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1 Introduction

In the past few decades, the advances in the theory of mechanism design have been followed by a

tremendous interest in its practical applications. At the same time, classic theoretical models typically

make strong assumptions about the designer’s knowledge of the environment which may lead the

optimal mechanism to be sensitive to the details of the environment (which is sometimes referred to

as the Wilson critique).1

Third degree price discrimination (3PD) requires an observable covariate value associated with

the buyer valuation. To set the price conditioned on the covariate, the classic pricing model requires

the knowledge of the distribution of buyer valuations and the covariate. In terms of generating

revenue, the classic result shows that 3PD is at least as good as uniform pricing. What if the seller

has only partial information about those distributions? Is it still obvious that the seller should engage

in 3PD? Setting the optimal price for each observed value of the covariate may not “extrapolate” well

to the unobserved covariate values, and yield a lower expected revenue than a uniform price. On the

other hand, too little discrimination underutilizes the information contained in the covariate about

buyer valuations. This paper is concerned with how much information the seller will need in order to

make 3PD generate more revenue. Suppose a unit demand buyer with a privately-known valuation 𝑌

and a one-dimensional continuous covariate 𝑋 drawn from a joint distribution 𝐹𝑌,𝑋 , that is unknown

to the seller. The continuous covariate 𝑋 can be a single index or score that summarizes the relevant

characteristics for pricing and marketing. Hartmann, Nair and Narayanan (2011) provide examples

where marketing firms use a one-dimensional continuous score function of customer characteristics,

past response histories, and features of the zip code, and casinos use a one-dimensional continuous

score referred to as the average daily win.

While our seller is ignorant of 𝐹𝑌,𝑋 , he/she does have access to a random sample of i.i.d. {𝑌𝑖, 𝑋𝑖}𝑛𝑖=1
drawn from 𝐹𝑌,𝑋 . A natural strategy is to choose prices that optimize against the empirical distri-

bution of {𝑌𝑖, 𝑋𝑖}𝑛𝑖=1. The 𝐾-markets empirical revenue maximization (ERM) divides the covariate

space into 𝐾 equal-length segments, and the optimal price based on the conditional empirical distri-

bution for each segment is calculated. We show that when 𝐾 = Θ(𝑛1/4), the 𝐾-markets ERM strategy

generates an expected revenue converging to that of the true distribution 3PD optimum at the rate

𝑂(𝑛−1/2). The 1-market ERM strategy is simply the (uniform) ERM strategy, which we show gener-

ates a revenue converging to that of the true-distribution uniform optimum at the rate 𝑂(𝑛−2/3). The

𝐾-markets ERM is just one possible strategy and one may wonder if a more sophisticated strategy

1In some cases, this leads to extreme or unrealistic results as in, e.g., Crémer and McLean (1988).
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might provide faster convergence rates. In a sense, the answer is no. We show that these rates are

asymptotically unimprovable for the worst case distributions of (𝑌, 𝑋) subject to some mild smooth-

ness conditions. In other words, to guarantee a revenue deficiency of 𝛿 uniformly over a class of

distributions, the necessary condition for the sample size is that 𝑛 = Ω(𝛿−2) in the 3PD problem and

𝑛 = Ω(𝛿−3/2) in the uniform pricing problem.

For sufficiently small 𝛿, the 𝐾-markets ERM and the uniform ERM strategies are optimal on the

growth requirements of the sample size, respectively; that is, 𝑛 = Θ(𝛿−2) in the 3PD problem and 𝑛 =

Θ(𝛿−3/2) in the uniform pricing problem. To show this optimality result, we establish a lower bound

for the revenue deficiency in any data-based pricing strategy relative to the true-distribution optimal

strategy in the worst case (by considering the supremum over a class of joint distributions, 𝐹𝑌,𝑋 ,

subject to some mild smoothness assumptions). In particular, data-based uniform pricing strategies

are algorithms that depend on {𝑌𝑖}𝑛𝑖=1 only, and the true-distribution optimal strategy corresponds

to the optimal uniform pricing strategy derived from 𝐹𝑌 . Similarly, data-based 3PD strategies are

algorithms that depend on {𝑌𝑖, 𝑋𝑖}𝑛𝑖=1, and the true-distribution optimal strategy corresponds to the

optimal 3PD strategy derived from 𝐹𝑌,𝑋 . We show that the minimax revenue deficiency is Ω(𝑛−2/3)

and Ω(𝑛−1/2) in the uniform and 3PD cases, respectively.

Our results highlight the following economic trade-off. When the seller has the access to a sample

of i.i.d. {𝑌𝑖, 𝑋𝑖}𝑛𝑖=1, she can choose the 𝐾-markets ERM strategy that exploits both {𝑋𝑖}𝑛𝑖=1 and {𝑌𝑖}𝑛𝑖=1,

or the uniform ERM strategy that ignores {𝑋𝑖}𝑛𝑖=1 and exploits only {𝑌𝑖}𝑛𝑖=1. Inherently, the former is

an algorithm trying to learn the 𝐹𝑌,𝑋 -optimal pricing function 𝑝(·) while the latter is an algorithm

trying to learn the 𝐹𝑌 -optimal (constant) pricing function. As a result of the curse from the extra

dimensionality, the former is more demanding in the sample size than the latter. On the other hand,

in terms of generating revenue, the true-distribution optimal 3PD strategy is at least as good as the

true-distribution optimal uniform pricing strategy. This trade-off suggests that, even if 𝑋 contains

useful information about 𝑌 , the 𝐾-markets ERM strategy based on a random sample can be revenue

inferior to the uniform ERM strategy when the sample size 𝑛 is not large enough, and vice versa.

To verify these potential implications, we conduct several numerical studies. In particular, we

calculate the revenues of the 𝐾-markets ERM and the uniform ERM strategies based on a real-world

data set from eBay auctions and two simulated data sets. Our numerical results illustrate the afore-

mentioned trade-off. When the sample size is small, the uniform ERM strategy can generate higher

expected revenue than the 𝐾-markets ERM strategy. As the sample size grows, the 𝐾-market ERM

strategy (the uniform ERM strategy) gets closer to the true-distribution optimal 3PD strategy (re-

spectively, the true-distribution optimal uniform pricing strategy). The slower rate of convergence in
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the revenue from the 𝐾-markets ERM strategy (in contrast to the faster rate of convergence in the

revenue from the uniform ERM strategy) is dominated by the benefit of price discrimination (based

on 𝐹𝑌,𝑋) over uniform pricing (based on 𝐹𝑌 ). Consequently, the revenue of the 𝐾-markets ERM strat-

egy overtakes that of the uniform ERM strategy when the sample size becomes sufficiently large and

𝑋 contains sufficient information about 𝑌 .

The key takeaways from this paper are summarized here. First, no sample-based 3PD strategy is

able to escape from the curse of dimensionality, shown by our information theoretic lower bounds.

Second, absent uncertainty regarding the underlying probability laws, third-degree price discrim-

ination is at least as good as uniform pricing in generating revenue. In contrast, the comparison

of the revenue performance between the 𝐾-markets ERM and the uniform ERM strategies is am-

biguous overall. This finding is in the nature of statistical learning under uncertainty: a curse of

dimensionality, but also other small sample complications.2 Empirical revenue maximization is not

free of these issues. Ultimately, this paper poses a challenging open question of whether there exist

some 𝑛 < �̄� < ∞ such that for any 𝑛 ∈ [𝑛, �̄�] and distribution in the class defined in this paper, the

𝐾-markets ERM strategy (for any 𝐾 > 1) is always revenue-inferior to the uniform ERM strategy.

1.1 Related literature

Complexity measures and information theoretic lower bounds. Information theoretic

lower bounds and sample complexity are important notions in machine learning. Both aim to char-

acterize learnability, i.e., how easy it is to learn an unknown object of interest (in our context, the

true-distribution optimal 3PD strategy) from data where the uncertainty arises. Sample complexity

derives the rate at which the sample size needs to grow to guarantee a desired learning accuracy.

Information theoretic lower bound derives a lower bound as a function of the sample size on the

learning error (in our context, the revenue deficiency) in the worst case. Sample complexity and

information theoretic lower bounds are intrinsically tied to the complexity or size of the underlying

function class of interest. Vapnik-Chervonenkis (VC) dimensions, shattering dimensions, and metric

entropy (such as the cardinality of packing sets) are popular measures of complexity in machine

learning. There have been a number of innovative applications of VC dimensions or shattering di-

mensions in economic theory and algorithmic economics. Together with the Probably Approximately

2Specifically, there exists a distribution 𝐹𝑌 where the revenue of the uniform ERM strategy is worse with two observations
than with one; see Babaioff, Gonczarowski, Mansour and Moran (2018). We illustrate in Section 6 that this seemingly
counter-intuitive result highlights the difficulty of establishing general comparative results with very small sample size and
sheds some light on the comparison of the revenue performance of the 𝐾-markets ERM strategy with 𝐾 = 1 vs 𝐾 = 2 in the
case of 𝑛 = 2.
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Correct (PAC) framework, they are used to study the complexity of the classes of demand and utility

functions (Beigman and Vohra, 2006; Balcan, Daniely, Mehta, Urner and Vazirani, 2014), k-demand

buyer’s valuation (Zhang and Conitzer, 2020), theories of choices (Basu and Echenique, 2020), pref-

erence functions (Chambers, Echenique and Lambert, 2021, 2023), as well as the resulting learn-

ability from data. VC dimension is useful for deriving sample complexity bounds concerning discrete

function sets and finite dimensional vector spaces, and shattering dimension is useful for certain real

functions.

From the theory of machine learning, when a class has infinite VC or shattering dimensions, this

class is not PAC learnable. For example, a collection of sinusoids have subgraphs with infinite VC

dimension. The max-min expected utility model with at least three states of the world has infinite

VC dimension (Basu and Echenique, 2020). The class of demand functions has infinite shattering

dimension (Beigman and Vohra, 2006). Nonetheless, the notion of "learnability" can be generalized

using a different type of complexity analysis that gives rise to our information theoretic lower bound

in the 3PD problem. This type of analysis is built upon the notion of packing sets, along with tools

from information theory. In particular, packing sets are useful for studying classes with an infinite

number of elements (see Kolmogorov and Tikhomirov (1959) and Wainwright (2019)). This is the

case for our 3PD problem as we try to learn an optimal pricing function of the covariate (an infinitely-

dimensional parameter) and bound the deficiency in the expected revenue, which concerns the entire

pricing function at all covariate values.

Prior-independent mechanism design. Most of the classic monopoly pricing literature as-

sumes a known distribution of valuations (and covariates).3 More recently, some papers (e.g., those

surveyed in Carroll, 2019) studied “prior”-independent mechanism design.⁴ The main focus of that

literature is on deriving a robustly optimal mechanism in the absence of both “prior” and data. In

particular, Bergemann and Schlag (2008, 2011) derive the minimax-regret uniform pricing strategy

in closed form; that is, the strategy that guarantees the smallest deficiency in revenue relative to the

known distribution case. Like Bergemann and Schlag (2008, 2011), we study the revenue deficien-

cies, but in contrast, we assume the availability of data and focus on the (inevitable) information-

theoretic limitations of any data-based pricing strategies and the achievability of the limitation.

This paper is inspired by the literature that studies approximately optimal “prior”-independent

3See also Segal (2003) for a study of optimal multi-unit auctions where the seller has a probabilistic belief about the
valuation distribution of the i.i.d. buyers.

⁴Here, “prior” distribution refers to the seller’s prior belief about buyers’ valuations and is often taken to be the true
distribution.
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mechanism design, in particular monopoly pricing with a single buyer.⁵ This literature assumes that

the seller has access to a random sample of i.i.d. {𝑌𝑖}𝑛𝑖=1 drawn from 𝐹𝑌 and proposes variants of the

uniform ERM strategy to derive the revenue guarantee in relation to that from the true-distribution

optimal uniform pricing strategy. There are two types of analyses in this literature. The first one

focuses on the guarantees for the specific case of 𝑛 = 1 or 𝑛 = 2 (Babaioff et al., 2018; Allouah,

Bahamou and Besbes, 2023). The second one (e.g., Huang, Mansour and Roughgarden, 2018) es-

tablishes “sample complexity bounds” such that the uniform ERM variants achieve a (1 − 𝜖) fraction

guarantee when the sample size grows at a rate depending on 𝜖, and also derives the rate at which

the sample size needs to grow (as a function of 𝜖) for any data-based uniform pricing strategies to

obtain a given (1 − 𝜖) fraction guarantee. Allouah, Bahamou and Besbes (2022) involves both types

of analyses.

In this paper, we ask the related question, how fast the revenue deficiency decays as a function of

𝑛, and provide an answer using information-theoretic lower bounds (independent of algorithms) and

upper bounds with respect to specific algorithms in the worst case scenarios.⁶ The main difference

with the majority of the data-based literature is that, we study third-degree price discrimination

(3PD) with a continuous covariate and compare the revenue performance of data-based 3PD and

uniform pricing strategies.

To understand why the 3PD problem in our context is more challenging than the uniform pricing

problem, note that fundamentally, the latter tries to learn the constant optimal pricing function

(a scalar parameter) while the former tries to learn an optimal pricing function of the covariate

(an infinitely-dimensional parameter), where the deficiency in the expected revenue concerns the

entire pricing function at all covariate values. Our framework allows us to tackle several challenging

aspects of the 3PD problem, which might be difficult to analyze with the toolkit in the existing pricing

literature. We describe one example below.

Somewhat related, Devanur, Huang and Psomas (2016) studies sample complexity of optimal

pricing with “side information”. In their “signals model” (Sections 5.1 and 5.3), there is a covariate

(signal) 𝑋 ∈ [0, 1], and the seller can condition the data-based reserve price on the covariate. For the

single-buyer case (which would correspond to our 3PD problem), they derive upper and lower sample

⁵There is a less related literature that studies optimal auctions; see, e.g., Cole and Roughgarden (2014); Dhangwatnotai,
Roughgarden and Yan (2015); Fu, Immorlica, Lucier and Strack (2015); Guo, Huang and Zhang (2019); Fu, Haghpanah,
Hartline and Kleinberg (2021).

⁶A large literature studies data-based auctions by focusing on guarantees for revenue deficiencies (instead of fractions),
such as how the revenues from the data-based strategies converge in probability to the true-distribution benchmark, e.g.,
Baliga and Vohra (2003); Goldberg, Hartline, Karlin, Saks and Wright (2006); Gonçalves and Furtado (2024). This line of
work does not consider the optimal rates of convergence or optimal sample size requirements.
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complexity bounds. Importantly, they assume that the true joint distribution 𝐹𝑌,𝑋 has the following

property: larger values of 𝑋 are associated with larger values of 𝑌 in the sense of first-order stochastic

dominance of conditional distributions. In contrast, our 3PD setup imposes no assumptions about the

relationship between the covariate 𝑋 and the valuation 𝑌 ; meanwhile, our proposed 𝐾-market ERM

strategy learns the relationship from the data. Moreover, our 𝐾-market ERM strategy attains the

optimal rate of convergence in revenue deficiency (as described before), while the upper and lower

bounds in Devanur et al. (2016) have different rates, and hence, the optimal sample size requirement

is unclear.

2 Setup

The seller is selling an item to a buyer. Let 𝑌 ∈ [0, 1] be the valuation (i.e., willingness to pay) of the

buyer, and 𝑋 the covariate (such as a characteristic) associated with the buyer. The joint distribution

of (𝑌, 𝑋) is denoted by 𝐹𝑌,𝑋 . We assume that 𝑋 is supported on a bounded interval, and without loss

of generality, we take the interval to be [0, 1].⁷

Given a covariate value, the seller wants to set a price according to a mapping from the covariate

to a set of prices. We use D to denote the set of all pricing functions:

D ≡ {𝑝 : [0, 1] → [0, 1], measurable}.

For a generic pricing strategy 𝑝 ∈ D, the price depends on the covariate value 𝑥. This scheme falls

in the realm of third-degree price discrimination (3PD). Uniform pricing can be viewed as a special

case where the price is the same for all covariate values. We use U to denote the set of all uniform

pricing functions:

U ≡ {𝑝 ∈ D : 𝑝 is a constant function}.

To lighten the notation, we express 𝑝 ∈ U as a scalar rather than a function for the uniform pricing

problem.

Let 𝐹𝑌 |𝑋 be the conditional CDF and 𝑓𝑋 the marginal density function. Given a price 𝑦 ∈ [0, 1]

⁷The assumption that 𝑌, 𝑋 ∈ [0, 1] is made merely for simplicity. First of all, our results in Sections 3 and 4 hold for
general bounded supports. Second, the precise knowledge of the support boundaries is unnecessary because they can be
readily estimated using extremum order statistics. The estimator converges at a superconsistent rate of 𝑛−1 (see, e.g., Hirano
and Porter, 2003), significantly faster than the convergence of revenue deficiency that we show in Section 3. Therefore, in
our analysis, the estimation error resulting from the unknown support is negligible. We are grateful to a referee for raising
this discussion.
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and a covariate value 𝑥 ∈ [0, 1], there are 1 − 𝐹𝑌 |𝑋 (𝑝|𝑥) buyers whose valuation is above the price.

The revenue generated from these buyers is

𝑟(𝑦, 𝑥, 𝐹𝑌,𝑋 ) ≡ (1 − 𝐹𝑌 |𝑋 (𝑦 |𝑥))𝑦, (1)

and the expected revenue for a pricing function 𝑝 is

𝑅(𝑝, 𝐹𝑌,𝑋 ) ≡
∫ 1

0
𝑟(𝑝(𝑥), 𝑥, 𝐹𝑌,𝑋 ) 𝑓𝑋 (𝑥)𝑑𝑥.

In various places of the rest of the paper, we will slightly abuse the notation and denote 𝑟(𝑝, 𝑥) ≡

𝑟(𝑝(𝑥), 𝑥) when 𝑝 is a pricing function and also write 𝑟(𝑦, 𝑥) = 𝑟(𝑦, 𝑥, 𝐹𝑌,𝑋 ) for brevity when 𝐹𝑌,𝑋

is clear from the context. In the special case where the pricing strategy is uniform (i.e., 𝑝 ∈ U), the

revenue only depends on the marginal distribution 𝐹𝑌 :

𝑅(𝑝, 𝐹𝑌,𝑋 ) = 𝑝P(𝑌 ≥ 𝑝) = 𝑝(1 − 𝐹𝑌 (𝑝)), 𝑝 ∈ U.

The true-distribution optimal 3PD strategy 𝑝∗𝐷 is the one that maximizes the revenue:

𝑅(𝑝∗𝐷, 𝐹𝑌,𝑋 ) = sup
𝑝∈D

∫ 1

0
𝑟(𝑝(𝑥), 𝑥, 𝐹𝑌,𝑋 ) 𝑓𝑋 (𝑥)𝑑𝑥.

In a similar fashion, we denote 𝑝∗𝑈 as the true-distribution optimal uniform pricing strategy such that

𝑅(𝑝∗𝑈 , 𝐹𝑌 ) = 𝑅(𝑝∗𝑈 , 𝐹𝑌,𝑋 ) = sup
𝑝∈U

𝑝(1 − 𝐹𝑌 (𝑝)).

Note that 𝑝∗𝐷 depends on 𝐹𝑌,𝑋 and 𝑝∗𝑈 depends on 𝐹𝑌 .

