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Abstract

We introduce a model of large many-to-one matching markets with occu-

pational choice where each individual can choose which side of the market to

belong to. We show that stable matchings exist under mild assumptions; in

particular, both complementarities and externalities can be accommodated.

Our model generalizes Greinecker & Kah (2021), which focuses on one-to-one

matching and did not allow for occupational choice. Applications include the

roommate problem with non-atomic participants, explaining the size and dis-

tribution of firms and wage inequality.

∗We wish to thank Michael Greinecker, Ravi Jagadeesan, Fuhito Kojima, Karolina Vocke, Rakesh

Vohra, three anonymous referees and seminar participants at the University of Bath, the 2022 SAET

conference (Canberra), the 2022 Many Player Games and Applications Workshop (Berlin), the 2023

Lisbon Meetings in Game Theory and Applications, the 2023 EWET (Naples) and the 2023 PEJ

conference (Braga) for helpful comments. Any remaining errors are, of course, ours.
†Address: University of Surrey, School of Economics, Guildford, GU2 7XH, UK; email:

g.carmona@surrey.ac.uk.
‡Address: University of Surrey, School of Economics, Guildford, GU2 7XH, UK; email:

k.laohakunakorn@surrey.ac.uk.

1



1 Introduction

This paper establishes the existence of many-to-one stable matchings in large markets

with complementarities, externalities and occupational choice. Stability in the pres-

ence of occupational choice differs from the standard stability notion for two-sided

many-to-one matching markets. As individuals no longer have a fixed occupation

stability requires someone being unable to find a better match even if this involves a

change of occupation. Having all these features present simultaneously in the same

model is important for at least the following reasons.

Labor markets match a large numbers of workers to managers in a many-to-one

way. Unlike standard matching markets membership in one side or the other of the

market is endogenous.

Complementarities and externalities are also an essential feature of labor markets.

For example, firms typically want to hire workers with complementary skills and

recent graduates may prefer to enter the same industry as their peers. In addition,

knowledge spillovers may imply that the productivity of a manager depends on the

aggregate quality of those who take managerial roles according to the matching.

Prior work, summarized in Section 2, has established the existence of stable match-

ings in models that contain a strict subset of these elements.

Our framework for large many-to-one matching markets with occupational choice

subsumes several important special cases. It generalizes the two-sided one-to-one

matching setting in distributional form of Greinecker & Kah (2021) by adding many-

to-one matching and occupational choice; in particular, our existence result implies

existence in Greinecker & Kah’s (2021) one-to-one matching market.1

1In the working paper version, we establish formally that Greinecker & Kah’s (2021) setting

can be represented as a special case of our general framework and that, specialized to this setting,

our stability notion coincides with theirs. We also introduce a new two-sided many-to-one matching

model that generalizes Greinecker & Kah (2021) to allow for many-to-one matching (but not occupa-

tional choice). We show that this model is also a particular case of our framework and, specialized to

this setting, our stability notion coincides with other stability concepts for two-sided markets where

both sides are large, such as Azevedo & Hatfield’s (2018).
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In addition, we show how several classical models that feature occupational choice,

many-to-one matching and a large number of participants, such as Lucas (1978),

Rosen (1982), Garicano & Rossi-Hansberg (2004) and Garicano & Rossi-Hansberg

(2006), can be seen as particular cases of our framework. These models also feature

a continuum of types, which can be accomodated in our framework. To illustrate the

flexibility of our setting and its technical advantages, we provide a detailed analysis

of Rosen’s (1982) model. We show that stable matchings exist and fully characterize

them even though some of the assumptions of our general existence result do not

hold.

Our model is not restricted to labor markets. We illustrate this by formalizing a

non-atomic version of Gale & Shapley’s (1962) roommate problem as a special case

of our model – one in which individuals are indifferent between the two occupations.

We show that our existence results imply the existence of stable matchings for the

non-atomic roommate problem.

We present our model and stability notion in Section 4 after a brief literature

review in Section 2 and a motivating example in Section 3.

Our existence results are in Section 5. In particular, we show that stable match-

ings exist in markets with occupational choice whenever preferences are rational and

continuous and the set of feasible measures that managers can match with is bounded

and rich.2 Thus, we can accommodate externalities as long as preferences depend on

the matching in a continuous way without any substitutability requirement – comple-

mentarities cause no problem for existence in our model. In addition, as is standard

in models with a continuum of agents, preferences are not required to be convex.

Section 6 contains applications of our framework to the roommate problem (Sec-

tion 6.1) and Rosen’s (1982) model (Section 6.2), and a brief discussion of the settings

of Lucas (1978), Garicano & Rossi-Hansberg (2004) and Garicano & Rossi-Hansberg

(2006). Section 7 contains some concluding remarks. The proofs of our results are in

2Richness is a weak technical condition that implies that small perturbations of feasible measures

are feasible.
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the Appendix. Some omitted details are in the working paper version.3

2 Literature review

The study of large matching markets has commanded a great deal of recent attention,

see, for example, Azevedo & Leshno (2016), Fisher & Hafalir (2016), Ashlagi, Kanoria

& Leshno (2017), Eeckhout & Kircher (2018), Fuentes & Tohmé (2018), Nöldeke &

Samuelson (2018) and Che & Tercieux (2019).4 However, none of these papers allow

for occupational choice.

Chiappori, Galichon & Salanié (2014), Pȩski (2017) and Azevedo & Hatfield (2018)

study large matching models with a restricted form of occupational choice and a large

number of participants. See Section 6.1 for a more detailed discussion of these papers.

Compared to these papers we accommodate many-to-one matching and more general

forms of occupational choice.

Closest to this paper is Jagadeesan & Vocke (2021) which considers a many-to-

many matching model where a continuum of agents of finitely many types can sign

multiple contracts with each other. They do not require that the market be two-

sided and hence their existence result holds in the presence of occupational choice.

However, their assumption that the set of contracts available to each agent is finite

makes it less convenient to capture settings such as Rosen (1982) which was part of

our motivation. While our model cannot accomodate many-to-many matching, we

allow for more general type and contract spaces and we allow preferences to depend

on the matching. Wu (2021) also provides a general existence result for a broad class

of finite-type many-to-many matching models under a convexity condition. However,

Wu’s (2021) result does not apply to our setting because we allow preferences to

depend on the entire matching.

Externalities and complementarities cause problems for the existence of stable

matchings in finite markets. Making the workers negligible allowed Che, Kim &

3The working paper version is available at https://klaohakunakorn.com/ocwp.pdf.
4See Greinecker & Kah (2021) for a survey.
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Kojima (2019) to obtain the existence of stable matchings in two-sided many-to-one

matching markets where managers’ preferences exhibit complementarities. This result

solved a longstanding problem in matching theory since, with finitely many workers

and managers, Kelso & Crawford (1982), Hatfield & Milgrom (2005) and Hatfield

& Kojima (2008) have shown that managers need to have substitutable preferences

to guarantee the existence of stable matchings. In contrast to Che, Kim & Kojima

(2019), we also allow for occupational choice and externalities. By assuming that all

agents are negligible, we are able to show that a stable matching exists in the presence

of complementarities, occupational choice and externalities.

Externalities raise some conceptual issues in finite markets. Indeed, when prefer-

ences depend on the matching, whether or not an individual gains by being part of

a potential blocking coalition depends on the matching that results from such block-

ing. Thus, the definition of stability has to specify the (set of possible) matchings

that result from each blocking coalition, and many such definitions have been pro-

posed.5 When there are finitely many managers but a continuum of workers and only

workers’ preferences depend on the matching, Cox, Fonseca & Pakzad-Hurson (2022),

Leshno (2022) and Carmona & Laohakunakorn (2023) define stability and establish

existence by specifying that each worker in a blocking coalition expects the matching

to remain unchanged. In contrast to these papers, we consider the case where all

agents are negligible and, thus, a blocking coalition of one (prospective) manager and

a measure of (prospective) workers is negligible and, indeed, has no impact on the

matching. Hence, externalities cause no conceptual issue in our framework and we

can accommodate them on both sides of the market.

3 Motivating example

This example is a particular case of the model in Rosen (1982). There are two types

of individuals, 1 and 2. Individuals have preferences that are fully described by their

5See, for example, Sasaki & Toda (1996), Dutta & Massó (1997), Echenique & Yenmez (2007),

Hafalir (2008), Mumcu & Saglam (2010), Bando (2012) and Fisher & Hafalir (2016).
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types and their population is described by a measure ν over the type space Z = {1, 2}.

Let ν(1) = ν(2) = 1/2.

Each individual can be a manager, a worker or self-employed (i.e. remain un-

matched). For each type z ∈ {1, 2}, some individuals of type z can be managers and

some others can be workers; furthermore, those who are managers (if any) can be

matched with workers of type z or of type z′ ̸= z. Those who are managers can hire a

workforce, which we represent as a measure over worker types and contracts, from the

set X, where each δ ∈ X is a measure over Z × C with C being the set of contracts.

For this example, let C = R+ and X = {n1(z,c) : z ∈ Z, n, c ∈ R+}.6 Specifically,

each manager can be matched with a measure n1(z,c), where z ∈ Z denotes the type

of workers he employs, n ∈ R+ denotes their number and c ∈ R+ denotes the wage

paid to them.

The preferences of each individual depend on her type, her occupation and on her

match. In this example, we specify that if someone of type z ∈ {1, 2} chooses to be a

manager and is matched with n1(z′,c), then her payoff is Uz(m,n1(z′,c)) = z1+αn1−α−cn

for each z′ ∈ Z, where α ∈ (0, 1). If she chooses to be a worker and is matched with

manager z′ at wage c, then her payoff is the wage: Uz(w, 1(z′,c)) = c. An individual

can also choose to be unmatched, in which case she receives a payoff of zero.

The managers’ rents are obtained via a production function of the form g(z)zαn1−α,

with g(z) = z, which has labor and managers’ type as inputs, the latter being inter-

preted as the managers’ quality.

In the context of this example, a matching is a measure µ over Z × X with

µ(z, n1(z′,c)) describing the measure of type z who are managers and hire n workers

of type z′ at wage c.

Consider first the case where each individual’s occupation is fixed, with type 1

individuals being managers and type 2 individuals being workers. There is a unique

stable matching in this example without occupational choice: µ(1, 1(2,1−α)) = 1/2. In

such matching, all workers (i.e. type 2 individuals) are matched with a manager (i.e.

a type 1 individual), each manager hires a workforce consisting of a measure n = 1

6If Y is a metric space and y ∈ Y , 1y denotes the probability measure degenerate on y.

6



of workers at wage c = 1 − α. Since both managers and workers obtain a strictly

positive utility in this matching and zero if they were unmatched, such matching is

individually rational. Furthermore, no manager and group of workers can block this

matching since hiring a measure one of workers is optimal given the wage; hence, the

manager cannot gain by changing his workforce since at least the newly hired workers

would require a wage higher than 1− α.

In the example without occupational choice, type 1 individuals can only be man-

agers and type 2 individuals can only be workers; these restrictions are now removed

by the introduction of occupational choice. The specification of our example implies

that individuals of type 2 are better managers than those of type 1 since they have

higher quality. This then means that the stable matching µ for the setting without

occupational choice is intuitively not stable when occupational choice is allowed. For

instance, any type 2 individual could choose to be a manager and attract, for exam-

ple, a measure one of workers of type 2 by paying them 1− α+ ε to obtain a rent of

21+α − (1 − α) − ε; for sufficiently small ε > 0, such workers are willing to work for

her and her payoff is higher than 1− α which is her payoff in the matching µ.

Thus, stability in the presence of occupational choice is more demanding than

the stability notion for two-sided many-to-one matching markets. The latter roughly

requires that no manager can improve his well being by changing the number of

workers who work for him or by employing (an optimal number of) workers that

he can target, which are those who would prefer to work for him at the proposed

wage rather than for the manager with whom they are currently matched.7 With

occupational choice, since anyone can choose to be a manager, this condition must

hold not just for those who are managers in the current match but also for those who

are workers and unmatched. Similarly, since anyone can be a worker, the targets of

a prospective manager are no longer restricted to be the current workers but rather

can include current managers and unmatched individuals.

When α = 1/2, the unique stable matching in the above example is for all type

2 individuals to be managers, each of them being matched with a measure one of

7Stability also requires individual rationality for the workers.
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type 1 individuals at wage w ≃ 1.41.8 At this wage, the firm size is optimal for

type 2 managers. Their rent is equal to w, so that type 2 individuals are actually

indifferent between being a manager or a worker. Type 1 individuals would get a rent

approximately equal to 0.18 if they were to hire an optimal number of workers at

wage w and, thus, they strictly prefer to be workers rather than managers. It follows

from these properties that this matching is indeed stable.9

4 Matching with occupational choice

The setting we introduce in this paper is that of a matching market featuring occu-

pational choice, many-to-one matching and a large number of participants. We frame

this problem in the context of a labor market for simplicity, so that individuals have

a choice of being a manager, a worker or self-employed.

4.1 Environment and matching

Individuals are (potentially) heterogenous in e.g. their talent or knowledge. This is

captured by a (nonempty, Polish) set Z of types. The population of individuals is

described by a nonzero, finite, Borel measure ν on Z; ν is the type distribution. A

dummy type ∅ ̸∈ Z is used to represent unmatched i.e. self-employed individuals, and

we let Z∅ = Z ∪ {∅}, with the assumption that ∅ is an isolated point in Z∅.

A manager of type z may be matched with a worker of type z′ under some contract

c. In particular, there is a (nonempty, Polish) set C of contracts and a contract

correspondence C : Z × Z∅ ⇒ C describing the set C(z, z′) of contracts that are

feasible for a manager of type z and a worker of type z′ (when z′ = ∅ the manager is,

8In the working paper version, we fully characterize the stable matchings in this example for each

α ∈ (0, 1); in fact, there is a unique stable matching for each α.
9Our general framework allows for externalities and their presence is often natural. In the context

of the above example, it might be that the production function depends on the aggregate managerial

quality in an analogous way to Romer (1986), so that the rent of a manager with quality z is e.g.(∫
Z×X

ẑdµ(ẑ, δ)
)
z1+αn1−α − cn when the matching is µ.
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in fact, self-employed and C(z, ∅) describes the feasible contracts for a self-employed

individual of type z).

A manager is allowed to hire as many workers as he likes; to capture the many-to-

one aspect of matching, a manager is matched with a measure of workers and contracts

δ ∈ M(Z×C).10 The definition of a matching below will impose feasibility constraints

on δ via the contract correspondence C and, thus, constrain the contracts that the

manager can offer to each of his employees. These constraints are of the form c ∈

C(z, z′) and are, therefore, independent across workers. To capture interdependent

and other feasibility constraints, we let X be a subset of M(Z ×C) and require that

managers be matched with δ ∈ X.

Self-employed (or unmatched) managers are those matched with the dummy type

∅. To specify his contract (e.g. the number of hours worked as self-employed), we use

matches of the form (z, 1(∅,c)) to describe a self-employed individual of type z with

contract c. To unify the two cases, we let X∅ = X ∪ {1(∅,c) : c ∈ C} be the set of

possible matches of managers and self-employed individuals.

The set of occupations is A = {w, s,m}, where w stands for worker, s for self-

employed and m for manager. The choice set of each individual depends on his

occupation; namely, a worker chooses among managers’ types and contracts, a self-

employed individual among contracts, and a manager among measures δ ∈ X describ-

ing whom to hire and the contracts offered. To capture these differences, let Xm = X,

Xs = {1(∅,c) : c ∈ C}, Xw = {1(z,c) : (z, c) ∈ Z × C} and ∆ = {(a, δ) : δ ∈ Xa}.11

The set ∆ is the choice set of each individual as she can choose her occupation and

a match feasible for the chosen occupation.

We allow for externalities and, thus, preferences are allowed to depend on the

matching. Matchings with occupational choice are elements of M(Z×X∅) satisfying

10Whenever Y is a metric space, M(Y ) denotes the set of finite, Borel measures on Y endowed

with the weak (narrow) topology (see Varadarajan (1958) for details). We often focus on MR(Y )

where, for each R > 0, MR(Y ) = {δ ∈ M(Y ) : δ(Y ) ≤ R}.
11We do not distinguish between (z, c) and 1(z,c) for each (z, c) ∈ Z∅ × C, hence it would be

simpler to replace the latter with the former in the definition of Xs and Xw. The formalization we

use above provides an unified notation which simplifies the exposition elsewhere.
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certain properties described below. The preferences of an individual of type z are

then described by a relation ≻z defined on ∆×M(Z ×X∅) for each z ∈ Z.

In summary, a matching market with occupational choice (a market, henceforth)

is E = (Z, ν, C,C, X, (≻z)z∈Z).

A matching with occupational choice (a matching, henceforth) is a Borel measure

µ ∈ M(Z ×X∅) such that

1. {z} × supp(δ) ⊆ graph(C) for each (z, δ) ∈ supp(µ), and

2. νM + νS + νW = ν

where, for each Borel subset B of Z, νM(B) = µ(B ×X), νS(B) = µ(B × (X∅ \X))

and νW (B) =
∫
Z×X

δ(B × C)dµ(z, δ).

The interpretation of µ is as follows. First, µ describes the occupational choices

by the place in the match (z, δ), namely, the first coordinate refers to managers and

the second to workers (as part of a firm) when δ ∈ X and, when δ ∈ X∅ \X, the first

coordinate refers to a self-employed individual and the second, which is equal to 1(∅,c)

for some c ∈ C, describes the individual’s contract. Condition 1 requires that the

contract is feasible according to the contract correspondence. Condition 2 requires

that everyone in the market is accounted for, as follows: For each Borel subset B

of Z, µ(B × X) is the measure of managers whose type belongs to B and we call

it νM(B). Similarly, µ(B × (X∅ \ X)) is the measure of self-employed individuals

whose type belongs to B and we call it νS(B). Finally,
∫
Z×X

δ(B × C)dµ(z, δ) is the

measure of workers whose type belongs to B and, thus, we call it νW (B).12 Since an

individual must be either a manager, or a worker or self-employed, condition 2 must

hold if everyone in the market is accounted for.

12For each Borel subset E of a metric space Y , the function δ 7→ δ(E) : M(Y ) → R is Borel

measurable. This follows by the argument in Aliprantis & Border (2006, Theorem 15.13, p. 514)

together with Varadarajan (1958, Theorem 3.1).
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4.2 Stability

Heading towards the definition of stable matchings, we start by defining the targets

of individuals at a given matching and then define the stability set of a matching.

Targets at a given matching µ depend on the type z and on the occupational

choice a, and are denoted by T a
z (µ). Because one’s occupation is a choice and not a

fixed characteristic, these targets are for someone planning to choose occupation a,

i.e. if someone chooses occupation a, then his targets are T a
z (µ). The targets for the

prospective self-employed are simply the contracts that are feasible when someone is

unmatched: For each z ∈ Z, let T s
z (µ) = {∅} × C(z, ∅).

