ
∆(Ω)

Vj(µ)dτ(µ) =

ˆ
∆(Ω)

V (µ)dτ(µ),

we obtain

lim
k→∞

ˆ
∆(Ω)

Vk(µ)dτ ⋆k (µ) ≤
ˆ
∆(Ω)

V (µ)dτ(µ) ≤
ˆ
∆(Ω)

V (µ)dτ ⋆(µ),

where the last inequality holds because τ ⋆ is an optimal solution to (P). This establishes

(O) for upper semi-continuous V . As a by-product, it also shows the optimality of τ .34

34In the persuasion literature, a similar argument appears in the proof of Theorem 1 in Dizdar and Kováč
(2020) for the special case of one-dimensional moment persuasion.
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A.4 Proof of Corollary 1

By Theorem 2, τ ∈ T (µ0) and p ∈ P(V ) are optimal solutions to (P) and (D) if and only if
ˆ
∆(Ω)

V (µ)dτ(µ) =

ˆ
Ω

p(ω)dµ0(ω) ⇐⇒
ˆ
∆(Ω)

(
V (µ) −

ˆ
Ω

p(ω)dµ(ω)

)
dτ(µ) = 0.

Since the term in parenthesis is non-positive for p ∈ P(V ), it follows that τ(Λ) = 1 where

Λ =

{
µ ∈ ∆(Ω) : V (µ) =

ˆ
Ω

p(ω)dµ(ω)

}
=

{
µ ∈ ∆(Ω) : V (µ) ≥

ˆ
Ω

p(ω)dµ(ω)

}
.

The set Λ is closed because V (µ) is upper semi-continuous in µ and
´
Ω
p(ω)dµ(ω) is contin-

uous in µ, given that each p ∈ P(V ) is Lipschitz continuous. Thus, supp(τ) ⊂ Λ and (C)

follows, since supp(τ) is defined as the smallest closed set on which τ is concentrated.

A.5 Proof of Theorem 3

The Duality Theorem in Gale (1967) shows that V̂ is superdifferentiable at µ0 if and only if

V̂ has bounded steepness at µ0. Thus, Theorem 3 follows from the following lemma.

Lemma 6. There exists an optimal solution p ∈ P(V ) to (D) if and only if V̂ is superdif-

ferentiable at µ0.

Proof. If V̂ is superdifferentiable at µ0, then, by the fact that (M(Ω), ∥·∥KR)⋆ = Lip(Ω),

there exists p ∈ Lip(Ω) such that

V̂ (µ0) =

ˆ
Ω

p(ω)dµ0(ω) and V̂ (µ) ≤
ˆ
Ω

p(ω)dµ(ω), for all µ ∈ ∆(Ω).

Thus,

V (µ) ≤ V̂ (µ) ≤
ˆ
Ω

p(ω)dµ(ω), for all µ ∈ ∆(Ω),

so p ∈ P(V ) is an optimal solution to (D), by Theorem 1.

Conversely, if p ∈ P(V ) is optimal, then we have p ∈ Lip(Ω),

V (µ0) =

ˆ
Ω

p(ω)dµ0(ω), and V (µ) ≤
ˆ
Ω

p(ω)dµ(ω), for all µ ∈ ∆(Ω).

By the definition of the concave envelope,

V (µ) ≤
ˆ
Ω

p(ω)dµ(ω), for all µ ∈ ∆(Ω).

40



Therefore, by Theorem 2,

V̂ (µ0) =

ˆ
Ω

p(ω)dµ0(ω), and V̂ (µ) ≤
ˆ
Ω

p(ω)dµ(ω), for all µ ∈ ∆(Ω).

Thus, p is a supergradient of V̂ at µ0, and thus V̂ is superdifferentiable at µ0 (simply

define H(µ) =
´
Ω
p(ω)dµ(ω), which is a continuous linear function on M(Ω) because p ∈

Lip(Ω)).

A.6 Proof of Lemma 1

Suppose that v is L-Lipschitz on X ⊂ RN . Since all norms are equivalent in an N -dimensional

Euclidean space, without loss of generality, we endow RN with the Euclidean norm,

∥x∥ =

√∑N
i=1 x

2
i , for all x ∈ RN .

For any µ, η ∈ ∆(Ω), with µ ̸= η,

|V (µ) − V (η)|
∥µ− η∥KR

=
|v(Eµ[ω]) − v(Eη[ω])|

∥Eµ[ω] − Eη[ω]∥
∥Eµ[ω] − Eη[ω]∥

∥µ− η∥KR

≤ L
∥Eµ[ω] − Eη[ω]∥

∥µ− η∥KR

.

Because the function f(ω) = ωi is 1-Lipschitz,∣∣Eµ[ωi] − Eη[ωi]
∣∣ =

∣∣∣∣ˆ
Ω

ωid(µ− η)(ω)

∣∣∣∣ ≤ ∥µ− η∥KR ,

and thus

∥Eµ[ω] − Eη[ω]∥ =

√∑N
i=1 (Eµ[ωi] − Eη[ωi])

2 ≤
√
N ∥µ− η∥KR ,

showing that V is L
√
N -Lipschitz.

A.7 Proof of Theorem 5

By Lemma 1, we know that V : ∆(Ω) → R is Lipschitz, since v is Lipschitz. It follows

from Theorems 2, 3, and 4 that there exists a solution p ∈ Lip(Ω) to the dual problem (D);

moreover, since (PM) is a special case of the general problem (P), π ∈ Π(µ0) is then optimal

for (PM) if and only if ˆ
X

v(x)dπX(x) =

ˆ
Ω

p(ω)dµ0(ω).

Let p̌ be the convex roof extension of p from Ω to X, defined in the main text. By con-

struction, p̌ ≤ p on Ω. Moreover, the infimum in the definition of p̌ is attained because p is
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(Lipschitz) continuous on Ω and the set of feasible distributions is compact. Hence, for any

x ∈ X, we can write p̌(x) =
´
Ω
p(ω)dµx(ω) for some µx ∈ ∆(Ω) with

´
Ω
ωdµx(ω) = x. By

the definition of p̌, for any x, y ∈ X, λ ∈ (0, 1), we have

λp̌(x) + (1 − λ)p̌(y) =

ˆ
Ω

p(ω)d(λµx + (1 − λ)µy)(ω) ≥ p̌(λx + (1 − λ)y),

showing that p̌ is convex. Moreover, by feasibility of p, for any x ∈ X,

p̌(x) =

ˆ
Ω

p(ω)dµx(ω) ≥ V (µx) = v(x).

Next, we prove a key lemma.

Lemma 7. Let v be L-Lipschitz and p̌ ≥ v. There exists a measurable function q : X → RN

such that ∥q(x)∥ ≤ L for all x ∈ X, and

p̌(y) ≥ v(x) + q(x) · (y − x), for all y, x ∈ X.

Proof. Define

F (x) := {r ∈ RN : p̌(y) ≥ v(x) + r · (y − x), for all y ∈ X},

and let

q(x) := arg minr∈F (x)∥r∥, for all x ∈ X.

Note that F (x) is closed-valued and convex-valued. Thus, if F (x) is non-empty, then q(x)

exists and is unique because q(x) is the projection of 0 onto the non-empty closed convex

set F (x). If we can additionally prove that ∥q(x)∥ ≤ L for all x ∈ X, then q will be

measurable by the measurable maximum theorem (Theorem 18.19 in Aliprantis and Border,

2006). To see that, note that the definition of q will not change if we additionally require

that ∥r∥ ≤ L, so that the correspondence x ⇒ F (x)∩{r ∈ RN : ∥r∥ ≤ L} is compact-valued

and upper hemi-continuous (given that p̌ is lower semi-continuous and v is continuous), and

thus measurable, by Theorem 18.20 in Aliprantis and Border (2006).

