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Abstract

We investigate how differences in initial beliefs and sequential information choices

affect the likelihood of coordination failure. To do so, we embed interim information

acquisition (i.e., information acquisition after observing initial private information)

into a standard global game mode with a normal information structure and improper

prior. We find that the likelihood of coordination on welfare-inferior equilibrium is

invariant to precision, cost, and availability of information. We show that agents’

information choices feature two-sided inefficiency where too many agents with high

posteriors and too few agents with low posteriors acquire information. Instead,

under efficient information choices, the likelihood of coordination failure vanishes

as the number of signals that agents can acquire tends to infinity. Unfortunately, effi-

cient information choices are not implementable unless policymakers can observe

agents’ private information.
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1 Introduction

Many undesirable outcomes in economics are thought to be a result of coordination

failure, that is, the inability of agents to coordinate on socially preferable actions. Exam-

ples include bank runs, credit freezes, currency crises, rollover crises, and sovereign debt

crises, among many others.1 As stressed initially by Morris & Shin (1998, 2002), agents’

ability to coordinate on a given action depends crucially on the information agents pos-

sess, and thus the information structure plays a key role in determining coordination

outcomes. A pertinent question then is how agents’ information acquisition choices,

which endogenously determine information structure, affect coordination outcomes.

While there exists a large literature on information acquisition in coordination games

(see, e.g., Hellwig & Veldkamp (2009), Myatt & Wallace (2012), Colombo et al. (2014),

Szkup & Trevino (2015), or Yang (2015)), this literature assumes that all agents share

the same initial beliefs and, hence, the same motives to acquire information. However,

decision-makers likely exhibit differences in their incentives to acquire information that

arise from differences in their initial beliefs. These differences can arise due to having

different prior experiences, having access to different prior sources of information, or

having different interpretations of common information. Furthermore, even if decision-

makers initially share the same incentives to acquire information, the sequential way in

which information is typically acquired and processed implies that agents’ interim beliefs

and, hence, interim information acquisition incentives will differ. Motivated by these

observations, in this paper, we ask how differences in initial information and sequential

information acquisition affect coordination outcomes.

To answer this question, we introduce heterogeneity in incentives to acquire informa-

tion and sequential information acquisition in a global game model of regime change.

Global games of regime change are a natural setting for studying how heterogeneity in

incentives to acquire information and sequential information acquisition affect coordina-

tion outcomes. First, they have been used to analyze a plethora of economic phenomena

featuring coordination failure (Morris & Shin (2003) and Angeletos & Lian (2016) pro-

vide overviews of these applications). Second, information structure plays a key role in

determining outcomes in global games. Finally, the incentive to sequentially acquire

1See Cooper & John (1988), Cooper (1999), or Angeletos & Lian (2016) for more examples of coordination
failures that arise in the context of macroeconomics.
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information naturally arises in these setups.

We consider a binary-action global game model with a Gaussian information structure

where a continuum of agents decides whether to attack a regime as in Vives (2014). The

regime changes if it is weak enough and/or if sufficiently many agents attack it. Agents

do not observe the strength of the regime, but each of them observes a free private signal

about it. In addition, before deciding whether to attack the regime but after observing the

initial signal, agents can acquire an additional signal at a cost. The presence of the initial

private signal introduces heterogeneity in agents’ incentives to acquire information. Note

that agents make their information choices after observing the initial signal, which can

be interpreted as a simple form of sequential information.2

We use the benchmark model to investigate how differences in agents’ initial informa-

tion affect the coordination outcome. In particular, we first characterize agents’ optimal

information choices. We then investigate how their information decisions affect the equi-

librium coordination outcome and the incidence of coordination failure. We also analyze

how a reduction in the cost of information or changes in information precision affect

coordination. Furthermore, we investigate the (in)efficiency of equilibrium information

choices. Finally, we investigate how the answers to these questions change when agents

can sequentially acquire up to N −1 additional signals.