In terms of generating revenue, the classic pricing theory shows that 3PD is at least as good as

uniform pricing when the joint distribution 𝐹𝑌,𝑋 is known to the seller. In this case, we can solve

analytically or numerically for the optimal pricing strategies 𝑝∗𝐷 and 𝑝∗𝑈 . Since U is contained in D,

𝑝∗𝐷 must achieve a (weakly) better revenue than 𝑝∗𝑈 . Intuitively, when 𝑌 is correlated with 𝑋 , 𝑝∗𝐷

utilizes the information in 𝑋 .

Now suppose that the seller knows neither 𝐹𝑌,𝑋 nor 𝐹𝑌 , but instead observes a random sample of

data ≡ {(𝑌𝑖, 𝑋𝑖), 1 ≤ 𝑖 ≤ 𝑛} drawn from 𝐹𝑌,𝑋 , or data𝑌 ≡ {𝑌𝑖, 1 ≤ 𝑖 ≤ 𝑛} from 𝐹𝑌 , and wants to

construct a pricing strategy based on the sample. The following assumption is used throughout this

paper.
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Assumption 1. data and data𝑌 consist of i.i.d. draws from 𝐹𝑌,𝑋 and 𝐹𝑌 , respectively.

The following assumption is used to establish the results concerning our 3PD problem. Instead of

a single known joint distribution 𝐹𝑌,𝑋 , there is a class F of unknown distributions which are deemed

possible and our data-based pricing strategies can be evaluated within this class. The functions in F

satisfy several smoothness and regularity conditions stated below.

Assumption 2. Any distribution function in the set F satisfies the following conditions.

(i) (Lipschitz continuity) There exists 𝐶0 ∈ (0,∞) such that, for any 𝑦, 𝑦′, 𝑥 ∈ [0, 1], the conditional

density 𝑓𝑌 |𝑋 satisfies

| 𝑓𝑌 |𝑋 (𝑦 |𝑥) − 𝑓𝑌 |𝑋 (𝑦′ |𝑥) | ≤ 𝐶0 |𝑦 − 𝑦′ |.

(ii) (Strong concavity) There exists 𝐶∗ > 0 such that the revenue function 𝑟(𝑦, 𝑥) ≡ 𝑦(1− 𝐹𝑌 |𝑋 (𝑦 |𝑥))

is strictly concave with second-order derivative

−2 𝑓𝑌 |𝑋 (𝑦 |𝑥) − 𝑦
𝜕

𝜕𝑦
𝑓𝑌 |𝑋 (𝑦 |𝑥) ≤ −𝐶∗, a.e. (2)

(iii) (Interior solution) For each 𝑥 ∈ [0, 1], the optimal price is an interior solution; that is, 𝑝∗𝐷 (𝑥; 𝐹𝑌,𝑋 ) ∈

(0, 1).

(iv) (Differentiability) The conditional distribution function 𝑓𝑌 |𝑋 (𝑦 |𝑥) is continuously differentiable in

(𝑥, 𝑦) in a neighborhood of the curve {(𝑥, 𝑝∗𝐷 (𝑥; 𝐹𝑌,𝑋 )) : 𝑥 ∈ [0, 1]}.

(v) (Boundedness) The functions ����2 𝑓𝑌 |𝑋 (𝑦 |𝑥) + 𝑦
𝜕

𝜕𝑦
𝑓𝑌 |𝑋 (𝑦 |𝑥)

���� (3)

and
���� 𝜕𝜕𝑥 𝐹𝑌 |𝑋 (𝑦 |𝑥) + 𝑦

𝜕

𝜕𝑥
𝑓𝑌 |𝑋 (𝑦 |𝑥)

���� (4)

are bounded from above by 𝐶 ∈ (0, ∞) a.e.

(vi) (Marginal density) The marginal density 𝑓𝑋 is bounded from above by 𝐶
′ ∈ (0, ∞) and bounded

away from zero; that is, 𝑓𝑋 ≥ 𝐶 > 0.

Part (i) requires the conditional density function to be sufficiently smooth. The partial derivative
𝜕
𝜕𝑦
𝑓𝑌 |𝑋 (𝑦 |𝑥) is well defined almost everywhere because 𝑓𝑌 |𝑋 is Lipschitz continuous and hence ab-

solutely continuous. Part (iii) ensures that the first-order condition holds for the optimal price. Part
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(iv) ensures that the optimal pricing function 𝑝∗𝐷 (𝑥; 𝐹𝑌,𝑋 ) is sufficiently smooth in 𝑥. Part (v) requires

the partial derivatives of the revenue to be bounded. Part (vi) ensures that the covariate does not

take vanishing or dominating values.

Under part (ii), the optimal price is well defined. Part (ii) is a standard assumption in the optimal

auctions/pricing literature also known as regularity (Myerson, 1981), which is a so-called “strong

concavity" condition from machine learning theory. It is well known that any distribution 𝐹 with the

monotone hazard rate satisfies regularity.

Analogously, the following assumption is used to establish the results for the uniform pricing

problem which concerns a class F 𝑈 of unknown marginal distributions that are deemed possible.

Assumption 3. Let F 𝑈 be the set of marginal distributions such that any 𝐹𝑌 ∈ F 𝑈 satisfies parts (i),

(ii), and (v)(3) of Assumption 2 with 𝑓𝑌 |𝑋 (𝑦 |𝑥) replaced by 𝑓𝑌 (𝑦). Moreover, the optimal price is an

interior solution; that is, 𝑝∗𝑈 (𝐹𝑌 ) ∈ (0, 1). The distribution function 𝑓𝑌 (𝑦) is continuously differentiable

in 𝑦 in a neighborhood of 𝑝∗𝑈 (𝐹𝑌 ).

Remark. By defining F 𝑈 in the way above, note that the marginal distribution associated with any

joint distribution satisfying (i), (ii) and (v)(3) of Assumption 2 satisfies the counterpart conditions in

Assumption 3.

Notation. For functions 𝑓 (𝑛) and 𝑔(𝑛), we write 𝑓 (𝑛) ≳ 𝑔(𝑛) to mean that 𝑓 (𝑛) = Ω(𝑔(𝑛)).

Similarly, we write 𝑓 (𝑛) ≲ 𝑔(𝑛) to mean that 𝑓 (𝑛) = 𝑂(𝑔(𝑛)). The notation 𝑓 (𝑛) ≍ 𝑔(𝑛) means

that 𝑓 (𝑛) = Θ(𝑔(𝑛)); that is, 𝑓 (𝑛) = Ω(𝑔(𝑛)) and 𝑓 (𝑛) = 𝑂(𝑔(𝑛)). As a general rule for this paper,

the various 𝑐 and 𝐶 constants denote positive universal constants that are independent of the sample

size 𝑛, and may vary from place to place. For functions 𝑓 and 𝑔, the unweighted 𝐿2 norm (𝐿2 as the

short form) ∥ 𝑓 − 𝑔∥2 ≡
(∫ 1

0 [ 𝑓 (𝑥) − 𝑔 (𝑥)]2 𝑑𝑥
) 1

2
.

3 The 𝐾-markets ERM strategy

In this section, we propose the 𝐾-markets ERM strategy, and compare its revenue with that of the

true-distribution optimal 3PD strategy. In particular, we provide upper bounds for the pointwise

and expected revenue deficiency as a function of 𝑛. We also compare the revenue of the 1-market

(uniform) ERM strategy with that of the true-distribution uniform optimum, and provide an upper

bound on the revenue deficiency.
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3.1 Price discrimination

We propose the “𝐾-markets” ERM strategy for the data-based 3PD problem with a continuous covari-

ate:

1. Divide the individuals into 𝐾 (≡ 𝐾𝑛) markets by splitting the covariate space [0, 1] into 𝐾

equally spaced intervals

𝐼𝑘 ≡ [(𝑘 − 1)/𝐾, 𝑘/𝐾], 𝑘 = 1, . . . , 𝐾.

2. For each market 𝐼𝑘, based on the empirical distribution of {𝑌𝑖 : 𝑋𝑖 ∈ 𝐼𝑘},

𝐹𝑘 (𝑦) =
1
𝑛𝑘

∑︁
𝑖 : 𝑋𝑖∈ 𝐼𝑘

1{𝑌𝑖 ≤ 𝑦, 𝑋𝑖 ∈ 𝐼𝑘} (5)

where 𝑛𝑘 is the cardinality of {𝑖 : 𝑋𝑖 ∈ 𝐼𝑘}, solve for the optimal price �̂�𝐷,𝑘 as follows,

�̂�𝐷,𝑘 ≡ argmax
𝑝∈[0,1]

𝑝(1 − 𝐹𝑘 (𝑝)).

The resulting pricing function is a piece-wise function

�̂�𝐷 (𝑥; data) = �̂�𝐷,𝑘, 𝑥 ∈ 𝐼𝑘.

If the 𝑘th market does not contain any observation, then simply choose 𝑝𝐷,𝑘 to be any arbitrary

number in [0, 1]. Doing so has no impact on the asymptotic guarantee implied by the following

theorem. For practical implementation, the desired choice may change from context to context,

depending on the seller’s specific knowledge about a buyer, and the related analysis would be

beyond the scope of this paper.

Theorem 1. Suppose Assumptions 1 and 2 hold. There exists a positive universal constant 𝑐1 ∈ (0,∞)

such that the following results hold.⁸

(i) At a given covariate value 𝑥0, the revenue generated by the 𝐾-markets ERM strategy 𝑝𝐷 satisfies

sup
𝐹𝑌,𝑋 ∈F

(
𝑟(𝑝∗𝐷, 𝑥0) − E𝐹𝑌,𝑋 [𝑟( �̂�𝐷 (data), 𝑥0)]

)
≲ 1/𝐾2 + (𝐾/𝑛)2/3

+ exp
(
−
𝑛𝑐21

8𝐾2 + log 𝐾
)
, 𝑥0 ∈ 𝐼𝑘,

⁸For example, the constant 𝑐1 = 1 when 𝑋 ∼ 𝑈 [0, 1].
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where the expectation E𝐹𝑌,𝑋 is taken with respect to data ∼ 𝐹𝑌,𝑋 and 𝐾 satisfies 𝑐1
𝐾
≤ 1

2 ; moreover,

(𝐾/𝑛)2/3 + 1/𝐾2 ≍ 𝑛−1/2 when 𝐾 ≍ 𝑛1/4,

in which case,

sup
𝐹𝑌,𝑋 ∈F

(
𝑟(𝑝∗𝐷, 𝑥0) − E𝐹𝑌,𝑋 [𝑟( �̂�𝐷 (data), 𝑥0)]

)
≲ 𝑛−1/2.

(ii) The expected revenue generated by the 𝐾-markets ERM strategy �̂�𝐷 satisfies

sup
𝐹𝑌,𝑋 ∈F

(
𝑅(𝑝∗𝐷, 𝐹𝑌,𝑋 ) − E𝐹𝑌,𝑋

[
𝑅(𝑝𝐷 (𝑑𝑎𝑡𝑎), 𝐹𝑌,𝑋 )

] )
≲ 1/𝐾2 + (𝐾/𝑛)2/3

+ exp
(
−
𝑛𝑐21

8𝐾2 + log 𝐾
)

where the expectation E𝐹𝑌,𝑋 is taken with respect to data ∼ 𝐹𝑌,𝑋 and 𝐾 satisfies 𝑐1
𝐾
≤ 1

2 ; moreover,

(𝐾/𝑛)2/3 + 1/𝐾2 ≍ 𝑛−1/2 when 𝐾 ≍ 𝑛1/4,

in which case,

sup
𝐹𝑌,𝑋 ∈F

(
𝑅(𝑝∗𝐷, 𝐹𝑌,𝑋 ) − E𝐹𝑌,𝑋

[
𝑅(𝑝𝐷 (𝑑𝑎𝑡𝑎), 𝐹𝑌,𝑋 )

] )
≲ 𝑛−1/2.

Remark. The term exp
(
− 𝑛𝑐21

8𝐾2 + log 𝐾
)
is technical and comes from a binomial tail bound on 𝑛𝑘 in

(5); see (22) and the following derivation in the appendix for more detail. Suppose 8𝐾2 = 𝑛1−𝑐𝑐21 with

𝑐 ∈ (0, 1) so that 𝑛𝑐21
8𝐾2 = 𝑛𝑐 (for example, 𝑐 = 1

2 which gives 𝐾 ≍ 𝑛1/4 as in the theorem above). Then,

there exists some positive universal constant 𝑐0 ∈ (0,∞) such that

exp
(
−
𝑛𝑐21

8𝐾2 + log 𝐾
)
= exp(−𝑐0𝑛𝑐) as 𝑛 → ∞.

In this case, note that exp(−𝑐0𝑛𝑐) = 𝑜
(
(𝐾/𝑛)2/3

)
and the term exp

(
− 𝑛𝑐21

8𝐾2 + log 𝐾
)
can be dropped

from the bounds in Theorem 1.

Note that having an upper bound on the supremum of the revenue deficiency immediately implies

that this upper bound holds for every distribution 𝐹𝑌,𝑋 ∈ F . Moreover, the revenue of the 𝐾-markets

ERM strategy is guaranteed to have a convergence rate no greater than the provided upper bound,

in particular 𝑛−1/2 when 𝐾 ≍ 𝑛1/4.

The interpretation of our results is as follows. The deficiency in revenues comes from two sources.

12



The first part (𝐾/𝑛)2/3 is related to the “variance”, which is due to the randomness of the sample,

making 𝐹𝑘 (·) different from its expectation. The second part 1/𝐾2 is related to the approximation

error due to the fact that we set the same price for all covariate values in the market 𝐼𝑘. Note that

more discrimination (larger 𝐾) increases the “variance” but reduces the approximation error, and

selecting 𝐾 ≍ 𝑛1/4 minimizes the upper bound on revenue deficiency.

To show (𝐾/𝑛)2/3, we use a peeling argument and other tools from empirical process theory

(Alexander, 1987; van der Vaart and Wellner, 1996; van de Geer, 2000). Even though this toolkit

is widely used in mathematical statistics and theoretical machine learning, to our knowledge, it

has not been introduced to the data-based pricing literature. Showing 1/𝐾2 requires controlling

|𝑝𝑘 − 𝑝∗𝐷 (𝑥0) |, where �̃�𝑘 ≡ argmax𝑝∈[0,1] 𝑝P(𝑌 > 𝑝, 𝑋 ∈ 𝐼𝑘) and 𝑥0 ∈ 𝐼𝑘. Using the implicit function

theorem, we show that, (i) 𝑝∗𝐷 (𝑥) is Lipschitz continuous on [0, 1], and (ii) �̃�𝑘 is a weighted average

of 𝑝∗𝐷 (𝑥), 𝑥 ∈ 𝐼𝑘. These facts imply that |𝑝𝑘 − 𝑝∗𝐷 (𝑥0) |𝑠 ≲ 1/𝐾𝑠 for any fixed 𝑠 ≥ 1.

3.2 Uniform pricing

Based on the empirical distribution of {𝑌𝑖}𝑛𝑖=1

𝐹(𝑦) = 1
𝑛

𝑛∑︁
𝑖=1

1{𝑌𝑖 ≤ 𝑦},

the uniform ERM strategy simply solves for the optimal price 𝑝𝑈 as follows:

�̂�𝑈 (data𝑌 ) ≡ argmax
𝑝∈[0,1]

𝑝(1 − 𝐹(𝑝)).

We have the following result as a corollary of Theorem 1.

Corollary 1. Let Assumptions 1 and 3 hold. The revenue generated by �̂�𝑈 satisfies

sup
𝐹𝑌 ∈F𝑈

(
𝑅(𝑝∗𝑈 , 𝐹𝑌 ) − E𝐹𝑌 [𝑅(𝑝𝑈 (data𝑌 ), 𝐹𝑌 )]

)
≲ 𝑛−2/3

where the expectation E𝐹𝑌 is taken with respect to data𝑌 ∼ 𝐹𝑌 .

The 3PD ERM problem with a continuous covariate is more delicate than the uniform ERM prob-

lem. The latter does not involve a (continuous) covariate and hence incurs no approximation error.

Contrasting Corollary 1 with Theorem 1, one can see that the only source of revenue deficiency in

the uniform ERM strategy comes from the “variance”.
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3.3 Welfare analysis

From the perspective of a policy maker, it is also of interest to study the welfare under the specific

pricing strategies in Sections 3.1 and 3.2. In this section, we derive the rate at which the welfare gen-

erated by these data-based pricing strategies converges to the welfare generated by their respective

true-distribution optimal strategies.

We assume that there is no production cost for the seller, and there is no utility for the seller if

the item is not sold. These assumptions are typically imposed in a benchmark model in the auction

and pricing literature. For any pricing strategy 𝑝 ∈ D, its welfare can be written as

𝑊 (𝑝, 𝐹𝑌,𝑋 ) ≡ E𝐹𝑌,𝑋 [𝑌1{𝑌 > 𝑝(𝑋)}].

Theorem 2.

(i) Let Assumptions 1 and 2 hold. Take 𝐾 ≍ 𝑛1/4 in the “𝐾-markets” ERM strategy. Then

sup
𝐹𝑌,𝑋 ∈F

E𝐹𝑌,𝑋 |𝑊 ( �̂�𝐷 (data), 𝐹𝑌,𝑋 ) −𝑊 (𝑝∗𝐷, 𝐹𝑌,𝑋 ) | ≲ 𝑛−1/4.

(ii) Let Assumptions 1 and 3 hold. Then

sup
𝐹𝑌 ∈F𝑈

E𝐹𝑌 |𝑊 ( �̂�𝑈 (data𝑌 ), 𝐹𝑌 ) −𝑊 (𝑝∗𝑈 , 𝐹𝑌 ) | ≲ 𝑛−1/3.

4 Information-theoretic limitation of data-based pricing

The revenue deficiency in the 𝐾-markets ERM strategy and uniform ERM strategy in Section 3 is

𝑂
(
𝑛−

2
2+2

)
and 𝑂

(
𝑛−

2
2+1

)
, respectively. Note the “2” and “1” in the second terms of the denomina-

tors of the exponents in these upper bounds, where the “2 − 1 = 1” difference is a result of the

extra dimension from the covariate 𝑋 in the 3PD problem. Without any lower bounds, the upper

bounds alone are unable to confirm that the curse of the extra dimensionality necessarily exists and

is unimprovable.

In this section, we establish lower bounds to show that no 3PD strategy is able to escape the curse

of the extra dimensionality and hence the 𝐾-markets ERM strategy is not an exception. Our lower

bounds also conclude the optimality of the convergence rates 𝑛−1/2 and 𝑛−2/3 from Section 3 within

the respective realms of 3PD and uniform pricing. Therefore, the dependence of the extra dimension

due to 𝑋 in our 3PD problem cannot be improved. As discussed in the introduction, rate optimality
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speaks to the optimality or efficiency of the growth requirement of the sample size.

For the lower bounds, it makes little sense to consider a framework recommending the data-

based pricing strategies that are only good for a single distribution. For any fixed joint distribution

𝐹𝑌,𝑋 , there is always a trivial data-based pricing strategy: simply ignore the data and select the

optimal pricing scheme given 𝐹𝑌,𝑋 . For this particular distribution, the revenue deficiency is zero.

However, such a pricing strategymay perform poorly under other distributions of (𝑌, 𝑋). One solution

to circumvent this issue is to compute the worst revenue deficiency over the class F of possible

distributions.