We deal with some easy cases first. If 0 ∈ F (x), then q(x) = 0 and 0 = ∥q(x)∥ ≤ L.

Next, if 0 /∈ F (x) but p̌(x) = v(x), then we have, for any y ∈ X,

p̌(y) − p̌(x) ≥ v(y) − v(x) ≥ −L∥y − x∥,

because p̌ ≥ v and v is L-Lipschitz. By the Duality Theorem in Gale (1967), q(x) is well
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defined and

∥q(x)∥ = − inf
y∈X

p̌(y) − p̌(x)

∥y − x∥
≤ L.

Thus, for the rest of the proof, we fix an arbitrary x ∈ X such that 0 /∈ F (x) and p̌(x) > v(x).

We first show that F (x) is non-empty. Because, p̌(x) > v(x), the point (x, v(x)) does

not belong to the epigraph of p̌, defined as epi(p̌) := {(y, t) ∈ X × R : t ≥ p̌(y)}. Note that

epi(p̌) is closed and convex, because p̌ is lower semi-continuous (see footnote 19) and convex.

By the separation theorem (for example, Corollary 11.4.1 in Rockafellar, 1970), there exists

(α, β) ∈ RN × R such that, for all y ∈ X and t ≥ p̌(y),

α · y + βt > α · x + βv(x).

Clearly, β ≥ 0; otherwise, the inequality would be violated for sufficiently large t. Moreover,

β ̸= 0; otherwise, the inequality would be violated for (y, t) = (x, p̌(x)). Thus, evaluating

the inequality for t = p̌(y), for all y ∈ X, proves that −α/β belongs to F (x). Thus, F (x) is

indeed non-empty (and hence q(x) is well-defined).

We now show that ∥q(x)∥ ≤ L. Define the set

Y := {y ∈ X : p̌(y) = v(x) + q(x) · (y − x)}.

Note that Y is non-empty: If there is no y ∈ X such that p̌(y) = v(x) + q(x) · (y − x), then

the constraint in the definition of F (x) is slack, so it is possible to reduce ∥r∥, contradicting

that q(x) is a minimizer (this step uses the fact that p̌ is lower semi-continuous). Since p̌ is

convex, the set Y is convex. Since p̌(x) > v(x), the set Y cannot contain x. Also, let

E := {e ∈ RN : e · q(x) < 0}.

We will prove that there exists y⋆ ∈ Y such that e · (y⋆ − x) ≥ 0 for all e ∈ E. Suppose that

such y⋆ does not exist. Since any such y⋆ must satisfy y⋆ − x = −tq(x) for some t ≥ 0, we

conclude that the compact convex set Y − x := {y − x : y ∈ Y } and the closed convex cone

{−tq(x) : t ≥ 0} must be disjoint. By the separation theorem (for example, Corollary 11.4.1

in Rockafellar, 1970), there exists e ∈ RN such that

max
y∈Y

e · (y − x) < inf
t≥0

e · (−tq(x)).

Notice that we must have e · q(x) ≤ 0, as otherwise the right-hand side is −∞ and the
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inequality cannot hold. In fact, there exists e ∈ RN such that e · q(x) < 0, because we can

always replace e with e − εq(x) for a sufficiently small ε > 0 without violating the above

inequality, given that Y is compact. Since there is e ∈ E such that e · (y − x) < 0 for all

y ∈ Y , there is δ > 0 such that for all z in the δ-neighborhood of Y , we have e · (z − x) < 0,

and thus for all ε > 0,

v(x) + (q(x) + εe) · (z − x) < v(x) + q(x) · (z − x).

Since p̌(z) > v(x) + q(x) · (z−x) for z /∈ Y , and p̌ is convex and lower semi-continuous, there

exists γ > 0 such that for all z ∈ X outside the δ-neighborhood of Y , we have

p̌(z) > v(x) + q(x) · (z − x) + γ.

Consequently, there exists a sufficiently small ε > 0 such that, for all z ∈ X,

p̌(z) > v(x) + (q(x) + εe) · (z − x).

This is a contradiction with the definition of q(x). Indeed, the above inequality shows that

q(x) + εe ∈ F (x) and, by the fact that e ∈ E and q(x) ̸= 0, we have ∥q(x) + εe∥ < ∥q(x)∥

for sufficiently small ε > 0.

We have thus proven that there exists y⋆ ∈ Y such that e · (y⋆ − x) ≥ 0 for all e ∈ E.

Since e · (y⋆ − x) ≥ 0 for all e ∈ E and Y does not contain x, it follows that there exists

t > 0 such that x− y⋆ = tq. Thus,

q(x) · (x− y⋆) = ∥q(x)∥ ∥x− y⋆∥.

And since y⋆ ∈ Y , we have that

v(x) − p̌(y⋆) = q(x) · (x− y⋆).

Putting these two equalities together, we conclude that

∥q(x)∥∥x− y⋆∥ = v(x) − p̌(y⋆) ≤ v(x) − v(y⋆) ≤ L∥x− y⋆∥,

showing that ∥q(x)∥ ≤ L.

Fixing q(x) from Lemma 7, we define

p̄(y) := sup
x∈X

{v(x) + q(x) · (y − x)}, for all y ∈ X.
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Note that p̄ is convex as a pointwise supremum of affine functions. It lies everywhere above

v, by definition. Finally, we show that p̄ is L-Lipschitz. Take any y, z ∈ X. Let xn be a

sequence of points in X that generate the supremum in the definition of p̄(y). Because X is

compact and q is bounded, we can assume that xn and q(xn) converge. Then, we have that

p̄(y) − p̄(z) = lim
n→∞

{v(xn) + q(xn) · (y − xn)} − p̄(z)

≤ lim
n→∞

{v(xn) + q(xn) · (y − xn) − v(xn) − q(xn) · (z − xn)}

= lim
n→∞

{q(xn)} · (y − z) ≤ L∥y − z∥.

Because y and z were arbitrary, this proves that p̄ is L-Lipschitz.

Finally, notice that p̄ ≤ p̌, by Lemma 7. Therefore, on Ω, we have that

p̄ ≤ p̌ ≤ p.

Since p̄ is Lipschitz, p̄ ≥ v and p̄ is convex, it follows that p̄ (restricted to Ω) is feasible for

the dual (D); indeed, for any µ ∈ ∆(Ω),
ˆ
Ω

p̄(ω)dµ(ω) ≥ p̄

(ˆ
Ω

ωdµ(ω)

)
≥ v

(ˆ
Ω

ωdµ(ω)

)
= V (µ).

But since p solves the dual problem (D), we must have that p = p̄ almost surely on Ω. Since

both these function are (Lipschitz) continuous, we can conclude that p and p̄ coincide on Ω.

In particular, we have shown that p̄ is convex and solves (D) when restricted to Ω.

Next, we prove that if π ∈ Π(µ0) is optimal for (PM), then conditions 1 and 2 hold. We

have already shown that p̄ is convex, Lipschitz, and satisfies p̄ ≥ v. To finish the proof that

condition 1 holds, note that
ˆ
X

v(x)dπX(x) =

ˆ
Ω

p(ω)dµ0(ω) =

ˆ
Ω

p̄(ω)dµ0(ω),

where the first equality is due to the absence of a duality gap (Theorem 2) and the second

is by the fact that p = p̄ on Ω. We can also prove that condition 2 holds: p̄ satisfies the

required equality by definition when q is defined by Lemma 7; moreover,
ˆ
X×Ω

(v(x)+q(x) ·(ω−x))dπ(x, ω) =

ˆ
X

v(x)dπX(x) =

ˆ
Ω

p̄(ω)dµ0(ω) =

ˆ
X×Ω

p̄(ω)dπ(x, ω),

where the first and last equality follow from the feasibility of π, and the second equality was

established above. Because, by definition, p̄(ω) ≥ v(x) + q(x) · (ω−x) for all (x, ω), we must
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have that for π-almost all (x, ω),

v(x) + q(x) · (ω − x) = p̄(ω).