The main finding of our equilibrium analysis is an “invariance result,” which states

that under relatively general conditions, the equilibrium regime-change threshold, and

hence the extent of coordination failure, is unaffected by the parameters governing

information choices. In other words, changes in the cost, precision, and number of

available signals (in the extended model) leave the equilibrium regime-change thresh-

old unchanged. Thus, the invariance result suggests that the likelihood of bank runs,

sovereign debt crises, currency crises, and other outcomes thought to be a result of coor-

dination failure is unaffected by the decrease in the cost of information or an increase

in its precision and availability. Nevertheless, it is worth stressing that our results do

not imply that information choices do not matter. Indeed, changes in the parameters

governing sequential information choices affect both agents’ individual decisions and the

proportion of agents attacking the regime (away from the regime-change threshold), with

2While the benchmark model features only two signals, we also consider an extended model with fully-
fledged sequential information acquisition, where agents can sequentially acquire up to N −1 additional
signals, N > 2.
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higher information availability leading to a higher proportion of agents making “correct”

decisions in those states.3 In other words, it is only the extent of coordination failure that

is invariant and not the equilibrium itself.

We then investigate the efficiency of agents’ information decisions. In particular,

we consider a planner who would like to minimize the extent of coordination failure

and who can control agents’ information choices but not their decisions whether to

attack the regime. We find that the planner can induce a substantially lower regime-

change threshold by controlling agents’ information choices. The sequential information

acquisition policy prescribed by the planner is simple and intuitive: it stipulates that

agents acquire an additional signal only if, based on their initial signals, they would

not attack the regime. Comparing the planner’s information acquisition strategy with

the one used by agents in equilibrium, we see that the equilibrium information choices

exhibit two-sided inefficiency with too many agents with high posterior beliefs and too

few agents with low posterior beliefs acquiring further information. Furthermore, in

the extended model with N signals, we show that as the number of signals increases to

infinity, coordination failure vanishes under the planner’s strategy. Unfortunately, we

also find that the planner’s policy is not implementable unless policymakers can observe

agents’ beliefs (or, equivalently, agents’ private signals).

In the final part of the paper, we discuss several extensions of the baseline model.

We show that the invariance result continues to hold when the precision and cost of

additional signals vary with the number of already-acquired signals and when agents

are ex-ante heterogeneous with respect to their payoffs, cost, precision of information,

and the number of available signals. We also extend our analysis to the case where, at

each point, agents can choose an information source from which to acquire information

(where information sources differ in terms of the precision of information they provide

and its cost); and to the case where agents can acquire information about other agents’

past decisions whether to attack the regime (as in Dasgupta (2007)). However, we empha-

size that the invariance result does depend on one particular assumption, namely the use

of improper prior. Nevertheless, the invariance result is a good approximation for the case

where agents start with a proper but relatively diffuse prior. Moreover, the improper prior

has been popular in global games literature as it attempts to capture the unpredictability

3Namely, attacking the regime when it will change and vice versa.
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of outcomes, a common feature of tumultuous periods that precede regime changes.

Thus, the invariance result is an important benchmark for understanding the impact of

changes in the cost, precision, and availability of information.

Related Literature

Our paper contributes to the large and growing literature on the role of information

in coordination games. This literature was initiated by the seminal contributions of

Morris & Shin (1998, 2002), who analyzed the role of information in the context of global

games and quadratic-Gaussian setups, respectively. Since then, their initial insights have

been further extended and generalized in many directions in both settings under the

assumption of exogenous information structure. See, for example, Angeletos & Pavan

(2007) and Ui & Yoshizawa (2015) for further analysis of quadratic-Gaussian setups and

Hellwig (2002), Morris & Shin (2004), Guimaraes & Morris (2007), Iachan & Nenov (2015)

for contributions to the global games literature.

We contribute to the more recent literature that considers information acquisition.

The closest to our work are Hellwig & Veldkamp (2009), Myatt & Wallace (2012), and

Colombo et al. (2014), who study ex-ante information acquisition (i.e., one-time informa-

tion choices based on common prior beliefs) in quadratic-Gaussian setups and Szkup &

Trevino (2015), Yang (2015), and Ahnert & Kakhbod (2017), who analyze ex-ante infor-

mation acquisition in global games of regime change. In contrast, we focus on interim

information acquisition, where agents decide whether to acquire additional information

after observing initial private signals. Therefore, in our model, agents have heteroge-

neous incentives to acquire information and, if N > 2, choose how much information to

acquire sequentially. As we show, these differences have important consequences for the

conclusions we reach.

Our work is also related to papers that analyze the dynamic arrival of information in

the context of global games (see Angeletos et al. (2007), Steiner (2008), Dasgupta et al.