To be specific, we consider the minimax difference in the revenues at a given covariate value 𝑥0

for 3PD,

R𝐷
𝑛 (𝑥0;F ) ≡ inf

�̌�𝐷∈Ď
sup

𝐹𝑌,𝑋 ∈F

(
𝑟(𝑝∗𝐷, 𝑥0, 𝐹𝑌,𝑋 ) − E𝐹𝑌,𝑋

[
𝑟(𝑝𝐷 (data), 𝑥0, 𝐹𝑌,𝑋 )

] )
,

and the minimax difference in the expected revenues for 3PD,

R𝐷
𝑛 (F ) ≡ inf

�̌�𝐷∈Ď
sup

𝐹𝑌,𝑋 ∈F

(
𝑅(𝑝∗𝐷, 𝐹𝑌,𝑋 ) − E𝐹𝑌,𝑋 [𝑅( �̌�𝐷 (data), 𝐹𝑌,𝑋 )]

)
,

where the expectation E𝐹𝑌,𝑋 is taken with respect to data ∼ 𝐹𝑌,𝑋 and 𝑅(·, ·) is defined in Section 2. In

the definitions above, �̌�𝐷 (data) is a pricing function in D and �̌�𝐷 (𝑥0; data) corresponds to its value

at a covariate 𝑥0 ∈ [0, 1]; moreover, Ď is the set of all data-based 3PD functions 𝑝𝐷.

Similarly, for uniform pricing, we consider

R𝑈
𝑛 (F 𝑈) ≡ inf

𝑝𝑈 ∈Ǔ
sup
𝐹𝑌 ∈F𝑈

(
𝑅(𝑝∗𝑈 , 𝐹𝑌 ) − E𝐹𝑌 [𝑅(𝑝𝑈 (data𝑌 ), 𝐹𝑌 )]

)
,

where the expectation E𝐹𝑌 is taken with respect to data𝑌 ∼ 𝐹𝑌 . In the definition above, 𝑝𝑈 (data𝑌 ) is

a uniform pricing function inU and 𝑝𝑈 (𝑥0; data𝑌 ) corresponds to its value at a covariate 𝑥0 ∈ [0, 1];

moreover, Ǔ is the set of all data-based uniform pricing functions �̌�𝑈 .

In what follows, we derive a lower bound for R𝐷
𝑛 (𝑥0;F ), R𝐷

𝑛 (F ) and R𝑈
𝑛 (F 𝑈), respectively.

These lower bounds are algorithm independent and reveal the fundamental information-theoretic

limitation of data-based pricing strategies.
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4.1 Price discrimination

The first theorem presents a lower bound for the revenue difference at a given covariate value 𝑥0,

between any data-based 3PD strategy and the true-distribution optimal 3PD strategy under the worst-

case distribution by taking the supremum over F .

Theorem 3 (Lower bounds for 3PD, deficiency in pointwise revenue). Let Assumption 1 hold. For

any F satisfying Assumption 2 with 𝐶∗ ∈ (0, 2) in (2), the minimax difference in the revenues at a

given covariate value 𝑥0 is bounded from below as

R𝐷
𝑛 (𝑥0;F ) ≳ 𝑛−1/2, 𝑥0 ∈ (0, 1),

if 𝑥0𝑛1/4 ≥ 𝑐′ and (1 − 𝑥0)𝑛1/4 ≥ 𝑐′′ for some positive universal constants 𝑐′ and 𝑐′′ (independent of 𝑛

and 𝑥0).

The second theorem presents a lower bound for the difference in expected revenues between

any data-based 3PD strategy and the true-distribution optimal 3PD strategy under the worst-case

distribution by taking the supremum over F .

Theorem 4 (Lower bounds for 3PD, deficiency in expected revenue). Let Assumption 1 hold. For any

F satisfying Assumption 2 with 𝐶∗ ∈ (0, 2) in (2), the minimax difference in the expected revenues is

bounded from below as

R𝐷
𝑛 (F ) ≳ 𝑛−1/2.

Remark. By requiring 𝐶∗ ∈ (0, 2) in the theorems above, we allow 𝑟(𝑦, 𝑥) associated with an 𝑓𝑌 |𝑋 to

have a second derivative bounded from above by a number smaller than or equal to −2. To motivate

the use of 𝐶∗ ∈ (0, 2), suppose 𝑓𝑌 |𝑋 = 𝑓𝑌 (that is, the valuation and covariate are independent of

each other) and 𝑓𝑌 is the uniform distribution on [0, 1], 𝑈 [0, 1]. In this case, the revenue function

equals 𝑅(𝑦) = 𝑦(1− 𝑦), which is twice-differentiable with second-order derivative 𝑅′′(𝑦) = −2 for any

𝑦 ∈ [0, 1]. In our proof for the lower bounds, 𝑈 [0, 1] is used as the benchmark distribution.

Theorems 3 and 4 state that, there is an inevitable deficiency, Ω(𝑛−1/2), in the revenue from any

data-based 3PD strategy relative to the revenue from the true-distribution optimal 3PD strategy in

the worst case by taking the supremum over F .

Recalling Theorem 1 on the convergence rate 𝑂(𝑛−1/2) of the revenue from the 𝐾-markets ERM

strategy, despite its simplicity, Theorems 3 and 4 imply that the revenue from this strategy achieves
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the optimal rate of convergence (as a function of 𝑛) to the revenue from the true-distribution optimal

3PD strategy uniformly over F . In other words, more sophisticated pricing strategies (e.g., with

partitioning the covariate space based on observed frequencies) cannot improve upon the 𝐾-market

ERM algorithm asymptotically.

To prove the lower bounds, we convert the problem into a classification task that tries to dis-

tinguish between distributions that are sufficiently close to each other but yield significantly dif-

ferent optimal prices. This technique was used in Huang et al. (2018); there, the bound concerns

data-based uniform pricing strategies, which only require constructing two distributions and sim-

pler techniques. To establish the lower bound in Theorem 4, two distributions are far from being

enough. The reason is that, unlike the uniform pricing problem where the optimal pricing function

is a scalar parameter, the 3PD problem tries to learn an optimal pricing function of the covariate

(an infinitely-dimensional parameter) and the deficiency in the expected revenue concerns the entire

pricing function at all covariate values. The notion of packing sets in Kolmogorov and Tikhomirov

(1959) and the Gilbert-Varshamov bound from coding theory are useful ingredients for proving The-

orem 4. The most intricate part of the proof involves carefully constructing 𝑀 conditional densities

(where 𝑀 grows with 𝑛) and bounding the separation between the optimal prices associated with

these densities. The desired set of optimal prices in our proof is a packing set where the separation

between elements is Ω(𝑛−1/4) with respect to the unweighted 𝐿2 norm, and the cardinality of this

set is Ω(2𝑛1/4).

4.2 Uniform pricing

We have the following theorem for uniform pricing.

Theorem 5. Let Assumption 1 hold. For any F 𝑈 satisfying the conditions in Assumption 3 with 𝐶∗ ∈

(0, 2) in (2), the minimax difference in the revenues is bounded from below as

R𝑈
𝑛 (F 𝑈) ≳ 𝑛−2/3.

Theorem 5 states that there is an inevitable deficiency, Ω(𝑛−2/3), in the revenue from any data-

based uniform pricing strategy relative to the revenue from the true-distribution optimal uniform

pricing strategy by taking the supremum over F 𝑈 .

Recalling Corollary 1 on the convergence rate 𝑂(𝑛−2/3) of the 1-market ERM strategy, despite

its simplicity, Theorem 5 implies that the revenue from this algorithm achieves the optimal rate of
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convergence (as a function of 𝑛) to the revenue from the true-distribution optimal uniform pricing

strategy uniformly over F 𝑈 .

4.3 Sketches of the proofs

To facilitate understanding, we start with a preliminary of the proof for Theorem 3 before laying out

the preliminaries for Theorems 4 and 5.

4.3.1 Preliminary of the proof for Theorem 3

For Theorem 3, we first show that the minimax difference in price at a given covariate value 𝑥0 is

bounded from below as follows:

inf
�̌�𝐷∈Ď

sup
𝐹𝑌,𝑋 ∈F

E𝐹𝑌,𝑋 | �̌�𝐷 (𝑥0; data) − 𝑝∗𝐷 (𝑥0; 𝐹𝑌,𝑋 ) | ≳ 𝑛−1/4, 𝑥0 ∈ (0, 1). (6)

Using Taylor expansion type of arguments and condition (2), we can relate the revenue difference

to the minimax squared difference in price at 𝑥0:

R𝐷
𝑛 (𝑥0;F ) ≳ inf

𝑝𝐷∈Ď
sup

𝐹𝑌,𝑋 ∈F
E𝐹𝑌,𝑋

[
|𝑝𝐷 (𝑥0; data) − 𝑝∗𝐷 (𝑥0; 𝐹𝑌,𝑋 ) |2

]
≥ inf

𝑝𝐷∈Ď
sup

𝐹𝑌,𝑋 ∈F

{
E𝐹𝑌,𝑋

[
| �̌�𝐷 (𝑥0; data) − 𝑝∗𝐷 (𝑥0; 𝐹𝑌,𝑋 ) |

]}2
where the last line follows from the Jensen’s inequality.

The derivation of the lower bound (6) can be reduced to a binary classification problem. In a

binary classification problem, we have two distributions 𝐹1𝑌,𝑋 , 𝐹
2
𝑌,𝑋 ∈ F whose optimal prices are

separated by some number 2𝜀; that is,

|𝑝∗𝐷 (𝑥0; 𝐹
𝑗′

𝑌,𝑋 ) − 𝑝∗𝐷 (𝑥0; 𝐹
𝑗

𝑌 ,𝑋 ) | ≥ 2𝜀, 𝑗, 𝑗′ ∈ {1, 2}. (7)

A binary classification rule uses the data to decide whether the true distribution is 𝐹1𝑌,𝑋 or 𝐹2𝑌,𝑋 . To

relate the binary classification problem to the pricing problem, note that, given any pricing function

𝑝𝐷, we can use it to distinguish between 𝐹1𝑌,𝑋 and 𝐹2𝑌,𝑋 in the following way. Define the binary

classification rule

𝜓(data) = argmin
𝑗∈{1,2}

|𝑝∗𝐷 (𝑥0; 𝐹
𝑗

𝑌 ,𝑋 ) − 𝑝𝐷 (𝑥0; data) |.
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We claim that when the underlying distribution is 𝐹 𝑗𝑌 ,𝑋 , the decision rule 𝜓 is correct if

|𝑝∗𝐷 (𝑥0; 𝐹
𝑗

𝑌 ,𝑋 ) − �̌�𝐷 (𝑥0; data) | < 𝜀. (8)

To see this, note that by the triangle inequality, (7) and (8) guarantee that

|𝑝∗𝐷 (𝑥0; 𝐹
𝑗′

𝑌,𝑋 ) − 𝑝𝐷 (𝑥0; data) |

≥|𝑝∗𝐷 (𝑥0; 𝐹
𝑗′

𝑌,𝑋 ) − 𝑝∗𝐷 (𝑥0; 𝐹
𝑗

𝑌 ,𝑋 ) | − |𝑝∗𝐷 (𝑥0; 𝐹
𝑗

𝑌 ,𝑋 ) − �̌�𝐷 (𝑥0; data) |

>2𝜀 − 𝜀 = 𝜀, where 𝑗′ ≠ 𝑗, 𝑗, 𝑗′ ∈ {1, 2}.

This implies that

P
𝐹
𝑗
𝑌 ,𝑋

(𝜓(data) ≠ 𝑗) ≤ P
𝐹
𝑗
𝑌 ,𝑋

( |𝑝∗𝐷 (𝑥0; 𝐹
𝑗

𝑌 ,𝑋 ) − �̌�𝐷 (𝑥0; data) | ≥ 𝜀), 𝑗 = 1, 2.

Therefore, we can upper bound the average probability of mistakes in the binary classification prob-

lem as

1
2
P𝐹1

𝑌,𝑋
(𝜓(data) ≠ 1) + 1

2
P𝐹2

𝑌,𝑋
(𝜓(data) ≠ 2)

≤1
2
P𝐹1

𝑌,𝑋
( |𝑝∗𝐷 (𝑥0; 𝐹1𝑌,𝑋 ) − �̌�𝐷 (𝑥0; data) | ≥ 𝜀) + 1

2
P𝐹2

𝑌,𝑋
( |𝑝∗𝐷 (𝑥0; 𝐹2𝑌,𝑋 ) − �̌�𝐷 (𝑥0; data) | ≥ 𝜀)

≤ sup
𝐹𝑌,𝑋 ∈F

P𝐹𝑌,𝑋 ( |𝑝∗𝐷 (𝑥0; 𝐹𝑌,𝑋 ) − �̌�𝐷 (𝑥0; data) | ≥ 𝜀).

By the Markov inequality, we have

sup
𝐹𝑌,𝑋 ∈F

E|𝑝𝐷 (𝑥0; data) − 𝑝∗𝐷 (𝑥0; 𝐹𝑌,𝑋 ) |

≥𝜀 sup
𝐹𝑌,𝑋 ∈F

P
(
|𝑝𝐷 (𝑥0; data) − 𝑝∗𝐷 (𝑥0; 𝐹𝑌,𝑋 ) | ≥ 𝜀

)
≥𝜀

(
1
2
P𝐹1

𝑌,𝑋
(𝜓(data) ≠ 1) + 1

2
P𝐹2

𝑌,𝑋
(𝜓(data) ≠ 2)

)
.

Finally, we take the infimum over all pricing strategies on the left-hand side (LHS), and the infimum

over the induced set of binary decisions on the right-hand side (RHS). This leads to

inf
�̌�𝐷∈Ď

sup
𝐹𝑌,𝑋 ∈F

E| �̌�𝐷 (𝑥0; data) − 𝑝∗𝐷 (𝑥0; 𝐹𝑌,𝑋 ) |

≥𝜀 inf
𝜓

(
1
2
P𝐹1

𝑌,𝑋
(𝜓(data) ≠ 1) + 1

2
P𝐹2

𝑌,𝑋
(𝜓(data) ≠ 2)

)
. (9)
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The RHS of the above inequality consists of two parts: (1) 𝜀, related to the separation between

two optimal prices, and (2) the average probability of making a mistake in distinguishing the two

distributions. To obtain a meaningful bound, we want to find two distributions 𝐹1𝑌,𝑋 and 𝐹2𝑌,𝑋 that

are close to each other (hard to distinguish) but their optimal prices are sufficiently separated. We

leave the details of the construction of such distributions to the proof of Theorem 3 given in Appendix

B.

4.3.2 Preliminary of the proof for Theorem 4

For Theorem 4, we first show that the minimax (unweighted) 𝐿2−distance in price is bounded from

below as follows:

inf
�̌�𝐷∈Ď

sup
𝐹𝑌,𝑋 ∈F

E∥ �̌�𝐷 (data) − 𝑝∗𝐷 (𝐹𝑌,𝑋 )∥22 ≳ 𝑛−1/2

where

∥ �̌�𝐷 (data) − 𝑝∗𝐷 (𝐹𝑌,𝑋 )∥22 =
∫ 1

0
| �̌�𝐷 (𝑥; data) − 𝑝∗𝐷 (𝑥; 𝐹𝑌,𝑋 ) |2𝑑𝑥.

Using Taylor expansion type of arguments and condition (2), we can relate the difference in the

expected revenues to the minimax (unweighted) 𝐿2−distance in price:

R𝐷
𝑛 (F ) ≳ inf

�̌�𝐷∈Ď
sup

𝐹𝑌,𝑋 ∈F
E𝐹𝑌,𝑋 ∥ �̌�𝐷 (data) − 𝑝∗𝐷 (𝐹𝑌,𝑋 )∥22

where the expectation E𝐹𝑌,𝑋 is taken with respect to data ∼ 𝐹𝑌,𝑋 .

The object above concerns the entire pricing function 𝑝∗𝐷 (·; 𝐹𝑌,𝑋 ). As a result, bounding the RHS

of the above inequality is more complicated than the previous one (6). In particular, we consider a

multiple classification problem that tries to distinguish among 𝑀 distributions, where 𝑀 is a function

of the sample size 𝑛. Similar as before, we want the optimal prices of these 𝑀 distributions to be

sufficiently separated. Similar derivations show that the lower bound of the revenue problem can be

reduced to that of a multiple classification problem:

inf
�̌�𝐷∈Ď

sup
𝐹𝑌,𝑋 ∈F

E𝐹𝑌,𝑋 ∥𝑝𝐷 (data) − 𝑝∗𝐷 (𝐹𝑌,𝑋 )∥22 ≥ 𝜀2 inf
𝜓

1
𝑀

𝑀∑︁
𝑗=1

P
𝐹
𝑗
𝑌 ,𝑋

(𝜓(data) ≠ 𝑗), (10)

where the infimum inf𝜓 is taken over the set of all multiple decisions (with 𝑀 choices). To proceed,

we apply the Fano’s inequality from information theory (Cover and Thomas, 2005). Fano’s inequality
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gives a lower bound on the average probability of mistakes:⁹

1
𝑀

𝑀∑︁
𝑗=1

P
𝐹
𝑗
𝑌 ,𝑋

(𝜓(data) ≠ 𝑗) ≥ 1 −
∑𝑀

𝑗, 𝑗′=1 KL(𝐹
𝑗

𝑌 ,𝑋 ∥𝐹
𝑗′

𝑌,𝑋 )/𝑀2 + log 2

log𝑀
, (11)

where KL(·∥·) denotes the Kullback-Leibler (KL) divergence between two distributions:

KL(𝐹1∥𝐹2) ≡
∫

𝑓1(𝑦, 𝑥) log
𝑓1(𝑦, 𝑥)
𝑓2(𝑦, 𝑥)

𝑑𝑦𝑑𝑥.

To obtain a sharp bound based on the multiple classification problem, we want to find a set of dis-

tributions (where the cardinality 𝑀 of the set is large enough) that are close enough to each other

(small enough pairwise KL divergence) but their optimal prices are sufficiently separated. We leave

the detailed proof to Appendix B. Our proof is based on a delicate construction of conditional den-

sities along with an application of the Gilbert-Varshamov Lemma from coding theory. Specifically,

we use the distribution 𝑌, 𝑋 ∼ 𝑈 [0, 1] with 𝑋 independent of 𝑌 as the benchmark distribution and

construct its perturbed versions with some correlation.

4.3.3 Preliminary of the proof for Theorem 5

Relative to the proofs in the case of 3PD, the proofs for the price- and revenue-deficiency lower bounds

in uniform pricing are simpler. We first show that the minimax difference in price is bounded from

below as follows:

inf
𝑝𝑈 ∈Ǔ

sup
𝐹𝑌 ∈F𝑈

E𝐹𝑌 | �̌�𝑈 (data𝑌 ) − 𝑝∗𝑈 | ≳ 𝑛−1/3. (12)

As previously, we can relate the revenue difference to the minimax squared difference in price:

R𝑈
𝑛 (F 𝑈) ≳ inf

𝑝𝑈 ∈Ǔ
sup
𝐹𝑌 ∈F𝑈

E𝐹𝑌
[
| �̌�𝑈 (data𝑌 ) − 𝑝∗𝑈 |2

]
≥ inf

𝑝𝑈 ∈Ǔ
sup
𝐹𝑌 ∈F𝑈

{
E𝐹𝑌

[
|𝑝𝑈 (data𝑌 ) − 𝑝∗𝑈 |

]}2
where the last line follows from the Jensen’s inequlity. The derivation of (12) only requires construct-

ing two distributions, similar to the approach discussed in Section 4.3.1.