The targets of prospective managers and workers are more complicated as they

consist of contracts and types of people on the other side of the market that managers

or workers can attract. But with occupational choice, there is not a fixed “other side

of the market” since anyone can change his occupation. In more detail, even if all

individuals of type z∗ are managers in the matching µ, any type z∗ person can choose

to became a worker. In particular, if such z∗ person gains by becoming a worker and

by working for a manager of type z at some contract c, then (z∗, c) is a target for

those of type z planning to be a manager, i.e. it belongs to Tm
z (µ). We then let, for

each z ∈ Z, Tm
z (µ) be the set of (z∗, c) ∈ Z × C such that c ∈ C(z, z∗) and there

exists

(a) (z′, c′, δ′) ∈ Z × C × X such that (z′, δ′) ∈ supp(µ), (z∗, c′) ∈ supp(δ′) and

(w, 1(z,c), µ) ≻z∗ (w, 1(z′,c′), µ), or

(b) δ′ ∈ X∅ \X such that (z∗, δ′) ∈ supp(µ) and (w, 1(z,c), µ) ≻z∗ (s, δ
′, µ), or

(c) δ′ ∈ X such that (z∗, δ′) ∈ supp(µ) and (w, 1(z,c), µ) ≻z∗ (m, δ′, µ).

Anyone of type z can be a manager if he finds workers, here of type z∗, who prefer

to work for him than to be in their current occupation. Each of these workers can be

someone who was already a worker in µ as described in condition (a), or self-employed

as described by condition (b), or even a manager as described by condition (c).
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The targets of prospective workers are defined analogously. Thus, for each z ∈ Z,

let Tw
z (µ) be the set of (z

∗, c) ∈ Z ×C such that c ∈ C(z∗, z) and there is δ ∈ X such

that (z, c) ∈ supp(δ) and

(a) supp(δ) \ {(z, c)} ⊆ Tm
z∗ (µ) and there is (z′, c′, δ′) ∈ Z × C × X such that

(z′, δ′) ∈ supp(µ), (z∗, c′) ∈ supp(δ′) and (m, δ, µ) ≻z∗ (w, 1(z′,c′), µ), or

(b) supp(δ) \ {(z, c)} ⊆ Tm
z∗ (µ) and there is δ′ ∈ X∅ \X such that (z∗, δ′) ∈ supp(µ)

and (m, δ, µ) ≻z∗ (s, δ
′, µ), or

(c) there is δ′ ∈ X such that supp(δ)\{(z, c)} ⊆ Tm
z∗ (µ)∪supp(δ′), (z∗, δ′) ∈ supp(µ)

and (m, δ, µ) ≻z∗ (m, δ′, µ).

As above, anyone of type z can be a worker if she finds a manager, here of type z∗,

that hires her, possibly alongside other workers as described by δ ∈ X, and both

agree on a feasible contract c ∈ C(z∗, z). This manager can be someone who was

already a manager in µ as described in condition (c), or self-employed as described

by condition (b), or even a worker as described by condition (a).

The stability set S(µ) of matching µ is the set of (z, δ) ∈ Z × X∅ such that, if

δ ∈ X, then

(i) there does not exist (a, δ′) ∈ ∆ such that supp(δ′) ⊆ T a
z (µ) ∪ supp(δ) if a = m,

supp(δ′) ⊆ T a
z (µ) if a ̸= m, and (a, δ′, µ) ≻z (m, δ, µ),

(ii) for each (z′, c) ∈ supp(δ), there does not exist (a, δ′) ∈ ∆ such that supp(δ′) ⊆

T a
z′(µ) and (a, δ′, µ) ≻z′ (w, 1(z,c), µ),

and, if δ ∈ X∅ \X, then

(iii) there does not exist (a, δ′) ∈ ∆ such that supp(δ′) ⊆ T a
z (µ) and (a, δ′, µ) ≻z

(s, δ, µ).

The set S(µ) describes matches (z, δ) that do not suffer from instability. Instability

could come from those who are managers in µ if a manager of type z can find a

match δ′ that is better than his current one δ by employing workers of the types

12



currently employed or those of his targets. In addition, he could instead be better off

by changing his occupation and matching with some of his targets for the alternative

occupation. Condition (i) rules out instability arising from the current managers,

whereas condition (ii) does the same for current workers and (iii) for self-employed.

A matching µ is stable if supp(µ) ⊆ S(µ).

Theorem 1 provides a characterization of stable matchings that is simpler to use.

Let SM(µ) be defined as S(µ) but with “(a, δ′) ∈ ∆” being replaced with “(a, δ′) ∈ ∆

such that a = m” and, analogously, IR(µ) be defined as S(µ) but with “(a, δ′) ∈ ∆”

being replaced with “(a, δ′) ∈ ∆ such that a = s”.

Theorem 1 A matching µ is stable if and only if supp(µ) ⊆ SM(µ) ∩ IR(µ).

4.3 Discussion

We conclude this section with some comments on our definition of stability. First,

note that it focuses on the support of the matching. In some cases, however, not

all elements of supp(δ) in a match (z, δ) are pairs of worker types and contracts

that are matched with a manager of type z. This may happen, for example, if δ =∑∞
k=1 2

−k1(zk,ck) for some countable subset D = {(zk, ck)}∞k=1 of Z × C. In this case,

it would seem more appropriate to require only that {z} ×D ⊆ graph(C) instead of

{z}×supp(δ) ⊆ graph(C) in the definition of a matching. When the correspondence C

is continuous, this issue does not arise since then the two requirements are equivalent.

Similar considerations apply to the definition of stability when preferences are also

continuous. For instance, when a market E also satisfies a richness condition, we have

that a matching µ is stable if and only if S(µ) has full µ-measure.13

A more important issue concerns what we require for a manager of type z, cur-

rently matched with δ, and a potential workforce δ′ to qualify as a blocking coalition.14

We require that (m, δ′) ≻z (m, δ) and supp(δ′) ⊆ Tm
z (µ)∪ supp(δ). This requirement

is unusual in that it is between weak and strong domination – but as we now argue,

13See Section 5 for the notion of continuity and richness we use and the working paper version for

a proof of this claim.
14I.e. what condition (i) of the definition of S(µ) for a = m rules out.
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it is the weakest requirement for blocking (and hence associated with the strongest

stability notion) such that stable matchings exist under general conditions.

We illustrate the above with the following example, where for simplicity contracts

are omitted and preferences do not depend on the matching. Let Z = {1, 2}, ν(1) =

ν(2) = 1/2 and X = {n1z : n ≤ 1, z ∈ Z}. Let preferences be represented by:

uz(m,n1z′) = 2nz′, uz(w, 1z′) = z′, and uz(s, 1∅) = 0. It is easy to see that µ

such that µ(2, 11) = 1/2 is a stable matching. Here, every individual gets payoff 2

(thus the matching is individually rational and supp(µ) ⊆ IR(µ)), and since being

a worker yields payoff at most 2, Tm
1 (µ) = Tm

2 (µ) = ∅. Since supp(µ) = {(2, 11)},

(w, 12) ⪰1 (m, δ) for all δ ∈ X such that supp(δ) ⊆ ∅ and (m, 11) ⪰2 (m, δ) for all

δ ∈ X such that supp(δ) ⊆ {1}, it follows that supp(µ) ⊆ SM(µ).

The strongest notion of stability is the one that defines a blocking coalition via

weak domination, i.e. to require that every individual in the coalition is weakly better

off with at least one individual being strictly better off. Let ν⪯z
W (µ) be the measure of

types who would weakly prefer to work for type z than remain in their current match,

given µ. Under weak domination, our requirement that supp(δ′) ⊆ Tm
z (µ) ∪ supp(δ)

would be replaced with supp(δ′) ⊆ supp(ν⪯z
W (µ)).15 Note that Tm

z (µ) ∪ supp(δ) ⊆

supp(ν⪯z
W (µ)) since Tm

z (µ) is the set of types16 that would strictly prefer to work for

type z given matching µ and those in supp(δ) are currently working for type z and

hence indifferent; thus, the resulting notion of stability is stronger.

However, this yields a notion of stability for which there are no stable matchings

in the current example. In the matching of the previous paragraph, we now have

15To see this in the context of the current example, suppose that (z, δ) ∈ supp(µ) and there exists

δ′ such that (m, δ′) ≻z (m, δ) and supp(δ′) ⊆ supp(ν⪯z
W (µ)). Then there is a nonnull coalition S of

individuals, described by a measure νS = νSM + νSW , and a matching µS for the coalition such that

supp(νSM ) = {z}, µS(z, δ′) = νSM (z), µS(z, δ′)δ′(z′) = νSW (z′) for each z′ ∈ Z, each manager in νSM

is strictly better off and each worker in νSW is weakly better off. Indeed, let νSM = ε1z and νSW (z′) =

εδ′(z′) for each z′ ∈ Z. For each z′ ∈ supp(νSW ) = supp(δ′), we have that z′ ∈ supp(ν⪯z
W (µ)); thus

for ε sufficiently small, νSW (z′) = εδ′(z′) ≤ ν⪯z
W (µ)(z′) for each z′ ∈ supp(νSW ) and so the coalition

can be chosen such that each worker is weakly better off. In addition, for ε sufficiently small,

νSM (z) = ε ≤ µ(z, δ) and so the coalition can be chosen such that each manager is strictly better off.
16Recall that we are omitting contracts for simplicity.
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supp(ν⪯2
W (µ)) = {1, 2}, supp(12) ⊆ supp(ν⪯2

W (µ)) and (m, 12) ≻2 (m, 11). It is easy

to see that there are no other stable matchings; in any stable matching all type 2

individuals must be managers and employ type 2 individuals but this is impossible.

We could alternatively use strong domination to define a blocking coalition, i.e.

to require that every individual in the coalition is strictly better off. Then for type z,

currently a manager and matched with δ, to form a blocking coalition with potential

workforce δ′, we would need (m, δ′) ≻z (m, δ) and supp(δ′) ⊆ Tm
z (µ). Note that

Tm
z (µ) ⊆ Tm

z (µ) ∪ supp(δ) ⊆ supp(ν⪯z
W (µ)); hence stability defined via weak domina-

tion is the strongest notion, followed by ours, followed by the one defined via strong

domination.

Our existence result, Theorem 2, shows generally that, when managers can only

hire a bounded number of workers as in the above example, a stable matching ex-

ists when blocking coalitions are defined using our requirement supp(δ′) ⊆ Tm
z (µ) ∪

supp(δ) (and hence when they are defined via strong domination). Our reason for

adopting our stability notion is that it is a refinement of the stability notion defined

via strong domination but its existence is nevertheless guaranteed under general con-

ditions. We prefer our notion to the one defined via strong domination because our

notion implies existing stability notions in special cases (see Section 6).

5 Existence of stable matchings

In this section we establish the existence of stable matchings and discuss the condi-

tions needed to prove this result.

One requirement in our existence result is that preferences are rational. We say

that a market is rational if ≻z is asymmetric and negative transitive for each z ∈ Z.17

Note that ≻z is asymmetric and negative transitive if and only if ⪰z is complete and

transitive (i.e. rational).18 Rational preferences can be represented by an utility

17A relation ≻ on a set Y is asymmetric if, for each x, y ∈ Y , if x ≻ y then ¬(y ≻ x). It is negative

transitive if, for each x, y, z ∈ Y , if ¬(x ≻ y) and ¬(y ≻ z), then ¬(x ≻ z).
18The relation ⪰z is defined as usual by setting, for each (a, δ, µ), (a′, δ′, µ′) ∈ ∆ ×M(Z ×X∅),

(a, δ, µ) ⪰z (a′, δ′, µ′) if and only if (a, δ, µ) ≻z (a′, δ′, µ′) or ¬
(
(a′, δ′, µ′) ≻z (a, δ, µ)

)
.
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function and this plays an important role in our proof.

Another basic requirement in our existence results is some form of continuity. We

say that a market E is continuous if {(a, δ, µ, a′, δ′, µ′, z) ∈ (∆×M(Z ×X∅))
2 × Z :

(a, δ, µ) ≻z (a
′, δ′, µ′)} is open,19 C is continuous with nonempty and compact values,

and X is closed.

Stable matchings may fail to exist in the absence of a bound on the measure of

workers a manager can hire. This existence problem arises because each manager is

negligible and, therefore, is effectively unconstrained by the size of the market. In

Section A.6, we provide an example showing that, without any boundedness assump-

tions on X, a stable matching fails to exist.20 Thus, we focus on bounded markets,

defined as follows: We say that a market E is bounded if there exists R > 0 such that

δ(Z ×C) ≤ R for each δ ∈ X. More succinctly, E is bounded if X ⊆ MR(Z ×C) for

some R > 0.

Note that boundedness is essentially a uniform satiation condition. Indeed, sup-

pose that there exists R > 0 such that, for each z ∈ Z and µ ∈ M(Z × X∅), there

exists δ ∈ X such that δ(Z × C) ≤ R and (m, δ, µ) ⪰z (m, δ′, µ) for each δ′ ∈ X.

In this case, as far as existence of stable matchings is concerned, we may focus on

δ ∈ MR(Z × C) and, thus, assume that the market is bounded.

We will also focus on rich markets. The reason is that our approach to the

existence problem consists in first addressing discrete markets where Z, C and X are

finite. In such markets, managers are matched with measures of workers that are

finitely supported and richness will then allow us to extend our existence results from

discrete to general markets. We say that a market E is rich if the correspondences

Λ : Z×X×M(Z×X∅) ⇒ X and Λ0 : Z×M(Z×X∅) ⇒ X defined by setting, for each

(z, δ, µ) ∈ Z ×X ×M(Z ×X∅), Λ(z, δ, µ) = {δ′ ∈ X : supp(δ′) ⊆ supp(δ) ∪ Tm
z (µ)}

and Λ0(z, µ) = {δ′ ∈ X : supp(δ′) ⊆ Tm
z (µ)} are lower hemicontinuous.

The richness assumption is a mild requirement which is satisfied in several special

19The set A of occupations is endowed with the discrete topology.
20A stable matching would fail to exist even under the weakest form of stability we discuss in

Section 4 which is defined via strong domination.
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cases, including those of Che, Kim & Kojima (2019) and Greinecker & Kah (2021)

where, respectively, X = M1(Z × C) and X = {1(z,c) : (z, c) ∈ Z × C} (the bound-

edness assumption is clearly also satisfied in these two cases). This can be seen by

noting that, for a market to be rich, it is sufficient that the set of finitely supported

measures on Z × C is dense in X (this is (β) below) and that measures δ obtained

via a small perturbation to the support of a finitely supported measure in X remain

in X (this is (α) below). More formally, the following conditions are sufficient for

richness:21

(α) For each δ ∈ X such that δ =
∑J

j=1 aj1(zj ,cj) for some J ∈ N, aj ∈ R++ and

(zj, cj) ∈ Z×C for each j = 1, . . . , J and each open neighborhood Vδ of δ in X,

there exist open neighborhoods V(zj ,cj) of (zj, cj) for each j = 1, . . . , J such that,

whenever (ẑj, ĉj) ∈ V(zj ,cj) for each j = 1, . . . , J , there exists â = (â1, . . . , âJ) ∈

RJ
+ such that

∑J
j=1 âj1(ẑj ,ĉj) ∈ Vδ.

(β) For each δ ∈ X and open neighborhood Vδ of δ in X, there exists δ̂ ∈ Vδ such

that supp(δ̂) is a finite subset of supp(δ).

The following is our main existence result. As Greinecker & Kah’s (2021) frame-

work is a special case of ours, it has Greinecker & Kah’s (2021) Theorem 5 as a special

case.

Theorem 2 Every rational, continuous, bounded and rich market has a stable match-

ing.

When there are no externalities, the rationality of E can be replaced with the

requirement that preferences are acyclic. This is because when Z, C and X are finite,

acyclic preferences defined on ∆ (as opposed to ∆×M(Z ×X∅)) can be extended to

linear orders, which are rational. We say that E is a market without externalities if

for each z ∈ Z, (a, δ), (a′, δ′) ∈ ∆, if (a, δ, µ̂) ≻z (a′, δ′, µ̂) for some µ̂ ∈ M(Z ×X∅),

then (a, δ, µ) ≻z (a
′, δ′, µ) for all µ ∈ M(Z ×X∅). Moreover, we say that E is acyclic

21See the working paper version for a proof of this claim.
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if ≻z is acyclic for each z ∈ Z.22 We then obtain the following corollary which has

Greinecker & Kah’s (2021) Theorem 1 as a special case.

Corollary 1 Every acyclic, continuous, bounded and rich market without externali-

ties has a stable matching.

6 Applications

6.1 Roommate market

Gale & Shapley (1962) considered a roommate problem in which an “even number

of boys wish to divide up into pairs of roommates.” This is an example of matching

with occupational choice since there aren’t two exogenously given sets of individuals

to match; it has also the particular feature that individuals are indifferent between

the different occupations.

In this section we formulate a general version of the roommate problem with a

continuum of individuals in distributional form, a roommate market, as a special case

of our framework. We show that, in contrast to the case of finitely many individuals

of Gale & Shapley (1962), a stable matching exists in roommate markets that are

acyclic and continuous when there are no externalities in preferences; when there are

externalities, our existence result requires preferences to be rational and continuous.

In particular, roommate markets are always bounded and rich.

The importance of large markets for the existence of stable matchings in the

roommate problem has been established by Chiappori, Galichon & Salanié (2014),

Pȩski (2017), Azevedo & Hatfield (2018), Wu (2021) and Jagadeesan & Vocke (2021).

Both Chiappori, Galichon & Salanié (2014) and Pȩski (2017) show the existence of

approximately stable matchings in roommate problems with a large finite number

of individuals, respectively, with and without transferable utility, and Azevedo &

Hatfield (2018) establish the existence of (exact) stable matchings with a continuum

22A relation ≻ on a set Y is acyclic if there is no finite sequence y1, y2, . . . , yn in Y such that

y1 ≻ y2 ≻ · · · ≻ yn ≻ y1.
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of individuals and with transferable utility. Our existence result for the roommate

problem, like Wu’s (2021) and Jagadeesan & Vocke’s (2021), dispenses with the re-

quirement of transferable utility and allows us to cover the continuum version of Gale

& Shapley (1962); in contrast to Jagadeesan & Vocke (2021) and Wu (2021), we allow

preferences to depend on the entire matching.