(2012), and Mathevet & Steiner (2013)). However, in those papers, the focus is on the

dynamics of agents’ action choices, and private information arrival is exogenous and

independent of agents’ choices. Also related is Dasgupta (2007), who analyzes how the

option to delay decisions affects equilibrium in a two-period global game model, where,

by delaying their actions, agents can observe an accurate additional signal but at the

cost of a lower future payoff from successful risky action. In contrast, in our model,
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agents face a direct cost of acquiring further private signals (and, in the extended model,

can sequentially acquire multiple signals). As a consequence, the optimal information

acquisition choices and, thus, equilibrium characterization differ in these two settings.

Thus, more broadly, our paper highlights the differences between delay and interim

information acquisition.

Individual decision problems with sequential information choices have a long tra-

dition in statistics (see DeGroot (2005) for a summary of this early literature). Variants

of these models have been analyzed in various economics contexts, typically under a

Bayesian framework, by Roberts & Weitzman (1981), Moscarini & Smith (2001), and Ke &

Villas-Boas (2019). Many key ideas of sequential analysis were applied to study bandit

problems (see, e.g., Rothschild (1974) and Gittins (1979)), search and learning problems

(see, e.g., McCall (1970) and Weitzman (1979)), and strategic information transmission

(see, e.g., Liao (2021)). In contrast, we consider sequential learning in a strategic envi-

ronment. We also differ from those papers by considering a finite-horizon discrete-time

problem.

2 Model

We consider a general binary-action model of regime change with incomplete informa-

tion, extended to feature sequential information choices, in which agents decide whether

to attack or support the status quo. While we cast our model in neutral terms referring

to agents’ final actions as supporting or attacking the regime, the model admits various

interpretations including, among others, a model of bank runs, currency crises, and

sovereign debt crises.4

2.1 Setup

The economy is initially in a status quo regime and is characterized by an unobservable

state θ ∈ R, referred to as the fundamental, which captures the inverse of the current

regime’s strength (with a higher θ corresponding to a weaker regime). There is a contin-

uum of risk-neutral agents indexed by i ∈ [0,1]. Each agent i makes a binary decision

ai whether to attack (ai = 1) or to support (ai = 0) the regime, referred to as the “final

4The model is based on the general regime-change model in Vives (2014). As explained therein, it can be
reinterpreted as a model of currency crises (as in Morris & Shin (1998)), bank runs (as in Rochet & Vives
(2004) or Goldstein & Pauzner (2005)), political revolts (Edmond (2013)) or sovereign debt crises (Szkup
(2022)).
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decision.” Agents’ aggregate attack is denoted by p (i.e., p = ∫ 1
0 ai di ).

The attack either succeeds, in which case the regime changes, or it fails, in which

case the regime survives. The attack succeeds if R(θ, p)⩾ 0, where R(·, ·) is continuously

differentiable and strictly increasing in both arguments, so that the regime is more likely

to change if θ is high (i.e., the status quo is weak) and/or p is high (i.e., more agents attack

it). We assume that there exist θ,θ ∈ R such that R(θ,1) = R(θ,0) = 0; that is, the status

quo always survives when θ < θ and always changes when θ⩾ θ, irrespective of the size

of the aggregate attack. In contrast, if θ ∈
[
θ,θ

]
, the outcome depends on the size of the

aggregate attack.

The payoff to an agent from attacking the regime is H if the regime changes and L

otherwise, where L < 0 < H . Supporting the regime is a safe action with its payoff, without

loss of generality, normalized to zero. The payoffs are summarized in Table 1.

Success Failure
Attack H L

Support 0 0

TABLE 1: Payoffs

We define γ = −L/(H − L), which captures the loss of attacking the regime when

the regime survives relative to the incremental benefit of a successful attack versus an

unsuccessful one. As a tie-breaking rule, we assume that an agent attacks the regime if he

is indifferent between attacking and not attacking.

Agents do not observe the fundamental θ. Instead, they share a common prior

that θ is uniformly distributed over R. Each agent first observes a free private signal,

xi 1 = θ+τ−1/2
1 εi 1, where εi 1 ∼N (0,1) is i.i.d. across agents and independent of θ, and

where τ1 > 0 is the precision of this signal. We can think of the first signal as capturing

heterogeneous priors across agents, arising from having (i) different earlier experiences,

(ii) access to different sources of information, or (iii) different interpretations of common

information.