⁹We do not present the Fano’s inequality in its standard form as in Cover and Thomas (2005). Instead, we use a version
from Wainwright (2019) that is more convenient for our purposes.
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5 Numerical evidence

Sections 3 and 4 establish that the 𝐾-market ERM strategy achieves the optimal rates of convergence

in revenue uniformly over a class of distributions. In this section, we turn to specific distributions

and study the revenue performance of our 𝐾-markets ERM strategies in these cases. We present

numerical evidence that supports the implications of our theoretical results. Specifically, we calculate

the revenues of the pricing strategies proposed in Section 3 using real-world and simulated data. We

describe the data in detail below.

Data. For the empirical study, we use an eBay auction data set (Jank and Shmueli, 2010). Because

eBay uses a sealed-bid second-price auction format, the bid of each participant can serve as a proxy

for an individual valuation of the object. In particular, we use the data on 194 7-day auctions for the

new Palm Pilot M515 PDAs.1⁰ The data has 3,832 observations at the bid level, and each observation

includes an auction id, a bid amount, a bidder id, and a bidder rating. Some bidders appear in

the data set several times because either they revised their bid during an auction or participated in

several auctions. To be consistent with our assumption of independent sampling, we analyze the

data at the bidder level and use the highest bid of each bidder across all auctions she participated in

as the one representing her valuation. This leaves 1,203 observations from which we draw samples

of various sizes. For 𝑌𝑖, we use the bid (as described above) of bidder 𝑖 normalized to [0, 1]. For 𝑋𝑖
in the 3PD case, we use bidder 𝑖’s rating on eBay, which indicates the number of times sellers left

feedback after a transaction with 𝑖.

For the simulation study, we let the marginal distribution of 𝑋 be uniform on [0, 1] and the CDF

of 𝑌 conditional on 𝑋 = 𝑥 be

𝐹𝑌 |𝑋 (𝑦 |𝑥) = 𝑦𝑥+1. (13)

Implementation. For each type of data, we calculate (a Monte-Carlo approximation of) the ex-

pected revenue generated by the uniform ERM and the 𝐾-markets ERM strategies for various sample

sizes as follows. First, fix 𝑛 and 𝐾. Then, draw a sample {𝑌𝑖, 𝑋𝑖}𝑛𝑖=1 and, for each 𝑘 = 1, . . . , 𝐾, let

market𝑘 ≡ {𝑌𝑖 : 𝑋𝑖 ∈ 𝐼𝑘}, 𝐹𝑘 (𝑡) ≡
|𝑌𝑖 ∈ market𝑘 : 𝑌𝑖 ≤ 𝑡 |

|market𝑘 |
.

1⁰Jank and Shmueli (2010) also provide data on Cartier wristwatches, Swarovski beads, and Xbox game consoles, but each
of these data sets may pool various configurations or models of these products categories. Thus, we choose the data on the
Palm Pilot M515 to minimize such variations.
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Then, the empirical optimal price in the 𝑘th market is given by

�̂�𝐷,𝑘 ≡ argmax
𝑦∈[0,1]

𝑦(1 − 𝐹𝑘 (𝑦)) = argmax
𝑦∈market𝑘

𝑦(1 − 𝐹𝑘 (𝑦)),

where the second equality holds because 𝐹𝑘 is a step function. Note that the uniform ERM strategy

simply corresponds to the 1-market ERM strategy. When 𝐾 > 1 and a drawn sample results in empty

markets that contain no observations, we set the prices in those markets to one. Finally, we compute

the revenue deficiency for the uniform ERM and 𝐾-markets ERM strategies (under 𝐾 ≍ 𝑛1/4).

Numerical findings. Figure 1 plots the expected revenue generated by the 𝐾-markets ERM strat-

egy for 𝐾 ∈ {1, . . . , 5} as a function of the sample size 𝑛 (with 𝐾 = 1 corresponding to the uniform

ERM strategy). To facilitate the exposition, we use a logarithmic scale for the 𝑛-axis. For both types

of data, one can see that for sufficiently small 𝑛, the 𝐾-markets revenue is decreasing in 𝐾. As 𝑛 grows,

the performance of higher 𝐾 improves faster than that of lower 𝐾, and, for sufficiently large 𝑛, the

𝐾-markets revenue overtakes that with any lower 𝐾. This finding can be explained by the bound

(𝐾/𝑛)2/3 + 1/𝐾2 in Theorem 1(ii), which implies that higher 𝐾 (more discrimination) approximates

the revenue generated by the 𝐹𝑌,𝑋 -optimum better but incurs a larger “variance”. When the sample

size is small, a lower 𝐾 can indeed be more beneficial.

Figure 1 also suggests that, even if 𝑋 contains useful information about 𝑌 , the uniform ERM

strategy may be revenue superior to any 𝐾 (> 1)-markets ERM strategy when 𝑛 is sufficiently small.

Recall from Theorem 1 that the bound (𝐾/𝑛)2/3 +1/𝐾2 is minimized at 𝐾 = 𝑛1/4, which gives 𝑛−1/2,

the optimal rate of convergence to the revenue generated by the 𝐹𝑌,𝑋 -optimal 3PD strategy. This

convergence rate is slower than 𝑛−2/3, the optimal rate of convergence to the revenue generated

by the 𝐹𝑌 -optimal uniform pricing strategy (c.f. Corollary 1). The slower convergence of the rate-

optimal 𝐾-market ERM strategy can potentially dominate the revenue gain from price discrimination

over without discrimination for small 𝑛.

Figure 2 illustrates the difference in the convergence rates of the uniform ERM and the 𝐾-markets

ERM strategies to their respective theoretical benchmarks. In particular, we set 𝐾 = 1
5 ⌊𝑛

1/4⌋ for the

simulation study and 𝐾 = max{1, ⌊2𝑛1/4 − 7⌋} for the empirical study. As predicted by the rate

𝑛−1/2 in Theorem 1 and the rate 𝑛−2/3 in Corollary 1, the revenue from the uniform ERM strategy

is converging to the revenue from the 𝐹𝑌 -optimal uniform pricing strategy faster than the 𝐾-markets

revenue to the revenue from the 𝐹𝑌,𝑋 -optimal 3PD strategy.

Figure 3 exhibits the revenue under the 𝐾-markets ERM strategy for 𝐾 = 1, . . . , 5 and 𝑛 =
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2, . . . , 105, in the case where 𝑋 and 𝑌 are uniform on [0, 1] and independent of each other. Not

surprisingly, there is no benefit from price discrimination for revenue.

Figure 1: Revenue under uniform and 𝐾-markets ERM strategies
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Figure 2: Data-based revenue deficiency under uniform and 𝐾-markets ERM strategies (with 𝐾 ≍ 𝑛1/4).
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Figure 3: Uniform and 𝐾-markets revenue for the case of 𝑋 and 𝑌 uniform on [0, 1] and independent of
each other.
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6 Discussions

Recall that 𝑝∗𝐷 is the true-distribution optimal 3PD strategy and �̂�𝐷 is the 𝐾-markets ERM strategy

with 𝐾 = Θ(𝑛1/4) giving the best trade-off between the “variance” and approximation error as shown

in Theorem 1; 𝑝∗𝑈 is the true-distribution optimal uniform pricing strategy and 𝑝𝑈 is the uniform ERM

strategy. We can decompose the difference between the expected revenues generated respectively

from �̂�𝐷 and 𝑝𝑈 as follows:

E[𝑅( �̂�𝐷)] − E[𝑅(𝑝𝑈)] = −
{
𝑅(𝑝∗𝐷) − E[𝑅( �̂�𝐷)]

}︸                     ︷︷                     ︸
𝐴1

+ 𝑅(𝑝∗𝐷) − 𝑅(𝑝∗𝑈)︸             ︷︷             ︸
𝐴2

+ 𝑅(𝑝∗𝑈) − E[𝑅(𝑝𝑈)]︸                 ︷︷                 ︸
𝐴3

.

The first term 𝐴1 = Θ
(
𝑛−1/2

)
under a worst-case distribution 𝐹𝑌,𝑋 ∈ F , and the third term 𝐴3 =

𝑂
(
𝑛−2/3

)
under 𝐹𝑌 , the marginal of 𝐹𝑌,𝑋 . The second term 𝐴2 = Θ(1) when 𝑋 contains sufficient

information about the valuation 𝑌 . Then, a sufficient condition for 𝑝𝐷 to be revenue superior to �̂�𝑈 is

that 𝑛 → ∞. In theory, this claim can be proved with the upper bounds in Section 3 and a different

construction in the derivations of the lower bounds. Particularly, this new construction would first

find a density 𝑓𝑌,𝑋 such that the revenue generated by the corresponding 𝑓𝑌,𝑋 -optimal 3PD strategy

is well separated from the revenue generated by the optimal uniform pricing strategy associated
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with 𝑓𝑌 , and then build a large enough class of perturbed versions of 𝑓𝑌,𝑋 ; finally we would bound

the separation between the optimal prices associated with these densities, in a similar fashion as

what is done in Appendix B. In the paper, to make the analysis tractable, we choose the distribution

𝑌, 𝑋 ∼ 𝑈 [0, 1] with 𝑋 independent of 𝑌 as the benchmark distribution and construct its perturbed

versions with some correlation.

A challenging open question is, can the condition on 𝑛 be weakened to some finite number and

if so, when? To answer this question, we would have to derive the universal constants in our bounds

in meaningful forms. Unfortunately, due to the complexity of our problem, this exercise is infeasi-

ble under the existing techniques from mathematical statistics, probability theory, and information

theory.

Our results suggest that it is more beneficial to engage in sample-based uniform pricing when 𝑋 is

independent of 𝑌 .11 The fundamental reason lies in the proofs for Theorems 3 and 4: unless 𝑛 = ∞,

no strategies that exploit {(𝑌𝑖, 𝑋𝑖), 1 ≤ 𝑖 ≤ 𝑛} are able to distinguish with certainty the distribution

𝑌, 𝑋 ∼ 𝑈 [0, 1] with 𝑋 independent of 𝑌 from its perturbed versions with some correlation (see the

detailed constructions in Appendix B). The curse of dimensionality from exploiting the covariate 𝑋

makes the convergence of 3PD strategies based on {(𝑌𝑖, 𝑋𝑖), 1 ≤ 𝑖 ≤ 𝑛} slower than that of the

uniform pricing strategies based on {𝑌𝑖, 1 ≤ 𝑖 ≤ 𝑛}.

Our upper and lower bounds together suggest the following possibility: even when the covariate

𝑋 contains useful information about the valuation 𝑌 , the 𝐾-markets ERM strategy can be revenue

inferior to the uniform ERM strategy in finite samples, due to the curse of dimensionality and slower

convergence of the 𝐾-markets ERM strategy to its true-distribution optimal counterpart (and hence,

a more stringent growth requirement of the sample size). Indeed, the numerical evidence in Section

5 confirms this possibility. But such an implication should be taken with caution in small samples.

Small sample complication. Given the pattern observed in our numerical studies, one might

conjecture the following: there exists some �̄� > 1 such that when 𝑛 < �̄�, the uniform ERM is

always revenue-superior to the 𝐾-markets ERM (with 𝐾 > 1). In what follows, we explain why this

conjecture may not hold.

Specifically, in our language, Babaioff et al. (2018) construct a distribution 𝐹𝑌 such that the uni-

form ERM revenue under 𝑛 = 2 is strictly smaller than the uniform ERM revenue under 𝑛 = 1. This

seemingly counterintuitive result highlights the difficulty of establishing general comparative results

11The information of independence is unknown to the seller. He/she can statistically test for the independence of 𝑌 and 𝑋
from the data but any such tests would suffer from Type I and Type II errors.
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with very small sample size. We now argue that this construction also sheds some light on the com-

parison of the revenue performance of the 𝐾-markets ERM strategy with 𝐾 = 1 vs 𝐾 = 2 in the case

of 𝑛 = 2.

To make this connection, we take 𝑋 to be uniform on [0, 1] and independent of 𝑌 , and assume

that in the case 𝐾 = 2, when one of the markets is empty, the price for this market is set at the

same level as for the other market. Then, if 𝐾 = 2 and both markets are non-empty, the revenue in

each market equals the 1-market ERM revenue under 𝑛 = 1. Otherwise, if both observations are in

the same market, then the revenue equals the 1-market ERM revenue under 𝑛 = 2. Therefore, the

expected 2-markets ERM revenue with 𝑛 = 2 is the average of the 1-market ERM revenue under 𝑛 = 1

and 𝑛 = 2 and hence strictly higher than the 1-market ERM revenue with 𝑛 = 2 for a distribution 𝐹𝑌

exhibiting the property discussed in Babaioff et al. (2018).

More formally, let 𝑅𝐾,𝑛 denote the expected revenue of the 𝐾-markets ERM strategy with a sample

of size 𝑛. Then,

𝑅2,2 = Edata𝑛=2∼ 𝐹𝑌,𝑋 [𝑅(𝑝𝐷 (data), 𝐹𝑌,𝑋 )]

=
1
2
Edata𝑛=2∼𝐹𝑌,𝑋 | 𝐼1=∅ or 𝐼2=∅ [𝑅( �̂�𝐷 (data), 𝐹𝑌,𝑋 )]

+ 1
2
Edata𝑛=2∼𝐹𝑌,𝑋 | 𝐼1≠∅ and 𝐼2≠∅ [𝑅( �̂�𝐷 (data), 𝐹𝑌,𝑋 )]

=
1
2
𝑅1,2 +

1
2
𝑅1,1.

Therefore, 𝑅1,1 > 𝑅1,2 implies 𝑅2,2 > 𝑅1,2.

Finally, we add the caveat that the construction in Babaioff et al. (2018) is based on an atomless

approximation of the censored equal-revenue distribution 𝐹𝑌 (𝑦) = 1 − 1/𝑦, 𝑦 ∈ [1,∞) which has

a discontinuous density. However, it is straightforward to verify that the same property holds for

the equal-revenue distribution truncated at any 𝑦 > 4, which has a Lipschitz continuous and differ-

entiable density. Moreover, the equal revenue distribution truncated at 𝑦 and translated to the left

by 𝑡 > 1/𝑦 (so that the support is [1 − 𝑡, 𝑦 − 𝑡]) also has a Lipschitz continuous and differentiable

density, the interior optimal price (in line with our assumptions), and satisfies the Babaioff et al.

(2018) property, e.g., for 𝑦 = 4, 𝑡 = 1/2.

An open problem. To conclude, we would like to propose a challenging open problem: Do there

exist some 3 ≤ 𝑛 < �̄� < ∞ such that for any 𝑛 ∈ [𝑛, �̄�] and distribution in F , the 𝐾-markets ERM

strategy (for any 𝐾 > 1) is always revenue-inferior to the uniform ERM strategy?
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A Proofs for upper bounds

To facilitate the presentation, we first give the proof for Corollary 1.

Proof of Corollary 1. Denote 𝜅′ ≡ inf 𝑝∈[0,1] |𝑅′′(𝑝) |/2 > 0. By Taylor expansion, for any 𝑝,

𝑅(𝑝∗𝑈) − 𝑅(𝑝) ≥ 𝜅′(𝑝 − 𝑝∗𝑈)2.

Denote �̂�(𝑝) ≡ 𝑝(1−𝐹(𝑝)). Combining the inequality above with the basic inequality (i.e., �̂�( �̂�𝑈) ≥

�̂�(𝑝∗𝑈)), we have

𝜅′( �̂�𝑈 − 𝑝∗𝑈)2 ≤ 𝑅(𝑝∗𝑈) − 𝑅( �̂�𝑈) ≤ 𝑅(𝑝∗𝑈) − �̂�(𝑝∗𝑈) − (𝑅(𝑝𝑈) − �̂�(𝑝𝑈)). (14)

For 𝛿 ∈ (0, 𝑝∗𝑈], define

G𝛿 ≡ {𝑦 ↦→ 𝑝1{𝑦 ≥ 𝑝} − 𝑝∗𝑈1{𝑦 ≥ 𝑝∗} : 𝑝 ∈ [𝑝∗𝑈 − 𝛿, 𝑝∗𝑈 + 𝛿]}

and

𝐺𝛿(𝑦) ≡


0, if 𝑦 < 𝑝∗𝑈 − 𝛿,

𝑝∗𝑈 , if 𝑝∗𝑈 − 𝛿 ≤ 𝑦 ≤ 𝑝∗𝑈 + 𝛿,

𝛿, if 𝑦 > 𝑝∗𝑈 + 𝛿.

Then 𝐺𝛿 is an envelope function of the class G𝛿. The 𝐿2 (𝑃) −norm of 𝐺𝛿 is bounded by

∥𝐺𝛿∥𝐿2 (𝑃) =
(
(𝑝∗𝑈)2P(𝑌 ∈ [𝑝∗𝑈 − 𝛿, 𝑝∗𝑈 + 𝛿]) + 𝛿2P(𝑌 > 𝑝∗𝑈 + 𝛿)

)1/2 ≤ 𝐶
√
𝛿.

As we argue in the proof of Lemma C.6, G𝛿 is a VC-subgraph class, so we have

E sup
𝑔∈G𝛿

�����1𝑛 𝑛∑︁
𝑖=1

𝑔(𝑌𝑖) − E𝑔(𝑌𝑖)
����� ≤ 𝐶

√︁
𝛿/𝑛. (15)

We derive the convergence rate of �̂� − 𝑝∗ via a peeling argument. Consider the following decompo-

sition

P
(
𝑛1/3 |𝑝𝑈 − 𝑝∗𝑈 | > 𝑀

)
=

∞∑︁
𝑗=𝑀+1

P
(
𝑛1/3 |𝑝𝑈 − 𝑝∗𝑈 | ∈ ( 𝑗 − 1, 𝑗]

)
.
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For any 𝑗 ≥ 𝑀 + 1, we have

{| �̂�𝑈 − 𝑝∗𝑈 | ∈ (( 𝑗 − 1)𝑛−1/3, 𝑗𝑛−1/3]}

={| �̂�𝑈 − 𝑝∗𝑈 | > ( 𝑗 − 1)𝑛−1/3, | �̂�𝑈 − 𝑝∗𝑈 | ≤ 𝑗𝑛−1/3}

⊂
{
𝑅(𝑝∗𝑈) − �̂�(𝑝∗𝑈) − (𝑅(𝑝𝑈) − �̂�( �̂�𝑈)) ≥ 𝜅′( 𝑗 − 1)2𝑛−2/3, | �̂�𝑈 − 𝑝∗𝑈 | ≤ 𝑗𝑛−1/3

}
⊂

{
Δ 𝑗,𝑛 ≥ 𝜅′( 𝑗 − 1)2𝑛−2/3

}
,

where the third line follows from (14), and Δ 𝑗,𝑛 in the last line is defined as

Δ 𝑗,𝑛 ≡ sup
𝑔∈G

𝑗𝑛−1/3

�����1𝑛 𝑛∑︁
𝑖=1

𝑔(𝑌𝑖) − E𝑔(𝑌𝑖)
����� .

Therefore,

P
(
| �̂�𝑈 − 𝑝∗𝑈 | ∈ (( 𝑗 − 1)𝑛−1/3, 𝑗𝑛−1/3]

)
≤ P

(
Δ 𝑗,𝑛 ≥ 𝜅′( 𝑗 − 1)2𝑛−2/3

)
.