It remains to show that any one of conditions 1 or 2 imply optimality of π ∈ Π(µ0). Note

that we will not use the assumption that v is Lipschitz in that part of the proof.

Assume that condition 1 holds. Note that, under these assumptions, p̄ is feasible for

the dual (D) when viewed as a function on Ω (in particular, as shown previously, convexity

and p̄ ≥ v imply that
´
Ω
p̄(ω)dµ(ω) ≥ V (µ), for all µ ∈ ∆(Ω)). But then the fact that πX

achieves no duality gap means that π must be optimal.

Assume that condition 2 holds. Note that under these assumptions, we have shown

previously (using only the definition of p̄ and the property that q is measurable with ∥q(x)∥ ≤

L for all x ∈ X) that p̄ is feasible for the dual (D) on Ω. Moreover, by the last equation of

condition 2,
ˆ
Ω

p̄(ω)dµ0(ω) =

ˆ
X×Ω

(v(x) + q(x) · (ω − x))dπ(x, ω) =

ˆ
X

v(x)dπX(x),

showing that p̄ and πX achieve no duality gap, and hence π is optimal.

A.8 Proof of Theorem 6 and Remark 1

Since v is continuously differentiable on the compact set X, it is L-Lipschitz on X where

L := max
x∈X

∥∇v(x)∥ < ∞,

so all previous results apply. We now prove the two implications of the equivalence separately.

If. Fix π ∈ Π(µ0), and let S = supp(πX). The function pS is convex (see footnote 22).

Moreover, by condition (M), pS ≥ v. Thus, there exists a function q as in Lemma 7. Then,

for any feasible π̃ ∈ Π(µ0), we have
ˆ
X×Ω

v(x)dπ̃(x, ω) =

ˆ
X×Ω

(v(x) + q(x) · (ω − x))dπ̃(x, ω)

≤
ˆ
X×Ω

pS(ω)dπ̃(x, ω) =

ˆ
Ω

pS(ω)dµ0(ω) =

ˆ
X×Ω

pS(ω)dπ(x, ω)

=

ˆ
X×Ω

(v(x) + ∇v(x) · (ω − x))dπ(x, ω) =

ˆ
X×Ω

v(x)dπ(x, ω),

showing that π is optimal. The inequality follows from Lemma 7. The second to last equality

holds by condition (M). The remaining equalities follow from the feasibility of π̃ and π.
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Only if. Fix an optimal distribution π ∈ Π(µ0). By Theorem 5, there exists an optimal

solution p to (D) and it is convex on Ω. Define the convex roof extension p̌ of p from Ω to

X, as in formula (R). For each x ∈ X, the infimum in the definition of p̌(x) is attained at

some µx ∈ ∆(Ω). By feasibility of p, for any x ∈ X,

p̌(x) =

ˆ
Ω

p(ω)dµx(ω) ≥ V (µx) = v(x).

Consequently,
ˆ
X

v(x)dπX(x) ≤
ˆ
X

p̌(x)dπX(x) ≤
ˆ
Ω

p̌(ω)dµ0(ω) =

ˆ
Ω

p(ω)dµ0(ω),

where the first inequality holds because p̌ ≥ v, the second inequality holds because p̌ is

convex and µ0 is a mean-preserving spread of πX , and the equality holds because p̌ coincides

with p on Ω, given that p is convex on Ω. Hence condition 1 in Theorem 5 implies that all

inequalities hold with equality,
ˆ
X

v(x)dπX(x) =

ˆ
X

p̌(x)dπX(x) =

ˆ
Ω

p̌(ω)dµ0(ω).

Thus, πX(Š) = 1, where Š = {x ∈ X : v(x) = p̌(x)}. Since X is closed, v is continuous,

p̌ is lower semi-continuous (see footnote 19), and the set Š can be equivalently written as

Š = {x ∈ X : v(x) ≥ p̌(x)}, it follows that the set Š is closed. Thus, supp(πX) ⊂ Š.

Taking into account that v is continuously differentiable and p̌ is convex and satisfies

p̌ ≥ v, we obtain that p̌ has a subgradient ∇v(x) at each x ∈ Š, so, for all y ∈ X,

p̌(y) ≥ p̌(x) + ∇v(x) · (y − x) = v(x) + ∇v(x) · (y − x).

Indeed, for x ∈ Š, y ∈ X, and ε > 0, we have

p̌(y) − p̌(x) ≥ 1

ε
(p̌(x + ε(y − x)) − p̌(x)) ≥ 1

ε
(v(x + ε(y − x)) − v(x)),

where the first inequality is by convexity of p̌, and the second inequality is by p̌ ≥ v and

p̌(x) = v(x). Taking ε ↓ 0 yields that ∇v(x) is a subgradient of p̌ at x ∈ Š.

Thus, since π ∈ Π(µ0) and p = p̌ on Ω, we have
ˆ
Ω

p(ω)dµ0(ω) ≥
ˆ
X×Ω

(v(x) + ∇v(x) · (ω − x))dπ(x, ω) =

ˆ
X×Ω

v(x)dπ(x, ω).
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As shown above, the inequality holds with equality, so π(Γ̌) = 1, where

Γ̌ =
{

(x, ω) ∈ Š × Ω : p̌(ω) = v(x) + ∇v(x) · (ω − x)
}
.

Note that the set Γ̌ is closed, given that Š and Ω are closed and ∇v and p̌ are continuous

on X and Ω, respectively. Thus, supp(π) ⊂ Γ̌. But then we have that, for all ω ∈ Ω,

psupp(πX)(ω) = max
x∈supp(πX)

{v(x) + ∇v(x) · (ω − x)} = p̌(ω),

where the first equality is by the definition of pS, and the second equality is by supp(π) ⊂ Γ̌.

This shows that psupp(πX)(ω) = p̌(ω) = p(ω) for ω ∈ Ω, and hence also that psupp(πX)(x) =

p̌(x) for x ∈ X. Thus, we have shown that psupp(πX) satisfies condition (M), which finishes

the proof of the theorem.

Finally, we explain why the above proof also implies Remark 1. First, note that in the

“only if” part of the proof we established psupp(πX) ≡ p̌ for an arbitrary optimal π. It follows

that S⋆, as defined in Remark 1, is equal to Š in the proof (note that Š does not depend on

which optimal solution π we consider). Thus, we also have that pS⋆ ≡ p̌.

Fix a feasible π ∈ Π(µ0). Suppose that π is optimal for (PM). Then, the “only if” part

of the above proof shows that supp(πX) ⊂ Š and supp(π) ⊂ Γ̌. As argued in the previous

paragraph, we can replace Š with S⋆ and p̌ with pS⋆ and hence condition (M) holds with

S = S⋆. Conversely, if supp(πX) ⊂ S⋆ and condition (M) holds with S = S⋆, then the “if”

part of the proof shows that π is optimal for (PM).

A.9 Generalized analysis for Section 4.4

In this appendix, we set up generalized notation that agrees with the notation defined in

Section 4.4 in the special case of convex Ω but may differ in the general case of non-convex

Ω. In Appendix A.10, we use this generalized notation to prove Theorems 7 and 8 without

assuming that Ω is convex.

It will be convenient to consider solutions π ∈ Π(µ0) on the extended space X ×X even

though supp(π) ⊆ X × Ω. To make our notation more intuitive, we will use the symbols

x, y, z ∈ X to refer to moments, and ω ∈ X to refer to the “extended states.”