A roommate market can be defined as a market where matching is restricted

to be one-to-one and preferences and the contract correspondence satisfy certain

restrictions that reflect the fact that the roles of worker and manager have no meaning

in the roommate setup. In particular, we define a roommate market as a market

E = (Z, ν, C,C, X, (≻z)z∈Z) satisfying the following restrictions:

(R1) X = {1(z,c) : (z, c) ∈ Z × C},

(R2) (m, 1(z′,c), µ) ∼z (w, 1(z′,c), µ) for each z, z′ ∈ Z, c ∈ C and µ ∈ M(Z ×X∅),

(R3) C(z, z′) = C(z′, z) for each z, z′ ∈ Z, and

(R4) (m, 1(z′,c), µ) ∼z (m, 1(z′,c), µ ◦ f−1) for each z, z′ ∈ Z, c ∈ C and measurable

f ∈ F ,

where F = {f : f(z, z′) = (z, z′) or f(z, z′) = (z′, z) for each z, z′ ∈ Z, and f(z, ∅) =

(z, ∅) for each z ∈ Z}. (R1) requires that matching in a roommate market is one-

to-one. (R2) requires that each type cares only about who he is matched with (and

not the role he occupies in the match). (R3) requires that switching the roles of

two types in a match does not affect the set of feasible contracts, and (R4) requires

that matchings that differ only according to who occupies which role in a match are

treated the same way.

The particular setting of a roommate market allows for some simplification in its

description. In fact, we can identify 1(z,c) with (z, c) for each (z, c) ∈ Z∅ × C and,

thus, we can write (R1) as requiring X = Z × C and X∅ = Z∅ × C. In particular, a

matching is µ ∈ M(Z × Z∅ × C).

(R2) implies that individual preferences can be defined on Z∅ × C × M(Z ×
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Z∅ × C).23 In light of this comment and the one in the previous paragraph, we

can equivalently define a roommate market as E = (Z, ν, C,C, (≻z)z∈Z) such that

(Z, ν, C,C) are as in the general framework of Section 4, C satisfies C(z, z′) = C(z′, z)

for each z, z′ ∈ Z, and ≻z is defined on Z∅ × C × M(Z × Z∅ × C) and satisfies

(z′, c, µ) ∼z (z
′, c, µ ◦ f−1) for each z ∈ Z, (z′, c) ∈ Z∅ × C and measurable f ∈ F .

A matching, which we refer to as a roommate matching, is then a Borel measure

µ ∈ M(Z × Z∅ × C) such that supp(µ) ⊆ graph(C) and νW + νS + νM = ν where,

for each Borel subset B of Z, νM(B) = µ(B × Z × C), νW (B) = µ(Z × B × C) and

νS(B) = µ(B × {∅} × C).

The targets become

Tm
z (µ) = Tw

z (µ) ={(z∗, c) ∈ Z × C : c ∈ C(z, z∗) and ∃(z′, c′) ∈ Z × C such that

supp(µ) ∩ {(z∗, z′, c′), (z′, z∗, c′)} ≠ ∅ and (z, c, µ) ≻z∗ (z
′, c′, µ)}

and T s
z (µ) = {∅} × C(z, ∅). Let Tz(µ) = Tm

z (µ) ∪ T s
z (µ). Then S(µ) becomes the set

of (z, z′, c) ∈ Z × Z∅ × C such that

(i) there does not exist (ẑ, ĉ) ∈ Tz(µ) such that (ẑ, ĉ, µ) ≻z (z
′, c, µ), and

(ii) if z′ ̸= ∅, there does not exist (ẑ, ĉ) ∈ Tz′(µ) such that (ẑ, ĉ, µ) ≻z′ (z, c, µ).

Since a roommate market is a particular case of the setting of Section 4, the

existence of a stable matching for each roommate market follows from Theorem 2.

Corollary 2 If E is a rational and continuous roommate market or an acyclic and

continuous roommate market without externalities, then E has a stable roommate

matching.

23Indeed, given ≻̂z defined on ∆ × M(Z × Z∅ × C), define ≻z on Z∅ × C × M(Z × Z∅ × C)

by setting, for each z′, z′′ ∈ Z, c′, c′′ ∈ C, and µ′, µ′′ ∈ M(Z × Z∅ × C), (i) (z′, c′, µ′) ≻z

(z′′, c′′, µ′′) if and only if (m, z′, c′, µ′)≻̂z(m, z′′, c′′, µ′′), (ii) (z′, c′, µ′) ≻z (∅, c′′, µ′′) if and only if

(m, z′, c′, µ′)≻̂z(s, ∅, c′′, µ′′), (iii) (∅, c′, µ′) ≻z (z′′, c′′, µ′′) if and only if (s, ∅, c′, µ′)≻̂z(m, z′′, c′′, µ′′),

and (iv) (∅, c′, µ′) ≻z (∅, c′′, µ′′) if and only if (s, ∅, c′, µ′)≻̂z(s, ∅, c′′, µ′′). These four conditions,

together with (R2), also define ≻̂z on ∆×M(Z × Z∅ × C) from ≻z on Z∅ × C ×M(Z × Z∅ × C).
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To illustrate our stability condition for the roommate market, first consider the

example from Gale & Shapley (1962) with four individuals α, β, γ and δ. Preferences

are given by: β ≻α γ ≻α δ ≻α ∅, γ ≻β α ≻β δ ≻β ∅, and α ≻γ β ≻γ δ ≻γ ∅. As Gale

& Shapley (1962) argue, a stable matching does not exist regardless of δ’s preferences.

In a finite market, someone must be matched with δ or unmatched. But whoever is

matched with δ or unmatched would prefer to be matched with either of the other

two individuals, one of whom must also prefer to be matched with him.

Suppose instead that there is a continuum of individuals with four types of agents

α, β, γ and δ, where each type of agent has the same preference as the single individual

of that type given above,24 and let the measure of each type of agent be ν(z) = 1 for

z ∈ Z = {α, β, γ, δ}. We will now argue that µ(α, β) = µ(β, γ) = µ(γ, α) = 1/2 and

µ(δ, ∅) = 1 is a stable matching in our model.25

First, note that µ({z} × Z) + µ(Z × {z}) + µ({z} × {∅}) = 1 for each z ∈ Z,

so µ is a roommate matching. The targets are: Tα(µ) = {γ, ∅}, Tβ(µ) = {α, ∅},

Tγ(µ) = {β, ∅}, and Tδ(µ) = {∅}. Note that supp(µ) = {(α, β), (β, γ), (γ, α), (δ, ∅)}.

To see that (α, β) ∈ S(µ), note that type α likes β the most so there is no ẑ such

that ẑ ≻α β; thus condition (i) is satisfied. Type β prefers γ to α but γ ̸∈ Tβ(µ); thus

condition (ii) is satisfied. Analogous arguments establish that supp(µ) ⊆ S(µ), and

hence µ is stable.

A stable matching exists in this example with a continuum of individuals because

it is possible for individuals of type α, β and γ all to be matched with each other,

leaving individuals of type δ unmatched. More generally, our results imply that

the large market version of the roommate problem admits a stable solution with or

without transfers and even in the presence of externalities as long as the market is

rational and continuous.

24With a continuum of individuals, it is possible for a given type to match with itself. To ensure

that this does not happen in a stable matching, we specify for this example that z′ ≻z z for each

(z, z′) ∈ Z × Z∅ with z′ ̸= z.
25Formally, a model without contracts can be modelled in our framework by letting C be singleton

and C(z, z′) = C for each z, z′ ∈ Z, but here we omit contracts altogether for simplicity.
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6.2 Rosen (1982)

In this section we consider the setting in Rosen (1982, Section 3).

Individuals are characterized by their general ability, with Z ⊆ R denoting the set

of possible abilities and ν denoting its (nonzero, finite) distribution. Individuals can

be workers, managers or self-employed (here more correctly interpreted as unemployed

as it will be clear from the individuals’ payoffs) and their productivity is determined

both by this choice and their ability, with q = q(z) denoting the productivity of

someone of ability z who chooses to be a worker and r = r(z) his productivity if he

chooses to be a manager; both r and q are non-decreasing functions of the ability z.

A firm consists of one manager and several workers of the same type, i.e. there is

many-to-one matching. Managers have one unit of time and need to supervise work-

ers: The output produced by a worker with productivity q in a firm with a manager

with productivity r is g(r)f(tr, q), where t is the time spent by the manager super-

vising the worker, g(r) represents the quality of management decisions of a manager

of productivity r, g : R+ → R+ is increasing and f : R2
+ → R+ is continuously dif-

ferentiable, homogeneous of degree 1, strictly increasing and strictly concave in each

coordinate in the interior of its domain26 and satisfies f(0, y) = f(x, 0) = 0 for each

x, y ∈ R+. For convenience, we define θ : R+ → R+ as θ(x) = f(x, 1) for each x ∈ R+;

note that θ is strictly increasing and strictly concave. The output of a firm with a

manager of ability r and a measure n of workers with productivity q is

ng(r)f
( r

n
, q
)
= g(r)f(r, nq) = g(r)nqθ

(
r

nq

)
since the time spent in each worker is t = 1/n.27 The manager’s rent is

g(r)f(r, nq)− cn = g(r)nqθ

(
r

nq

)
− cn,

26Meaning that for (x, y) ∈ R2
++, ∂f(x, y)/∂x > 0, ∂f(x, y)/∂y > 0, and x 7→ ∂f(x, y)/∂x and

y 7→ ∂f(x, y)/∂y are strictly decreasing over R++.
27This claim follows from the Jensen’s integral inequality as follows. Let µ ∈ M([0, 1]) be a proba-

bility distribution of time spent on workers so that µ(B) is the fraction of workers who get supervision

time in B, for each Borel subset B of [0, 1], and 11/n ∈ M([0, 1]) be the probability distribution

degenerate on 1/n. Then n
∫
tdµ(t) = 1 and

∫
g(r)nqθ (rt/q) dµ(t) = nqg(r)

∫
θ (rt/q) dµ(t) ≤

nqg(r)θ
(
r
∫
tdµ(t)/q

)
= nqg(r)qθ (r/nq) =

∫
g(r)nqθ (rt/q) d11/n(t).
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where c is the wage paid by the manager to the workers.

To represent the above setting in the general framework of Section 4, let, in

addition to Z and ν as above, the set of contracts be C = R+, interpreted as the set

of possible wages, and the contract correspondence be C ≡ C. The set of feasible

matches for managers is X = {n1(z,c) : (z, c) ∈ Z × C and n ∈ R+} since managers

can hire several workers all of the same type. Occupations are the same as in the

general framework: A = {w, s,m}. Finally, preferences are defined by specifying

payoff functions as follows:

Uz(w, 1(z′,c)) = c for each 1(z′,c) ∈ Xw,

Uz(s, 1(∅,c)) = 0 for each 1(∅,c) ∈ Xs, and

Uz(m,n1(z′,c)) = g(r(z))f(r(z), nq(z′))− cn for each n1(z′,c) ∈ Xm.

We will establish existence and obtain a characterization of stable matchings for

the setting of this section under the following simplifying assumptions. We let Z =

[z, z̄] with 0 ≤ z < z̄ < ∞ and assume that q(z) > 0, r(z) > 0 and g(r) > 0 for

each r > 0; thus, g(r(z)) > 0. A market satisfying these assumptions as well as the

additional specifications described above is a Rosen market and denoted by Erosen.

Concerning the existence of stable matchings, note that a Rosen market fails to

satisfy two assumptions of our existence result, namely the contract correspondence

fails to be compact-valued and the market fails to be bounded. Nevertheless, by

considering a sequence of truncated Rosen markets that satisfy our assumptions, we

show that stable matchings exist.

Corollary 3 Every Rosen market has a stable matching.

We next provide a characterization of stable matchings in Rosen markets that is

analogous to the formulation in Rosen (1982). The following concepts are needed.

Let r ∈ r(Z), q ∈ q(Z) and w > 0. If n solves maxn′∈R+ [g(r)f(r, n′q)− wn′q], then

w = g(r)
∂f(r, nq)

∂y
= g(r)

∂f
(

r
nq
, 1
)

∂y
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since ∂f/∂y is homogeneous of degree zero. Thus, there is a continuous function

ϕ : r(Z)× R++ → R++ such that nq = ϕ(r, w). The manager’s rent is then

g(r)
∂f

(
r
nq
, 1
)

∂x
r = g(r)

∂f
(

r
ϕ(r,w)

, 1
)

∂x
r.

The above functions and formulas are used to define, for each manager of type z,

the optimal number of workers of type z′ he wants to hire at wage wq(z′) and the

corresponding rent. Define n : Z2 × R++ → R++ by setting, for each (z, z′, w) ∈

Z2 × R++,

n(z, z′, w) =
ϕ(r(z), w)

q(z′)
.

Moreover, define R : Z × R++ → R+ by setting, for each (z, w) ∈ Z × R++,

R(z, w) = g(r(z))
∂f

(
r(z)

ϕ(r(z),w)
, 1
)

∂x
r(z).

Theorem 3 A matching µ of a Rosen market is stable if and only if there exists

λ ∈ M(Z2) and w > 0 such that

λ(B × Z) +

∫
Z×B

n(z, z′, w)dλ(z, z′) = ν(B) for each measurable B ⊆ Z, (1)

supp(λ) ⊆ {z ∈ Z : R(z, w) ≥ wq(z)} × {z ∈ Z : wq(z) ≥ R(z, w)}, and (2)

µ = λ ◦ h−1, (3)

where h : Z2 → Z ×X is defined by setting, for each (z, z′) ∈ Z2,

h(z, z′) = (z, n(z, z′, w)1(z′,wq(z′))).

As Theorem 3 illustrates, our framework is tractable and our stability notion

admits a simple characterization in applied settings; they can therefore be used to

clarify important economic questions and highlight what forces might explain them.

We give one such example when q(z) = r(z) = z and the technology takes the

form g(z)zα(nz′)1−α with α = 1/2. If g ≡ 1, then each individual is indifferent

between being a manager or a worker and each individual of type z has an income
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(wage or rent) equal to z/2.28 In contrast, if g(z) = z, then individual income is

no longer necessarily linear in the type. For example, when Z = {z1, . . . , z4}, it

is possible to construct a stable matching where individuals of type z1 and z2 are

workers, individuals of type z3 and z4 are managers, each person strictly prefers his

occupation to the alternative one and, for some w > 0, workers’ income is wz while

managers’ income is z3/4w.29 In this latter example, any change that leads to a

decrease in w causes an increase in the income of those in the top and a decrease

in the income of those in the bottom of the income distribution.30 In addition, as

a result of decrease in w, there is less inequality at the bottom (since the function

z 7→ wz describing the income of those in the bottom of the distribution becomes

flatter) and more at the top of the income distribution (since the function z 7→ z3/4w

describing the income of those in the top of the distribution becomes steeper).

6.3 Further applications

In the working paper version we consider additional applications of our framework,

which we summarize here, to illustrate its flexibility.

Specifically, we show how our framework can capture the settings of Garicano &

Rossi-Hansberg (2004) and Garicano & Rossi-Hansberg (2006), and how it can be

extended to accommodate Lucas’s (1978) model. Both Garicano & Rossi-Hansberg

(2004) and Garicano & Rossi-Hansberg (2006) require feasible matches for managers

that depend on the types of the workers hired. This dependence arises because the

measure of workers that a manager can hire is determined by the time constraint of

28Indeed, if α = 1/2 and g ≡ 1, then R(z, w) ≥ wq(z) if and only if 1/2 ≥ w. It then must be that

w = 1/2 in any stable matching since otherwise there would be no worker or no managers; thus,

R(z, w) = wq(z) = z/2 for each z ∈ Z.
29If α = 1/2, Z = {z1, . . . , z4} and g is the identity, then pick w ∈ (2z2, 2z3), which implies

that R(z, w) > wq(z) for each z ∈ {z3, z4} and R(z, w) < wq(z) for each z ∈ {z1, z2}. Let ν

be such that ν(z3) = ν(z4) = 1, ν(z2) = n(z4, z2, w) and ν(z3) = n(z3, z1, w). Then λ such

that λ(z3, z1) = λ(z4, z2) = 1 yields a stable matching. Payoffs are wz for each z ∈ {z1, z2} and

R(z, w) = z3/4w for each z ∈ {z3, z4}.
30Such a decrease in w would occur, for example, if ν(z1) and ν(z2) increase by a small amount.
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the manager and is increasing in the quality of the workers. In Garicano & Rossi-

Hansberg (2004) all workers have the same quality but in Garicano & Rossi-Hansberg

(2006) a manager can hire workers of finitely many different qualities.

In Lucas (1978) there is a capital market in addition to a labor market with

occupational choice. The easiest approach to represent this setting is to consider, for

each rental price of capital, the resulting market with occupational choice with the

amount of capital hired by a firm being included in the contract between the manager

and workers. An equilibrium is then a rental price of capital and a matching such

that the matching is stable given the rental price and the capital market clears.

7 Concluding remarks

In this paper we provided a formalization of large many-to-one matching markets

with occupational choice and a notion of a stable matching for them. This was done

with the goal of being able to include the settings of Lucas (1978), Rosen (1982),

Garicano & Rossi-Hansberg (2004) and Garicano & Rossi-Hansberg (2006) in our

framework, while at the same time extending the two-sided, one-to-one matching

setting of Greinecker & Kah (2021).

The large matching markets we consider are, as in Greinecker & Kah (2021),

formalized using a distributional approach. Thus, the set of individuals is not ex-

plicitly included, rather only the distribution of individuals’ types is present in the

description of the market. This approach is tractable and this has been illustrated in

Section 6.2 in the context of Rosen’s (1982) setting where stable matchings are fully

characterized.

The above tractability makes our setting potentially useful to address the impli-

cations of stability in large labor markets, in particular, for income inequality. We

aim to do so in future work.

The representation of Lucas’s (1978) setting in our framework required the intro-

duction of capital, which proved to be a relatively easy extension. This suggests that

other important elements can be added to our framework.
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A Appendix

A.1 Preliminary lemmas

This section presents some lemmas on the support of a measure and on the existence

of convergent subsequences for which we could not find a reference. Lemma 1 shows

that the support of the image µ ◦ h−1 of a measure µ under a homeomorphism h is

the image of the support of µ.

Lemma 1 Let Y and Y ′ be separable metric spaces, µ ∈ M(Y ), h : Y → Y ′ be

a homeomorphism and ν = µ ◦ h−1. Then supp(ν) = h(supp(µ)) and supp(µ) =

h−1(supp(ν)).

Proof. Note first that ν(supp(ν)) = ν(Y ′) = µ(h−1(Y ′)) = µ(Y ) = µ(supp(µ))

and, since supp(µ) = h−1(h(supp(µ))),

ν(supp(ν)) ≥ ν(h(supp(µ))) = µ(h−1(h(supp(µ))))

= µ(supp(µ)) ≥ µ(h−1(supp(ν))) = ν(supp(ν)).

Thus,

µ(supp(µ)) = µ(h−1(supp(ν))) = ν(h(supp(µ))) = ν(supp(ν)).

Since h−1(supp(ν)) is closed, supp(µ) ⊆ h−1(supp(ν)) and, hence, h(supp(µ)) ⊆

h(h−1(supp(ν))) = supp(ν). Letting f denote the inverse of h, we have that h(F ) =

f−1(F ) is closed for each closed subset F of Y . Thus, it follows that supp(ν) ⊆

h(supp(µ)).