After observing the first signal, each agent i has the choice to acquire an additional

signal or to make his final decision. Note that agents make their information choices

after observing the initial signal, which can be interpreted as a simple form of sequential

information.5 The additional signal costs C > 0 and is given by xi 2 = θ+τ−1/2εi 2, where

5In Section 5, we consider an extension in which agents can sequentially acquire up to N −1 signals, for
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τ > 0 is the signal precision, εi 2 ∼ N (0,1), i.i.d. across agents, and is independent of

θ and of εi 1. Note that τ is not necessarily equal to τ1. We also assume that C is low

enough so that some agents always acquire additional information. As a tie-breaking rule,

we assume that an agent makes his final decision if he is indifferent between acquiring

further information and making his final decision.

The timeline of the model is as follows. In the beginning, the fundamental θ is realized.

Then, each agent observes his initial (free) signal, after which he decides whether to

acquire further information or to make his irreversible final decision. Agents who acquire

additional information make their final decisions after observing their second private

signal. Once all agents have made their final decisions, the regime outcome is determined

and the payoffs are realized.

3 Equilibrium Analysis

As is common in the literature, we focus on threshold equilibria, each characterized by a

regime-change threshold, which we denote by θ∗, such that the regime changes if and

only if θ⩾ θ∗.

3.1 Individual Choices

We start by analyzing the choices of agent i , who believes that the regime-change thresh-

old is θ̂, for some arbitrary θ̂ ∈ R. Holding θ̂ fixed, agent i first observes his initial signal

and decides whether to acquire the additional information or to make his final decision.

If agent i acquires the second signal, he observes it and then makes his final decision.

For each n ∈ {1,2}, agent i ’s posterior belief about θ after observing n signal(s) is given by

N (µi n ,τ−1
n ), where τn = τ1 + (n −1)τ, µi 1 = xi 1, and

µi 2 = τ1µi 1 +τxi 2

τ1 +τ
In what follows, for expositional simplicity, we drop the index i . Whenever it does not

lead to confusion, we refer to µn as an agent’s “posterior,” where the subscript indicates

the number of signals an agent has observed to reach such a posterior.

Optimal Final Decisions Fix θ̂ and consider an agent with posterior µn . The expected

payoff to the agent from attacking the regime is H Pr(θ⩾ θ̂ |µn)+L Pr(θ < θ̂ |µn), which is

arbitrary N > 2.
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increasing strictly in µn . Since supporting the regime yields a payoff of zero, the optimal

final decision takes the form of a threshold strategy, where an agent finds it optimal to

attack the regime if and only if his posterior belief is high enough.

Lemma 1. For each θ̂ ∈ R, an agent with posterior µn chooses to attack the regime if and

only if µn ⩾µ∗
n(θ̂), where µ∗

n(θ̂) = θ̂+τ−1/2
n Φ−1(γ) andΦ denotes the CDF of the standard

normal distribution.

The above optimal decision rule has two implications. First, when γ is low (i.e., H is

high compared to L), µ∗
n(θ̂) is lower than θ̂, as agents are willing to take more risk in order

not to miss out on the high payoff associated with a successful attack. The opposite is

true when γ is high. Second, the value to an agent with posterior µn from making the

optimal final decision, U (µn), is given by

Un(µn) =
 H Pr(θ⩾ θ̂ |µn)+L Pr(θ < θ̂ |µn), if µn ⩾µ∗

n

0, if µn <µ∗
n

(1)

Optimal Information Choice We now turn our attention to the optimal information

choice of a typical agent. Let

B(µ1) ≡ E[U2(µ2) |µ1]−U1(µ1) (2)

be the benefit from acquiring the second signal to an agent with posterior µ1. It is

straightforward to show (see Subsection A.2 in the Appendix) that B is strictly increasing

on (−∞,µ∗
1 (θ̂)), is strictly decreasing on (µ∗

1 (θ̂),∞), achieves maximum at µ=µ∗
1 (θ̂), and

tends to zero as µ1 →±∞. The above observations imply a simple optimal decision for

information acquisition.