For a closed set S ⊂ X, let pS : X → R be defined as in Section 4.3. Let S⋆ be defined
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as in Remark 1. Specifically, S⋆ is the closed subset of X such that

S⋆ = {x ∈ X : pS⋆(x) = v(x)},

and condition (M) holds with S = S⋆ (for any optimal solution π). Define the function

p⋆ : X → R,

p⋆(ω) := max
x∈S⋆

{v(x) + ∇v(x) · (ω − x)} , for all ω ∈ X.

Note that this definition agrees with the one introduced in Section 4.4 when Ω = X because

p⋆ and pS⋆ coincide on Ω; however, p⋆ and pS⋆ may differ on X \ Ω.

Define the contact set Γ ⊂ X ×X,

Γ := {(x, ω) ∈ S⋆ ×X : p⋆(ω) = v(x) + ∇v(x) · (ω − x)} ,

and its x-section,

Γx := {ω ∈ X : (x, ω) ∈ Γ} , for all x ∈ S⋆.

To extend Theorem 7, we must first define convex-partitional signals for the case when Ω

is not necessarily a convex set. To circumvent this difficulty, we define the partition on the

convex hull of Ω (that is, on X), and we require each element of the partition of X to be

convex.35 Formally, we say that π ∈ Π(µ0) is convex-partitional if there is a measurable

function χ : X → X such that, for all measurable sets A ⊂ X and B ⊂ Ω,

π(A, B) =

ˆ
B

1{χ(ω) ∈ A}dµ0(ω),

and, for all x ∈ X, the set χ−1(x) is convex.

A.10 Proof of Theorems 7 and 8

In this appendix, we rely on the general notation set up in Appendix A.9.

Before proceeding to the proofs of Theorems 7 and 8, we state and prove a key lemma.

35To understand why we adopt this convention, consider the distribution π induced by no disclosure.
Intuitively, pooling all states should correspond to a convex-partitional signal. However, the support of this
distribution over states conditional on the induced moment is equal to Ω, and is hence not convex when Ω is
not convex. We circumvent this by defining the partition on X; then, the unique element of that partition
corresponding to no disclosure is X itself, a convex set. And of course, this partition restricted to Ω still
represents no disclosure.

49



Define the correspondence X : X ⇒ X by

X (ω) := arg maxx∈S⋆{v(x) + ∇v(x) · (ω − x)}, for all ω ∈ X,

and fix any measurable selection χ : X → X from X , which exists by the measurable

maximum theorem (Theorem 18.19 in Aliprantis and Border, 2006). We start with a key

lemma that we will be using throughout.

Lemma 8.

1. The function p⋆ is convex and Lipschitz on X. Moreover, p⋆ is differentiable at any

ω ∈ int(X) if and only if the set {∇v(x) : x ∈ X (ω)} is a singleton, and in that case

∇p⋆(ω) = ∇v(x) for all x ∈ X (ω).

2. The set Γ ⊆ X × X is closed. Its projection along the first coordinate is S⋆, and its

projection along the second coordinate is X. For each x ∈ S⋆, Γx is a compact convex

set such that x ∈ Γx and

Γx = arg minω∈X {p⋆(ω) −∇v(x) · ω} .

Moreover, for any x, y ∈ S⋆, we have:

(a) ∇v(x) = ∇v(y) =⇒ Γx = Γy;

(b) relint(Γx) ∩ relint(Γy) ̸= ∅ =⇒ Γx = Γy;

(c) relint(Γx) ∩ Γy ̸= ∅ =⇒ Γx ⊂ Γy.

Proof. 1. Clearly, p⋆ is convex on X as a pointwise maximum of affine functions. Moreover,

it is Lipschitz on X because, for any ω, ω′ ∈ X,

p⋆(ω) − p⋆(ω′) ≤ v(χ(ω)) + ∇v(χ(ω)) · (ω − χ(ω)) − v(χ(ω)) −∇v(χ(ω)) · (ω′ − χ(ω))

= ∇v(χ(ω)) · (ω − ω′) ≤ L∥ω − ω′∥,

with L defined (as in Appendix A.8) as the maximal value of the norm of the gradient of v

on X.

The remainder of part 1 is a consequence of the envelope theorem. For N = 1, this

follows immediately from Corollary 4 in Milgrom and Segal (2002). Below, we extend their

analysis to the general case N ≥ 1.
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Suppose, by contradiction, that p⋆ is differentiable at ω ∈ int(X) but there exist x, y ∈

X (ω) such that ∇v(x) ̸= ∇v(y). Denote u := ∇v(x)−∇v(y), so that ∇v(x) · u > ∇v(y) · u.

Since ω ∈ int(X), we have ω± hu ∈ X for small enough h > 0. Moreover, by the definitions

of p⋆ and X ,

p⋆(ω + hu) − p⋆(ω)

h
≥ ∇v(x) · u and

p⋆(ω − hu) − p⋆(ω)

h
≥ −∇v(y) · u,

and thus

− lim
h↓0

p⋆(ω − hu) − p⋆(ω)

h
≤ ∇v(y) · u < ∇v(x) · u ≤ lim

h↓0

p⋆(ω + hu) − p⋆(ω)

h
,

showing that p⋆ is not differentiable at ω.

Conversely, suppose that ω ∈ int(X) and {∇v(x) : x ∈ X (y)} is a singleton. Fix any

u ∈ RN and small enough h′′ > h′ > 0, so that ω + h′u and ω + h′′u are both in X. By the

definition of p⋆,

∇v(χ(ω + h′u)) · u ≤ p⋆(ω + h′′u) − p⋆(ω + h′u)

h′′ − h′ ≤ ∇v(χ(ω + h′′u)) · u.

Taking the limit superior in this inequality as h′ ↓ 0 yields

lim sup
h′↓0

∇v(χ(ω + h′u)) · u ≤ p⋆(ω + h′′u) − p⋆(y)

h′′ ≤ ∇v(χ(ω + h′′u)) · u.

Taking the limit inferior in the resulting inequality as h′′ ↓ 0 yields

lim sup
h′↓0

∇v(χ(ω + h′u)) · u ≤ lim
h′′↓0

p⋆(ω + h′′u) − p⋆(ω)

h′′ ≤ lim inf
h′′↓0

∇v(χ(ω + h′′u)) · u.

Since the limit superior is never smaller than the limit inferior, we conclude that the two

limits coincide, and hence

lim
h↓0

p⋆(ω + hu) − p⋆(ω)

h
= lim

h↓0
∇v(χ(ω + hu)) · u.

Since the correspondence X : X ⇒ X is upper hemicontinuous, a version of Berge’s Maxi-

mum Theorem (see Lemma 17.30 in Aliprantis and Border, 2006) yields

lim
h↓0

p⋆(ω + hu) − p⋆(ω)

h
= lim

h↓0
∇v(χ(ω + hu)) · u ≤ max

x∈X (ω)
∇v(x) · u.

Since {∇v(x) : x ∈ X (ω)} is a singleton, we have maxx∈X (ω) ∇v(x) · u = ∇v(x) · u for all

x ∈ X (ω). Finally, taking into account that, by the definition of p⋆, for any x ∈ X (ω) and
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any small enough h > 0, we have

∇v(x) · u ≤ p⋆(ω + hu) − p⋆(ω)

h
,

it follows that

lim
h↓0

p⋆(ω + hu) − p⋆(ω)

h
= ∇v(x) · u, for all x ∈ X (ω),

showing that p⋆ is differentiable at y and ∇p⋆(ω) = ∇v(x) for all x ∈ X (ω).