It follows from supp(ν) = h(supp(µ)) that h−1(supp(ν)) = h−1(h(supp(µ))) =

supp(µ).

Lemma 2 shows that the support correspondence is lower hemicontinuous.

Lemma 2 If Y is a separable metric space, then the correspondence µ 7→ supp(µ),

from M(Y ) to Y , is lower hemicontinuous.
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Proof. We have thatM(Y ) is a separable metrizable space by Varadarajan (1958,

Theorem 3.1). The conclusion then follows from (the proof of) Aliprantis & Border

(2006, Theorem 17.14, p. 563).

Lemma 3 provides conditions for the existence of a convergent subsequence.

Lemma 3 If Y a separable metrizable space and {µk}∞k=1 is a tight sequence in M(Y )

such that, for some R > 0, µk(Y ) ≤ R for all k ∈ N, then {µk}∞k=1 has a convergent

subsequence.

Proof. The proof reduces to the case of probability measures as follows: Suppose

first that there is a subsequence {µkj}∞j=1 such that µkj(Y ) → 0. Then this subse-

quence converges to the zero measure. Thus, we may assume that there is ε > 0

such that µk(Y ) ≥ ε for all but finitely many k. The sequence {µk(Y )}k is bounded,

thus we may assume that it converges; let θ = limk µk(Y ). Consider {νk}∞k=1 with

νk(B) = µk(B)/µk(Y ) for each Borel B. This is a tight family of probability mea-

sures, so it has a convergent subsequence {νkj}∞j=1; let ν = limj νkj , µ = θν and B

has µ-null boundary, which happens if and only if it has ν-null boundary since θ ≥ ε.

Then µkj(B) = µkj(Y )µkj(B)/µkj(Y ) → θν(B) and, hence, µkj → µ.

A.2 Proof of Theorem 1

In a stable matching of Gale & Shapley’s (1962) marriage market, (i) each woman

cannot find a man (including the empty man) that she prefers to her husband and

who would prefer her to his wife, i.e. each woman cannot find a man in her targets

that she prefers to her husband, and (ii) each man cannot find a woman in his targets

that he prefers to his wife. It turns out that (ii) implies (i) and Theorem 1 is the

analog of this in our setting.

We now turn to the proof of Theorem 1. Note first that supp(µ) ⊆ S(µ) implies

that supp(µ) ⊆ SM(µ) ∩ IR(µ) since S(µ) ⊆ SM(µ) ∩ IR(µ).

Conversely, suppose that supp(µ) ⊆ SM(µ) ∩ IR(µ). Let (z, δ) ∈ supp(µ) and

assume, in order to reach a contradiction, that (z, δ) ̸∈ S(µ). Since (z, δ) ∈ supp(µ) ⊆

SM(µ) ∩ IR(µ), it follows that there is (z∗, c) ∈ Z × C and z̄ ∈ Z such that (z∗, c) ∈
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Tw
z̄ (µ), z̄ = z or (z̄, c̄) ∈ supp(δ) for some c̄ ∈ C, (1) (w, 1(z∗,c), µ) ≻z̄ (m, δ, µ)

if z̄ = z and δ ∈ X, (2) (w, 1(z∗,c), µ) ≻z̄ (w, 1(z,c̄), µ) if (z̄, c̄) ∈ supp(δ) and (3)

(w, 1(z∗,c), µ) ≻z̄ (s, δ, µ) if z̄ = z and δ ∈ X∅ \ X. Since (z∗, c) ∈ Tw
z̄ (µ), it follows

that c ∈ C(z∗, z̄).

We now show that (z̄, c) ∈ Tm
z∗ (µ). Indeed, we have that c ∈ C(z∗, z̄) and (z, δ) ∈

supp(µ). Thus, in case (1), the conclusion follows by condition (c) in the definition of

Tm
z∗ (µ) since z̄ = z and (w, 1(z∗,c), µ) ≻z (m, δ, µ); in case (2), the conclusion follows

by condition (a) in the definition of Tm
z∗ (µ) since (z̄, c̄) ∈ supp(δ) and (w, 1(z∗,c), µ) ≻z̄

(w, 1(z,c̄), µ); and, in case (3), the conclusion follows by condition (b) in the definition

of Tm
z∗ (µ) since z̄ = z and (w, 1(z∗,c), µ) ≻z (s, δ, µ).

Since (z∗, c) ∈ Tw
z̄ (µ), there is δ̃ ∈ X such that (z̄, c) ∈ supp(δ̃) and (a) or (b) or

(c) in the definition of Tw
z̄ (µ) holds. In either case, we will show that supp(µ) ⊆ SM(µ)

fails, which is a contradiction to supp(µ) ⊆ SM(µ) ∩ IR(µ).

Suppose that condition (a) in the definition of Tw
z̄ (µ) holds. Then, in addition,

supp(δ̃) \ {(z̄, c)} ⊆ Tm
z∗ (µ), and there is (z′, c′, δ′) ∈ Z × C × X such that (z′, δ′) ∈

supp(µ), (z∗, c′) ∈ supp(δ′) and (m, δ̃, µ) ≻z∗ (w, 1(z′,c′), µ). Since (z̄, c) ∈ Tm
z∗ (µ),

it follows that (z′, δ′) ∈ supp(µ) \ SM(µ) since (ii) of the definition of SM(µ) fails.

Indeed, (z′, δ′) ∈ supp(µ), (z∗, c′) ∈ supp(δ′), supp(δ̃) ⊆ Tm
z∗ (µ) and (m, δ̃, µ) ≻z∗

(w, 1(z′,c′), µ).

Suppose next that condition (b) in the definition of Tw
z̄ (µ) holds. Then, in ad-

dition, supp(δ̃) \ {(z̄, c)} ⊆ Tm
z∗ (µ), and there is δ′ ∈ X∅ \ X such that (z∗, δ′) ∈

supp(µ) and (m, δ̃, µ) ≻z∗ (s, δ′, µ). Since (z̄, c) ∈ Tm
z∗ (µ), it follows that (z∗, δ′) ∈

supp(µ) \SM(µ) since (iii) of the definition of SM(µ) fails. Indeed, (z∗, δ′) ∈ supp(µ),

supp(δ̃) ⊆ Tm
z∗ (µ) and (m, δ̃, µ) ≻z∗ (s, δ

′, µ).

Finally, suppose that condition (c) in the definition of Tw
z̄ (µ) holds. Then, in

addition, there is δ′ ∈ X∅ \ X such that (z∗, δ′) ∈ supp(µ), supp(δ̃) \ {(z̄, c)} ⊆

Tm
z∗ (µ) ∪ supp(δ′) and (m, δ̃, µ) ≻z∗ (m, δ′, µ). Since (z̄, c) ∈ Tm

z∗ (µ), it follows that

(z∗, δ′) ∈ supp(µ) \ SM(µ) since (i) of the definition of SM(µ) fails. Indeed, (z∗, δ′) ∈

supp(µ), supp(δ̃) ⊆ Tm
z∗ (µ) ∪ supp(δ′) and (m, δ̃, µ) ≻z∗ (m, δ′, µ).
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A.3 Proof of Theorem 2

The first step in the proof of our existence result consists in the following lemma,

which considers the special case where Z, X and C are finite. Our approach in

this special case builds on ideas from Section S.10 in Che, Kim & Kojima (2019) but

requires many changes since there are externalities in preferences, workers’ preferences

are not strict and there is occupational choice. There are three main changes which

we now briefly describe.31

Our approach in the special case where Z, X and C are finite is similar to the

one in Che, Kim & Kojima (2019) to the extent that we use a fixed point argument.

In their paper, stable matchings are fixed points of a correspondence whose domain

consists of pairs of matchings and measures of available workers. In our case, (i) we

consider a sequence of correspondences, each of which has a fixed point, but only limit

points of the sequence of fixed points will yield a stable matching, (ii) the domain

of each correspondence consists of pairs of allocations of types to occupations and

matches and measures of available workers and contracts and (iii) the measure of

available workers and contracts depends on the allocations of types to occupations

and matches in a discontinuous way and, thus, needs to be suitably approximated.

Lemma 4 If E is a rational and continuous market such that Z, X and C are finite,

then E has a stable matching.

Proof. Note first that Z∅, X∅ and ∆ are also finite. Define τ̄ ∈ RZ×∆ by setting,

for each (z, a, δ) ∈ Z ×∆,

τ̄(z, a, δ) =


0 if {z} × supp(δ) ̸⊆ graph(C) and a ̸= w,

0 if supp(δZ)× {z} × supp(δC) ̸⊆ graph(C) and a = w,

ν(z) otherwise.

Let κ̄ ∈ RZ×Z×C be such that κ̄(z, z′, c) = ν(z′) if (z, z′, c) ∈ graph(C), and

κ̄(z, z′, c) = 0 otherwise.

31See the working paper version for a more detailed outline of the proof of Theorem 2.
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Define

T = {τ ∈ RZ×∆
+ : τ(z, a, δ) ≤ τ̄(z, a, δ) and

∑
(a,δ)∈∆

τ(z, a, δ) ≤ ν(z)

for each (z, a, δ) ∈ Z ×∆} and

K = {κ ∈ RZ×Z×C
+ : κ(z, z′, c) ≤ κ̄(z, z′, c) for each (z, z′, c) ∈ Z × Z × C}.

Note that T and K are nonempty, convex, and compact subsets of Euclidean spaces.

Each τ ∈ T is an allocation of types to occupations and matches and for each κ ∈ K,

we interpret κ(z, z′, c) as the measure of workers of type z′ and contract c that are

available to z. Below, we will consider allocations τ that maximize preferences subject

to the constraints that each manager type does not hire more workers than available

to him (given by κ) and that the measure of each worker type allocated to a manager

does not exceed the manager’s demand (given by some reference µ).

Let u : Z ×∆×M(Z ×X∅) → R be a continuous utility function that represent

preferences. We normalize so that u ≥ 1. For each n ∈ N, let un = un. Since x 7→ xn

is strictly increasing on [1,∞), un and u represent the same preferences.

Define d : T → RZ×X∅
+ by setting, for each τ ∈ T and (z, δ) ∈ Z ×X∅,

d(τ)(z, δ) =

τ(z,m, δ) if δ ∈ X,

τ(z, s, δ) if δ ∈ X∅ \X.

The function d is continuous. We abuse notation and, for each (z, a, δ, τ) ∈ Z×∆×T ,

write u(z, a, δ, τ) for u(z, a, δ, d(τ)) and analogously for un. We also write (a, δ, τ) ≻z

(a′, δ′, τ) for (a, δ, d(τ)) ≻z (a
′, δ′, d(τ)), where (a′, δ′) ∈ ∆.

For each n ∈ N, let Dn : T ×K ⇒ T be defined by setting, for each (µ, κ) ∈ T ×K,

Dn(µ, κ) ={τ ∈ T : τ ∈ argmax
τ ′∈T

∑
z∈Z,(a,δ)∈∆

un(z, a, δ, µ)τ
′(z, a, δ)

subject to
∑

(a,δ)∈∆

τ ′(z, a, δ) = ν(z) for all z ∈ Z,

∑
δ∈X

τ ′(z,m, δ)δ(z′, c) ≤ κ(z, z′, c) for all (z, z′, c) ∈ Z × Z × C, and

τ ′(z, w, 1(z′,c)) ≤
∑
δ∈X

µ(z′,m, δ)δ(z, c) for all (z, z′, c) ∈ Z × Z × C}.
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Claim 1 Dn is upper hemicontinuous with nonempty, compact and convex values.

Proof. It follows by the linearity of the objective function together with the

convexity of the constraint set that Dn has convex values. It follows from Berge’s

maximum theorem that Dn is upper hemicontinuous with nonempty and compact

values. To see this, first note that the objective function is continuous and that the

constraint set, denoted by Φ(µ, κ), is contained in the compact set T . It is clear that

Φ is upper hemicontinuous with compact values. To see that Φ has nonempty values,

define τ̄ ∈ T as follows. For each z ∈ Z, let cz ∈ C(z, ∅), τ̄(z, s, 1(∅,cz)) = ν(z) and

τ̄(z, a, δ) = 0 for each (a, δ) ∈ ∆\{(s, 1(∅,cz))}. We then have that τ̄ ∈ Φ(µ, κ) for each

(µ, κ) ∈ T × K. Finally, to see that Φ is lower hemicontinuous, let (µ, κ) ∈ T × K,

O ⊆ T be an open set such that Φ(µ, κ)∩O ̸= ∅, and τ ∈ Φ(µ, κ)∩O. Let τ̂ = λτ +

(1−λ)τ̄ ∈ O for some λ ∈ (0, 1). Note that for each z ∈ Z,
∑

(a,δ)∈∆ τ̂(z, a, δ) = ν(z),∑
δ∈X τ̂(z,m, δ)δ(z′, c) < κ(z, z′, c) for each (z, z′, c) ∈ Z×Z×C such that κ(z, z′, c) >

0 and τ̂(z, w, 1(z′,c)) <
∑

δ∈X µ(z′,m, δ)δ(z, c) for each (z, z′, c) ∈ Z×Z×C such that∑
δ∈X µ(z′,m, δ)δ(z, c) > 0. Thus, there is an open neighborhood V of (µ, κ) such

that τ̂ ∈ Φ(µ′, κ′) ∩O for each (µ′, κ′) ∈ V .

Claim 2 If (µ, κ) ∈ T × K, τ ∈ Dn(µ, κ) and (z, a, δ′) ∈ Z × ∆ is such that

τ(z, a, δ′) > 0, then τ(z, w, 1(ẑ,ĉ)) =
∑

δ∈X µ(ẑ, m, δ)δ(z, ĉ) for each (ẑ, ĉ) ∈ Z × C

such that (w, 1(ẑ,ĉ), µ) ≻z (a, δ
′, µ).

Proof. If not, then τ(z, w, 1(ẑ,ĉ)) <
∑

δ∈X µ(ẑ, m, δ)δ(z, ĉ) for some (ẑ, ĉ) ∈ Z×C

such that (w, 1(ẑ,ĉ), µ) ≻z (w, 1(z′,c′), µ). Then
∑

δ∈X µ(ẑ, m, δ)δ(z, ĉ) > 0 and, hence,

(ẑ, z, ĉ) ∈ graph(C). Thus, increase τ(z, w, 1(ẑ,ĉ)) and decrease τ(z, a, δ′) by the same

amount ε ∈ (0, τ(z, a, δ′)) such that τ(z, w, 1(ẑ,ĉ)) + ε <
∑

δ∈X µ(ẑ, m, δ)δ(z, ĉ). This

increases the objective function in Dn(µ, κ) while satisfying the constraints, thus

contradicting τ ∈ Dn(µ, κ).

For each µ ∈ T and (z, z′, c) ∈ Z × Z × C, let

W (z, z′, c, µ) = {(a, δ) ∈ ∆ : u(z′, w, 1(z,c), µ) > u(z′, a, δ, µ)}.
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Let g : T → K be defined by setting, for each µ ∈ T and (z, z′, c) ∈ Z × Z × C,

g(µ)(z, z′, c) =


∑

(a,δ)∈W (z,z′,c,µ) µ(z
′, a, δ) if (z, z′, c) ∈ graph(C),

0 otherwise.

To see that g(µ) ∈ K, first note that if (z, z′, c) ̸∈ graph(C), g(µ)(z, z′, c) = 0. If

(z, z′, c) ∈ graph(C), then, since µ ∈ T , 0 ≤ g(µ)(z, z′, c) ≤ ν(z′) = κ̄(z, z′, c).

The function g may fail to be continuous and, thus, we will consider a continuous

approximation to it. For each n ∈ N and (z, z′, c) ∈ Z×Z×C, let αn,(z,z′,c) : ∆×T →

[0, 1] be defined by setting, for each (a, δ, µ) ∈ ∆× T ,

αn,(z,z′,c)(a, δ, µ) = nmax

{
0,min

{
u(z′, w, 1(z,c), µ)− u(z′, a, δ, µ),

1

n

}}
.

Let gn : T → K be defined by setting, for each µ ∈ T and (z, z′, c) ∈ Z × Z × C,

gn(µ)(z, z
′, c) =


∑

(a,δ)∈∆ αn,(z,z′,c)(a, δ, µ)µ(z
′, a, δ) if (z, z′, c) ∈ graph(C),

0 otherwise.

We have that gn is continuous since αn,(z,z′,c) is continuous for each (z, z′, c) ∈ Z ×

Z × C. Note that

αn,(z,z′,c)(a, δ, µ) ∈


{0} if u(z′, a, δ, µ) ≥ u(z′, w, 1(z,c), µ),

(0, 1) if u(z′, w, 1(z,c), µ)− 1
n
< u(z′, a, δ, µ) < u(z′, w, 1(z,c), µ),

{1} if u(z′, a, δ, µ) ≤ u(z′, w, 1(z,c), µ)− 1
n
.

Hence, it follows that

gn(µ)(z, z
′, c) ≤ g(µ)(z, z′, c) (4)

for each µ ∈ T and (z, z′, c) ∈ Z × Z × C since

g(µ)(z, z′, c) =


∑

(a,δ)∈∆ α(z,z′,c)(a, δ, µ)µ(z
′, a, δ) if (m,w, c) ∈ graph(C),

0 otherwise

with

α(z,z′,c)(a, δ, µ) =

1 if u(z′, a, δ, µ) < u(z′, w, 1(z,c), µ),

0 otherwise.
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To see that gn(µ) ∈ K, note that 0 ≤ gn(µ) ≤ g(µ) ≤ κ̄.

Let fn : T → K be defined by setting, for each µ ∈ T and (z, z′, c) ∈ Z × Z × C,

fn(µ)(z, z
′, c) = µ(z′, w, 1(z,c)) +

1

n
gn(µ)(z, z

′, c).

To see that fn(µ) ∈ K, note that if (z, z′, c) ̸∈ graph(C),

µ(z′, w, 1(z,c)) = gn(µ)(z, z
′, c) = 0,

and hence fn(µ)(z, z
′, c) = 0. If (z, z′, c) ∈ graph(C), then

0 ≤ µ(z′, w, 1(z,c)) +
1

n
gn(µ)(z, z

′, c)

≤ µ(z′, w, 1(z,c)) + g(µ)(z, z′, c) ≤ ν(z′) = κ̄(z, z′, c).

We have that fn is continuous since so is gn.

Let Ψn : T × K ⇒ T × K be defined by setting, for each (µ, κ) ∈ T × K,

Ψn(µ, κ) = Dn(µ, κ)× {fn(µ)}.

It follows from the continuity of fn and from Claim 1 that Ψn is upper hemicontinuous

with nonempty, compact and convex values. Hence, by Kakutani fixed point theorem,

let (µn, κn) be a fixed point of Ψn. Thus, µn ∈ Dn(µn, κn) and κn = fn(µn).