Lemma 2. For any θ̂ ∈ R, there exist two thresholds,µ1(θ̂) andµ
1

(θ̂), whereµ1(θ̂)⩾µ∗
1 (θ̂)⩾

µ
1
(θ̂), such that:

(i) an agent acquires the second signal if and only if µ1 ∈ (µ
1
(θ̂),µ1(θ̂));

(ii) an agent chooses to attack the regime (support the regime, resp.) after observing the

initial signal if and only if µ1 ⩾µ1(θ̂) (µ1 ⩽µ
1
(θ̂),r esp.);

(iii) ∂µ
n

(θ̂)/∂θ̂ = ∂µn(θ̂)/∂θ̂ = 1.

Lemma 2 implies that an agent makes the final decision after observing the initial

signal only when one action looks sufficiently better than the other given his posterior
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and acquires information otherwise. It also implies that the number of signals each

agent acquires is endogenous and so is the distribution of agents’ posterior beliefs. This

observation differentiates our setup from those considered by the earlier literature on

information acquisition (where all agents make the same information acquisition choices)

and the literature on the impact of exogenous changes in information precision (which

can be interpreted as providing all agents with an additional signal). The final part

of Lemma 2 shows that a change in the regime-change threshold θ̂ simply shifts the

information acquisition region without affecting its size.

3.2 Aggregate Attack and Equilibrium Invariance

For each θ, θ̂ ∈ R, define p(θ; θ̂) as the aggregate attack when the fundamental is θ and

the regime-change threshold is θ̂. Lemmas 1 and 2 imply that6

p(θ; θ̂) =
∫ ∞

µ1(θ̂)
f (µ1 | θ)dµ1 +

∫ µ1(θ̂)

µ
1

(θ̂)

∫ ∞

µ∗2 (θ̂)
f (µ2 |µ1,θ) f (µ1 | θ)dµ2dµ1, (3)

An equilibrium regime-change threshold is then a solution to

R(θ̂, p(θ̂; θ̂)) = 0, (4)

which is commonly referred to as the regime-change condition.

We now state our main result, which provides a complete characterization of the

unique threshold equilibrium of our game.

Theorem 1 (Invariance). For all θ̂ ∈ R we have p(θ̂; θ̂) = 1−γ. Therefore, the game admits

a unique threshold equilibrium. The equilibrium is characterized by a regime-change

threshold θ∗ that uniquely satisfies R(θ∗,1−γ) = 0.

Theorem 1 establishes an invariance property for the class of regime-change global

games considered in this paper, which states that the equilibrium regime-change thresh-

old is independent of parameters governing sequential information choices such as

information costs C and information precision τ. In other words, Theorem 1 indicates

that information acquisition has no impact on the incidence of coordination failure when

agents make their information choices after observing initial private information.

To gain intuition about the invariance result, consider, first, a simple static version

of our model in which agents do not have access to the second signal. In this case, it

6Here, f (µ1 |θ) is the PDF of µ1 conditional on the true state taking value θ, and f (µ2 |µ1,θ) is the PDF
of µ2 conditional on the true state taking value θ and the initial posterior being µ1.
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is well known that the proportion of agents attacking the regime is equal to 1−γ. How

would introducing a costly second signal affect the aggregate attack? On the one hand,

the second signal leads some agents to switch from attacking to not attacking the regime.

These are agents whose initial posterior beliefs belong to [µ∗
1 ,µ1) but who receive low

second signals so that their final posterior beliefs, µ2, lie below µ∗
2 . On the other hand,

agents whose initial posterior beliefs belong to (µ
1
,µ∗

1 ) but who receive high second

signals so that µ2 ⩾ µ∗
2 switch their actions in the opposite direction. The invariance

result follows from the observation that, under the improper uniform prior, these two

groups of agents are of equal size, so the positive and negative effects of the second signal

on the size of the attack exactly cancel out.