To bound the probability on the RHS of the above inequality, we use the concentration inequality

given by Theorem 7.3 in Bousquet (2003), which is a version of Talagrand’s (1996) inequality. The

concentration inequality states that for all 𝑡 > 0,

P

(
Δ 𝑗,𝑛 ≥ EΔ 𝑗,𝑛 +

√︃
2𝑡(𝜎2 + 2EΔ 𝑗,𝑛)/𝑛 + 𝑡/(3𝑛)

)
≤ exp(−𝑐𝑡),

for some universal constant 𝑐 > 0, where

𝜎2 ≡ sup
𝑔∈G

𝑗𝑛−1/3

E𝑔(𝑌1)2 ≤ ∥G𝑗𝑛−1/3 ∥2𝐿2 ≤ 𝐶 𝑗𝑛−1/3.

From (15), we have

EΔ 𝑗,𝑛 ≤ 𝐶

√︃
𝑗𝑛−1/3/𝑛 = 𝐶

√︁
𝑗𝑛−2/3.

By setting 𝑡 = 𝜅′ 𝑗2, we have

EΔ 𝑗,𝑛 +
√︃
2𝑡(𝜎2 + 2EΔ 𝑗,𝑛)/𝑛 + 𝑡/(3𝑛)

≤𝐶
√︁
𝑗𝑛−2/3 +

√︃
2𝜅′ 𝑗2(𝐶 𝑗𝑛−1/3 + 2𝐶

√︁
𝑗𝑛−2/3)/𝑛 + 𝜅′ 𝑗2/(3𝑛)

≤𝐶′ 𝑗3/2𝑛−2/3 ≤ 𝐶∗( 𝑗 − 1)2𝑛−2/3,
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when 𝑗 is large enough. Then we have

P
(
Δ 𝑗,𝑛 ≥ 𝐶∗( 𝑗 − 1)2𝑛−2/3

)
≤ P

(
Δ 𝑗,𝑛 ≥ 𝐶 𝑗𝑛−2/3

)
≤ exp(−𝑐𝜅′ 𝑗2), for 𝑗 large.

To summarize, we have shown that

P
(
𝑛1/3 |𝑝𝑈 − 𝑝∗𝑈 | > 𝑀

)
≤

∞∑︁
𝑗=𝑀+1

exp(−𝐶1 𝑗
2) ≤ 𝐶3 exp(−𝐶2𝑀

2).

By integrating the tail probability, we have

E| �̂�𝑈 − 𝑝∗𝑈 |𝑠 ≲ 𝑛−𝑠/3. (16)

For revenue, we use the second-order Taylor expansion and obtain that

E[𝑅(𝑝∗𝑈) − 𝑅( �̂�𝑈)] ≤ sup
𝑝

|𝑅′′(𝑝) |E(𝑝𝑈 − 𝑝∗𝑈)2 ≲ 𝑛−2/3.

Proof of Theorem 1. We introduce some notations. Let �̃�𝑘 (𝑝) denote the revenue collected from the

𝑘th market by charging price 𝑝; that is,

�̃�𝑘 (𝑝) ≡ 𝑝P(𝑌 > 𝑝, 𝑋 ∈ 𝐼𝑘)

= 𝑝

∫ 1

𝑝

∫
𝐼𝑘

𝑓𝑌 |𝑋 (𝑦 |𝑥) 𝑓𝑋 (𝑥)𝑑𝑥𝑑𝑦.

Denote �̃�𝑘 ≡ argmax𝑝∈[0,1] �̃�𝑘 (𝑝) as the maximizer of �̃�𝑘. The first- and second-order derivatives of

�̃�𝑘 are respectively

�̃�′𝑘 (𝑝) =
∫ 1

𝑝

∫
𝐼𝑘

𝑓𝑌 |𝑋 (𝑦 |𝑥) 𝑓𝑋 (𝑥)𝑑𝑥𝑑𝑦 − 𝑝

∫
𝐼𝑘

𝑓𝑌 |𝑋 (𝑝|𝑥) 𝑓𝑋 (𝑥)𝑑𝑥,

�̃�′′𝑘 (𝑝) =
∫
𝐼𝑘

(
−2 𝑓𝑌 |𝑋 (𝑝|𝑥) − 𝑝

𝜕

𝜕𝑦
𝑓𝑌 |𝑋 (𝑝|𝑥)

)
𝑓𝑋 (𝑥)𝑑𝑥.

By the Lipschitz continuity assumption, the second-order derivative �̃�′′
𝑘
(𝑝) exists for almost all 𝑝 ∈

[0, 1]. Recall that

−2 𝑓𝑌 |𝑋 (𝑝|𝑥) − 𝑝
𝜕

𝜕𝑦
𝑓𝑌 |𝑋 (𝑝|𝑥) ≤ −𝐶∗,
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and 𝑓𝑋 is bounded away from zero. Denote 2𝜅′′ ≡ 𝐶∗ inf𝑥∈[0,1] 𝑓𝑋 (𝑥). Then

�̃�′′𝑘 (𝑝) ≤ −2𝜅′′
∫
𝐼𝑘

𝑑𝑥 = −2𝜅′′/𝐾

for almost all 𝑝 ∈ [0, 1]. By Lemma C.1, we have

�̃�𝑘 (𝑝𝑘) − �̃�𝑘 (𝑝) = |�̃�𝑘 ( �̃�𝑘) − �̃�𝑘 (𝑝) | ≥
𝜅′′

𝐾
( �̃�𝑘 − 𝑝)2, 𝑝 ∈ [0, 1]. (17)

Note that �̃�𝑘 is not the true optimal price under 𝐹𝑌,𝑋 . We need to relate it to the true optimal price. Let

𝑘(𝑥0) be such that 𝑥0 ∈ 𝐼𝑘. Then by the triangle inequality, we can decompose the pricing difference

into estimation error and approximation error:

E| �̂�𝐷 (𝑥0; data) − 𝑝∗𝐷 (𝑥0) | = E|𝑝𝑘(𝑥0 ) − 𝑝∗𝐷 (𝑥0) |

≤ E| �̂�𝑘(𝑥0 ) − 𝑝𝑘(𝑥0 ) |︸                ︷︷                ︸
Estimation error

+ | �̃�𝑘(𝑥0 ) − 𝑝∗𝐷 (𝑥0) |︸               ︷︷               ︸
Approximation error

. (18)

Estimation error. Denote �̂�𝑘 as the empirical counterpart of �̃�𝑘; that is,

�̂�𝑘 (𝑝) ≡
𝑝

𝑛𝑘

∑︁
𝑖∈{ 𝑗:𝑋 𝑗∈ 𝐼𝑘 }

1{𝑌𝑖 > 𝑝, 𝑋𝑖 ∈ 𝐼𝑘}.

Recall that 𝑝𝑘 is the maximizer of �̂�𝑘. The basic inequality (i.e., �̂�𝑘 (𝑝𝑘) ≥ �̂�𝑘 ( �̃�𝑘)) gives that

�̃�𝑘 (𝑝𝑘) − �̃�𝑘 (𝑝) = �̃�𝑘 ( �̃�𝑘) − �̃�𝑘 ( �̂�) − �̂�𝑘 (𝑝𝑘) + �̂�𝑘 ( �̃�𝑘)

≤ �̃�𝑘 (𝑝𝑘) − �̃�𝑘 (𝑝) − �̂�𝑘 ( �̃�𝑘) + �̂�𝑘 (𝑝𝑘). (19)

Combining (17) and (19) yields

𝜅′′

𝐾
(𝑝𝑘 − 𝑝𝑘)2 ≤ �̃�𝑘 ( �̃�𝑘) − �̂�𝑘 ( �̃�𝑘) − (�̃�𝑘 (𝑝) − �̂�𝑘 ( �̂�𝑘)). (20)

In each 𝐼𝑘 (𝑘 = 1, . . . , 𝐾), the optimal price is the same.

In what follows, 𝑠 = 1 or 𝑠 = 2. Conditioning on 𝑋𝑖 where 𝑖 falls in the 𝑘th market, the proof for

Corollary 1, in particular, (16) yields

E
[
| �̂�𝑘 − �̃�𝑘 |𝑠 |𝑋𝑖, 𝑖 ∈ { 𝑗 : 𝑋 𝑗 ∈ 𝐼𝑘}

]
≲ (1/𝑛𝑘)𝑠/3. (21)
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By Assumption 2(vi), the 𝑖th observation falls into the 𝑘th market with probabilty 𝑐1
𝐾

and other

markets with probability 𝐾−𝑐1
𝐾

. Let us consider the event A𝑞 = {𝑛𝑘 > 𝑞𝑛} where 𝑞 ∈ (0, 𝑐1
𝐾
). If 𝐾 is

large enough such that 𝑐1
𝐾
≤ 1

2 , the classic binomial tail bound yields

P(A𝑞) > 1 − exp(−𝑛KL(𝑞| |𝑐1/𝐾)) (22)

where

KL(𝑞| |𝑐1/𝐾) := 𝑞 log
𝑞𝐾

𝑐1
+ (1 − 𝑞) log (1 − 𝑞)𝐾

𝐾 − 𝑐1
.

Therefore, we have

E
[
| �̂�𝑘 − 𝑝𝑘 |𝑠 |𝑋𝑖, 𝑖 ∈ { 𝑗 : 𝑋 𝑗 ∈ 𝐼𝑘}

]
≲ (𝑞𝑛)−𝑠/3, for a given 𝑘,

with probability at least 1 − exp(−𝑛KL(𝑞| |𝑐1/𝐾)). With a union bound, we also have

E
[
|𝑝𝑘 − 𝑝𝑘 |𝑠 |𝑋𝑖, 𝑖 ∈ { 𝑗 : 𝑋 𝑗 ∈ 𝐼𝑘}

]
≲ (𝑞𝑛)−𝑠/3, for all 𝑘, (23)

with probability at least 1 − exp(−𝑛KL(𝑞| |𝑐1/𝐾) + log 𝐾).

Furthermore, we have

KL(𝑞| |𝑐1/𝐾) ≥
1
2

( 𝑐1
𝐾

− 𝑞
)2
. (24)

We show a more general result

KL(𝑞| |𝛼) =: 𝑔𝑞(𝛼) ≥
(𝛼 − 𝑞)2

2

for any 𝑞 ∈ (0, 𝛼). Because 𝑔𝑞(·) is twice differentiable and 𝑔𝑞(𝑞) = 0, a second-order Taylor

expansion gives

𝑔𝑞(𝛼) = 𝑔
′
𝑞(𝑞) (𝛼 − 𝑞) +

𝑔
′′
𝑞 (𝑡)
2

(𝛼 − 𝑞)2

where 𝑡 ∈ [𝑞, 𝛼] and 𝑔′𝑞(𝑡) = − 𝑞

𝑡
+ 1−𝑞

1−𝑡 . Note that 𝑔
′
𝑞(𝑞) = 0. Moreover, given 𝑡 ∈ (0, 1) such that

1
𝑡2
≥ 1 and 1

(1−𝑡)2 ≥ 1, we have

𝑔
′′
𝑞 (𝑡) =

𝑞

𝑡2
+ 1 − 𝑞

(1 − 𝑡)2 ≥ 1.

As a consequence of (23) and (24), we have

E
[
|𝑝𝑘 − 𝑝𝑘 |𝑠 |𝑋𝑖, 𝑖 ∈ { 𝑗 : 𝑋 𝑗 ∈ 𝐼𝑘}

]
≲ (𝑞𝑛)−𝑠/3, for all 𝑘, (25)
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with probability at least 1 − exp
(
−𝑛

( 𝑐1
𝐾
− 𝑞

)2 /2 + log 𝐾
)
. Taking 𝑞 = 𝑐1

2𝐾 , (25) gives

E
[
| �̂�𝑘 − �̃�𝑘 |𝑠 |𝑋𝑖, 𝑖 ∈ { 𝑗 : 𝑋 𝑗 ∈ 𝐼𝑘}

]
≲ (𝐾/𝑛)𝑠/3, for all 𝑘, (26)

with probability at least 1 − exp
(
− 𝑛𝑐21

8𝐾2 + log 𝐾
)
.

In view of (21), (23), (25) and (26), the source of uncertainty from the conditioning is solely

from the statistics 𝑛𝑘. Using this fact, (26) as well as the fact that 𝑝𝑘 and 𝑝𝑘 are bounded, we have

E [|𝑝𝑘 − 𝑝𝑘 |𝑠] = E
[
| �̂�𝑘 − 𝑝𝑘 |𝑠1

{
𝑛𝑘 >

𝑛𝑐1

2𝐾

}]
+ E

[
| �̂�𝑘 − �̃�𝑘 |𝑠1

{
𝑛𝑘 ≤

𝑛𝑐1

2𝐾

}]
≾ (𝐾/𝑛)𝑠/3 + exp

(
−
𝑛𝑐21

8𝐾2 + log 𝐾
)
.

Approximation error. The second term | �̃�𝑘(𝑥0 ) − 𝑝∗𝐷 (𝑥0) | in (18) is deterministic and can be

controlled by using the smoothness conditions. By definition, 𝑝∗𝐷 (𝑥0) satisfies the first-order condition

0 =
𝜕

𝜕𝑝
𝑟(𝑝∗𝐷 (𝑥), 𝑥).

By the differentiability condition of F , 𝜕
𝜕𝑝
𝑟(𝑝, 𝑥) is continuously differentiable in (𝑝, 𝑥) in a neigh-

borhood of (𝑝∗𝐷 (𝑥), 𝑥). By the strong concavity, 𝜕2

𝜕𝑝2
𝑟(𝑝∗𝐷 (𝑥), 𝑥) is non-zero. Then by the implicit

function theorem, the function 𝑝∗𝐷 (𝑥) is well-defined (uniquely determined by the first-order condi-

tion) and is differentiable. Its derivative is given as follows:

𝑑

𝑑𝑥
𝑝∗𝐷 (𝑥) = −

𝜕2

𝜕𝑝𝜕𝑥
𝑟(𝑝∗𝐷 (𝑥), 𝑥)

𝜕2

𝜕𝑝2
𝑟(𝑝∗𝐷 (𝑥), 𝑥)

.

By the strong concavity, the absolute value of 𝜕2

𝜕𝑝2
𝑟(𝑝, 𝑥) is bounded away from zero; also, the function�� 𝜕

𝜕𝑥
𝐹𝑌 |𝑋 (𝑦 |𝑥) + 𝑦 𝜕

𝜕𝑥
𝑓𝑌 |𝑋 (𝑦 |𝑥)

�� is bounded above by 𝐶. This implies that 𝑝∗𝐷 (𝑥) is Lipschitz continuous

on [0, 1]. We use 𝐿1 to denote the Lipschitz constant. By applying Taylor expansion to the first-order

condition of 𝑝𝑘, we have

0 =

∫
𝐼𝑘

𝜕

𝜕𝑝
𝑟(𝑝𝑘, 𝑥) 𝑓𝑋 (𝑥)𝑑𝑥 =

∫
𝐼𝑘

𝜕

𝜕𝑝
𝑟(𝑝∗𝐷 (𝑥), 𝑥)︸            ︷︷            ︸

=0

𝑓𝑋 (𝑥)𝑑𝑥

+
∫
𝐼𝑘

𝜕2

𝜕𝑝2
𝑟(𝑝(𝑥), 𝑥) ( �̃�𝑘 − 𝑝∗𝐷 (𝑥)) 𝑓𝑋 (𝑥)𝑑𝑥,

for some 𝑝(𝑥) between 𝑝𝑘 and 𝑝∗𝐷 (𝑥). Rearranging terms shows that 𝑝𝑘 is a weighted average of
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𝑝∗𝐷 (𝑥), 𝑥 ∈ 𝐼𝑘; that is,

�̃�𝑘 =

∫
𝐼𝑘

𝜕2

𝜕𝑝2
𝑟( �̄�(𝑥), 𝑥)𝑝∗𝐷 (𝑥) 𝑓𝑋 (𝑥)𝑑𝑥∫

𝐼𝑘

𝜕2

𝜕𝑝2
𝑟(𝑝(𝑥), 𝑥) 𝑓𝑋 (𝑥)𝑑𝑥

.

Since 𝑝∗𝐷 (𝑥) is Lipschitz continuous, the triangle inequality implies that

|𝑝𝑘 − 𝑝∗𝐷 (𝑥0) |𝑠 ≤ 𝐿𝑠1/𝐾𝑠, for any fixed 𝑠 ≥ 1.

Therefore, we obtain the following upper bound

E|𝑝𝐷 (𝑥0; data) − 𝑝∗𝐷 (𝑥0) |2 ≲ 1/𝐾2 + (𝐾/𝑛)2/3 + exp
(
−
𝑛𝑐21

8𝐾2 + log 𝐾
)
.

By choosing 𝐾 ≍ 𝑛−1/4, the above bound becomes 𝑛−1/4.

In addition, Lemma C.1(iii) gives that

E
[
𝑟(𝑝∗𝐷, 𝑥0) − 𝑟(𝑝𝐷 (data), 𝑥0)

]
≲ E

[
|𝑝𝐷 (𝑥0; data) − 𝑝∗𝐷 (𝑥0) |2

]
≲ 1/𝐾2 + (𝐾/𝑛)2/3 + exp

(
−
𝑛𝑐21

8𝐾2 + log 𝐾
)
.

This proves part (i) of the theorem.

For part (ii), we want to bound the expected revenue difference. Consider the following decom-

position:

𝑅(𝑝∗𝐷, 𝐹𝑌,𝑋 ) − 𝑅( �̂�𝐷 (data), 𝐹𝑌,𝑋 )

≤𝑅(𝑝∗𝐷, 𝐹𝑌,𝑋 ) − 𝑅( �̃�, 𝐹𝑌,𝑋 ) + |𝑅( �̃�, 𝐹𝑌,𝑋 ) − 𝑅(𝑝𝐷 (data), 𝐹𝑌,𝑋 ) |.

The first term on the RHS is deterministic and can be bounded by using Lemma C.1(iii) as follows:

|𝑅(𝑝∗𝐷, 𝐹𝑌,𝑋 ) − 𝑅(𝑝, 𝐹𝑌,𝑋 ) |

≤
∫ 1

0
|𝑟(𝑝∗𝐷 (𝑥), 𝑥) − 𝑟( �̃�(𝑥), 𝑥) | 𝑓𝑋 (𝑥)𝑑𝑥

=

𝐾∑︁
𝑘=1

∫
𝐼𝑘

|𝑟(𝑝∗𝐷 (𝑥), 𝑥) − 𝑟(𝑝𝑘, 𝑥) | 𝑓𝑋 (𝑥)𝑑𝑥

≤
𝐾∑︁
𝑘=1

∫
𝐼𝑘

1
2

����2 𝑓𝑌 |𝑋 (𝑦 |𝑥) + 𝑦
𝜕

𝜕𝑦
𝑓𝑌 |𝑋 (𝑦 |𝑥)

���� sup
𝑦,𝑥

|𝑝∗𝐷 (𝑥) − 𝑝𝑘 |2 𝑓𝑋 (𝑥)𝑑𝑥

≲ 1/𝐾2.
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where we have used the first-order condition of 𝑝∗𝐷. For the second term, we have

𝑅( �̃�, 𝐹𝑌,𝑋 ) − 𝑅(𝑝𝐷 (data), 𝐹𝑌,𝑋 ) =
𝐾∑︁
𝑘=1

�̃�𝑘 ( �̃�𝑘) − �̃�𝑘 ( �̂�𝑘).