2. The set Γ is closed, because the function p⋆(ω)−v(x)−∇v(x) ·(ω−x) is continuous in

(x, ω) on X×X. The projection of Γ along the second coordinate is X, because (χ(ω), ω) ∈ Γ

for each ω ∈ X. The projection of Γ along the first coordinate is S⋆ by the definition of S⋆

and the fact that Γx is non-empty, for any x ∈ S⋆, which is shown in the next paragraph.

Fix any x ∈ S⋆. We have

Γx = {ω ∈ X : p⋆(ω) = v(x) + ∇v(x) · (ω − x)} = {ω ∈ X : p⋆(ω) ≤ v(x) + ∇v(x) · (ω − x)} ,

where the first equality is by the definition of Γ and Γx, and the second equality is by the

definition of p⋆, which, in particular, implies that

p⋆(ω) ≥ v(x) + ∇v(x) · (ω − x), for all ω ∈ X.

Thus, the set Γx is compact and convex, as it is a sublevel set of the (Lipschitz) continuous

and convex function p⋆(ω) − v(x) −∇v(x) · (ω − x) (viewed as a function of ω). Moreover,

we have x ∈ Γx, because

v(x) = pS⋆(x) ≥ p⋆(x) ≥ v(x),

where the equality is by x ∈ S⋆, the first inequality is by the definition of pS⋆ , and the last

inequality is by the definition of p⋆ and the fact that x ∈ S⋆. Since p⋆(x) = v(x), we have

p⋆(ω) ≥ p⋆(x) + ∇v(x) · (ω − x), for all ω ∈ X,

and thus

Γx = arg max
ω∈X

{∇v(x) · ω − p⋆(ω)} .

We have thus shown that Γx is the projection along the first coordinate of the face of the

epigraph of p⋆ exposed by the direction (−1,∇v(x)). Then, implication (a) is immediate,
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whereas implications (b) and (c) follow from Corollary 18.1.2 and Theorem 18.1 in Rockafellar

(1970). For completeness, we provide short self-contained proofs of (b) and (c). To show

(c), let ω ∈ relint(Γx) ∩ Γy. Since Γx is convex, for any ω′ ∈ Γx with ω′ ̸= ω, there exists

ω′′ ∈ Γx and λ ∈ (0, 1) such that ω = λω′ + (1−λ)ω′′. Next, by the definition of p⋆, we have

p⋆(ω′) ≥ v(y) + ∇v(y) · (ω′ − y) and p⋆(ω′′) ≥ v(y) + ∇v(y) · (ω′′ − y).

Both inequalities must hold with equality, as otherwise we would have

p⋆(ω) ≥ λp⋆(ω′) + (1 − λ)p⋆(ω′′) > v(y) + ∇v(y) · (ω − y),

contradicting that ω ∈ Γy. Since ω′ is arbitrary, we get Γx ⊂ Γy, proving (c). To prove (b),

notice that if relint(Γx) ∩ relint(Γy) ̸= ∅, then relint(Γx) ∩ Γy ̸= ∅ and relint(Γy) ∩ Γx ̸= ∅,

implying that Γx ⊂ Γy and Γy ⊂ Γx, and thus Γx = Γy.

In the remainder, we complete the proofs of Theorems 7 and 8. To deal with the general

case in which Ω ̸= X, we follow Appendix A.9 and consider solutions defined on the larger

space X rather than on Ω. All the notation used in the following proof completions is then

defined as in Appendix A.9, and becomes consistent with the notation used in the main text

under the assumption that Ω is convex (so that Ω = X).

Completion of the proof of Theorem 7

Let X̃ be the set of interior points of X where p⋆ is differentiable. The set of boundary

points of the convex set X is Lebesgue-negligible, by Theorem 1 in Lang (1986). The set

of interior points of X where p⋆ is not differentiable is Lebesgue-negligible by Rademacher’s

Theorem (Theorem 10.8 in Villani, 2009). Thus, taking into account that µ0 has a density

on X, the set X̃ has full measure under µ0: µ0(X̃) = 1.

Fix ω ∈ X̃. We claim that |X (ω)| = 1. Suppose, by contradiction, that there exist

distinct x, y ∈ X (ω). Since ω ∈ int(X) and p⋆ is differentiable at ω, part 1 of Lemma 8

yields

∇p⋆(ω) = ∇v(x) = ∇v(y).

In turn, part 2 of Lemma 8 yields x ∈ Γx, y ∈ Γy, and Γx = Γy, and thus, given that p⋆ is
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affine on Γx by the definition of Γx, we have p⋆(y) = p⋆(x) +∇p⋆(ω) · (y−x) or, equivalently,

v(x) −∇v(x) · x = v(y) −∇v(y) · y.

Next, for all λ ∈ [0, 1], we have pS⋆(λx + (1 − λ)y) = λv(x) + (1 − λ)v(y) as follows from

λv(x) + (1 − λ)v(y) = λp⋆(x) + (1 − λ)p⋆(y) = p⋆(λx + (1 − λ)y)

≤ pS⋆(λx + (1 − λ)y) ≤ λpS⋆(x) + (1 − λ)pS⋆(y) = λv(x) + (1 − λ)v(y),

where the first equality is by x ∈ Γx and y ∈ Γy, the second equality is by affinity of p⋆ on

the convex set Γx = Γy, the first and second inequality follow from the definition of pS⋆ , and

the last equality is by pS⋆ = v on S⋆. Thus, since pS⋆ ≥ v on X, we get

λv(x) + (1 − λ)v(y) ≥ v(λx + (1 − λ)y), for all λ ∈ [0, 1].

This contradicts the conditions of the theorem. Thus, X (ω) is a singleton {χ(ω)} for each

ω ∈ X̃, where χ(ω) is determined by

{χ(ω)} = {x ∈ S⋆ : ω ∈ Γx} = {x ∈ S⋆ : ∇p⋆(ω) = ∇v(x)}.

The first equality is by the definition of X , and the second is by part 1 of Lemma 8.

Finally, for any optimal π ∈ Π(µ0), we have

1 = π(Γ) = π
(
∪ω∈X̃ ({χ(ω)} × {ω})

)
,

where the first equality is by Remark 1, and the second equality is by Γ = ∪ω∈X (X (ω) × {ω}),

X (ω) = {χ(ω)} for ω ∈ X̃, and µ0(X̃) = 1. Since χ(ω) is determined by p⋆ for µ0-almost all

ω ∈ X, and p⋆ is independent of π, we conclude that π is uniquely determined by

π(A, B) =

ˆ
B

1{χ(ω) ∈ A}dµ0(ω), for all measurable A ⊂ X and B ⊂ X.

Completion of the proof of Theorem 8

Fixing any solution to the primal problem (PM) and the corresponding price function, define

the set S⋆, the contact set Γ, and the sets Γx as in Appendix A.9. Recall that Sx =

cl(supp(πX) ∩ relint(Γx)). By Theorem 1 in Larman (1971), X can be partitioned (up to

a measure zero set) into a collection of disjoint (relatively) open sets Ξ = {relint(Γx)}x∈S⋆

(where we ignore duplicates whenever Γx = Γy for x ̸= y).
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Consider an auxiliary problem of finding a joint distribution π ∈ Π(µ0) to maximize´
X×X

w(x, ω)dπ(x, ω), where

w(x, ω) :=

−∥x∥2, (x, ω) ∈ Γ,

−∞, (x, ω) ∈ (X ×X) \ Γ.

Note that
´
X×X

w(x, ω)dπ(x, ω) is finite for π ∈ Π(µ0) if and only if supp(π) ⊂ Γ, which

in turn is equivalent to optimality of π ∈ Π(µ0) for the primary problem. Since w is upper

semi-continuous and bounded from above, by Lemma 2, there exists an optimal solution

π ∈ Π(µ0) to the auxiliary problem, which is also optimal for the primal problem (PM). We

fix such π ∈ Π(µ0).