To understand why these two groups of agents are of equal size, let N denote the total

number of signals agents can observe and let θ∗1 denote the equilibrium regime change

threshold when N = 1. Consider Figure 1, which depicts the density of posterior belief µ1

given θ∗1 , f (µ1|θ∗1 ). The shaded areas below the density correspond to the proportions of

agents attacking the regime in the model with a single signal (light blue area), switching

from attacking to not attacking after introducing a second signal (dark red area), and vice

versa (light red area), when γ= 1/2 (Panel A) and γ< 1/2 (Panel B).7 We now discuss these

two cases separately.8

Intuition when γ === 1/2 In this case, the benefit from a successful attack is equal to

the loss from an unsuccessful attack, so that µ∗
1 = θ∗1 . This implies, as depicted in Panel

A of Figure 1, that f (µ1|θ∗1 ) is symmetric about µ∗
1 and, thus, an agent’s incentive to

acquire additional information as a function of his initial posterior is also symmetric

(i.e., |µ
1
−µ∗

1 | = |µ1 −µ∗
1 |). Therefore, equal proportions of agents with µ1 <µ∗

1 and those

with µ1 > µ∗
1 acquire the additional signal. Since µ∗

2 = µ∗
1 if γ= 1/2 (see Lemma 1), this

implies that, after observing the second signal, the proportion of agents who switch from

attacking to supporting (dark red area) is equal to the proportion of agents who switch

from supporting to attacking (light red area). Thus, when γ= 1/2, the invariance result is

7To be precise, the area below the density for µ1 ⩾µ∗
1 corresponds to the proportions of agents attacking

the regime in the model with a single signal (light blue area), the area below the density between µ
1

and µ∗
1

corresponds to the proportion of agents who would not attack if they could only observe a single signal but
acquire an additional signal when N=2, while the shaded part of this area corresponds to the proportion of
agents who would switch from not attacking to attacking if they observe an additional signal (i.e., those
agents whose final posterior is µ2 ⩾µ∗

2 ).
8γ> 1/2 is analogous to the case γ< 1/2.
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(B) γ= 0.2

FIGURE 1: The effect of allowing agents to acquire an additional signal when agents have an
improper prior. The solid blue line depicts f (µ1|θ∗1 ). The light blue area is equal to the proportion
of agents attacking the regime in the model without additional information. The dark red area
is equal to the proportion of agents who switch from attacking to not attacking when they can
acquire an additional signal. Similarly, the light red area is equal to the proportion of agents who
switch from not attacking to attacking when they can acquire an additional signal. Parameters:
H −L = 4, τ1 = τ= 4, C = 0.025, R(θ, p) = θ+p −1.

driven by the symmetry of f (µ1|θ∗1 ) with respect to µ∗
1 and the fact that µ∗

1 =µ∗
2 .

Intuition whenγ< 1/2 In this case, the benefit from a successful attack exceeds the loss

from an unsuccessful attack so that µ∗
1 < θ∗1 . This implies that most of the distribution

mass of µ1|θ∗1 lies to the right of µ∗
1 (see Panel B of Figure 1). Therefore, the majority of

agents who acquire information would have attacked the regime if they had had to make

their final decision after the first signal (i.e., the area below the density between µ1 and

µ∗
1 is larger than the area between µ

1
and µ∗

1 as depicted in Panel B of Figure 1). However,

agents with a posterior lower than µ∗
1 who acquire the second signal are more likely to

receive a signal that will shift their belief substantially upwards (since µ∗
1 < θ∗1 ). It follows

that, even though there are fewer agents with a posterior lower than µ∗
1 who acquire

information, these agents are more likely to switch from attacking to supporting. Thus, as

depicted in Panel B of Figure 1, the majority of agents with an initial posterior µ1 ∈ [µ
1
,µ∗

1 )

switch their final decisions if they are able to acquire the second signal. When agents have

an improper prior, these two forces offset each other, implying that the overall proportion

of agents attacking the regime after introducing an additional signal stays unchanged.
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The Role of the Improper Prior The invariance result depends crucially on the assump-

tion that agents have an improper prior.9 To understand why, assume that agents start

with a common proper prior θ ∼N (µθ,τ−1
θ

), where τθ > 0 captures the precision of the

prior, and denote by θ∗1 (µθ) the equilibrium regime-change threshold as a function of

µθ when agents observe only a single private signal. Note that the proper prior shifts

the mean of the distribution of µ1|θ∗1 from θ∗1 to (τθµθ+τθ∗1 )/(τθ+τ). This breaks the

“canceling effect” present under the improper prior: depending on the value of µθ, more

agents switch from attacking to not attacking, or vice versa, than under an improper prior.

As a result, the regime-change threshold becomes sensitive to information acquisition

decisions.