This is because both �̂�(data) and �̃� are constant within each 𝐼𝑘. Their revenues on 𝐼𝑘 are reduced to

�̃�𝑘. Note that for every 𝑘, �̃�′
𝑘
(𝑝𝑘) = 0, and

|�̃�′′𝑘 (𝑝) | ≤
∫
𝐼𝑘

����2 𝑓𝑌 |𝑋 (𝑦 |𝑥) + 𝑦
𝜕

𝜕𝑦
𝑓𝑌 |𝑋 (𝑦 |𝑥)

���� 𝑓𝑋 (𝑥)𝑑𝑥
≤ 1
𝐾
sup
𝑦,𝑥

(����2 𝑓𝑌 |𝑋 (𝑦 |𝑥) + 𝑦
𝜕

𝜕𝑦
𝑓𝑌 |𝑋 (𝑦 |𝑥)

���� 𝑓𝑋 (𝑥)) .
Then Lemma C.1(iii) gives that

�̃�𝑘 ( �̃�𝑘) − �̃�𝑘 ( �̂�𝑘) ≲ 1/𝐾 (𝑝𝑘 − 𝑝𝑘)2.

Hence, we have

E|𝑅( �̃�, 𝐹𝑌,𝑋 ) − 𝑅(𝑝𝐷 (data), 𝐹𝑌,𝑋 ) | ≤
𝐾∑︁
𝑘=1

E|�̃�𝑘 (𝑝𝑘) − �̃�𝑘 (𝑝𝑘) |

≲ (𝐾/𝑛)2/3 + exp
(
−
𝑛𝑐21

8𝐾2 + log 𝐾
)
.

To summarize, we have shown that

𝑅(𝑝∗𝐷, 𝐹𝑌,𝑋 ) − 𝑅(𝑝𝐷 (data), 𝐹𝑌,𝑋 ) ≲ 1/𝐾2 + (𝐾/𝑛)2/3 + exp
(
−
𝑛𝑐21

8𝐾2 + log 𝐾
)
.

By choosing 𝐾 ≍ 𝑛−1/4, the above bound becomes 𝑛−1/2. This proves part (ii) of the theorem.

Proof of Theorem 2. For part (i), notice that the welfare can be written as a double integral

𝑊 (𝑝, 𝐹𝑌,𝑋 ) =
∫ 1

0

∫ 𝑝(𝑥 )

0
𝑦 𝑓𝑌 |𝑋 (𝑦 |𝑥)𝑑𝑦 𝑓𝑋 (𝑥)𝑑𝑥.

The function 𝑦 𝑓𝑌 |𝑋 (𝑦 |𝑥) is nonnegative and bounded for 𝑦, 𝑥 ∈ [0, 1]. Then by the integral mean
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value theorem, we have

E|𝑊 ( �̂�𝐷 (data), 𝐹𝑌,𝑋 ) −𝑊 (𝑝∗𝐷, 𝐹𝑌,𝑋 ) |

=E
��� ∫ 1

0

∫ �̂�𝐷 (𝑥;data)

𝑝∗
𝐷
(𝑥 )

𝑦 𝑓𝑌 |𝑋 (𝑦 |𝑥)𝑑𝑦 𝑓𝑋 (𝑥)𝑑𝑥
���

≤ sup
𝑦,𝑥

|𝑦 𝑓𝑌 |𝑋 (𝑦 |𝑥) |E
∫ 1

0
| �̂�𝐷 (𝑥; data) − 𝑝∗𝐷 (𝑥) | 𝑓𝑋 (𝑥)𝑑𝑥.

The integral on the last line can be decomposed based on the 𝐾 markets:

E

∫ 1

0
| �̂�𝐷 (𝑥; data) − 𝑝∗𝐷 (𝑥) | 𝑓𝑋 (𝑥)𝑑𝑥 ≤

𝐾∑︁
𝑘=1

∫
𝐼𝑘

[
E|𝑝𝐷 (𝑥; data) − �̃�𝑘 | + | �̃�𝑘 − 𝑝∗𝐷 (𝑥) |

]
𝑓𝑋 (𝑥)𝑑𝑥

=

𝐾∑︁
𝑘=1

E| �̂�𝑘 − �̃�𝑘 |/𝐾 +
𝐾∑︁
𝑘=1

∫
𝐼𝑘

|𝑝𝑘 − 𝑝∗𝐷 (𝑥) | 𝑓𝑋 (𝑥)𝑑𝑥

≲ (𝐾/𝑛)1/3 + 1/𝐾 + exp
(
−
𝑛𝑐21

8𝐾2 + log 𝐾
)
≍ 𝑛−1/4,

where the last line follows from the proof of Theorem 1.

For part (ii), since 𝑝∗𝑈 is a scalar, the welfare can be simplified to

𝑊 (𝑝∗𝑈 , 𝐹𝑌 ) =
∫ 𝑝∗𝑈

0
𝑦 𝑓𝑌 (𝑦)𝑑𝑦.

Then we have

E|𝑊 ( �̂�𝑈 (data𝑌 ), 𝐹𝑌 ) −𝑊 (𝑝∗𝑈 , 𝐹𝑌 ) | = E
��� ∫ �̂�𝑈 (data𝑌 )

𝑝∗
𝑈

𝑦 𝑓𝑌 (𝑦)𝑑𝑦
���

≤ sup
𝑦

|𝑦 𝑓𝑌 (𝑦) |E| �̂�𝑈 (data𝑌 ) − 𝑝∗𝑈 |

≲ 𝑛−1/3,

where we have used Corollary 1 along with the fact that 𝑦 𝑓𝑌 (𝑦) is nonnegative and bounded for

𝑦 ∈ [0, 1].
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B Proofs for lower bounds

Proof of Theorem 3. For Theorem 3, we use Lemma C.4 to prove the lower bound. Define

𝜔𝐷 (𝜖) ≡ sup
𝐹1,𝐹2∈F

{
|𝑝∗𝐷 (𝑥0; 𝐹1) − 𝑝∗𝐷 (𝑥0; 𝐹2) | : 𝐻 (𝐹1∥𝐹2) ≤ 𝜖

}
.

By Lemma C.4, we have

inf
𝑝𝐷∈Ď

sup
𝐹𝑌,𝑋 ∈F

E𝐹𝑌,𝑋 |𝑝𝐷 (𝑥0; data) − 𝑝∗𝐷 (𝑥0) | ≥
1
8
𝜔𝐷

(
1/(2

√
𝑛)

)
.

Therefore, we only need to find a lower bound for 𝜔𝐷. Based on the explanation in Section 4.3.1,

we want to construct two distributions that are hard to distinguish but their optimal prices are well-

separated. We start by defining two perturbation functions. Let 𝜙𝑌 be defined as

𝜙𝑌 (𝑡) ≡



𝑡 + 1, 𝑡 ∈ [−1, 0],

−𝑡 + 1, 𝑡 ∈ [0, 2],

𝑡 − 3, 𝑡 ∈ [2, 3],

0, otherwise.

(27)

Notice that 𝜙𝑌 is Lipschitz continuous on R. Let 𝜙𝑋 be defined as

𝜙𝑋 (𝑡) ≡


𝑒−(4𝑡−1)2/(1−(4𝑡−1)2 ) , 𝑡 ∈ (0, 1/2),

−𝑒−(4𝑡−3)2/(1−(4𝑡−3)2 ) , 𝑡 ∈ (1/2, 1),

0, otherwise.

Notice that 𝜙𝑋 is infinitely differentiable on R. We plot the two perturbation functions in Figure B.1.

Now we construct the two distributions. Let 𝛿 ∈ (0, 1/4) be a small number (that depends on

𝑛) to be specified later. Let 𝑎 be any number in the interval (0, 4 − 2𝐶∗). Define the two conditional

density functions of 𝑌 given 𝑋 as

𝑓1(𝑦 |𝑥) ≡ 1,

𝑓2(𝑦 |𝑥) ≡ 1 + 𝑎𝛿𝜙𝑌
(
𝑦 − 1/2

𝛿

)
𝜙𝑋

( 𝑥 − 𝑥0

𝛿
+ 1/4

)
. (28)
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Figure B.1: Perturbation functions 𝜙𝑌 and 𝜙𝑋 .

−1 0 1 2 3

−1

0

1 𝜙𝑌

0 0.5 1

−1

0

1 𝜙𝑋

We let the marginal distribution 𝑓𝑋 (𝑥) of 𝑋 be the uniform distribution on [0, 1]. Note that 𝑓1(𝑦 |𝑥),

𝑓2(𝑦 |𝑥), 𝑓1(𝑦, 𝑥) = 𝑓1(𝑦 |𝑥) 𝑓𝑋 (𝑥), and 𝑓2(𝑦, 𝑥) = 𝑓2(𝑦 |𝑥) 𝑓𝑋 (𝑥) are non-negative everywhere, with

integrals over their respective entire spaces all equaling to 1.

The first task is to verify that the two distributions are indeed in the class F𝜅. For 𝐶∗ ∈ (0, 2),

the first distribution is in F by Lemma C.2 and the fact that 𝑌 is independent of 𝑋 . Given any

𝑥 ∈ [0, 1], we can treat the whole term 𝑎𝜙𝑋 ((𝑥 − 𝑥0)/𝛿 + 1/4) as the coefficient 𝑏 in Lemma C.3.

Then the results of Lemma C.3 applies since |𝜙𝑋 | ≤ 1. In particular, the revenue function at 𝑥 is

twice-differentiable a.e., the absolute value of the second-order partial derivative with respect to 𝑦

is bounded, and is also bounded from below by 𝐶∗. The optimal price is an interior solution and is

in the interior of a region on which the revenue function is twice-differentiable. Lastly, the absolute

value of the partial derivative of 𝑓2(𝑦 |𝑥) with respect to 𝑥 is bounded. This ensures that the quantity

| 𝜕
𝜕𝑥
𝐹𝑌 |𝑋 (𝑦 |𝑥) + 𝑦 𝜕

𝜕𝑥
𝑓𝑌 |𝑋 (𝑦 |𝑥) | is bounded.

Next, we want to derive the Hellinger distance between the two joint densities

𝑓1(𝑦, 𝑥) = 1,

𝑓2(𝑦, 𝑥) = 1 + 𝑎𝛿𝜙𝑌
(
𝑦 − 1/2

𝛿

)
𝜙𝑋

( 𝑥 − 𝑥0

𝛿
+ 1/4

)
.

Let Ψ(𝑡) ≡
√
1 + 𝑡. Its second-order derivate is bounded when |𝑡 | < 1/2; that is,

sup
|𝑡 |<1/2

|Ψ′′(𝑡) | < 𝐶.
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We use 𝐻 to denote the Hellinger distance:

𝐻 ( 𝑓1∥ 𝑓2)2 ≡
∫ 1

0

(√︁
𝑓1(𝑦) −

√︁
𝑓2(𝑦)

)2
𝑑𝑦.

The Hellinger distance can be bounded as

𝐻2( 𝑓1∥ 𝑓2)/2 = 1 −
∫ 1

0

∫ 1

0
Ψ

(
𝑎𝛿𝜙𝑌

(
𝑦 − 1/2

𝛿

)
𝜙𝑋

( 𝑥 − 𝑥0

𝛿
+ 1/4

))
𝑑𝑦𝑑𝑥

=

∫ 1

0

∫ 1

0
Ψ(0) − Ψ

(
𝑎𝛿𝜙𝑌

(
𝑦 − 1/2

𝛿

)
𝜙𝑋

( 𝑥 − 𝑥0

𝛿
+ 1/4

))
𝑑𝑦𝑑𝑥

≤ −𝑎Ψ′(0)𝛿
∫ 1

0

∫ 1

0
𝜙𝑌

(
𝑦 − 1/2

𝛿

)
𝜙𝑋

( 𝑥 − 𝑥0

𝛿
+ 1/4

)
𝑑𝑦𝑑𝑥

+ 𝑎2𝐶𝛿2
∫ 1

0

∫ 1

0
𝜙2
𝑌

(
𝑦 − 1/2

𝛿

)
𝜙2
𝑋

( 𝑥 − 𝑥0

𝛿
+ 1/4

)
𝑑𝑦𝑑𝑥,

where we have applied the second-order Taylor expansion to obtain the last inequality. By the change

of variables 𝑢 = (𝑦 − 1/2)/𝛿 and 𝑣 = (𝑥 − 𝑥0)/𝛿 + 1/4, for sufficiently small 𝛿 ∈ (0, 1/2],∫ 1

0

∫ 1

0
𝜙𝑌

(
𝑦 − 1/2

𝛿

)
𝜙𝑋

( 𝑥 − 𝑥0

𝛿
+ 1/4

)
𝑑𝑦𝑑𝑥 = 𝛿2

∫ 1

−1
𝜙𝑌 (𝑢) 𝑑𝑢

∫ 1

0
𝜙𝑋 (𝑣) 𝑑𝑣 = 0, (29)

and ∫ 1

0

∫ 1

0
𝜙2
𝑌

(
𝑦 − 1/2

𝛿

)
𝜙2
𝑋

( 𝑥 − 𝑥0

𝛿
+ 1/4

)
𝑑𝑦𝑑𝑥 = 𝛿2

∫ 1

−1
𝜙2
𝑌 (𝑢) 𝑑𝑢

∫ 1

0
𝜙2
𝑋 (𝑣) 𝑑𝑣 ≤ 𝐶𝛿2.

Therefore, the Hellinger distance is bounded as

𝐻2( 𝑓1∥ 𝑓2) ≲ 𝛿4.

Now we take 𝛿 such that 𝛿4 ≍ 1/𝑛. Note that (29) holds when 𝛿 > 0 is small enough such that 𝛿 ∈

(0, 1/2], 1/4−𝑥0/𝛿 ≤ 0 and (1−𝑥0)/𝛿+1/4 ≥ 1; that is, when 𝑥0𝑛1/4 ≥ 𝑐′ and (1−𝑥0)𝑛1/4 ≥ 𝑐′′ for

positive universal constants 𝑐′ and 𝑐′′ (independent of 𝑛 and 𝑥0). This ensures that 𝐻2( 𝑓1∥ 𝑓2) ≲ 1/𝑛.

Then from Lemma C.4, we know that

inf
�̌�𝐷∈Ď

sup
𝐹𝑌,𝑋 ∈F

E𝐹𝑌,𝑋 | �̌�𝐷 (𝑥0; data) − 𝑝∗𝐷 (𝑥0) | ≳ 𝑛−1/4, 𝑥0 ∈ (0, 1).

For bounding the revenue, recall that the revenue achieved at the price 𝑝 and covariate value 𝑥0 is
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𝑟(𝑝, 𝑥0) = max𝑝 𝑝(1 − 𝐹𝑌 |𝑋 (𝑝|𝑥0)). By Lemma C.1, we have

𝑟(𝑝∗𝐷 (𝑥0)) − 𝑟( �̌�𝐷 (𝑥0; data)) ≥
𝐶∗

2
|𝑝∗𝐷 (𝑥0) − 𝑝𝐷 (𝑥0; data) |2.

As a result, we have

inf
�̌�𝐷∈Ď

sup
𝐹𝑌,𝑋 ∈F

E[𝑟(𝑝∗𝐷, 𝑥0) − 𝑟(𝑝𝐷 (data), 𝑥0)]

≥ inf
�̌�𝐷∈Ď

sup
𝐹𝑌,𝑋 ∈F

E

[
𝐶∗

2
|𝑝∗𝐷 (𝑥0) − �̌�𝐷 (𝑥0; data) |2

]
≥ inf

�̌�𝐷∈Ď
sup

𝐹𝑌,𝑋 ∈F

𝐶∗

2
{
E

[
|𝑝∗𝐷 (𝑥0) − 𝑝𝐷 (𝑥0; data) |

]}2
≳ 𝑛−1/2.

This proves Theorem 3.

Proof of Theorem 4. To prove Theorem 4, we follow the explanation in Section 4.3.2 and use the

Fano’s inequality to bound the probability of mistakes in the multiple classification problem. Before

solving the revenue problem, we first study the lower bound for the 𝐿2−distance of pricing functions.

For two pricing functions 𝑝1 and 𝑝2, we define the (unweighted) 𝐿2−distance as

∥𝑝1 − 𝑝2∥2 ≡
(∫ 1

0
|𝑝1(𝑥) − 𝑝2(𝑥) |2𝑑𝑥

)1/2
.

In part (i), we defined the perturbation on the 𝑋 dimension at a fixed point 𝑥0. Now we want

to define a large set of perturbed distributions. Each of these distributions is perturbed in a small

interval on the 𝑋 dimension. Let 𝑚 ≥ 8 be a large number (depending on 𝑛) that we specify later.

Let 𝛼 ∈ {0, 1}𝑚 be a vector of length 𝑚; that is,

𝛼 ≡ (𝛼1, . . . , 𝛼𝑚), where 𝛼 𝑗 ∈ {0, 1}, 𝑗 = 1, . . . , 𝑚.

We construct a set of conditional density functions indexed by 𝛼:

𝑓𝛼
𝑌 |𝑋 (𝑦 |𝑥) ≡ 1 + 𝑎

𝑚

𝑚∑︁
𝑗=1

𝛼 𝑗𝜙𝑌 (𝑚(𝑦 − 1/2)) 𝜙𝑋 (𝑚𝑥 − ( 𝑗 − 1)) .

The marginal distribution of 𝑋 is taken to be the uniform distribution on [0, 1], that is, 𝑓𝑋 ≡ 1[0,1] .

We denote the joint distribution by 𝑓𝛼𝑌,𝑋 ≡ 𝑓𝛼
𝑌 |𝑋 𝑓𝑋 .

We briefly describe this construction of the conditional density. The unit interval [0, 1] is divided
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equally into 𝑚 subintervals:

𝐼 𝑗 ≡ [( 𝑗 − 1)/𝑚, 𝑗/𝑚] , 𝑗 = 1, . . . , 𝑚.

For 𝑥 ∈ 𝐼 𝑗, if 𝛼 𝑗 = 0, then the conditional density is 1. If 𝛼 𝑗 = 1, then the conditional density

𝑓𝛼
𝑌 |𝑋 (𝑦 |𝑥) ≡ 1 + 𝑎

𝑚
𝜙𝑌 (𝑚(𝑦 − 1/2)) 𝜙𝑋 (𝑚𝑥 − ( 𝑗 − 1)) , 𝑥 ∈ 𝐼 𝑗.

By treating 1/𝑚 as the scalar 𝛿 in part (i), we can see that, for 𝑚 large enough, each 𝑓𝛼𝑌,𝑋 belongs to

the set F𝜅.

From the set { 𝑓𝛼𝑌,𝑋 : 𝛼 ∈ {0, 1}𝑚}, we want to pick out a large enough subset of distributions

whose optimal price functions are well-separated. For this purpose, we use the Gilbert-Varshamov

bound (Lemma 2.9, Chapter 2 Tsybakov, 2009). The Gilbert-Varshamov bound states that for𝑚 ≥ 8,

there exists a subset A ⊂ {0, 1}𝑚 with cardinality 𝑀 ≡ |A| ≥ 2𝑚/8, and the pairwise rescaled

Hamming distance between elements in this set is greater than 1/8. That is,

1
𝑚

𝑚∑︁
𝑗=1

1{𝛼 𝑗 ≠ 𝛼′𝑗} ≥
1
8
, for any 𝛼, 𝛼′ ∈ A.