Intuitively, the auxiliary problem selects a solution to the primal problem (PM) that

minimizes the average norm of the induced posterior means. The rest of the proof shows

that if the set Sx induced by π differs from ext(Sx) on a positive measure set of x ∈ supp(πX),

we would obtain a contradiction with π solving the auxiliary problem. While this conclusion

is intuitive, the details of the proof are complicated by the fact that the selection induced by

the auxiliary problem may be “local” in the sense that it affects the structure of the solution

on uncountably many measure-zero sets. Our strategy is to decompose the distribution π

into conditional distributions conditional on each induced relint(Γx).

Note that we can treat the set Ξ as a measurable space, endowing it with the Borel σ−

algebra generated by the Hausdorff metric. We can then define πΞ to be the probability

distribution over Ξ induced by π: For any measurable subset A ⊂ Ξ,

πΞ(A) := π ({(x, ω) ∈ X ×X : ω ∈ relint(Γx), relint(Γx) ∈ A}) .

By the disintegration theorem (e.g., Theorem 2.3 in Caravenna and Daneri, 2010), there

exists a measurable function ξ 7→ π(·|ξ) from Ξ to ∆(X × X) such that for every “test

function” h ∈ C(X ×X), we have
ˆ
X×X

h(x, ω)dπ(x, ω) =

ˆ
Ξ

ˆ
X×X

h(x, ω)dπ(x, ω|ξ)dπΞ(ξ).

Let πX(·|ξ) and πΩ(·|ξ), for ξ ∈ Ξ, denote the marginal distributions of x and ω (that is, the

first and second coordinate, respectively) induced by π(·|ξ). Then, for πX-almost all x ∈ X,
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we have

supp(πΩ(·| relint(Γx))) ⊂ cl(relint(Γx)), (A.1)

supp(πX(·| relint(Γx))) = Sx, (A.2)ˆ
A×X

(ω − x)dπ(x, ω| relint(Γx)) = 0, for all measurable A ⊂ X, (A.3)

ˆ
w(x, ω)dπ(x, ω| relint(Γx)) ≥

ˆ
w(x, ω)dπ̃(x, ω), for all π̃ ∈ Π(πΩ(·| relint(Γx))), (A.4)

where the first three properties follow from definitions, and the last inequality must be true

because otherwise we would have a contradiction with the definition of π as the solution to

the auxiliary problem.

Toward a contradiction, suppose that there exists a πX-positive-measure set of points

x such that Sx ̸= ext(Sx); that is, there exist distinct x0, x1, . . . , xn ∈ Sx such that x0 =

λ1x1 + · · ·+λnxn, where λ1, . . . , λn > 0 and λ1 + · · ·+λn = 1. (We suppress the dependence

of these variables on x.) By condition (A.2), since x1, . . . , xn ∈ Sx, for all i = 1, . . . , n,

and δ > 0, we have πX(Bδ(x
i)| relint(Γx)) > 0, where Bδ(x

i) denotes an open ball with

radius δ centered at xi. To simplify notation, let πi
δ(·) denote the conditional probability

measure on X induced from πX(·| relint(Γx)) by conditioning on the event Bδ(x
i). There

exists a sufficiently small δ such that for some λ1
δ , . . . , λ

n
δ > 0 with λ1

δ + · · · + λn
δ = 1, we

have x0 = λ1
δx

1
δ + · · · + λn

δx
n
δ where xi

δ =
´
X
xdπi

δ(x). Finally, by condition (A.3), for some

sufficiently small ϵ > 0, there exists π̃ ∈ Π(πΩ(·| relint(Γx))) such that, for all measurable

A ⊂ X,

π̃X(A) = πX(A| relint(Γx)) + εδx0 − ε
∑
i

λi
δπ

i
δ(A),

where δx0 denotes the Dirac measure at x0. Intuitively, π̃X modifies πX(·| relint(Γx)) by

transferring some mass from the neighborhoods of points xi into x0. But then, by Jensen’s

inequality, and relying on conditions (A.1) and (A.2) to ensure that supp(π(·| relint(Γx)) ⊂ Γ

and supp(π̃) ⊂ Γ, we have
ˆ
X×X

w(x, ω)dπ̃(x, ω) −
ˆ
X×X

w(x, ω)dπ(x, ω| relint(Γx))

= ε

(∑
i

λi
δ

ˆ
X

x2dπi
δ(x) − (x0)2

)
≥ ε

(∑
i

λi
δ(x

i
δ)

2 − (x0)2

)
> 0,

yielding a contradiction with (A.4).
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A.11 Proof of Proposition 2

In this appendix, we prove the necessity part of Proposition 2. Fix an optimal π⋆ ∈ Π(µ0).

Since µ0 has a density and ∇v(x) = (x2, x1) ̸= (y2, y1) = ∇v(y) for x ̸= y, Theorem 7

implies that π⋆ is the unique optimal signal, and that it is convex-partitional. Suppose that

supp(π⋆
X) is the graph of the function f , as described in the proposition.

By the definition of Γx from Section 4.4, for each t ∈ [x1, x1],

Γ(t,f(t)) = {ω ∈ Ω : t ∈ arg max
s∈[x1,x1]

{ω1f(s) + ω2s− sf(s)}.

First, consider t ∈ (x1, x1). The necessary first-order condition yields ω2 = f(t) −

f ′(t)(ω1 − t) for all ω ∈ Γ(t,f(t)). Define, for all t ∈ [x1, x1],

lt := min
ω∈X

{ω1 − t} ,

subject to ω2 = f(t) − f ′(t)(ω1 − t),

ω2 +
(t− ω1)(f(t) − ω2)

s− ω1

≤ f(s), for all s ∈ (ω1, x1],

and

lt := max
ω∈X

{ω1 − t} ,

subject to ω2 = f(t) − f ′(t)(ω1 − t),

ω2 +
(t− ω1)(f(t) − ω2)

s− ω1

≥ f(s), for all s ∈ [x1, ω1).

Notice that (t+ lt, f(t)− f ′(t)lt) and (t+ lt, f(t)− f ′(t)lt) are the points in Γ(t,f(t)) with the

lowest and highest first coordinate. To see this, consider ω ∈ Γ(t,f(t)) with t > ω1 (and thus

f(t)−ω2 = −f ′(t)(t−ω1) < 0) and notice that, for s ≤ ω1, we have f(s) ≤ f(t) < ω2; thus,

(t− ω1)(f(t) − ω2) < 0 ≤ (s− ω1)(f(s) − ω2).

Consequently, ω ∈ Ω with ω1 < t belongs to Γ(t,f(t)) if and only if

ω2 = f(t) − f ′(t)(ω1 − t),

ω2 +
(t− ω1)(f(t) − ω2)

s− ω1

≤ f(s), for all s ∈ (ω1, x1].

Since (t, f(t)) ∈ Γ(t,f(t)), it follows that (t + lt, f(t) − f ′(t)lt) is indeed the point in Γ(t,f(t))
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with the lowest first coordinate. An analogous argument shows that (t+ lt, f(t)− f ′(t)lt) is

the point in Γ(t,f(t)) with the highest first coordinate. Finally, since, by Lemma 8, Γ(t,f(t)) is

convex, it follows that

Γ(t,f(t)) = cl(It) := {ω ∈ Ω : ω1 = x1 + l, ω2 = f(x1) − f ′(x1)l, l ∈ [l(x1), l(x1)]}.

It turns out that the above property also holds for x ∈ supp(π⋆
X) with x1 ∈ {x1, x1}. However,

the proof of that fact is significantly more complicated.