Figure 2 depicts these effects in the case of low µθ. We see that, in this case, the pres-

ence of the proper prior shifts the mass of µ∗
1 |θ∗1 towards the interval [µ

1
,µ∗

1 ), implying

that the proportion of agents that switch from not attacking to attacking following the

introduction of the second signal is greater than the proportion of agents that switch from

attacking to not attacking. As a result, in this case, the ability to acquire an additional

signal decreases the regime-change threshold, improving coordination. The opposite

happens when µθ is high.

While the invariance result does not hold under a proper prior, it should be stressed

that if the precision of the prior is low compared to the precision of private signals, the

invariance result will approximately hold. In this case, changes in the cost and precision

of the information will have negligible effects. This is because, as is well-established in

the global games literature, a proper prior with a continuous density leads to posteriors

that are close to those arising from a uniform prior when the precision of private signals

is high relative to the precision of the information contained in the prior.

3.3 Discussion of the Invariance Result

The invariance result warrants further discussion. First, it should be clarified that the

invariance result does not imply that the parameters governing information acquisition

have no impact on the equilibrium. In contrast, as characterized in Proposition 1 below,

changes in the cost and precision of information affect both agents’ equilibrium infor-

mation acquisition strategies and the equilibrium size of aggregate attack when θ ̸= θ∗.

Thus, it is only the extent of coordination failure that is invariant to those parameters.

9Otherwise, as discussed in Sections 5 and 6, the invariance result is remarkably robust.
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(B) γ= 0.2 and µθ =−0.5

FIGURE 2: The effect of allowing agents to acquire an additional signal when agents have a proper
prior. The solid line depicts f (µ1|θ∗1 ). The light blue area is equal to the proportion of agents
attacking the regime in the model without additional information (“static benchmark”). The dark
red area is equal to the proportion of agents who switch from attacking to not attacking when
they can acquire an additional signal. Similarly, the light red area is equal to the proportion of
agents who switch from not attacking to attacking when they can acquire an additional signal.
Parameters: H −L = 4, τ1 = τ= 4, τθ = 2, C = 0.025, R(θ, p) = θ+p −1.

Proposition 1. The following statements are true.

(i) The size of the information acquisition region measured by µ1 −µ1
is decreasing in

C but is increasing in τ.

(ii) A decrease in C leads p(θ;θ∗) to decrease for all θ < θ∗ and to increase for all θ > θ∗.

Not surprisingly, an increase in C shrinks the information acquisition region, as a

higher cost deters more agents from acquiring information. Also, for every posterior

µ1, acquiring the second signal becomes more valuable if it is more precise (i.e., if τ is

higher), and so the information acquisition region expands as τ increases. The second

part of Proposition 1 follows from the observation that additional information helps

agents better coordinate their actions with the regime outcome.

Second, it should be noted that the invariance result is an equilibrium result, in the

sense that if agents follow non-equilibrium information acquisition strategies, then, in

general, the regime-change threshold will depend on the costs and precision of signals.

This point is illustrated in Section 4, where we characterize the sequential information

acquisition strategy that minimizes the incidence of coordination failure.

Finally, it is worth stressing the generality of the invariance result. In particular,
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we derived this result in a setup that nests many of the standard global games models,

including the general setup of Vives (2014). Moreover, as we discuss in Sections 5 and

6, the invariance result is remarkably robust and continues to hold in many natural

extensions of our baseline model.

4 Minimizing Coordination Failure

In this section, we characterize the sequential information acquisition strategy that mini-

mizes coordination failure. Our analysis is motivated by the observation that, in many

cases, it is optimal from the society’s point of view to decrease the incidence of coordi-

nation failure. Furthermore, identifying the most efficient way to acquire information

helps us understand the inefficiency in agents’ information choices. Finally, our analysis

illustrates our claim that the invariance result is an equilibrium phenomenon and does

not hold for arbitrary information acquisition strategies.

We consider a planner (she) whose goal is to minimize the regime-change threshold.

To achieve her goal, the planner can control agents’ information choices but has no

control over agents’ use of information.10 More formally, the planner minimizes the

regime-change threshold θ∗ by choosing a function J : R → [0,1], referred to as her

information policy, which specifies the probability that she offers an agent the second

private signal for each value of the initial posterior belief µ1. For clarity of comparison

with the equilibrium, we focus on information policies that induce unique regime-change

thresholds.11 The policy-implied regime-change threshold is determined by agents’ final

decisions based on the information they observe. The planner does not take into account

the cost of her information policy.12

Proposition 2 (Planner’s solution). The lowest regime-change threshold the planner can

10Colombo et al. (2014) consider such a planner’s problem to characterize the social value of information
in Guassian-quadratic games with ex-ante information acquisition.