Applying the Gilbert-Varshamov bound, we can show that for 𝛼, 𝛼′ ∈ A, the optimal pricing functions

of 𝑓𝛼𝑌,𝑋 and 𝑓𝛼
′

𝑌,𝑋 are well-separated. Let 𝑝𝛼 be the pricing function associated with 𝑓𝛼𝑌,𝑋 ; that is,

𝑝𝛼(𝑥) ≡ argmax
𝑝∈[0,1]

𝑝(1 − 𝐹𝛼
𝑌 |𝑋 (𝑝|𝑥)),

where 𝐹𝛼
𝑌 |𝑋 (𝑦 |𝑥) is the corresponding conditional cumulative distribution function. Note that 𝛼, 𝛼′ ∈

A differ in at least 𝑚/8 positions. This means that 𝑓𝛼
𝑌 |𝑋 and 𝑓𝛼

′

𝑌 |𝑋 differ in 𝑚/8 intervals. Suppose

that 𝐼 𝑗 is such an interval, where 𝛼 𝑗 = 0 and 𝛼′
𝑗
= 1. We restrict our attention to a subset of this

interval:

�̃� 𝑗 ≡
[
1
6𝑚

+ 𝑗 − 1
𝑚

,
1
3𝑚

+ 𝑗 − 1
𝑚

]
⊂ 𝐼 𝑗.

When 𝑥 ∈ �̃� 𝑗, we have

𝑚𝑥 − ( 𝑗 − 1) ∈ [1/6, 1/3] =⇒ 𝜙𝑋 (𝑚𝑥 − ( 𝑗 − 1)) ∈ [𝜙𝑋 (0), 𝜙𝑋 (1/2)] . (30)

By Lemma C.3 (where 𝑏 = 𝑎𝜙𝑋 (𝑚𝑥 − ( 𝑗 − 1)) > 0, 𝛿 = 1/𝑚), the choice 𝑎 ∈ (0, 4 − 2𝜅), and the
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fact (30), if we fix 𝑥 ∈ �̃� 𝑗, then 𝑝𝛼(𝑥) = 1/2 while

𝑝𝛼′ (𝑥) ≤ 1/2 − 𝑐

𝑚
𝜙𝑋 (𝑚𝑥 − ( 𝑗 − 1)) ≤ 1/2 − 𝑐𝜙𝑋 (1/6)

𝑚
, 𝑥 ∈ �̃� 𝑗,

where 𝑐 > 0 is a universal constant that does not depend on 𝑛.12 This implies that

|𝑝𝛼(𝑥) − 𝑝𝛼′ (𝑥) | ≳
1
𝑚
, 𝑥 ∈ �̃� 𝑗.

Therefore, on the interval 𝐼 𝑗, the separation between 𝑝𝛼 and 𝑝𝛼′ is lower bounded as∫
𝐼 𝑗

|𝑝𝛼(𝑥) − 𝑝𝛼′ (𝑥) |2𝑑𝑥 ≳
∫
�̃� 𝑗

1/𝑚2𝑑𝑥 =
1
6𝑚

× 1
𝑚2 ≳ 1/𝑚3.

By the Gilbert-Varshamov bound, there are at least 𝑚/8 such intervals. Therefore, we can lower

bound the total separation by

∥𝑝1 − 𝑝2∥2 ≳
(
𝑚/8 × 1/𝑚3)1/2 ≳ 1/𝑚.

Next, wewant to compute the KL divergence between 𝑓𝛼𝑌,𝑋 and 𝑓𝛼
′

𝑌,𝑋 . Note that the term𝜙𝑋 (𝑚𝑥 − ( 𝑗 − 1))

is non-zero only when 𝑥 ∈ 𝐼 𝑗. The KL divergence can therefore be treated as a sum of 𝑚 integrals:

KL( 𝑓𝛼𝑌,𝑋 ∥ 𝑓𝛼
′

𝑌,𝑋 ) =
∫ 1

0

∫ 1

0
𝑓𝛼𝑌,𝑋 (𝑦, 𝑥) log

𝑓𝛼𝑌,𝑋

𝑓𝛼
′

𝑌,𝑋

𝑑𝑦𝑑𝑥 =

𝑚∑︁
𝑗=1

𝐸 𝑗,

where

𝐸 𝑗 ≡
∫
𝐼 𝑗

∫ 1

0

(
1 + 𝑎

𝑚
𝛼 𝑗𝜙𝑌 (𝑚(𝑦 − 1/2)) 𝜙𝑋 (𝑚𝑥 − ( 𝑗 − 1))

)
× log

1 + 𝑎
𝑚
𝛼 𝑗𝜙𝑌 (𝑚(𝑦 − 1/2)) 𝜙𝑋 (𝑚𝑥 − ( 𝑗 − 1))

1 + 𝑎
𝑚
𝛼′
𝑗
𝜙𝑌 (𝑚(𝑦 − 1/2)) 𝜙𝑋 (𝑚𝑥 − ( 𝑗 − 1)) 𝑑𝑦𝑑𝑥.

Notice that when 𝛼 𝑗 = 𝛼 𝑗′ , 𝐸 𝑗 = 0. Therefore, we only need to consider the 𝑗’s where 𝛼 𝑗 ≠ 𝛼′
𝑗
.

Denote Ψ1(𝑡) = − log(1 + 𝑡) and Ψ2(𝑡) = (1 + 𝑡) log(1 + 𝑡). Then we can write 𝐸 𝑗 as

𝐸 𝑗 =


∫
𝐼 𝑗

∫ 1
0 Ψ1

(
𝑎
𝑚
𝜙𝑌 (𝑚(𝑦 − 1/2)) 𝜙𝑋 (𝑚𝑥 − ( 𝑗 − 1))

)
𝑑𝑦𝑑𝑥, if 𝛼 𝑗 = 0, 𝛼′

𝑗
= 1,∫

𝐼 𝑗

∫ 1
0 Ψ2

(
𝑎
𝑚
𝜙𝑌 (𝑚(𝑦 − 1/2)) 𝜙𝑋 (𝑚𝑥 − ( 𝑗 − 1))

)
𝑑𝑦𝑑𝑥, if 𝛼 𝑗 = 1, 𝛼′

𝑗
= 0.

12For example, 𝑐 can be equal to 𝑎/8 according to Lemma C.3.
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By the second-order Taylor expansion at zero, we have

Ψ1(𝑡) = −𝑡 + 1
2(1 + 𝑡′)2 𝑡

2,

for some 𝑡′ between 0 and 𝑡. When |𝑡 | ≤ 1/4,13 we have

Ψ1(𝑡) ≤ −𝑡 + 𝐶𝑡2,

for some universal constant 𝐶 > 0. Similarly, we can show that

Ψ2(𝑡) ≤ 𝑡 + 𝐶𝑡2.

Applying these inequalities to 𝐸 𝑗, we have

𝐸 𝑗 ≤ ±
∫
𝐼 𝑗

∫ 1

0

𝑎

𝑚
𝜙𝑌 (𝑚(𝑦 − 1/2)) 𝜙𝑋 (𝑚𝑥 − ( 𝑗 − 1)) 𝑑𝑦𝑑𝑥

+ 𝐶
∫
𝐼 𝑗

∫ 1

0

𝑎2

𝑚2𝜙
2
𝑌 (𝑚(𝑦 − 1/2)) 𝜙2

𝑋 (𝑚𝑥 − ( 𝑗 − 1)) 𝑑𝑦𝑑𝑥.

Similar to the derivation in Part (i), we know that the first term on the RHS is zero. For the second

term, we can apply change of variables 𝑢 = 𝑚(𝑦 − 1/2) and 𝑣 = 𝑚𝑥 − ( 𝑗 − 1) and obtain that∫
𝐼 𝑗

∫ 1

0
𝜙2
𝑌 (𝑚(𝑦 − 1/2)) 𝜙2

𝑋 (𝑚𝑥 − ( 𝑗 − 1)) 𝑑𝑦𝑑𝑥

=
1
𝑚2

∫ 1

0
𝜙2
𝑋 (𝑣) 𝑑𝑣

∫ 3

−1
𝜙2
𝑌 (𝑢) 𝑑𝑢 ≤ 𝐶′

𝑚2

for some universal constant 𝐶′ > 0. Putting the results results together, we know that 𝐸 𝑗 ≤ 𝐶
𝑚4 for

all 𝑗. Since there are 𝑚 intervals, we can bound the KL divergence by

KL( 𝑓𝛼𝑌,𝑋 ∥ 𝑓𝛼
′

𝑌,𝑋 ) =
𝑚∑︁
𝑗=1

𝐸 𝑗 ≲
1
𝑚3 .

This is the KL distance for a single observation. For the entire data set with 𝑛 i.i.d. observations, the

KL divergence is upper bounded by 𝐶𝑛/𝑚3.

13Later we show that 𝑚 is chosen to be 𝑐0𝑛1/4 where 𝑐0 > 0 is a universal constant. As a result, |𝑡 | ≤ 1/4 is guaranteed as
long as 𝑐0 is sufficiently large.
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Lastly, we can summarize our results into the Fano inequality presented in Lemma C.5. We have

inf
�̌�𝐷∈Ď

sup
𝐹𝑌,𝑋 ∈F

E∥𝑝𝐷 (data) − 𝑝∗𝐷∥22 ≥ 𝐶1

𝑚2

(
1 − 𝐶2𝑛/𝑚3 + log 2

log 2𝑚/8

)
≥ 𝐶1

𝑚2

(
1 − 𝐶2𝑛/𝑚3 + log 2

𝐶3𝑚

)
.

By choosing 𝑚 = 𝑐0𝑛
1/4 for a sufficiently large universal constant 𝑐0 > 0, we can make the factor(

1 − 𝐶2𝑛/𝑚3+log 2
𝐶3𝑚

)
stay above, say, 1/2. Then we have

inf
�̌�𝐷∈Ď

sup
𝐹𝑌,𝑋 ∈F

E∥𝑝𝐷 (data) − 𝑝∗𝐷∥22 ≳
1
𝑚2 ≍ 𝑛−1/2.

So far we have derived the lower bound for the 𝐿2−distance of pricing. Moving onto the revenue

problem, recall that the revenue achieved at the price 𝑝 and covariate value 𝑥 is 𝑟(𝑝, 𝑥) = max𝑝 𝑝(1−

𝐹𝑌 |𝑋 (𝑝|𝑥)). By Lemma C.1, we have

𝑟(𝑝∗𝐷, 𝑥) − 𝑟( �̌�𝐷 (data), 𝑥) ≥
𝐶∗

2
|𝑝∗𝐷 (𝑥) − �̌�𝐷 (𝑥; data) |2.

Since 𝑓𝑋 is bounded away from zero, we have

inf
�̌�𝐷∈Ď

sup
𝐹𝑌,𝑋 ∈F

E[𝑅(𝑝∗𝐷) − 𝑅( �̌�𝐷)]

= inf
�̌�𝐷∈Ď

sup
𝐹𝑌,𝑋 ∈F

E

[∫ 1

0
(𝑟(𝑝∗𝐷, 𝑥) − 𝑟(𝑝𝐷, 𝑥)) 𝑓𝑋 (𝑥)𝑑𝑥

]
≥ inf

�̌�𝐷∈Ď
sup

𝐹𝑌,𝑋 ∈F
E

[
𝐶∗

2

(
inf

𝑥∈[0,1]
𝑓𝑋 (𝑥)

) ∫ 1

0
|𝑝∗𝐷 (𝑥) − �̌�𝐷 (𝑥; data) |2𝑑𝑥

]
≳ 𝑛−1/2.

Proof of Theorem 5. We use Lemma C.4 to prove the lower bound for Theorem 5. Define

𝜔𝑈 (𝜖) ≡ sup
𝐹1,𝐹2∈F𝑈

{
|𝑝∗𝑈 (𝐹1) − 𝑝∗𝑈 (𝐹2) | : 𝐻 (𝐹1∥𝐹2) ≤ 𝜖

}
.

Then by Lemma C.4, we have

inf
�̌�𝑈 ∈Ǔ

sup
𝐹𝑌 ∈F𝑈

E𝐹𝑌 |𝑝𝑈 (data𝑌 ) − 𝑝∗𝑈 | ≥
1
8
𝜔𝑈

(
1/(2

√
𝑛)

)
.

Therefore, we only need to find a lower bound for 𝜔𝑈 . The proof proceeds in three steps. In the

first step, we construct two distributions and compute the separation between their optimal prices.
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The second step bounds the Hellinger distance between these two distributions. The third step

summarizes.

Step 1. We construct two distribution functions. The first distribution is the uniform distribution

on the unit interval [0, 1]. We denote this density function as

𝑓1(𝑦) = 1[0,1] (𝑦).

The distribution function is 𝐹1(𝑦) = 𝑦 on the support [0, 1]. The revenue function under this distri-

bution is 𝑅1(𝑝) = 𝑝(1 − 𝑝). The optimal price is

𝑝1 = argmax
𝑝∈[0,1]

𝑅1(𝑝) = argmax
𝑝∈[0,1]

𝑝 − 𝑝2 = 1/2.

The second distribution function is a small twist of the uniform distribution. We use the same per-

turbation function 𝜙𝑌 defined in (27).

We apply a small perturbation to the uniform density. Let 𝛿 > 0 be a small number (that depends

on 𝑛) specified later. Let 𝑎 ∈ (0, 4 − 2𝐶∗). The formula of the density 𝑓2 is given by

𝑓2(𝑦) ≡ 1 + 𝑎𝛿𝜙𝑌
(
𝑦 − 1/2

𝛿

)
=



1, if 𝑦 ∈ [0, 1/2 − 𝛿),

𝑎𝑦 + 1 − 𝑎
2 + 𝑎𝛿, if 𝑦 ∈ [1/2 − 𝛿, 1/2),

−𝑎𝑦 + 1 + 𝑎
2 + 𝑎𝛿, if 𝑦 ∈ [1/2, 1/2 + 2𝛿),

𝑎𝑦 + 1 − 𝑎
2 − 3𝑎𝛿, if 𝑦 ∈ [1/2 + 2𝛿, 1/2 + 3𝛿),

1, if 𝑦 ∈ [1/2 + 3𝛿, 1].

We compare the two densities 𝑓1 and 𝑓2 in the following graph.

Denote the optimal price under 𝑓2 by 𝑝2. By Lemma C.3(ii), we have

|𝑝2 − 𝑝1 | ≥ 𝑎𝛿/8

when 𝛿 is sufficiently small.

Step 2. We want to bound the Hellinger distance 𝐻 (𝐹1∥𝐹2). Define the function Ψ(𝑡) =
√
1 + 𝑡.

Its second-order derivative is bounded when |𝑡 | < 1/2; that is,

sup
|𝑡 |<1/2

|Ψ′′(𝑡) | ≤
√
2
2
.
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Figure B.2: Density functions 𝑓1 and 𝑓2.
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Since 𝑓1(𝑦) = 1, we have

𝐻 (𝐹1∥𝐹2)2/2 = 1 −
∫ 1

0
Ψ

(
𝑎𝛿𝜙𝑌

(
𝑦 − 1/2

𝛿

))
𝑑𝑦

=

∫ 1

0
Ψ(0) − Ψ

(
𝑎𝛿𝜙𝑌

(
𝑦 − 1/2

𝛿

))
𝑑𝑦.

By the second-order Taylor expansion, we have

Ψ(0) − Ψ

(
𝑎𝛿𝜙𝑌

(
𝑦 − 1/2

𝛿

))
≤ − Ψ′(0)𝑎𝛿𝜙𝑌

(
𝑦 − 1/2

𝛿

)
+
√
2
4
𝑎2𝛿2𝜙2

𝑌

(
𝑦 − 1/2

𝛿

)
.

By the construction of 𝜙𝑌 , we have ∫ 1

0
𝜙𝑌

(
𝑦 − 1/2

𝛿

)
𝑑𝑦 = 0.

By the change of variables 𝑢 = (𝑦 − 1/2)/𝛿, we have∫ 1

0
𝜙2
𝑌

(
𝑦 − 1/2

𝛿

)
𝑑𝑦 = 𝛿

∫
R
𝜙2
𝑌 (𝑢) 𝑑𝑢 ≤ 4𝛿

∫ 0

−1
(𝑥 + 1)2𝑑𝑥 =

4
3
𝛿.

Combining these results together, we obtain a bound on the Hellinger distance

𝐻 (𝐹1∥𝐹2)2 ≤ 2
√
2

3
𝑎2𝛿3.

Step 3. By setting 𝛿 = 𝑐′0(3/8
√
2)1/3𝑎−2/3𝑛−1/3 for 𝑐′0 ∈ (0, 1), we can ensure that 𝐻 (𝐹1∥𝐹2) ≤

46



1/(2
√
𝑛). Previously, we assumed that 𝑎𝛿 ≤ 1/2 for the second-order Taylor expansion. This is

true if 𝑐′0 is chosen to be sufficiently small. In this case, the separation between 𝑝1 and 𝑝2 is lower

bounded as below:

|𝑝1 − 𝑝2 | ≥ 𝑎𝛿/8 =
𝑐′0
16

(
3
√
2

)1/3 ( 𝑎
𝑛

)1/3
.

By Lemma C.4, we have

inf
�̌�𝑈 ∈Ǔ

sup
𝐹𝑌 ∈F𝑈

E| �̌�𝑈 (data𝑌 ) − 𝑝∗𝑈 | ≥
𝑐′0
16

(
3
√
2

)1/3 ( 𝑎
𝑛

)1/3
.

Lastly, we want to lower bound the revenue. By Lemma C.1, we have

R𝑈
𝑛 (F 𝑈) = inf

𝑝𝑈 ∈Ǔ
sup
𝐹𝑌 ∈F𝑈

E|𝑅( �̌�𝑈 (data𝑌 ), 𝐹𝑌 ) − 𝑅(𝑝∗𝑈 , 𝐹𝑌 ) |

≥ inf
�̌�𝑈 ∈Ǔ

sup
𝐹𝑌 ∈F𝑈

E

[
𝐶∗

2
| �̌�𝑈 (data𝑌 ) − 𝑝∗𝑈 |2

]
≥ inf

�̌�𝑈 ∈Ǔ
sup
𝐹𝑌 ∈F𝑈

𝐶∗

2
{
E

[
| �̌�𝑈 (data𝑌 ) − 𝑝∗𝑈 |

]}2
≳

(
1
𝑛

)2/3
.

C Auxiliary Lemmas

Lemma C.1. Let 𝑓 be a function on [0, 1]. Assume that 𝑓 is differentiable and its derivative 𝑓 ′ is

Lipschitz continuous. Let 𝑧∗ be a point in [0, 1] such that 𝑓 ′(𝑧∗) = 0.

(i) The derivative 𝑓 ′ is a.e. differentiable on [0, 1].

(ii) Assume that there exists 𝜅1 > 0 such that 𝑓 ′′(𝑧) ≤ −𝜅1 for almost all 𝑧 ∈ [0, 1]. Then, for any

𝑧 ∈ [0, 1], we have

| 𝑓 (𝑧) − 𝑓 (𝑧∗) | ≥ 𝜅1

2
(𝑧 − 𝑧∗)2.

(iii) Assume that there exists 𝜅2 > 0 such that | 𝑓 ′′(𝑧) | ≤ 𝜅2 for almost all 𝑧 ∈ [0, 1]. Then, for any
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𝑧 ∈ [0, 1], we have

| 𝑓 (𝑧) − 𝑓 (𝑧∗) | ≤ 𝜅2

2
(𝑧 − 𝑧∗)2.