Since T × K is compact, taking a subsequence if necessary, we may assume that

{(µn, κn)}∞n=1 converges; let (µ, κ) = limn→∞(µn, κn). For each n, we have κn =

fn(µn), and so

κ(z, z′, c) = lim
n→∞

fn(µn)(z, z
′, c) = µ(z′, w, 1(z,c)) (5)

for each (z, z′, c) ∈ Z × Z × C. Let

µ∗ = d(µ)

and µ∗
n = d(µn) for each n ∈ N.

For each z ∈ Z and n ∈ N, it follows from µn ∈ Dn(µn, κn) that∑
(z′,c)∈Z×C

µn(z, w, 1(z′,c)) ≤
∑

(z′,c)∈Z×C

∑
δ∈X

µn(z
′,m, δ)δ(z, c) ≤

∑
(z′,c)∈Z×C

κn(z
′, z, c).
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By (5), limn

∑
(z′,c)∈Z×C κn(z

′, z, c) =
∑

(z′,c)∈Z×C µ(z, w, 1(z′,c)) and, hence,∑
(z′,c)∈Z×C

µ(z, w, 1(z′,c)) =
∑

(z′,c)∈Z×C

∑
δ∈X

µ(z′,m, δ)δ(z, c) for each z ∈ Z.

Thus, for each z ∈ Z,∑
(z′,δ)∈Z×X

µ∗(z′, δ)δZ(z) =
∑

(z′,c)∈Z×C

∑
δ∈X

µ(z′,m, δ)δ(z, c) =
∑

(z′,c)∈Z×C

µ(z, w, 1(z′,c)).

(6)

Claim 3 µ∗ is a matching.

Proof. Condition 1 follows because if (z, δ) ∈ Z ×X∅ is such that µ∗(z, δ) > 0,

then µ(z, a, δ) > 0 for some a ̸= w and {z} × supp(δ) ⊆ graph(C) since µ ∈ T .

Condition 2 holds since, for each z ∈ Z, µ = limn µn and µn ∈ Dn(µn, κn) for each

n ∈ N imply that

ν(z) =
∑
δ∈X

µ(z,m, δ) +
∑

δ∈X∅\X

µ(z, s, δ) +
∑

(z′,c)∈Z×C

µ(z, w, 1(z′,c))

=
∑
δ∈X

µ∗(z, δ) +
∑

δ∈X∅\X

µ∗(z, δ) +
∑

(z′,δ)∈Z×X

µ∗(z′, δ)δZ(z),

the last equality following by (6).

Claim 4 If (z, z′, c, δ) ∈ Z × Z × C ×X is such that (z, δ) ∈ supp(µ∗) and (z′, c) ∈

supp(δ), then µ(z′, w, 1(z,c)) > 0.

Proof. We have that
∑

δ′∈X µ(z,m, δ′)δ′(z′, c) ≥ µ(z,m, δ)δ(z′, c) > 0 and, thus,

κ(z, z′, c) > 0 since µn ∈ Dn(µn, κn) for each n ∈ N. Hence, (5) implies that

µ(z′, w, 1(z,c)) > 0.

Claim 5 supp(µ∗) ⊆ IR(µ∗).

Proof. Suppose not; then there exists (z∗, δ∗) ∈ supp(µ∗) \ IR(µ∗). We claim

that there exists z ∈ Z, (a, δ) ∈ ∆ and c′ ∈ C(z, ∅) such that

1. µ(z, a, δ) > 0 and
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2. (s, 1(∅,c′), µ
∗) ≻z (a, δ, µ

∗).

Indeed, in cases (i) and (iii) of the definition of IR(µ∗), let (z, δ) = (z∗, δ∗) in both

cases and a = m in case (i) and a = s in case (iii). In case (ii) of the definition of

IR(µ∗), we have that δ∗ ∈ X and there exist (z′, c) ∈ supp(δ∗) and c′ ∈ C(z′, ∅) such

that (s, 1(∅,c′), µ
∗) ≻z′ (w, 1(z∗,c), µ

∗). Claim 4 implies that µ(z′, w, 1(z∗,c)) > 0; hence,

let z = z′, a = w and δ = 1(z∗,c).

We then have that µn(z, a, δ) > 0 and (s, 1(∅,c′), µ
∗
n) ≻z (a, δ, µ

∗
n) for n sufficiently

large. Then decrease µn(z, a, δ) and increase µn(z, s, 1(∅,c′)) by the same amount

ε ∈ (0, µn(z, a, δ)) to increase the objective function in Dn(µn, κn) while satisfying

the constraints. But this is a contradiction to µn ∈ Dn(µn, κn).

Claim 6 If (z, z′, c) ∈ Z×Z×C is such that (z′, c) ∈ Tm
z (µ∗), then there is Nz,z′,c ∈ N

such that
∑

δ∈X µn(z,m, δ)δ(z′, c) < κn(z, z
′, c) for each n ≥ Nz,z′,c.

Proof. Let (z′, c) ∈ Tm
z (µ∗). Then c ∈ C(z, z′). In case (a) of the definition of

Tm
z (µ∗), there exists (z̃, c̃, δ̃) ∈ Z×C×X such that (z̃, δ̃) ∈ supp(µ∗), (z′, c̃) ∈ supp(δ̃)

and (w, 1(z,c), µ
∗) ≻z′ (w, 1(z̃,c̃), µ

∗). Hence, µ(z′, w, 1(z̃,c̃)) > 0 by Claim 4.

In cases (b) and (c) of the definition of Tm
z (µ∗), there exists (a, δ′) ∈ ∆ such that

a ̸= w, (z′, δ′) ∈ supp(µ∗) and (w, 1(z,c), µ
∗) ≻z′ (a, δ

′, µ∗). Thus, letting a = w and

δ′ = 1(z̃,c̃) in case (a), it follows that, in all cases, there exists (a, δ′) ∈ ∆ such that

(z′, a, δ′) ∈ supp(µ) and (w, 1(z,c), µ
∗) ≻z′ (a, δ

′, µ∗).

Let Nz,z′,c ∈ N be such that µn(z
′, a, δ′) > 0 and (w, 1(z,c), µ

∗
n) ≻z′ (a, δ

′, µ∗
n) for

each n ≥ Nz,z′,c. Thus, for each n ≥ Nz,z′,c,

µn(z
′, w, 1(z,c)) =

∑
δ∈X

µn(z,m, δ)δ(z′, c)

by Claim 2 and, since αn,(z,z′,c)(a, δ
′, µn) > 0,

κn(z, z
′, c) = µn(z

′, w, 1(z,c)) +
1

n
gn(µn)(z, z

′, c)

≥ µn(z
′, w, 1(z,c)) +

1

n
αn,(z,z′,c)(a, δ

′, µn)µn(z
′, a, δ′)

> µn(z
′, w, 1(z,c)) =

∑
δ∈X

µn(z,m, δ)δ(z′, c).
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Claim 7 supp(µ∗) ⊆ SM(µ∗).

Proof. Suppose not; then there exists (z∗, δ∗) ∈ supp(µ∗) \ SM(µ∗). We claim

that there exists z ∈ Z, (a, δ) ∈ ∆ and δ′ ∈ X such that

1. µ(z, a, δ) > 0,

2. supp(δ′) ⊆ Tm
z (µ∗) ∪ supp(δ) if a = m and supp(δ′) ⊆ Tm

z (µ∗) if a ̸= m, and

3. (m, δ′, µ∗) ≻z (a, δ, µ
∗).

Indeed, in cases (i) and (iii) of the definition of SM(µ∗), let (z, δ) = (z∗, δ∗) in both

cases and a = m in case (i) and a = s in case (iii). In case (ii) of the definition

of SM(µ∗), we have that δ∗ ∈ X and there exist (z′, c) ∈ supp(δ∗) and δ′ ∈ X

such that supp(δ′) ⊆ Tm
z′ (µ

∗) and (m, δ′, µ∗) ≻z′ (w, 1(z∗,c), µ
∗). Claim 4 implies that

µ(z′, w, 1(z∗,c)) > 0; hence, let z = z′, a = w and δ = 1(z∗,c).

Note that {z} × supp(δ′) ⊆ graph(C) since {z} × Tm
z (µ∗) ⊆ graph(C) and, when

a = m, (z, δ) ∈ supp(µ∗) and thus {z} × supp(δ) ⊆ graph(C).

Let θ = 1 if supp(δ) ∩ supp(δ′) = ∅; otherwise, let (z̄, c̄) ∈ supp(δ) ∩ supp(δ′)

be such that δ(z̄, c̄)/δ′(z̄, c̄) ≤ δ(z, c)/δ′(z, c) for each (z, c) ∈ supp(δ) ∩ supp(δ′) and

define

θ = min

{
1,

δ(z̄, c̄)

δ′(z̄, c̄)

}
.

Let k ∈ N be such that kθ > 1.

There is N ∈ N such that, for each n ≥ N ,

(i) supp(µ) ⊆ supp(µn),

(ii)
∑

δ̂∈X µn(z,m, δ̂)δ̂(z′, c) < κn(z, z
′, c) for each (z′, c) ∈ Tm

z (µ∗), and

(iii) un(z,m, δ′, µn) ≥ kun(z, a, δ, µn).

Indeed, (i) is clear since Z and ∆ are finite. As for (ii), take N ≥ max(z′,c)∈Z×C Nz,z′,c

where, for each (z′, c) ∈ Z × C, Nz,z′,c is given by Claim 6. Finally, for (iii), we
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have that u(z,m, δ′, µ)/u(z, a, δ, µ) > 1 and u(z,m, δ′, µn)/u(z, a, δ, µn) ≥ β for some

β > 1 for all n sufficiently large. Hence,

un(z,m, δ′, µn)

un(z, a, δ, µn)
=

(
u(z,m, δ′, µn)

u(z, a, δ, µn)

)n

≥ βn > k

for all n sufficiently large.

Fix n ≥ N and let c∗ ∈ C(z, ∅). For each ε > 0, define πε by setting, for each

(ẑ, â, δ̂) ∈ Z ×∆,

πε(ẑ, â, δ̂) =



µn(z, a, δ)− ε if ẑ = z, â = a and δ̂ = δ,

µn(z,m, δ′) + θε if ẑ = z, â = m and δ̂ = δ′,

µn(z, s, 1(∅,c∗)) + (1− θ)ε if ẑ = z, â = s and δ̂ = 1(∅,c∗),

µn(ẑ, â, δ̂) otherwise.

By (i), µn(z, a, δ) > 0. We have that, for each ε ∈ (0, µn(z, a, δ)), πε(ẑ, â, δ̂) ≥ 0 for

each (ẑ, â, δ̂) ∈ Z ×∆, πε(ẑ, w, 1(z′,c)) ≤ µn(ẑ, w, 1(z′,c)) ≤
∑

δ̂∈X µn(z
′,m, δ̂)δ̂(ẑ, c) for

each (ẑ, z′, c) ∈ Z × Z × C and∑
(â,δ̂)∈∆

πε(ẑ, â, δ̂) =
∑

(â,δ̂)∈∆

µn(ẑ, â, δ̂) = ν(ẑ)

for each ẑ ∈ Z. In particular, πε ∈ T .

We also have that, for some ε ∈ (0, µn(z, a, δ)),∑
δ̂∈X

πε(ẑ, m, δ̂)δ̂(z′, c) ≤ κn(ẑ, z
′, c) for all (ẑ, z′, c) ∈ Z × Z × C. (7)

First, note that it is enough to consider ẑ = z and that, for each (z′, c) ∈ Z × C,∑
δ̂∈X

πε(z,m, δ̂)δ̂(z′, c) =
∑
δ̂∈X

µn(z,m, δ̂)δ̂(z′, c) + ε (−δ(z′, c)1m(a) + θδ′(z′, c)) .

Thus, (7) holds if (z′, c) ̸∈ supp(δ′).

If a = m and (z′, c) ∈ supp(δ′) ∩ supp(δ), the definition of (z̄, c̄) implies that:∑
δ̂∈X

πε(z,m, δ̂)δ̂(z′, c) ≤
∑
δ̂∈X

µn(z,m, δ̂)δ̂(z′, c) ≤ κn(z, z
′, c).
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If a ̸= m and (z′, c) ∈ supp(δ′) or if a = m and (z′, c) ∈ supp(δ′) \ supp(δ), then

(z′, c) ∈ Tm
z (µ∗) and, thus,

∑
δ̂∈X µn(z,m, δ̂)δ̂(z′, c) < κn(z, z

′, c) by (ii). Hence, there

is ε(z′, c) > 0 such that∑
δ̂∈X

πε(z,m, δ̂)δ̂(z′, c) =
∑
δ̂∈X

µn(z,m, δ̂)δ̂(z′, c) + εθδ′(z′, c) < κn(z, z
′, c)

for each 0 < ε < ε(z′, c). Thus, letting B = supp(δ′) if a ̸= m, B = supp(δ′)\ supp(δ)

if a = m and 0 < ε < min(z′,c)∈B ε(z′, c), we have that
∑

δ̂∈X πε(ẑ, m, δ̂)δ̂(z′, c) ≤

κn(ẑ, z
′, c) for each (ẑ, z′, c) ∈ Z × Z × C.

Finally, note that∑
ẑ∈Z,(â,δ̂)∈∆

un(ẑ, â, δ̂, µn)πε(ẑ, â, δ̂) >
∑

ẑ∈Z,(â,δ̂)∈∆

un(ẑ, â, δ̂, µn)µn(ẑ, â, δ̂)

since un(z,m, δ′, µn) ≥ kun(z, a, δ, µn) by (iii) since n ≥ N , un(z, s, 1(∅,c∗), µn) ≥ 1

and, hence,∑
ẑ∈Z,(δ̂,â)∈∆

un(ẑ, â, δ̂, µn)
(
πε(ẑ, â, δ̂)− µn(ẑ, â, δ̂)

)
≥ un(z, a, δ, µn)ε (−1 + kθ) > 0.

In conclusion µn ̸∈ Dn(µn, κn), a contradiction.

It follows from Claims 3, 5 and 7 that µ∗ is a stable matching.

In the remainder of the proof, we extend Lemma 4 using three limit arguments.

The first one considers the case where X is MR(Z × C) for some R > 0 to dispense

with the finiteness of C. The second one replaces X = MR(Z ×C) with a general X

satisfying our assumptions in the case where Z is finite.

The finiteness of Z is important in the second limit result to represent each prefer-

ence relation ≻z with a continuous and bounded (e.g. by 1 below and 2 above) utility

function u : Z × ∆ ×M(Z × X∅) → [1, 2]. Such function can then be extended by

replacing X with MR(Z ×C) in the definition of its domain and is then modified by

adding a utility penalty for managers who choose a workforce δ at a distance greater

than 1/k from X. This then defines a market to which the conclusion of the previous

limit argument applies.

The final limit argument then dispenses with the finiteness of Z. Our first and

third limit results have analogs in Greinecker & Kah (2021) but are more involved
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due to the presence of many-to-one matching and occupational choice. There is no

analog to our second limit result in their work.

The following lemma unifies the common elements of the above three limit results.

Lemma 5 Let {(Ek, µk)}∞k=1 be such that Ek = (Zk, νk, Ck,Ck, Xk, (≻z,k)z∈Zk
) is a

market and µk is a stable matching for Ek for each k ∈ N. Let E = (Z, ν, C,C, X, (≻z

)z∈Z) be a rational, continuous, bounded and rich market such that νk → ν and, for

each k ∈ N, Zk ⊆ Z, supp(νk) ⊆ supp(ν), Ck ⊆ C, Ck(z, z
′) ⊆ C(z, z′) for each

(z, z′) ∈ Zk × Z∅,k and Xk ⊆ X. Then:

1. {µk}∞k=1 has a convergent subsequence in M(Z ×X∅).

Suppose further that {µk}∞k=1 converges and let µ = limk µk. Then:

2. µ is a matching for E.

Suppose further that ≻z,k is the restriction of ≻z to ∆k × M(Zk × X∅,k) for each

z ∈ Zk. Then:

3. supp(µ) ⊆ IR(µ).

4. supp(µ) ⊆ SM(µ) if

(a) for each (z, δ, µ) ∈ Z×X×M(Z×X∅), δ
′ ∈ Λ(z, δ, µ), open neighborhood

Vδ′ of δ
′, subsequence {µkj}∞j=1 of {µk}∞k=1 and sequence {(zkj , δkj)}∞j=1 such

that (zkj , δkj) → (z, δ) and (zkj , δkj) ∈ Zkj × Xkj for each j ∈ N, there

exists J ∈ N such that {γ ∈ Xkj : {zkj} × supp(γ) ⊆ graph(Ckj)} ∩

Λ(zkj , δkj , µkj) ∩ Vδ′ ̸= ∅ for each j ≥ J , and

(b) for each (z, µ) ∈ Z × M(Z × X∅), δ
′ ∈ Λ0(z, µ), open neighborhood Vδ′

of δ′, subsequence {µkj}∞j=1 of {µk}∞k=1 and sequence {zkj}∞j=1 such that

zkj → z and zkj ∈ Zkj for each j ∈ N, there exists J ∈ N such that

{γ ∈ Xkj : {zkj} × supp(γ) ⊆ graph(Ckj)} ∩Λ0(zkj , µkj)∩ Vδ′ ̸= ∅ for each

j ≥ J .
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Proof. We divide the proof into several parts corresponding to the ones in the

statement of the lemma.

Part 1: Since M(Z×X∅) is a separable metrizable space, it suffices to show that

{µk}∞k=1 is tight; this follows by Lemma 3 together with µk(Z ×X∅) ≤ νk(Z) for each

k ∈ N and the fact that {νk(Z)}∞k=1 converges (to ν(Z)) and, hence, is bounded.

Let ε > 0. Since {νk}∞k=1 is tight, there exists a compact subset KZ of Z such that

νk(Z \KZ) ≤ ε for all k.

For each n ∈ N, let Kn be a compact subset of Z such that ν̂(Z \Kn) < ε/(n2n)

for each ν̂ ∈ {νk}∞k=1. Let K∅
n = Kn ∪ {∅} and let Dn =

⋃
(z,z′)∈KZ×K∅

n
C(z, z′). Note

that Dn is compact since C is continuous and compact-valued, and KZ and K∅
n are

compact.

Define

KX =

{
δ ∈ X : δ(Z × C \Kn ×Dn) ≤

1

n
for each n ∈ N

}
.

Then KX is closed since if δj → δ and δj ∈ KX for each j ∈ N, then δ ∈ X since X is

closed and, for each n ∈ N, δ(Z×C \Kn×Dn) ≤ lim infj δj(Z×C \Kn×Dn) ≤ 1/n

since Z×C \Kn×Dn is open. Hence, δ ∈ KX . In addition, KX is tight since, for each

η > 0, there is n ∈ N such that 1/n < η and, thus, δ(Z × C \Kn ×Dn) ≤ 1/n < η

for each δ ∈ KX . Let R > 0 be such that X ⊆ MR(Z × C). Since KX is a closed

and tight subset of MR(Z × C), it follows that KX is compact.