Lemma 9. Γ(t,f(t)) = cl(It) for t ∈ {x1, x1}.

Proof. See Appendix A.11.1.

By Lemma 9, we can conclude that Γ(t,f(t)) = cl(It) for each t ∈ [x1, x1]. Since the

projection of the contact set Γ along the second coordinate is X = Ω, it follows that Ω =⋃
t∈[x1,x1]

cl(It). Define It = relint(cl(It)), for t ∈ [x1, x1].
36 By part 2(b) in Lemma 8, for

t ̸= s, the open line segments It and Is do not intersect. In fact, part 2(c) in Lemma 8 yields

a stronger conclusion that, for t ̸= s, the closed line segments cl(It) and cl(Is) can intersect

only at a common endpoint. Thus, as in the proof of Theorem 7, invoking Theorem 1 in

Larman (1971), we conclude that Ω \
{⋃

t∈[x1,x1]
It

}
has zero (Lebesgue) measure. In sum,

we have established that there exists a collection {It}t∈[x1,x1] of open disjoint line segments

that partition Ω, up to a measure-zero set.

The first property then follows directly from the above characterization of the optimal

signal π⋆ and the assumption that supp(π⋆
X) = Gr(f). The second property follows from

the definition of cl(It). Moreover, the inclusion It ⊆ {ω ∈ Ω : ω2 = f(t) − f ′(t)(ω1 − t)},

for t ∈ [x1, x1], follows directly from the fact that Γ(t,f(t)) = cl(It) for each t ∈ [x1, x1]. This

finishes the proof of the proposition.

A.11.1 Proof of Lemma 9

We start by proving yet another lemma.

Lemma 10. There exists ε > 0 such that

ω2 +
(x1 − ω1)(f(x1) − ω2)

y1 − ω1

< f(y1),

36Note that It is a point when cl(It) is degenerate, since a point is a relatively open set.
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for all x1 ∈ [x1, x1], ω1 ∈ [x1−ε, x1], y1 ∈ (ω1, x1)∪(x1, x1], and ω2 = f(x1)−f ′(x1)(ω1−x1).

Proof. Since f ′ and f ′′ are continuous and f ′ > 0 on the compact set [x1, x1], we have

f ′ = minx̃1∈[x1,x1] f
′(x̃1) > 0 and f ′′ = minx̃1∈[x1,x1] f

′′(x̃1) ∈ R. Thus, there exists ε > 0 such

that 2f ′ + εf ′′ > 0. Fix such ε. By direct calculation,

ω2 +
(x1 − ω1)(f(x1) − ω2)

y1 − ω1

< f(x1) + f ′(x1)ε−
f ′(x1)ε

2

y1 − x1 + ε
,

for all x1 ∈ [x1, x1], ω1 ∈ (x1−ε, x1], y1 ∈ (ω1, x1)∪(x1, x1], and ω2 = f(x1)−f ′(x1)(ω1−x1).

Thus, it suffices to show that

f(x1) + f ′(x1)ε−
f ′(x1)ε

2

y1 − x1 + ε
< f(y1),

for all x1 ∈ [x1, x1] and y1 ∈ (x1 − ε, x1) ∪ (x1, x1].

If f ′′ ≥ 0, the inequality holds because the right-hand side f(y1) is convex in y1 with

derivative f ′(x1) at x1, while the left-hand side is strictly concave in y1 with derivative f ′(x1).

So assume that f ′′ < 0 and denote

ŷ1 = x1 +
f ′(x1) − f ′

−f ′′ .

Since f ′′(y1) ≥ f ′′ and f ′(y1) ≥ f ′, for all y1 ∈ [x1, x1], we have f(y1) ≥ f(y1), where

f(y1) =

f(x1) + f ′(x1)(y1 − x1) +
f ′′

2
(y1 − x1)

2, y1 ≤ ŷ1,

f(x1) + f ′(x1)(ŷ1 − x1) +
f ′′

2
(ŷ1 − x1)

2 + f ′ (y1 − ŷ1) , y1 > ŷ1.

Thus, it suffices to show that

f(x1) + f ′(x1)ε−
f ′(x1)ε

2

y1 − x1 + ε
< f(y1). (A.5)

By direct calculation, for y1 ∈ (x1−ε, x1)∪(x1, ŷ1], inequality (A.5) is equivalent to 2f ′(x1)+

f ′′(y1 − x1 + ε) > 0, which holds if and only if it holds at ŷ1. At ŷ1, (A.5) simplifies to

f ′(x1) + f ′ + f ′′ε > 0, which holds because 2f ′ + εf ′′ > 0. Again, by direct calculation, for

y1 > ŷ1, inequality (A.5) is equivalent to

(f ′(x1) − f ′)2

2(−f ′′)
(y1 − x1 + ε) + f ′(y1 − x1)(y1 − x1 + ε) − f ′(x1)(y1 − x1)ε > 0,

where the left-hand side is quadratic and convex in y1. Moreover, the derivative at y1 = ŷ1 is

positive because 3f ′ + f ′(x1) + 2f ′′ε > 0, as follows from 2f ′ + εf ′′ > 0. Thus, the left-hand
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side is increasing in y1 and inequality (A.5) holds for y1 > ŷ1, because it holds for y1 = ŷ1,

as shown above.

We are now ready to prove Lemma 9. We will focus on the case t = x1 since the other case

is fully analogous. The necessary Kuhn-Tucker condition yields ω2 ≤ f(x1)−f ′(x1)(ω1−x1)

for all ω ∈ Γ(x1,f(x1))
. We claim that ω2 ≥ f(x1) − f ′(x1)(ω1 − x1) for all ω ∈ X, and thus

ω2 = f(x1) − f ′(x1)(ω1 − x1) for all ω ∈ Γ(x1,f(x1))
, so Γ(x1,f(x1))

= cl(Ix1
), by the same

argument as previously. Towards a contradiction, suppose that there exists z ∈ X such that

z2 < f(x1)−f ′(x1)(z1−x1) and z1 < x1 (the case z1 > x1 is analogous and omitted). Since X

is convex and the graph of f is a maximal monotone set in X, it follows that z2 > f(x1) and

that there exists ε > 0 such that, for all ω1 ∈ (x1−ε, x1), points (ω1, f(x1)−f ′(x1)(ω1−x1))

and (ω1, f(x1) − ι(ω1 − x1)) with ι = (z2 − f(x1))/(x1 − z1) ∈ (0, f ′(x1)) belong to X. It is

easy to see that, for all ω1 < x1 and y1 > x1, we have

ω2 − ι(ω1 − x1) − ι
(x1 − ω1)

2

y1 − ω1

< ω2 − f ′(x1)(ω1 − x1) − f ′(x1)
(x1 − ω1)

2

y1 − ω1

.

Thus, by Lemma 10, for sufficiently small ε > 0, points (ω1, f(x1) − f ′(x1)(ω1 − x1)) and

(ω1, f(x1)− ι(ω1−x1)) belong to Γx. But then Γx has a non-empty interior, and all points in

the interior belong only to Γx, by Lemma 8. Consequently, since µ0 has full support density

on X,
ˆ
Γx

(ω2 − f(x1)− f ′(x1)(ω1 − x1))dµ0(ω) =

ˆ
int(Γx)

(ω2 − f(x1)− f ′(x1)(ω1 − x1))dµ0(ω) < 0,

as the boundary of the convex set Γx has zero Lebesgue measure, by Theorem 1 in Lang

(1986), and the integrand is strictly negative on the interior of Γx, as implied by the Kuhn-

Tucker condition. This shows that any π supported on Γ cannot be in Π(µ0), as it violates

the second constraint in the definition of Π(µ0). A contradiction.