Proof of Lemma C.1. For part (i), notice that a Lipschitz continuous function is absolutely continuous.

By Theorem 3.35 in Chapter 3 of Folland (1999), we know that 𝑓 ′ is differentiable a.e. with

𝑓 ′(𝑧1) − 𝑓 ′(𝑧2) =
∫ 𝑧1

𝑧2

𝑓 ′′(𝑧)𝑑𝑧.

For part (ii), we can apply the fundamental theorem of calculus twice and obtain that

𝑓 (𝑧) − 𝑓 (𝑧∗) =
∫ 𝑧

𝑧∗
𝑓 ′( �̃�)𝑑�̃�

=

∫ 𝑧

𝑧∗
( 𝑓 ′(𝑧1) − 𝑓 ′(𝑧∗))𝑑𝑧1

=

∫ 𝑧

𝑧∗

∫ 𝑧1

𝑧∗
𝑓 ′′(𝑧2)𝑑𝑧2𝑑𝑧1

≤ −𝜅1
∫ 𝑧

𝑧∗

∫ 𝑧1

𝑧∗
𝑑𝑧2𝑑𝑧1,

where in the second line we have used the assumption that 𝑓 ′(𝑧∗) = 0, and in the last line we have

used the assumption that 𝑓 ′′(𝑧) ≤ −𝜅1 for almost all 𝑧 ∈ [0, 1]. The double integral in the last line

is equal to ∫ 𝑧

𝑧∗

∫ 𝑧1

𝑧∗
𝑑𝑧2𝑑𝑧1 =

∫ 𝑧

𝑧∗
(𝑧1 − 𝑧∗)𝑑𝑧1 =

(𝑧 − 𝑧∗)2
2

.

Therefore, we have

| 𝑓 (𝑧) − 𝑓 (𝑧∗) | ≥ 𝜅1

2
(𝑧 − 𝑧∗)2.

Part (iii) can be proved analogously.

Lemma C.2. For the uniform distribution on [0, 1], the revenue function 𝑅(𝑦) = 𝑦(1− 𝑦). The revenue

function is twice-differentiable with second-order derivative 𝑅′′(𝑦) = −2, 𝑦 ∈ [0, 1]. The optimal price

is 1/2.

Proof of Lemma C.2. The proof is straightforward.
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Lemma C.3. Recall the perturbation function 𝜙𝑌 defined in (27). Consider the following density func-

tion

𝑓 (𝑦) ≡ 1 + 𝑏𝛿𝜙𝑌
(
𝑦 − 1/2

𝛿

)
=



1, if 𝑦 ∈ [0, 1/2 − 𝛿),

𝑏𝑦 + 1 − 𝑏
2 + 𝑏𝛿, if 𝑦 ∈ [1/2 − 𝛿, 1/2),

−𝑏𝑦 + 1 + 𝑏
2 + 𝑏𝛿, if 𝑦 ∈ [1/2, 1/2 + 2𝛿),

𝑏𝑦 + 1 − 𝑏
2 − 3𝑏𝛿, if 𝑦 ∈ [1/2 + 2𝛿, 1/2 + 3𝛿),

1, if 𝑦 ∈ [1/2 + 3𝛿, 1],

0, otherwise.

Denote 𝐹 as the corresponding cumulative distribution function, 𝑅(𝑦) ≡ 𝑦(1 − 𝐹(𝑦)) the revenue func-

tion, and 𝑝∗ ≡ argmax𝑦∈[0,1] 𝑅(𝑦) the optimal price. If 𝐶∗ ∈ (0, 2), |𝑏| < 4 − 2𝐶∗, and 𝛿 > 0 is

sufficiently small, then the following statements hold.

(i) The density 𝑓 is Lipschitz continuous.

(ii) The revenue function is twice-differentiable a.e. The second-order derivative is bounded a.e. and

satisfies that

−2 𝑓 (𝑦) − 𝑦 𝑓 ′(𝑦) ≥ −𝐶∗ for almost all 𝑦.

(iii) For 𝑏 > 0, the optimal price 𝑝∗ ∈ (1/2 − 𝛿, 1/2 − 𝑏𝛿/8). For 𝑏 < 0, the optimal price 𝑝∗ ∈

(1/2 − 𝑏𝛿/8, 1/2 + 2𝛿). For 𝑏 = 0, the optimal price 𝑝∗ = 1/2. In particular, 𝑝∗ is always an

interior solution, and 𝑓 is always differentiable in a neighborhood of 𝑝∗.

Proof of Lemma C.3. For reference, we plot here the perturbation function 𝜙𝑌 and the perturbed

density 𝑓 . Part (i) is straightforward. The density 𝑓 is piecewise linear and hence Lipschitz continuous

with Lipschitz constant 𝑏. To verify the strong concavity in part (ii), note that the corresponding

revenue function 𝑅 is continuously differentiable and twice-differentiable a.e. on the support [0, 1].
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Figure C.1: Perturbation function and perturbed density.
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Its second-order derivative

𝑅′′(𝑦) = −2 𝑓 (𝑦) − 𝑦 𝑓 ′(𝑦) =



−2, if 𝑦 ∈ [0, 1/2 − 𝛿],

−3𝑏𝑦 − 2 + 𝑏 − 2𝑏𝛿, if 𝑦 ∈ [1/2 − 𝛿, 1/2],

3𝑏𝑦 − 2 − 𝑏 − 2𝑏𝛿, if 𝑦 ∈ [1/2, 1/2 + 2𝛿],

−3𝑏𝑦 − 2 + 𝑏 + 6𝑏𝛿, if 𝑦 ∈ [1/2 + 2𝛿, 1/2 + 3𝛿],

−2, if 𝑦 ∈ [1/2 + 3𝛿, 1].

We can see that 𝑅′′ is piecewise linear and hence bounded a.e. We further show that 𝑅′′ is bounded

away from zero by 𝜅. On the intervals [0, 1/2 − 𝛿] and [1/2 + 3𝛿, 1], we have 𝑅′′(𝑦) = −2 < −𝐶∗.

We check the remaining three intervals one by one. On the interval [1/2 − 𝛿, 1/2], the condition

|𝑏| < 4 − 2𝐶∗ ensures that

𝑏 ≥ 0 =⇒ 𝑅′′(𝑦) ≤ 𝑅′′(1/2 − 𝛿) = −𝑏/2 − 2 + 𝑏𝛿 ≤ −𝐶∗,

𝑏 < 0 =⇒ 𝑅′′(𝑦) ≤ 𝑅′′(1/2) = −𝑏/2 − 2 − 2𝑏𝛿 ≤ −𝐶∗,

when 𝛿 is sufficiently small. On the interval [1/2, 1/2 + 2𝛿], we have

𝑏 ≥ 0 =⇒ 𝑅′′(𝑦) ≤ 𝑅′′(1/2 + 2𝛿) = 𝑏/2 − 2 + 4𝑏𝛿 ≤ −𝐶∗,

𝑏 < 0 =⇒ 𝑅′′(𝑦) ≤ 𝑅′′(1/2) = 𝑏/2 − 2 − 2𝑏𝛿 ≤ −𝐶∗,
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when 𝛿 is sufficiently small. On the interval [1/2 + 2𝛿, 1/2 + 3𝛿], we have

𝑏 ≥ 0 =⇒ 𝑅′′(𝑦) ≤ 𝑅′′(1/2 + 2𝛿) = −𝑏/2 − 2 < −𝐶∗,

𝑏 < 0 =⇒ 𝑅′′(𝑦) ≤ 𝑅′′(1/2 + 3𝛿) = −𝑏/2 − 2 − 3𝑏𝛿 < −𝐶∗,

To summarize, we have shown that 𝑅′′(𝑦) ≤ −𝐶∗ a.e. on [0, 1] provided that 𝛿 > 0 is sufficiently

small.

For part (iii), we first consider the case 𝑏 > 0. We only need to consider the interval [1/2−𝛿, 1/2].

The reason will become clear later. The cumulative distribution function

𝐹(𝑦) = 𝑏

2
𝑦2 +

(
1 − 𝑏

2
+ 𝑏𝛿

)
𝛿𝑦 + 𝑏

2
(1/2 − 𝛿)2 , 𝑦 ∈ [1/2 − 𝛿, 1/2] .

The revenue function

𝑅(𝑦) = −𝑏
2
𝑦3 −

(
1 − 𝑏

2
+ 𝑏𝛿

)
𝑦2 +

(
1 − 𝑏

2
(1/2 − 𝛿)2

)
𝑦, 𝑦 ∈ [1/2 − 𝛿, 1/2] .

The marginal revenue

𝑅′(𝑦) = −3𝑏
2
𝑦2 − (2 − 𝑏 + 2𝑏𝛿) 𝑦 + 1 − 𝑏

2
(1/2 − 𝛿)2 , 𝑦 ∈ [1/2 − 𝛿, 1/2] .

We evaluate the marginal revenue at two points 1/2 − 𝛿 and 1/2 − 𝑏𝛿
8 . When 𝑦 = 1/2 − 𝛿, the

marginal revenue

𝑅′ (1/2 − 𝛿) = 𝛿 > 0.

When 𝑦 = 1/2 − 𝑏𝛿/8, the marginal revenue

𝑅′
(
1/2 − 𝑏𝛿

8

)
≈ 𝑏(𝑏 − 4)

16
𝛿 < 0,

where we have omitted higher order terms involving 𝛿2. Therefore, 𝑅′
(
1/2 − 𝑏𝛿

8

)
is negative for

sufficiently small 𝛿. Since the marginal revenue 𝑅′ is strictly decreasing on the entire domain [0, 1],

we know that the only zero of 𝑅′ (which is the optimal price 𝑝∗) is within the region (1/2−𝛿, 1/2− 𝑏𝛿
8 ).

Within this region, the revenue is twice-differentiable everywhere.

Next, we consider the case 𝑏 < 0. In this case, we only need to study the region [1/2, 1/2 + 2𝛿].
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The cumulative distribution function

𝐹(𝑦) = −𝑏
2
𝑦2 +

(
1 + 𝑏

2
+ 𝑏𝛿

)
𝑦 + 𝑏

2
𝛿2 − 𝑏

2
𝛿 − 𝑏

8
, 𝑦 ∈ [1/2, 1/2 + 2𝛿] .

The revenue function

𝑅(𝑦) = 𝑦(1 − 𝐹(𝑦)) = 𝑏

2
𝑦3 −

(
1 + 𝑏

2
+ 𝑏𝛿

)
𝑦2 +

(
1 + 𝑏

8
− 𝑏

2
𝛿2 + 𝑏

2
𝛿

)
𝑦, 𝑦 ∈ [1/2, 1/2 + 2𝛿] .

The marginal revenue

𝑅′(𝑦) = 3𝑏
2
𝑦2 − (2 + 𝑏 + 2𝑏𝛿)𝑦 +

(
1 + 𝑏

8
− 𝑏

2
𝛿2 + 𝑏

2
𝛿

)
, 𝑦 ∈ [1/2, 1/2 + 2𝛿] .

We evaluate the marginal revenue at two points 1/2 + 𝛿 and 1/2 − 𝑏𝛿
8 . When 𝑦 = 1/2 + 𝛿, the

marginal revenue

𝑅′ (1/2 + 𝛿) ≈ −2𝛿 < 0,

where we have omitted higher order terms involving 𝛿2. When 𝑦 = 1/2−𝑏𝛿/8, the marginal revenue

𝑅′
(
1/2 − 𝑏𝛿

8

)
≈ 𝑏(𝑏 + 4)

16
𝛿 > 0,

where we have omitted higher order terms involving 𝛿2. Since the marginal revenue 𝑅′ is strictly

decreasing on the entire domain [0, 1], we know that the only zero of 𝑅′ (which is the optimal price

𝑝∗) is within the region (1/2 − 𝑏𝛿
8 , 1/2 + 𝛿). Within this region, the revenue is twice-differentiable

everywhere.

Lastly, when 𝑏 = 0, the density function is constant, and Lemma C.2 shows that the optimal price

is 1/2. Therefore, regardless of the sign of 𝑏, the optimal price is always an interior solution, and is

in the interior of a region on which the revenue function is twice-differentiable.

Lemma C.4. Take 𝑥0 ∈ [0, 1]. Recall the following definition of 𝜔𝐷 (𝜖) and 𝜔𝑈 (𝜖):

𝜔𝐷 (𝜖) ≡ sup
𝐹1,𝐹2∈F

{
|𝑝∗𝐷 (𝑥0; 𝐹1) − 𝑝∗𝐷 (𝑥0; 𝐹2) | : 𝐻 (𝐹1∥𝐹2) ≤ 𝜖

}
,

𝜔𝑈 (𝜖) ≡ sup
𝐹1,𝐹2∈F𝑈

{
|𝑝∗𝑈 (𝐹1) − 𝑝∗𝑈 (𝐹2) | : 𝐻 (𝐹1∥𝐹2) ≤ 𝜖

}
.
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Then

inf
�̌�𝐷∈Ď

sup
𝐹𝑌,𝑋 ∈F

E𝐹𝑌,𝑋 | �̌�𝐷 (𝑥0; data) − 𝑝∗𝐷 (𝑥0; 𝐹𝑌,𝑋 ) | ≥
1
8
𝜔𝐷

(
1/(2

√
𝑛)

)
,

inf
𝑝𝑈 ∈Ǔ

sup
𝐹𝑌 ∈F𝑈

E𝐹𝑌 | �̌�𝑈 (data𝑌 ) − 𝑝∗𝑈 (𝐹𝑌 ) | ≥
1
8
𝜔𝑈

(
1/(2

√
𝑛)

)
.

Proof of Lemma C.4. By treating 𝑝∗𝐷 (𝑥0; ·) and 𝑝∗𝑈 (·) as functionals, the desired results directly follow

from Corollary 15.6 (Le Cam for functionals) in Chapter 15 of Wainwright (2019).

Lemma C.5. Let {𝐹 𝑗𝑌 ,𝑋 : 1 ≤ 𝑗 ≤ 𝑀} ⊂ F be such that

∥𝑝∗𝐷 (𝐹
𝑗

𝑌 ,𝑋 ) − 𝑝∗𝐷 (𝐹
𝑗

𝑌 ,𝑋 )∥2 ≥ 2𝛿, 𝑗 ≠ 𝑗′.

Then we have

inf
�̌�𝐷∈Ď

sup
𝐹𝑌,𝑋 ∈F

E∥ �̌�𝐷 (data) − 𝑝∗𝐷 (𝐹𝑌,𝑋 )∥22 ≥ 𝛿2

(
1 −

∑𝑀
𝑗, 𝑗′=1 KL(𝐹

𝑗

𝑌 ,𝑋 ∥𝐹
𝑗′

𝑌,𝑋 )/𝑀2 + log 2

log𝑀

)
Proof of Lemma C.5. The result follows from Proposition 15.12 (the Fano’s inequality) and inequality

(15.34) (convexity of the KL divergence) in Chapter 15 of Wainwright (2019), where Φ is taken to

be the square function, 𝜌 the 𝐿2−distance, and 𝜃 the functional 𝑝∗𝐷.

Lemma C.6. Consider the following function class:

{(𝑦, 𝑥) ↦→ (𝑝1{𝑦 ≥ 𝑝} − �̃�1{𝑦 ≥ �̃�})1{𝑥 ∈ [𝑘/𝐾, (𝑘 + 1)/𝐾)} : 𝑝 ∈ [0, 1]}.

For any �̃� ∈ [0, 1], 𝐾 ≥ 1, and 0 ≤ 𝑘 ≤ 𝐾 − 1, the above class is a VC-subgraph with VC-dimension no

greater than 2.

Proof of Lemma C.6. By Lemma 2.6.22 in Chapter 2 of van der Vaart and Wellner (1996), the class

{(𝑦, 𝑥) ↦→ 𝑝1{𝑦 ≥ 𝑝} : 𝑝 ∈ [0, 1]}

is a VC-subgraph with VC-dimention no greater than 2.1⁴ The function (𝑦, 𝑥) ↦→ �̃�1{𝑦 ≥ 𝑝} is a

fixed function that does not depend on the index 𝑝. By the proof Lemma 2.6.18(v) in van der Vaart

1⁴In the original statement of the lemma, the VC dimension is no greater than 3. This is because the definition of VC
dimension in van der Vaart and Wellner (1996) is the smallest number 𝑛 for which no set of 𝑛 points is shattered. The
definition we use in this paper is the largest number 𝑛 that some set of 𝑛 points is shattered.
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and Wellner (1996), the class

{(𝑦, 𝑥) ↦→ 𝑝1{𝑦 ≥ 𝑝} − �̃�1{𝑦 ≥ 𝑝} : 𝑝 ∈ [0, 1]}

is a VC-subgraph with VC-dimention no greater than 2. Lastly, we multiply each function in the class

by an indicator 1{𝑥 ∈ [𝑘/𝐾, (𝑘 + 1)/𝐾)}. This does not increase the VC-dimension.

Lemma C.7. Let 𝑍1, . . . , 𝑍𝑛 be an i.i.d. sequence of random variables from distribution 𝑃. Let G be a

class of VC-subgraph functions with VC-dimension 𝑣 and envelope function 𝐺. Assume that ∥𝐺∥𝐿2 (𝑃) <

∞. Then we have

E sup
𝑔∈G

�����1𝑛 𝑛∑︁
𝑖=1

𝑔(𝑍𝑖) − E𝑔(𝑍𝑖)
����� ≤ 8

√
2
∥𝐺∥𝐿2 (𝑃)√

𝑛
(log(2𝐶) + log(𝑣) + (log(16) + 3)𝑣) ,

for some universal constant 𝐶, where the 𝐿2 (𝑃) norm ∥ 𝑓 − 𝑔∥𝐿2 (𝑃) ≡
(∫

X [ 𝑓 (𝑥) − 𝑔 (𝑥)]2 P(𝑑𝑥)
) 1

2
.

Proof of Lemma C.7. This is a well-known result in the literature. We include it here for complete-

ness. Let 𝑁 (G, 𝐿2(𝑄), 𝜏) denote the covering number of (G, 𝐿2(𝑄)). By Remark 3.5.5 in Chapter 3

of Giné and Nickl (2015), we know that

E sup
𝑔∈G

�����1𝑛 𝑛∑︁
𝑖=1

𝑔(𝑋𝑖) − E𝑔(𝑋𝑖)
����� ≤ 8

√
2
∥𝐺∥𝐿2 (𝑃)√

𝑛

∫ 1

0
sup
𝑄

√︃
log 2𝑁 (G, 𝐿2(𝑄), 𝜏∥𝐺∥𝐿2 (𝑄) )𝑑𝜏,

where the supremum is taken over all discrete probabilities with a finite number of atoms. By The-

orem 2.6.7 in Chapter 2 of van der Vaart and Wellner (1996), we know that for any probability

measure 𝑄,

𝑁 (G, 𝐿2(𝑄), 𝜏∥𝐺∥𝐿2 (𝑄) ) ≤ 𝐶𝑣(16𝑒)𝑣(1/𝜏)2𝑣,

for some universal constant 𝐶. Therefore,∫ 1

0
sup
𝑄

√︃
log 2𝑁 (G, 𝐿2(𝑄), 𝜏∥𝐺∥𝐿2 (𝑄) )𝑑𝜏 ≤ log(2𝐶) + log(𝑣) + (log(16) + 3)𝑣

Then the desired result follows.
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