For each n ∈ N, let

KX,n =

{
δ ∈ X : δ(Z × C \Kn ×Dn) >

1

n
and δ(Z × C \Kj ×Dj) ≤

1

j

for each j = 1, . . . , n− 1

}
.

Then X \KX = ∪∞
n=1KX,n and the family {KX,n}∞n=1 is pairwise disjoint. Fix k ∈ N.

For each n ∈ N, we have that

ε

n2n
> νk(Z \Kn) ≥

∫
Z×X

δ((Z \Kn)× C)dµk(z, δ)

≥
∫
KZ×KX,n

δ((Z \Kn)× C)dµk(z, δ)

=

∫
KZ×KX,n

δ(Z × C \Kn ×Dn)dµk(z, δ) >
1

n
µk(KZ ×KX,n),
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where the equality follows because δ(Z×C \Kn×Dn) = δ((Z \Kn)×C)+δ(Kn×(C \

Dn)) and condition 1 of a matching implies that, for each (z, δ) ∈ supp(µk)∩(KZ×X),

supp(δ) ∩ (Kn × C) ⊆ Dn and, thus, δ(Kn × (C \Dn)) = 0. Hence,

ε =
∞∑
n=1

ε

2n
>

∞∑
n=1

µk(KZ ×KX,n) = µk(KZ × (X \KX)).

Note that ∪z∈KZ
C(z, ∅) ⊆ D1 and let K∅

X = KX ∪ {1(∅,c) : c ∈ D1}. Then K∅
X is

compact since both KX and D1 are compact. Moreover, µk(KZ × (X∅ \ (K∅
X ∪X))) =

µk(KZ ×{1(∅,c) : c ̸∈ D1}) = 0 where the first equality follows since (X∅ \K∅
X)∩ (X∅ \

X) = (X∅ \K∅
X) ∩ {1(∅,c) : c ∈ C} = {1(∅,c) : c ̸∈ D1} and the second by condition 1

of a matching since ∪z∈KZ
C(z, ∅) ⊆ D1. Then, for each k ∈ N,

µk(Z ×X∅ \KZ ×K∅
X) = µk((Z \KZ)×X∅) + µk(KZ × (X∅ \ (K∅

X ∪X)))

+µk(KZ × ((X∅ \K∅
X) ∩X)) ≤ νk(Z \KZ) + 0 + µk(KZ × (X \KX)) < 2ε,

where µk((Z \KZ)×X∅) ≤ νk(Z \KZ) because of condition 2 of a matching.

Part 2: We first consider condition 2 of the definition of a matching. Let π :

Z×X∅ → Z be the projection of Z×X∅ onto Z and note that, for each Borel subset B

of Z, νM(B)+νS(B) = µ(B×X∅) = µ◦π−1(B) and νM,k(B)+νS,k(B) = µk(B×X∅) =

µk ◦ π−1(B) for each k ∈ N. Since π is continuous, µk ◦ π−1 → µ ◦ π−1. Indeed, for

each bounded and continuous f : Z → R,
∫
Z
fdµk◦π−1 =

∫
Z×X∅

f ◦πdµk →
∫
Z×X∅

f ◦

πdµ =
∫
Z
fdµk ◦ π−1 since f ◦ π : Z × X∅ → R is bounded and continuous. Hence,

since M(Z ×X∅) is metrizable, νM + νS = µ ◦ π−1 = limk µk ◦ π−1 = limk νM,k + νS,k.

Also, for each Borel subset B of Z, νW (B) =
∫
Z×X

δ(B×C)dµ(z, δ) and νW,k(B) =∫
Z×X

δ(B × C)dµk(z, δ) for each k ∈ N. We show that νW,k → νW . Let B ⊆ Z be

closed and f : X → R be defined by setting, for each δ ∈ X, f(δ) = δ(B × C).

Then f is bounded and upper semi-continuous. Hence, by (a suitable adaptation of)

Aliprantis & Border (2006, Theorem 15.5), lim supk νW,k(B) = lim supk

∫
Z×X

fdµk ≤∫
Z×X

fdµ = νW (B) and it follows that νW = limk νW,k as claimed. Thus,

νM + νW + νS = lim
k

νM,k + lim
k

νW,k + lim
k

νS,k = lim
k

(νM,k + νW,k + νS,k) = ν.

Condition 1 holds because, by Carmona & Podczeck (2009, Lemma 12), for each

(z, δ) ∈ supp(µ) and (z′, c) ∈ supp(δ), there exists a subsequence {µkj}∞j=1 of {µk}∞k=1
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and corresponding {(zkj , δkj , z′kj , ckj)}
∞
j=1 such that (zkj , δkj , z

′
kj
, ckj) → (z, δ, z′, c)

and, for each j ∈ N, (zkj , δkj) ∈ supp(µkj) and (z′kj , ckj) ∈ supp(δkj). Hence,

ckj ∈ Ckj(zkj , z
′
kj
) ⊆ C(zkj , z′kj) and, since C is continuous, c ∈ C(z, z′).

Part 3: Let (z, δ) ∈ supp(µ) and suppose that (z, δ) ̸∈ IR(µ). Then either (i)

there exists c ∈ C(z, ∅) such that (s, 1(∅,c), µ) ≻z (a(δ), δ, µ) where a(δ) = m if δ ∈ X

and a(δ) = s if δ ∈ X∅ \X, or (ii) there exists (z′, c) ∈ supp(δ) and c′ ∈ C(z′, ∅) such

that (s, 1(∅,c′), µ) ≻z′ (w, 1(z,c), µ).

Consider case (i) first. The continuity of (≻z)z∈Z and C implies that there are open

neighborhoods Vc, Vz, Vδ and Vµ of c, z, δ and µ, respectively, such that (s, 1(∅,ĉ), µ̂) ≻ẑ

(a(δ), δ̂, µ̂) and C(ẑ, ∅) ∩ Vc ̸= ∅ for each ĉ ∈ Vc, ẑ ∈ Vz, δ̂ ∈ Vδ and µ̂ ∈ Vµ. Since

(z, δ) ∈ supp(µ), it follows that 0 < µ(Vz × Vδ) ≤ lim infk µk(Vz × Vδ); hence, for

each k sufficiently large, µk(Vz × Vδ) > 0 and µk ∈ Vµ. This means that, for any

such k, there exist (ẑ, δ̂) ∈ supp(µk) ∩ (Vz × Vδ) and ĉ ∈ C(ẑ, ∅) ∩ Vc. But then

(s, 1(∅,ĉ), µk) ≻ẑ (a(δ), δ̂, µk) and, hence, (s, 1(∅,ĉ), µk) ≻ẑ,k (a(δ), δ̂, µk), contradicting

the individual rationality of µk.

Consider next case (ii). The continuity of (≻z)z∈Z and C implies that there are

open neighborhoods Vc′ , Vc, Vz, Vz′ and Vµ of c′, c, z, z′ and µ, respectively, such that

(s, 1(∅,c̃), µ̂) ≻z̃ (w, 1(ẑ,ĉ), µ̂) and C(∅, z̃) ∩ Vc′ ̸= ∅ for each c̃ ∈ Vc′ , ĉ ∈ Vc, ẑ ∈ Vz,

z̃ ∈ Vz′ and µ̂ ∈ Vµ. Since (z′, c) ∈ supp(δ), there is an open neighborhood Vδ of δ

such that supp(δ̂) ∩ (Vz′ × Vc) ̸= ∅ for each δ̂ ∈ Vδ by Lemma 2. Since µk → µ and

(z, δ) ∈ supp(µ), it follows that 0 < µ(Vz ×Vδ) ≤ lim infk µk(Vz ×Vδ); hence, for all k

sufficiently large, µk(Vz×Vδ) > 0 and µk ∈ Vµ. This means that, for any such k, there

exists (ẑ, δ̂) ∈ supp(µk)∩ (Vz × Vδ), (z̃, ĉ) ∈ supp(δ̂)∩ (Vz′ × Vc) and c̃ ∈ C(∅, z̃)∩ Vc′ .

But then (s, 1(∅,c̃), µk) ≻z̃ (w, 1(ẑ,ĉ), µk) and, hence, (s, 1(∅,c̃), µk) ≻z̃,k (w, 1(ẑ,ĉ), µk),

contradicting the individual rationality of µk.

Part 4: In this proof, to avoid confusion, we write Tm
z (µ;E ′) for Tm

z (µ) in a

market E ′.

Let (z, δ) ∈ supp(µ) and suppose that (z, δ) ̸∈ SM(µ). Then there exists δ′ ∈ X

such that either (i) supp(δ′) ⊆ Tm
z (µ) ∪ supp(δ) and (m, δ′, µ) ≻z (a(δ), δ, µ), where

43



a(δ) = m if δ ∈ X and a(δ) = s if δ ∈ X∅ \X,32 or (ii) there exists (z′, c) ∈ supp(δ)

such that supp(δ′) ⊆ Tm
z′ (µ) and (m, δ′, µ) ≻z′ (w, 1(z,c), µ).

Consider case (i) first. Let Vz, Vδ′ , Vδ and Vµ be open neighborhoods of z, δ′, δ and

µ, respectively, such that (m, γ′, µ̄) ≻z̄ (a(δ), γ, µ̄) for each z̄ ∈ Vz, γ
′ ∈ Vδ′ , γ ∈ Vδ

and µ̄ ∈ Vµ. Let, by the richness of E, Ṽz, Ṽδ and Ṽµ be open neighborhoods of z, δ

and µ, respectively, such that Λ(z̄, γ, µ̄) ∩ Vδ′ ̸= ∅ for each (z̄, γ, µ̄) ∈ Ṽz × Ṽδ × Ṽµ.

By Carmona & Podczeck (2009, Lemma 12), there is a subsequence {µkj}∞j=1 of

{µk}∞k=1 and corresponding sequence {(zkj , δkj)}∞j=1 such that (zkj , δkj) → (z, δ) and

(zkj , δkj) ∈ supp(µkj) for each j ∈ N.

Let J ∈ N be such that µkj ∈ Vµ ∩ Ṽµ, zkj ∈ Vz ∩ Ṽz, δkj ∈ Vδ ∩ Ṽδ and {γ ∈

Xkj : {zkj} × supp(γ) ⊆ graph(Ckj)} ∩ Λ(zkj , δkj , µkj) ∩ Vδ′ ̸= ∅ for all j ≥ J . Let

j ≥ J and let δ′kj ∈ {γ ∈ Xkj : {zkj} × supp(γ) ⊆ graph(Ckj)} ∩ Λ(zkj , δkj , µkj) ∩

Vδ′ . Then supp(δ′kj) ⊆ Tm
zkj

(µkj ;E) ∪ supp(δkj) and (m, δ′kj , µkj) ≻zkj
(a(δ), δkj , µkj).

It then follows that supp(δ′kj) ⊆ Tm
zkj

(µkj ;Ekj) ∪ supp(δkj) and (m, δ′kj , µkj) ≻zkj ,kj

(a(δ), δkj , µkj). But this contradicts the stability of µkj .

Consider next case (ii). Let Vz, Vz′ , Vδ′ , Vc and Vµ be open neighborhoods of

z, z′, δ′, c and µ respectively, such that (m, δ̂′, µ̂) ≻ẑ′ (w, 1(ẑ,ĉ), µ̂) for each ẑ ∈ Vz,

ẑ′ ∈ Vz′ , δ̂
′ ∈ Vδ′ , ĉ ∈ Vc and µ̂ ∈ Vµ. Let, by the richness of E, Ṽz′ and Ṽµ be

open neighborhoods of z′ and µ, respectively, such that Λ0(ẑ
′, µ̂) ∩ Vδ′ ̸= ∅ for each

(ẑ′, µ̂) ∈ Ṽz′ × Ṽµ.

By Carmona & Podczeck (2009, Lemma 12), there is a subsequence {µkj}∞j=1

of {µk}∞k=1 and corresponding sequence {(zkj , δkj , z′kj , ckj)}
∞
j=1 such that (zkj , δkj) ∈

supp(µkj) and (z′kj , ckj) ∈ supp(δkj) for each j ∈ N and (zkj , δkj , z
′
kj
, ckj) → (z, δ, z′, c).

Let J ∈ N be such that δkj ∈ Vδ, zkj ∈ Vz, z
′
kj

∈ Vz′ ∩ Ṽz′ , ckj ∈ Vc, µkj ∈ Vµ ∩ Ṽµ

and {γ ∈ Xkj : {z′kj} × supp(γ) ⊆ graph(Ckj)} ∩ Λ0(z
′
kj
, µkj) ∩ Vδ′ ̸= ∅ for all j ≥ J .

Let j ≥ J and let δ′kj ∈ {γ ∈ Xkj : {z′kj}× supp(γ) ⊆ graph(Ckj)}∩Λ0(z
′
kj
, µkj)∩Vδ′ .

Then supp(δ′kj) ⊆ Tm
z′kj

(µkj ;E) and (m, δ′kj , µkj) ≻z′kj
(w, 1(zkj ,ckj ), µkj). It then follows

that supp(δ′kj) ⊆ Tm
z′kj

(µkj ;Ekj) and (m, δ′kj , µkj) ≻z′kj
,kj (w, 1(zkj ,ckj ), µkj). But this

32Note that when δ ∈ X∅ \X and δ′ ∈ X, supp(δ′) ⊆ Tm
z (µ) ∪ supp(δ) if and only if supp(δ′) ⊆

Tm
z (µ).
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contradicts the stability of µkj .

The second step in the proof of our existence result consists in the following

lemma, which considers the special case where Z is finite and X = MR(Z × C) for

some R > 0.

Lemma 6 If E is a rational and continuous market such that Z is finite and X =

MR(Z × C) for some R > 0, then E has a stable matching.

Proof. For each (z, z′) ∈ Z × Z∅, let {cnz,z′}∞n=1 be a dense subset of C(z, z′). For

each k ∈ N, define Ck(z, z
′) = {cnz,z′ : n ≤ k} and Ck = ∪(z,z′)∈Z×Z∅Ck(z, z

′).

In addition, enumerate Q = {q1, q2, . . .} and, for each k ∈ N, let Xk be the set of

δ ∈ MR(Z×C) such that supp(δ) is a subset of Z×Ck and, for each (z, c) ∈ Z×Ck,

δ(z, c) ∈ {qn : n ≤ k}. Let X∅,k = Xk ∪ {1(∅,c) : c ∈ Ck}, Xm,k = Xk, Xs,k = {1(∅,c) :

c ∈ Ck}, Xw,k = {1(z,c) : (z, c) ∈ Z × Ck} and ∆k = {(a, δ) : δ ∈ Xa,k}.

For each k ∈ N, let Ek = (Z, ν, Ck,Ck, Xk, (≻z)z∈Z) be a market where ≻z is

restricted to ∆k ×M(Z ×X∅,k) for each z ∈ Z. Let µk ∈ M(Z ×X∅,k) be a stable

matching in Ek, which exists by Lemma 4 since Z, Ck and Xk are finite.

It follows by part 1 of Lemma 5 that we may assume that {µk}∞k=1 converges; let

µ = limk µk. It then follows by parts 2 and 3 of Lemma 5 that µ is a matching and

that supp(µ) ⊆ IR(µ).

The following claim will be used to show that condition (a) of part 4 of Lemma 5

holds.

Claim 8 Let (z̃, c̃) ∈ Tm
z (µ) and Vc̃ be an open neighborhood of c̃. Then, for all k

sufficiently large, there exists ck ∈ Ck(z, z̃) such that (z̃, ck) ∈ Tm
z (µk) ∩ ({z̃} × Vc̃).

Proof. Let (z̃, c̃) ∈ Tm
z (µ) and Vc̃ be an open neighborhood of c̃. Then c̃ ∈ C(z, z̃)

and either (i) there exists (ẑ, δ̂, ĉ) such that (ẑ, δ̂) ∈ supp(µ), (z̃, ĉ) ∈ supp(δ̂) and

(w, 1(z,c̃), µ) ≻z̃ (w, 1(ẑ,ĉ), µ), or (ii) there exists δ̃ ∈ X∅ such that (z̃, δ̃) ∈ supp(µ) and

(w, 1(z,c̃), µ) ≻z̃ (a(δ̃), δ̃, µ), where a(δ̃) = s if δ̃ ∈ X∅ \X and a(δ̃) = m if δ̃ ∈ X.

Consider case (i) first. Let Oc̃, Oĉ, Oδ̂ and Oµ be open neighborhoods of c̃, ĉ, δ̂ and

µ, respectively, such that (w, 1(z,c̃′), µ
′) ≻z̃ (w, 1(ẑ,ĉ′), µ

′) and supp(δ̂′) ∩ ({z̃} × Oĉ) ̸=
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∅ for each c̃′ ∈ Oc̃, ĉ′ ∈ Oĉ, δ̂′ ∈ Oδ̂ and µ′ ∈ Oµ. Since 0 < µ({ẑ} × Oδ̂) ≤

lim infk µ({ẑ} × Oδ̂), it follows that, for each k sufficiently large, there is δ̂k ∈ Oδ̂

such that (ẑ, δ̂k) ∈ supp(µk) and, for some ĉk ∈ Oĉ, (z̃, ĉk) ∈ supp(δ̂k). In addition,

µk ∈ Oµ and there exists ck ∈ Ck(z, z̃) ∩ Oc̃ ∩ Vc̃ since, respectively, µk → µ and

Ck(z, z̃) increases to a dense subset of C(z, z̃). Then (w, 1(z,ck), µk) ≻z̃ (w, 1(ẑ,ĉk), µk)

and, hence, (z̃, ck) ∈ Tm
z (µk) ∩ ({z̃} × Vc̃) for all k sufficiently large.

Consider next case (ii). Let Oc̃, Oδ̃ and Oµ be open neighborhoods of c̃, δ̃ and

µ, respectively, such that (w, 1(z,c̃′), µ
′) ≻z̃ (a(δ̃), δ̃′, µ′) for each c̃′ ∈ Oc̃, δ̃′ ∈ Oδ̃

and µ′ ∈ Oµ. Since 0 < µ({z̃} × Oδ̃) ≤ lim infk µk({z̃} × Oδ̃), it follows that, for

each k sufficiently large there is δ̃k ∈ Oδ̃ such that (z̃, δ̃k) ∈ supp(µk). In addition,

µk ∈ Oµ and there exists ck ∈ Ck(z, z̃) ∩ Oc̃ ∩ Vc̃ since, respectively, µk → µ and

Ck(z, z̃) increases to a dense subset of C(z, z̃). Then (w, 1(z,ck), µk) ≻z̃ (a(δ̃), δ̃k, µk)

and, hence, (z̃, ck) ∈ Tm
z (µk) ∩ ({z̃} × Vc̃) for all k sufficiently large.