A.12 Proof of Proposition 3

Suppose that π ∈ Π(µ0), induced by the disclosure of the realization of aω1 +ω2, is optimal.

Define Θ = {θ = aω1 + ω2 : ω ∈ Ω}. Since Ω is a compact convex set with a non-empty

interior, we have Θ = [θ, θ] for some θ < θ. By Proposition 1, supp(πX) is a monotone set.

Thus, since µ0 has full-support density on Ω, we have supp(πX) = {(x1(θ), x2(θ)) : θ ∈ Θ}
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for some non-decreasing functions x1 and x2 satisfying ax1(θ) + x2(θ) = θ for all θ ∈ Θ

and (x1(θ), x2(θ)) ∈ int(Ω) for almost all θ ∈ Θ. Note that x1 is 1/a-Lipschitz and x2 is

1-Lipschitz, and thus Θ̃ = {θ ∈ Θ : (x1(θ), x2(θ)) ∈ int(Ω)} is an open set of full measure.

Lemma 11. For each θ ∈ Θ̃, there exists δ > 0 such that, for all θ′ ∈ (θ − δ, θ + δ),

a(x1(θ
′) − x1(θ)) = x2(θ

′) − x2(θ) =
1

2
(θ′ − θ).

Proof. Since θ ∈ Θ̃, there exists ε > 0 such that ω ∈ int(Ω) for all ω ∈ R2 such that

ω1 ∈ (x1(θ) − ε, x1(θ) + ε) and ω2 ∈ (x2(θ) − ε, x2(θ) + ε). Fix δ = min{ε/2, aε/2}. We

claim that for all θ′ ∈ (θ − δ, θ + δ) and all ω′ ∈ R2 such that ω′
2 ∈ (x2(θ

′) − δ, x2(θ
′) + δ)

and aω′
1 + ω′

2 = θ′, we have x(θ′) ∈ int(Ω) and ω′ ∈ int(Ω). Indeed, since x1 and x2 are non-

decreasing and satisfy ax1(θ
′) + x2(θ

′) = θ′, we have x1(θ
′) ∈ (x1(θ) − δ/a, x1(θ) + δ/a) and

x2(θ
′) ∈ (x2(θ)− δ, x2(θ) + δ), so x(θ′) ∈ int(Ω). Next, since aω′

1 +ω′
2 = θ′ = ax1(θ

′) +x2(θ
′)

and ω′
2 ∈ (x2(θ

′)−δ, x2(θ
′)+δ), we have ω′

2 ∈ (x2(θ
′)−δ, x2(θ

′)+δ) ⊂ (x2(θ)−2δ, x2(θ)+2δ)

and ω′
1 ∈ (x1(θ

′) − δ/a, x1(θ
′) + δ/a) ⊂ (x1(θ) − 2δ/a, x1(θ) + 2δ/a), so ω′ ∈ int(Ω).

Fix θ′ ∈ (θ− δ, θ+ δ) and an integer n > 0. For i ∈ {0, . . . , n}, define θi = θ+(θ′−θ)i/n,

ωLi = (x1(θ
i)−δ/a, x2(θ

i)+δ), and ωRi = (x1(θ
i)+δ/a, x2(θ

i)−δ). As shown in the previous

paragraph, we have x(θi), ωLi, ωRi ∈ int(Ω) for all i. Next, by Theorem 6, we have, for all

i ∈ {0, . . . , n},

(x1(θ
i) − ωLi

1 )(x2(θ
i) − ωLi

2 ) ≤ (x1(θ
i+1) − ωLi

1 )(x2(θ
i+1) − ωLi

2 )

⇐⇒ x2(θ
i+1) − x2(θ

i) ≥ a(x1(θ
i+1) − x1(θ

i))

1 + a
δ
(x1(θi+1) − x1(θi))

,

and

(x1(θ
i) − ωRi

1 )(x2(θ
i) − ωRi

2 ) ≤ (x1(θ
i+1) − ωRi

1 )(x2(θ
i+1) − ωRi

2 )

⇐⇒ x2(θ
i+1) − x2(θ

i) ≤ a(x1(θ
i+1) − x1(θ

i))

1 − a
δ
(x1(θi+1) − x1(θi))

.

Since x1 is 1/a-Lipschitz, we have, for all i ∈ {0, . . . , n},

a(x1(θ
i+1) − x1(θ

i))

1 + 1
nδ

(θ′ − θ)
≤ x2(θ

i+1) − x2(θ
i) ≤ a(x1(θ

i+1) − x1(θ
i))

1 − 1
nδ

(θ′ − θ)
.

Summing over i ∈ {0, . . . , n− 1} gives

a(x1(θ
′) − x1(θ))

1 + 1
nδ

(θ′ − θ)
≤ x2(θ

′) − x2(θ) ≤ a(x1(θ
′) − x1(θ))

1 − 1
nδ

(θ′ − θ)
.
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Since n is arbitrary, we have x2(θ
′) − x2(θ) = a(x1(θ

′) − x1(θ)). Taking into account that

ax1(θ) + x2(θ) = θ and ax1(θ
′) + x2(θ

′) = θ′ completes the proof of the lemma.

Since Θ̃ is an open set in R, it is the union of at most countably many disjoint open

intervals (θi, θi). Lemma 11 implies that

a(x1(θ
′) − x1(θ)) = x2(θ

′) − x2(θ) =
1

2
(θ′ − θ), for all θ′, θ ∈ (θi, θ

i
).

Since Θ̃ has full Lebesgue measure, it follows that cl(Θ̃) = Θ. Since x1 and x2 are (Lipschitz)

continuous, we have

a(x1(θ
′) − x1(θ)) = x2(θ

′) − x2(θ) =
1

2
(θ′ − θ), for all θ′, θ ∈ Θ,

and thus x2(θ) = ax1(θ) + b for all θ ∈ Θ and some b ∈ R.
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Benôıt, J.-P. and J. Dubra (2011): “Apparent Overconfidence,” Econometrica, 79,
1591–1625.

Bergemann, D. and S. Morris (2016): “Bayes correlated equilibrium and the comparison
of information structures in games,” Theoretical Economics, 11, 487–522.

——— (2019): “Information Design: A Unified Perspective,” Journal of Economic
Literature, 57, 44–95.

Bogachev, V. (2007): Measure Theory, Springer-Verlag, Berlin.

Brezis, H. (2011): Functional Analysis, Sobolev Spaces and Partial Differential Equations,
Springer, New York.

Bucicovschi, O. and J. Lebl (2013): “On the Continuity and Regularity of Convex
Extensions,” Journal of Convex Analysis, 4, 1113–1126.

Candogan, O. and P. Strack (2023): “Optimal Disclosure of Information to Privately
Informed Agents,” Theoretical Economics, 18, 1225–1269.

Caplin, A. and M. Dean (2013): “Behavioral Implications of Rational Inattention with
Shannon Entropy,” NBER Working Paper No. 19318.

62



——— (2015): “Revealed Preference, Rational Inattention, and Costly Information Acqui-
sition,” American Economic Review, 105, 2183–2203.

Caravenna, L. and S. Daneri (2010): “The Disintegration of the Lebesgue Measure on
the Faces of a Convex Function,” Journal of Functional Analysis, 258, 3604–3661.

Daskalakis, C., A. Deckelbaum, and C. Tzamos (2017): “Strong Duality for a
Multiple-Good Monopolist,” Econometrica, 85, 735–767.

De March, H. and N. Touzi (2019): “Irreducible Convex Paving for Decomposition of
Multidimensional Martingale Transport Plans,” Annals of Probability, 47, 1726–1774.

Denti, T. (2022): “Posterior Separable Cost of Information,” American Economic Review,
112, 3215–59.
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