We now show that condition (a) of part 4 of Lemma 5 holds. Let (z, δ, µ) ∈ Z×X×

M(Z ×X∅), δ
′ ∈ Λ(z, δ, µ), Vδ′ be an open neighborhood of δ′ and {(zkj , δkj , µkj)}∞j=1

be a sequence such that (zkj , δkj , µkj) → (z, δ, µ) and (zkj , δkj , µkj) ∈ Zkj × Xkj ×

M(Zkj ×X∅,kj) for each j ∈ N.

In particular, supp(δ′) ⊆ Tm
z (µ) ∪ supp(δ) and we may assume that supp(δ′) is

finite, i.e. δ′ =
∑

(z̃,c̃)∈supp(δ′) a(z̃, c̃)1(z̃,c̃) for some a = (a(z̃, c̃))(z̃,c̃)∈supp(δ′). Let Va

be an open neighborhood of a and, for each (z̃, c̃) ∈ supp(δ′), V(z̃,c̃) be an open

neighborhood of (z̃, c̃) be such that∑
(z̃,c̃)∈supp(δ′)

â(z̃, c̃)1(z(z̃,c̃),c(z̃,c̃)) ∈ Vδ′

whenever (z(z̃, c̃), c(z̃, c̃)) ∈ V(z̃,c̃) for each (z̃, c̃) ∈ supp(δ′) and â ∈ Va. Let â =

(â(z̃, c̃))(z̃,c̃)∈supp(δ′) ∈ Q|supp(δ′)|
+ ∩ Va and Vc̃ be an open neighborhood of c̃ such that

{z̃} × Vc̃ ⊆ V(z̃,c̃).

For each (z̃, c̃) ∈ supp(δ′) ∩ Tm
z (µ), and for each k sufficiently large, let ck(z̃, c̃) ∈

Ck(z, z̃) be such that (z̃, ck(z̃, c̃)) ∈ Tm
z (µk) ∩ ({z̃} × Vc̃), which exists by Claim 8.

If (z̃, c̃) ∈ supp(δ′) \ Tm
z (µ), then δ ∈ X, (z̃, c̃) ∈ supp(δ) and 0 < δ({z̃} × Vc̃) ≤

lim infj δkj({z̃} × Vc̃). Hence, for each j sufficiently large, let ckj(z̃, c̃) ∈ Vc̃ be such
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that (z̃, ckj(z̃, c̃)) ∈ supp(δkj).

Let J ′ ∈ N be such that, for each j ≥ J ′, (z̃, ckj(z̃, c̃)) ∈ Tm
z (µkj) ∩ ({z̃} × Vc̃) if

(z̃, c̃) ∈ supp(δ′)∩Tm
z (µ) and (z̃, ckj(z̃, c̃)) ∈ supp(δkj)∩({z̃}×Vc̃) if (z̃, c̃) ∈ supp(δ′)\

Tm
z (µ). Thus, letting δ′kj =

∑
(z̃,c̃)∈supp(δ′) â(z̃, c̃)1(z̃,ckj (z̃,c̃)) for each j ≥ J ′, we have

that δ′kj ∈ Vδ′ and supp(δ′kj) ⊆ Tm
z (µkj)∪ supp(δkj). Since {â(z̃, c̃) : (z̃, c̃) ∈ supp(δ′)}

is finite, it follows that there is J > J ′ such that δ′kj ∈ Xkj for each j ≥ J .

An analogous argument shows that condition (b) of part 4 of Lemma 5 also holds.

Hence, it follows that supp(µ) ⊆ SM(µ). This together with the fact that µ is a

matching and supp(µ) ⊆ IR(µ) shoes that µ is stable.

The next step of the proof of Theorem 2 extends Lemma 6 by requiring only that

E be rich.

Lemma 7 If E is a rational, continuous, bounded and rich market such that Z is

finite, then E has a stable matching.

Proof. It follows by Debreu (1964, Proposition 3) and by the finiteness of Z

that there exists a continuous function u : Z × ∆ × M(Z × X∅) → [1, 2] such that

(a, δ, µ) 7→ u(z, a, δ, µ) represents ⪰z for each z ∈ Z, using the fact that [1, 2] and the

extended reals are homeomorphic.

Let R > 0 be such that X ⊆ MR(Z × C), ∆∗ = ({m} ×MR(Z × C)) ∪ ({w} ×

Xw) ∪ ({s} × Xs) and X∗ = MR(Z × C) ∪ {1(∅,c) : c ∈ C}. By Tietze Extension

Theorem, let U : Z ×∆∗ ×M(Z ×X∗) → [1, 2] be a continuous extension of u.

Let ρ be a metric on MR(Z × C). For each k ∈ N, let

∆k = {m} × {δ ∈ MR(Z × C) : ρ(δ,X) ≥ k−1}.

Let, by Urysohn’s Lemma, gk : ∆∗ → [0, 1] be a continuous function such that

g−1
k (1) = ∆ and g−1

k (0) = ∆k. Then define Uk : Z×∆∗×M(Z×X∗) → R by setting,

for each (z, a, δ, µ) ∈ Z ×∆∗ ×M(Z ×X∗), Uk(z, a, δ, µ) = gk(a, δ)U(z, a, δ, µ).

Consider the market Ek = (Z, ν, C,C,MR(Z × C), Uk), i.e. Ek is equal to E

except that X is replaced with MR(Z × C) and u with Uk. Since Ek is rational and

continuous with Z finite and X = MR(Z ×C), then Ek has a stable matching µk by

Lemma 6.
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Let E∗ = (Z, ν, C,C,MR(Z × C), U). To avoid confusion, we write IR(µ;E ′) for

IR(µ) and SM(µ;E ′) for SM(µ) whenever µ is a matching of a market E ′. It follows

by part 1 of Lemma 5 that we may assume that {µk}∞k=1 converges; let µ = limk µk.

It then follows by part 2 of Lemma 5 that µ is a matching of E∗.

The proof of part 3 of Lemma 5 implies that supp(µ) ⊆ IR(µ;E∗) since the

requirement that ≻z,k is the restriction of ≻z to ∆k ×M(Zk ×X∅,k) for each z ∈ Zk

can be replaced with the following condition: (s, δ, µ̂) ≻z,k (a, δ′, µ̂) for each k ∈ N,

z ∈ Zk, δ ∈ Xs,k, (a, δ
′) ∈ ∆k and µ̂ ∈ M(Zk ×X∅,k) such that (s, δ, µ̂) ≻z (a, δ

′, µ̂).

This condition holds because Uk(z, a, δ
′, µ̂) ≤ U(z, a, δ′, µ̂) and Uk(z, s, 1(∅,ĉ), µ̂) =

U(z, s, 1(∅,ĉ), µ̂) for each k ∈ N, z ∈ Z, (a, δ′) ∈ ∆∗, ĉ ∈ C and µ̂ ∈ M(Z ×X∗) since

(s, 1(∅,ĉ)) ∈ ∆ and, hence, gk(s, 1(∅,ĉ)) = 1.

We have that µ belongs to M(Z×X∅). Indeed, let k ∈ N and (z, δ) ∈ supp(µk)∩

M(Z ×C). If δ ∈ X and ρ(δ,X) ≥ k−1, then let c ∈ C(z, ∅) and δ′ = 1(∅,c) to obtain

that supp(δ′) ⊆ T s
z (µk) and Uk(z, s, δ

′, µ) = U(z, s, δ′, µ) > 0 = Uk(z,m, δ, µ), the

latter since (s, δ′) ∈ ∆ and, thus, gk(s, δ
′) = 1, U(z, s, δ′, µ) ∈ (0, 1) and gk(m, δ) = 0.

But this contradicts the stability of µk. Hence, it follows that ρ(δ,X) < k−1.

Thus, for each k ∈ N,

supp(µk) ⊆ (Z × {δ ∈ MR(Z × C) : ρ(δ,X) ≤ k−1}) ∪ (Z × {1(∅,c) : c ∈ C}).

Hence, supp(µ) ⊆ Z ×X∅ as claimed.

It then follows that µ is a matching of E and that supp(µ) ⊆ IR(µ;E) since

IR(µ;E∗) ∩ (Z ×X∅) ⊆ IR(µ;E). Claim 9, which is analogous to part 4 of Lemma

5, shows that supp(µ) ⊆ SM(µ;E).

Claim 9 supp(µ) ⊆ SM(µ;E).

Proof. Let (z, δ) ∈ supp(µ) and suppose that (z, δ) ̸∈ SM(µ;E). Then there

exists δ′ ∈ X such that either (i) supp(δ′) ⊆ Tm
z (µ) ∪ supp(δ) and U(z,m, δ′, µ) >

U(z, a(δ), δ, µ), where a(δ) = m if δ ∈ X and a(δ) = s if δ ∈ X∅\X (see Footnote 32),

or (ii) there exists (z′, c) ∈ supp(δ) such that supp(δ′) ⊆ Tm
z′ (µ) and U(z′,m, δ′, µ) >

U(z′, w, 1(z,c), µ).
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Consider case (i) first. Let Vδ′ , Vδ and Vµ be open neighborhoods of δ′, δ and µ,

respectively, such that U(z,m, γ′, µ̄) > U(z, a(δ), γ, µ̄) for each γ′ ∈ Vδ′ , γ ∈ Vδ and

µ̄ ∈ Vµ. Let, by the richness of E, Ṽδ and Ṽµ be open neighborhoods of δ and µ,

respectively, such that Λ(z, γ, µ̄) ∩ Vδ′ ̸= ∅ for each (γ, µ̄) ∈ Ṽδ × Ṽµ.

By Carmona & Podczeck (2009, Lemma 12), there is a subsequence {µkj}∞j=1

of {µk}∞k=1 and corresponding sequence {δkj}∞j=1 such that δkj → δ and (z, δkj) ∈

supp(µkj) for each j ∈ N.

Let J ∈ N be such that µkj ∈ Vµ ∩ Ṽµ and δkj ∈ Vδ ∩ Ṽδ for all j ≥ J and, for each

j ≥ J , let δ′kj ∈ Λ(z, δkj , µkj) ∩ Vδ′ . Then, for each j ≥ J ,

Ukj(z,m, δ′kj , µkj) = U(z,m, δ′kj , µkj) > U(z, a(δ), δkj , µkj) ≥ Ukj(z, a(δ), δkj , µkj)

since δ′kj ∈ X by the definition of Λ, and supp(δ′kj) ⊆ Tm
z (µkj) ∪ supp(δkj). But this

contradicts the stability of µkj .

Now assume there exists (z′, c) ∈ supp(δ) and δ′ ∈ X such that supp(δ′) ⊆ Tm
z′ (µ)

and U(z′,m, δ′, µ) > U(z′, w, 1(z,c), µ). Let Vδ′ , Vc and Vµ be open neighborhoods of

δ′, c and µ respectively, such that U(z′,m, δ̂′, µ̂) > U(z′, w, 1(z,ĉ), µ̂) for each δ̂′ ∈ Vδ′ ,

ĉ ∈ Vc and µ̂ ∈ Vµ. Let, by the richness of E, Ṽµ be an open neighborhood of µ such

that Λ0(z
′, µ̂) ∩ Vδ′ ̸= ∅ for each µ̂ ∈ Ṽµ.

By Carmona & Podczeck (2009, Lemma 12), there is a subsequence {µkj}∞j=1

of {µk}∞k=1 and corresponding sequence {(δkj , ckj)}∞j=1 such that (δkj , ckj) → (δ, c),

(z, δkj) ∈ supp(µkj) and (z′, ckj) ∈ supp(δkj) for each j ∈ N.

Let J ∈ N be such that δkj ∈ Vδ, ckj ∈ Vc and µkj ∈ Vµ ∩ Ṽµ for all j ≥ J and,

for each j ≥ J , let δ′kj ∈ Λ0(z
′, µkj) ∩ Vδ′ . Then, for each j ≥ J , Ukj(z

′,m, δ′kj , µkj) =

U(z′,m, δ′kj , µkj) > U(z′, w, 1(z,ckj ), µkj) ≥ Ukj(z
′, w, 1(z,ckj ), µkj) since δ′kj ∈ X by the

definition of Λ0, and supp(δ′kj) ⊆ Tm
z′ (µkj). But this contradicts the stability of µkj .

It follows by supp(µ) ⊆ IR(µ;E) and by Claim 9 that supp(µ) ⊆ SM(µ;E) ∩

IR(µ;E). Thus, µ is stable.

We now complete the proof of our existence result.

Proof of Theorem 2. Let {νk}∞k=1 be such that νk → ν and supp(νk) is a
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finite subset of Z for each k ∈ N. Define Zk = supp(νk), Z∅,k = Zk ∪ {∅}, Xk =

X ∩ M(Zk × C), X∅,k = Xk ∪ {1(∅,c) : c ∈ C}, Xm,k = Xk, Xs,k = {1(∅,c) : c ∈ C},

Xw,k = {1(z,c) : (z, c) ∈ Zk × C} and ∆k = {(a, δ) : δ ∈ Xa,k} for each k ∈ N. Note

that Xk is closed for each k ∈ N.

For each k ∈ N, let Ẽk = (Zk, νk, C,C, Xk, (≻z)z∈Z) be a market where ≻z is

restricted to ∆k × M(Zk × X∅,k) for each z ∈ Z. Furthermore, let Ek be exactly

as Ẽk, except with X in place of Xk and Z in place of Zk; more precisely, Ek =

(Z, νk, C,C, X, (≻z)z∈Z).

Claim 10 For each k ∈ N, if µ is a stable matching of Ẽk, then µ is a stable matching

of Ek.

Proof. In this proof, to avoid confusion, we write IR(µ;E) for IR(µ) and

SM(µ;E) for SM(µ) whenever µ is a matching of a market E.

Let k ∈ N and µ be a stable matching of Ẽk. Clearly, µ is a matching of Ek and

supp(µ) ⊆ IR(µ;Ek). We show that supp(µ) ⊆ SM(µ;Ek). Suppose not; then let

(z, δ) ∈ supp(µ) \ SM(µ;Ek).

First suppose that there exists δ′ ∈ X such that supp(δ′) ⊆ Tm
z (µ) ∪ supp(δ) and

(m, δ′, µ) ≻z (a(δ), δ, µ), where a(δ) = m if δ ∈ X and a(δ) = s if δ ∈ X∅ \ X. We

claim that δ′ ∈ Xk, i.e. that supp(δ
′) ⊆ Zk×C, from which we obtain a contradiction

to the stability of µ in Ẽk.

Note that supp(δ̄) ⊆ Zk×C whenever δ̄ ∈ X and (z̄, δ̄) ∈ supp(µ) for some z̄ ∈ Zk

since µ is stable in Ẽk. Thus, it follows that supp(δ′) ∩ supp(δ) ⊆ Zk × C since if

supp(δ′) ∩ supp(δ) ̸= ∅, then δ ∈ X. We also have that supp(δ′) ∩ Tm
z (µ) ⊆ Zk × C.

Indeed, if (z′, c) ∈ Tm
z (µ), then (z′, c̄) ∈ supp(δ̄) and (z̄, δ̄) ∈ supp(µ) for some

c̄ ∈ C, z̄ ∈ Zk and δ̄ ∈ X whenever supp(δ′) ∩ Tm
z (µ) ̸= ∅; hence, z′ ∈ Zk. Thus,

supp(δ′) = (supp(δ′) ∩ supp(δ)) ∪ (supp(δ′) ∩ Tm
z (µ)) ⊆ Zk × C as desired.

Now suppose that there exists δ′ ∈ X and (z′, c) ∈ supp(δ) such that supp(δ′) ⊆

Tm
z′ (µ) and (m, δ′, µ) ≻z′ (w, 1(z,c), µ). As above, we obtain a contradiction to the

stability of µ in Ẽk by showing that δ′ ∈ Xk. To establish this claim, it suffices to show

that Tm
z′ (µ) ⊆ Zk × C. If (z̃, c̃) ∈ Tm

z′ (µ), then (z̃, c̄) ∈ supp(δ̄) and (z̄, δ̄) ∈ supp(µ)
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for some c̄ ∈ C, z̄ ∈ Zk and δ̄ ∈ X; hence, (z̃, c̃) ∈ Zk × C as required.

For each k ∈ N, let µk ∈ M(Z ×X∅,k) be a stable matching in Ek, which exists

by Lemma 7 (since Zk is finite) and Claim 10.

It follows by part 1 of Lemma 5 that we may assume that {µk}∞k=1 converges; let

µ = limk µk. It then follows by parts 2 – 4 of Lemma 5 that µ is a matching and that

supp(µ) ⊆ SM(µ) ∩ IR(µ). Hence, µ is stable.

A.4 Proof of Corollary 3

Let E be a Rosen market. For each k ∈ N, let Ck ≡ [0, k], Xk = {n1(z,c) : (z, c) ∈

Z × C and n ∈ [0, k]} and Ek be equal to E except for these changes to Ck and Xk.

It follows by Theorem 2 that there exists a stable matching µk of Ek.

Claim 11 supp(µk) ⊆ Z ×X for each k ∈ N.

Proof. Suppose not; then let (z, δ) ∈ supp(µk) ∩ (Z × (X∅ \ X)). Let ε > 0

be such that g(r(z))q(z)θ (r(z)/q(z)) − ε > 0. Then (z, ε) ∈ Tm
z (µk) since (z, δ) ∈

supp(µ) and Uz(w, 1(z,ε)) = ε > 0 = Uz(s, δ). Thus, letting δ′ = 1(z,ε), it follows

that supp(δ′) ⊆ Tm
z (µk) and Uz(m, δ′) = g(r(z))q(z)θ (r(z)/q(z)) − ε > 0 = Uz(s, δ).

Hence, (z, δ) ̸∈ S(µk), a contradiction to the stability of µk.

Claim 12 There exist K,M ∈ N such that, for each k ≥ K and (z, δ) ∈ supp(µk),

δ(Z × C) ≤ M and δ(Z × ([0, 1/M) ∪ (M,∞))) = 0.

Proof. Suppose not; then, for each j ∈ N, there exists kj ≥ j and (zkj , δkj) ∈

supp(µkj) ⊆ Z ×X such that δkj(Z × C) > j or δkj(Z × ([0, 1/j) ∪ (j,∞))) > 0.

Suppose first that δkj(Z × C) > j holds for infinitely many js. Taking a subse-

quence if needed, we may assume that δkj(Z × C) > j holds for each j. Thus, for

some (z′kj , ckj , nkj) ∈ Z × C × [0, kj], δkj = nkj1(z′kj ,ckj )
with nkj > j. We have that

Uzkj
(m,nkj1(z′kj ,ckj )

) ≤ g(r(z̄))f(r(z̄), nkjq(z̄))− ckjnkj

=

[
g(r(z̄))q(z̄)θ

(
r(z̄)

nkjq(z̄)

)
− ckj

]
nkj .
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Since µkj is stable, it follows that Uzkj
(m,nkj1(z′kj ,ckj )

) ≥ 0 for each j; hence,

0 ≤ ckj ≤ g(r(z̄))q(z̄)θ

(
r(z̄)

nkjq(z̄)

)
.

Since nkj → ∞, it follows that g(r(z̄))q(z̄)θ
(
r(z̄)/nkjq(z̄)

)
→ 0 and, hence, ckj → 0.

Since g(r(z))q(z)θ (r(z)/q(z)) > 0, let ε > 0 be such that

g(r(z))q(z)θ

(
r(z)

q(z)

)
− ε > 0.

We have that (z′kj , ckj + ε) ∈ Tm
z′kj

(µkj) for each j and that

Uz′kj
(m, 1(z′kj ,ckj+ε)) ≥ g(r(z))q(z)θ

(
r(z)

q(z)

)
− ckj − ε > ckj

for all j sufficiently large. But this contradicts the stability of µkj .

It follows from what has been shown above that δkj(Z × ([0, 1/j) ∪ (j,∞))) > 0

holds for each j sufficiently large. Thus, for some (z′kj , ckj , nkj) ∈ Z × C × [0, kj],

δkj = nkj1(z′kj ,ckj )
with ckj > j or ckj < 1/j. First, suppose that ckj < 1/j holds for

infinitely many js. Note that (z′kj , 1/j) ∈ Tm
z′kj

(µkj) and

Uz′kj
(m, 1(z′kj ,

1
j
)) ≥ g(r(z))q(z)θ

(
r(z)

q(z)

)
− 1

j
>

1

j
> ckj

for j sufficiently large, contradicting the stability of µkj .

Now suppose that ckj > j for all j sufficiently large. Since µkj is stable, we then

have that

0 ≤ Uzkj
(m,nkj1(z′kj ,ckj )

) ≤
[
g(r(z̄))q(z̄)θ

(
r(z̄)

nkjq(z̄)

)
− ckj

]
nkj .

Thus, nkj → 0 as ckj → ∞ and, hence,

Uzkj
(m,nkj1(z′kj ,ckj )

) ≤ g(r(zkj))f(r(zkj), nkjq(zkj)) → 0.

Let ε > 0 be such that

g(r(z))q(z)θ

(
r(z)

q(z)

)
− ε > 0.

We have that (zkj , ε) ∈ Tm
zkj

(µkj) and that

Uzkj
(m, 1(zkj ,ε)) ≥ g(r(z))q(z)θ

(
r(z)

q(z)

)
− ε > 0
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for all j sufficiently large. But this contradicts the stability of µkj .

Claim 12 implies that, for each k ≥ K, the payoff of a manager in µk is bounded

above by maxn∈[0,M ] g(r(z̄))f(r(z̄), nq(z̄)) = maxn∈[0,M ] g(r(z̄))nq(z̄)θ (r(z̄)/nq(z̄)).

In addition, the payoff of a manager is bounded below by (1/2)g(r(z))q(z)θ (r(z)/q(z)),

since if (z, δ) ∈ supp(µk) and Uz(m, δ) < (1/2)g(r(z))q(z)θ (r(z)/q(z)), then, let-

ting ε > 0 be such that g(r(z))q(z)θ (r(z)/q(z)) − ε > 2Uz(m, δ), it follows that

(z, Uz(m, δ) + ε) ∈ Tm
z (µk) and

Uz(m, 1(z,Uz(m,δ)+ε)) = g(r(z))f(r(z), q(z))− Uz(m, δ)− ε

≥ g(r(z))q(z)θ

(
r(z)

q(z)

)
− Uz(m, δ)− ε > Uz(m, δ),

which contradicts the stability of µk.

The payoff of a worker in µk is bounded below by 1/M ; since by Claim 11 there

is no unemployment, it follows that

min{Uz(m,n1(z′,c)), Uz′(w, 1(z,c))} ≥ min

{
1

M
,
1

2
g(r(z))q(z)θ

(
r(z)

q(z)

)}
(8)

for each (z, n1(z′,c)) ∈ supp(µk) and k ≥ K.

Let

M̄ = max

M, max
n∈[0,M ]

g(r(z̄))nq(z̄)θ

(
r(z̄)

nq(z̄)

)
,

2

g(r(z))q(z)θ
(

r(z)
q(z)

)
 ,

n(z, z′, c) be the solution of maxn∈R+ [g(r(z))nq(z′)θ (r(z)/nq(z′))− cn] for each z, z′ ∈

Z and c ∈ [1/M̄, M̄ + 1] and n̄ = max(z,z′,c)∈Z2×[1/M̄,M̄+1] n(z, z
′, c); the existence of

n̄ follows by the compactness of Z2 × [1/M̄, M̄ + 1] and the continuity of (z, z′, c) 7→

n(z, z′, c).

Let k > max{K, M̄ + 1, n̄} and µ = µk.

Claim 13 µ is a stable matching of E.

Proof. We will explicitly indicate the market we are considering in the stability

set of µ, and thus write SM(µ;E) and SM(µ;Ek). We use analogous notation for

IR(µ) and Tm
z (µ) for each z ∈ Z.
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We first claim that, for each (z, z′, c) ∈ Z2×C, if (z′, c) ∈ Tm
z (µ;E), then (z′, M̄+

1) ∈ Tm
z (µ;Ek). Indeed, (z′, c) ∈ Tm

z (µ;E) implies that c = Uz′(w, 1(z,c)) > Uz′(a, δ)

for some (a, δ) ∈ ∆ such that:

(a) If a = w, then δ = 1(ẑ,ĉ) with (ẑ, n̂1(z′,ĉ)) ∈ supp(µ) and, thus, Uz′(w, δ) = ĉ ≤ M

by Claim 12.

(b) If a = s, then Uz′(s, δ) = 0.

(c) If a = m, then (z′, δ) ∈ supp(µ) and, thus, Uz′(m, δ) ≤ M by Claim 12.

Hence, Uz′(a, δ) ≤ M ≤ M̄ and it follows that (z′, M̄+1) ∈ Tm
z (µ;Ek) since k > M̄+1.

We now establish that µ is a stable matching of E. Let (z, δ) ∈ supp(µ). Since µ

is a stable matching of Ek, (z, δ) ∈ SM(µ;Ek)∩IR(µ;Ek) and δ ∈ X by Claim 11. We

have that Uz′(s, δ
′) = 0 for each (z′, δ′) ∈ Z × Xs and, thus, IR(µ;Ek) ⊆ IR(µ;E).

Hence, (z, δ) ∈ IR(µ;E).

It thus remains to show that (z, δ) ∈ SM(µ;E). Let δ = n1(z̃,c) and let (i)

(ẑ, δ̂) = (z, δ) and a = m or (ii) (ẑ, δ̂) = (z̃, 1(z,c)) and a = w. Let δ′ ∈ X be

such that supp(δ′) ⊆ Tm
ẑ (µ;E) and let δ′ = n∗1(z∗,c∗). Note that (z∗, c∗) ∈ Tm

ẑ (µ;E)

implies that c∗ ≥ 1/M̄ by (8). If c∗ ≤ M̄ + 1, then (z∗, c∗) ∈ Tm
ẑ (µ;Ek) and

Uẑ(m, δ′) = Uẑ(m,n∗1(z∗,c∗)) ≤ Uẑ(m,n(ẑ, z∗, c∗)1(z∗,c∗)) ≤ Uẑ(a, δ̂),

where the last inequality follows from (z, δ) ∈ SM(µ;Ek). If c∗ > M̄ + 1, then

(z∗, M̄ + 1) ∈ Tm
ẑ (µ;Ek) and

Uẑ(m, δ′) = Uẑ(m,n∗1(z∗,c∗)) ≤ Uẑ(m,n∗1(z∗,M̄+1)) ≤

Uẑ(m,n(ẑ, z∗, M̄ + 1)1(z∗,M̄+1)) ≤ Uẑ(a, δ̂),

where the last inequality follows from (z, δ) ∈ SM(µ;Ek).

Finally, let δ′ ∈ X be such that supp(δ′) ⊆ supp(δ) in case (i). Then δ′ = n′1(z̃,c)

for some n′ ∈ R+. Since 1/M ≤ c ≤ M by Claim 12, it follows that

Uz(m, δ′) = Uz(m,n′1(z̃,c)) ≤ Uz(m,n(z, z̃, c)1(z̃,c)) ≤ Uz(m, δ),

where the last inequality follows from (z, δ) ∈ SM(µ;Ek). This concludes the proof

that (z, δ) ∈ SM(µ;E) and establishes the claim.
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A.5 Proof of Theorem 3

In this section, we show that the conditions in the statement of Theorem 3 are nec-

essary and sufficient for µ to be a stable matching of the Rosen market.33 Note that

the function h is an homeomorphism between Z2 and h(Z2).

Sufficiency. Let µ = λ◦h−1 for some w and λ as in the statement of the Theorem.

To see that µ is a matching, note that for each measurable B,

µ(B ×X) +

∫
Z×X

δ(B × C)dµ(z, δ)

= λ ◦ h−1(B ×X) +

∫
Z×X

δ(B × C)dλ ◦ h−1(z, δ)

= λ(B × Z) +

∫
Z×B

n(z, z′, w)dλ(z, z′) = ν(B).

We now show that µ is stable by establishing that supp(µ) ⊆ SM(µ)∩ IR(µ). Let

(z, δ) ∈ supp(µ); then δ = n(z, z′, w)1(z′,wq(z′)) for some z′ ∈ Z and (z, z′) ∈ supp(λ)

by Lemma 1. To see that (z, δ) ∈ IR(µ), note that Uz(m,n(z, z′, w)1(z′,wq(z′))) =

R(z, w) > 0 and Uz′(w, 1(z,wq(z′))) = wq(z′) > 0.

Suppose that (z, n(z, z′, w)1(z′,wq(z′))) ̸∈ SM(µ). Then either there exists (z∗, c∗) ∈

Tm
z (µ)∪{(z′, wq(z′))} such that Uz(m,n(z, z∗, c∗/q(z∗))1(z∗,c∗)) > R(z, w) or there ex-

ists (z∗, c∗) ∈ Tm
z′ (µ) such that Uz′(m,n(z′, z∗, c∗/q(z∗))1(z∗,c∗)) > wq(z′). If (z∗, c∗) =

(z′, wq(z′)), then Uz(m,n(z, z∗, c∗/q(z∗))1(z∗,c∗)) = R(z, w). Thus, (z∗, c∗) ∈ Tm
z (µ) ∪

Tm
z′ (µ) and, hence, c

∗ > wq(z∗); indeed, condition (b) of Tm
z (µ) ∪ Tm

z′ (µ) cannot hap-

pen since supp(µ) ⊆ Z × X, condition (a) implies c∗ > wq(z∗) and condition (c)

implies that z∗ ∈ proj1(supp(λ)) and c∗ > R(z∗, w) and, thus, that c∗ > wq(z∗) since

then R(z∗, w) ≥ wq(z∗). If (z∗, c∗) ∈ Tm
z (µ), then Uz(m,n(z, z∗, c∗/q(z∗))1(z∗,c∗)) <

R(z, w) = Uz(m,n(z, z′, w)1(z′,wq(z′))). If (z
∗, c∗) ∈ Tm

z′ (µ), then

Uz′(m,n(z′, z∗, c∗

q(z∗)
)1(z∗,c∗)) < R(z′, w) ≤ wq(z′),

the last inequality holding since z′ ∈ proj2(supp(λ)). Thus, (z, n(z, z
′, w)1(z′,wq(z′))) ∈

SM(µ), and hence µ is stable.

33See the working paper version for an illustration of Theorem 3 and its proof in the Cobb-Douglas

case.
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Necessity. Let µ be a stable matching of a Rosen market. We first show

that supp(µ) ⊆ h(Z2). Let z, z′, ẑ, z̃ ∈ Z and n̂, ñ, c(z), c(z′) ∈ R+ be such that

(ẑ, n̂1(z,c(z))) and (z̃, ñ1(z′,c(z′))) belong to supp(µ). Suppose, in order to reach a con-

tradiction, that c(z)/c(z′) ̸= q(z)/q(z′); for concreteness, c(z) > (c(z′)/q(z′))q(z) and

let w = c(z′)/q(z′). It follows that

Uẑ(m, n̂1(z,c(z))) < max
n

Uẑ(m,n1(z,wq(z))) = R(ẑ, w) = max
n

Uẑ(m,n1(z′,wq(z′))).

Thus, there is ε > 0 such that Uẑ(m, n̂1(z,c(z))) < R(ẑ, w + ε). Since (w + ε)q(z′) =

c(z′)+εq(z′) > c(z′), it follows that (z′, (w+ε)q(z′)) ∈ Tm
ẑ (µ). Thus, δ′ = n(ẑ, z′, w+

ε)1(z′,(w+ε)q(z′)) is such that supp(δ′) ⊆ Tm
ẑ (µ) and

Uẑ(m, δ′) = R(ẑ, w + ε) > Uẑ(m, n̂1(z,c(z))).

But this contradicts the stability of µ. It then follows that c(z)/c(z′) = q(z)/q(z′)

and, again letting w = c(z′)/q(z′), that c(z) = wq(z).

It also follows that n̂ = n(ẑ, z, w) since otherwise δ′ = n(ẑ, z, w)1(z,wq(z)) is such

that supp(δ′) ⊆ supp(n̂1(z,wq(z))) and Uẑ(m, δ′) > Uẑ(m, n̂1(z,wq(z))) and, thus, contra-

dicts the stability of µ.

Let h−1 : h(Z2) → Z2 be the inverse of h and define λ = µ ◦ (h−1)−1. Then (1)

and (3) follow.

To see (2), let (z, z′) ∈ supp(λ), which implies that (z, n(z, z′, w)1(z′,wq(z′))) ∈

supp(µ) by Lemma 1. If R(z, w) < wq(z), then let ε > 0 be such that wq(z) − ε >

R(z, w) and note that (z, wq(z)−ε) ∈ Tm
z (µ) since (z, n(z, z′, w)1(z′,wq(z′))) ∈ supp(µ)

and Uz(w, 1(z,wq(z)−ε)) > Uz(m,n(z, z′, w)1(z′,wq(z′))). Thus,

Uz(m,n(z, z, w)1(z,wq(z)−ε)) > Uz(m,n(z, z, w)1(z,wq(z)))

= R(z, w) = Uz(m,n(z, z′, w)1(z′,wq(z′))),

contradicting the stability of µ. Hence, R(z, w) ≥ wq(z).

Similarly, if wq(z′) < R(z′, w), then let ε > 0 be such that

Uz′(m,n(z′, z′, w)1(z′,wq(z′)+ε)) > wq(z′).
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Note that (z′, wq(z′) + ε) ∈ Tm
z′ (µ) since (z, n(z, z′, w)1(z′,wq(z′))) ∈ supp(µ) and

Uz′(w, 1(z′,wq(z′)+ε)) > Uz′(w, 1(z,wq(z′))). Thus,

Uz′(m,n(z′, z′, w)1(z′,wq(z′)+ε)) > wq(z′) = Uz′(w, 1(z,wq(z′))),

contradicting the stability of µ. Hence, wq(z′) ≥ R(z′, w).

A.6 Non-existence example

We show that without the boundedness assumptions on X, a stable matching need

not exist, even when stability is defined via strong domination.

Consider the following market E, where for simplicity we omit contracts and pref-

erences do not depend on the matching. Let Z = [0, 1], let ν be the uniform distri-

bution and let X = M(Z). Preferences are given by uz(m, δ) = δ(Z), uz(w, 1z′) = z′

and uz(s, 1∅) = 0 for each z, z′ ∈ Z and δ ∈ X. Then E is rational, continuous and

rich but not bounded and it has no stable matching as we next show.

Suppose that E has a stable matching µ. First note that µ(Z × (X∅ \ X)) = 0.

If not, then let Ẑ = {z ∈ Z : (z, 1∅) ∈ supp(µ)} and z ∈ Ẑ be such that z > 0.

Then Ẑ ⊆ Tm
z (µ) and Ẑ is closed. Thus, letting ν|Ẑ be the restriction of ν to Ẑ (i.e.

ν|Ẑ(B) = ν(B ∩ Ẑ) for each Borel subset B of Z), it follows that supp(ν|Ẑ) ⊆ Tm
z (µ)

which, together with (m, ν|Ẑ) ≻z (s, 1∅), contradicts the stability of µ.

Next note that if (z, δ) ∈ supp(µ) ∩
(
(Z \ {1}) × X

)
, then δ(Z) = 0. To see

this, suppose that (z, δ) ∈ supp(µ) with z < 1, δ ∈ X and δ(Z) > 0. Note that

for all z′ ∈ supp(δ), z′ ∈ Tm
z∗ (µ) for each z∗ > z since (w, z∗) ≻z′ (w, z); thus,

supp(δ) ⊆ Tz∗(µ). Since µ((z, 1] × X∅) +
∫
Z×X

δ((z, 1])dµ(z, δ) = ν((z, 1]) > 0, it

follows that either supp(µ) ∩
(
(z, 1] × X∅

)
̸= ∅ or supp(δ̂) ∩

(
(z, 1]) ̸= ∅ for some

(ẑ, δ̂) ∈ supp(µ). Let z∗ > z be such that either (z∗, δ∗) ∈ supp(µ) for some δ∗ ∈ X∅

or z∗ ∈ supp(δ̂) for some (ẑ, δ̂) ∈ supp(µ). Then consider δ′ = nδ where n is such

that δ′(Z) = nδ(Z) > max{δ∗(Z), 1}. We have that supp(δ′) = supp(δ) ⊆ Tz∗(µ) and

(m, δ′) ≻z∗ (m, δ∗) if (z∗, δ∗) ∈ supp(µ) and δ∗ ∈ X, (m, δ′) ≻z∗ (s, δ∗) if (z∗, δ∗) ∈

supp(µ) and δ∗ ∈ X∅ \X, and (m, δ′) ≻z∗ (w, 1ẑ) if z
∗ ∈ supp(δ̂) and (ẑ, δ̂) ∈ supp(µ).

This contradicts the stability of µ.
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It follows by the above claims that µ(Z × (X∅ \X)) = 0 and that∫
Z×X

δ(Z)dµ(z, δ) =

∫
supp(µ)∩((Z\{1})×X)

δ(Z)dµ(z, δ) = 0.

Thus, µ(Z×X) = ν(Z) = 1 and, since δ = 0 for each (z, δ) ∈ supp(µ)∩
(
(Z\{1})×X

)
,

it follows that supp(µ) = Z × {0}, where 0 ∈ M(Z) denotes the zero measure on Z.

But then Z ⊆ Tm
1 (µ) and (m, ν) ≻1 (m, 0), contradicting the stability of µ.
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