11The set of such policies includes “interval policies,” where the planner provides an agent with an
additional signal if and only if the agent’s posterior belief belongs to an interval. An example of an interval
policy is the equilibrium information acquisition policy. In the Appendix, we provide a sufficient condition
that ensures that any information policy induces a threshold equilibrium (see Lemma A9).

12Note that the planner’s problem is non-trivial since a change in her information policy leads to a change
in θ∗, which then affects the optimal choice of information policy. Moreover, we do not directly restrict
the type of information policy that the planner can choose. Thus, the planner faces a complex fixed-point
problem.
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achieve, denoted by θ∗, is the unique value that satisfies R(θ∗, p) = 0, where

p = 1−
∫ Φ−1(γ)

−∞

∫ √
τ2
τ Φ

−1(γ)

−∞
φ(z1)φ

(
z2 −

√
τ1

τ
z1

)
dz2 dz1

is the size of the aggregate attack when fundamentals take value θ∗ and φ is the standard

normal PDF. To achieve θ∗, the planner offers the second signal only to agents with posterior

µ1 ⩽µ∗
1 (θ∗) ≡ θ∗+τ−1/2

1 Φ−1(γ).

Despite allowing for a wide array of information policies, the optimal solution is

simple and intuitive: the planner offers the additional signal to an agent only if the agent

would not attack the regime without the additional information. Therefore, compared

with the planner’s solution, agents’ equilibrium information choices exhibit a two-sided

inefficiency: too many agents with high posteriors and too few agents with low posteriors

acquire information in the equilibrium.

Proposition 2 establishes that agents’ information choices are inefficient. However, it

is silent about the extent of this inefficiency. The next result indicates that the extent of

the inefficiency is linked to the payoff parameter γ.

Proposition 3. Suppose that R(θ, p) = θ+p −1. The difference between the equilibrium

regime-change threshold, θ∗, and the lowest regime-change threshold that the planner can

achieve, θ∗, is given by

θ∗−θ∗ =
∫ ∞

Φ−1(γ)
Φ

(√
τ2

τ
Φ−1(γ)−

√
τ1

τ
z

)
φ(z)dz.

Moreover, θ∗−θ∗ is a single-peaked and symmetric function of γ and achieves its maximum

at γ= 1/2 and tends to 0 as γ→ 0 or γ→ 1.

Proposition 3 shows that the inefficiency resulting from agents’ information decisions

is the smallest when γ takes extreme values. In other words, the difference θ∗−θ∗ is

small when, from the ex-ante perspective, one action seems clearly preferable. Applied in

the context of investment complementarities considered in Dasgupta (2007) and Szkup

& Trevino (2015), this result implies that when the payoff from a successful investment

is large relative to the cost of investing (or vice versa), the inefficiency resulting from

information decisions is low.13

13In Dasgupta (2007) and Szkup & Trevino (2015), investors receive payoff b−c if investment is successful
(with b > c > 0)and −c if investment is unsuccessful, with c interpreted as the cost of investment. In the
context of their model, we see that γ= c/b.
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One may wonder if policymakers can devise subsidies to information acquisition

that help to reduce coordination failure. It turns out that there is no information subsidy

scheme based only on observable actions that can improve coordination. To see this

point, assume that a policymaker reimburses an agent who has acquired the second

signal a fraction s ∈ [0,1] of the information acquisition cost if the agent ends up attacking

the regime; or a fraction t ∈ [0,1] if the agent does not end up attacking. Note that the

policymaker simply provides an unconditional subsidy to information acquisition if s = t .

Proposition 4 (Subsidies). Let θ∗(s, t) denote the equilibrium regime-change threshold

with the subsidies {s, t }. For any {s, t } ∈ [0,1]2, θ∗(s, t ) = θ∗(0,0).

Since θ∗(0,0) is the regime-change threshold without subsidies (as characterized in

Theorem 1), the above result states that any subsidy to information acquisition that is

not conditioned on agents’ interim beliefs (or, equivalently, on agents’ private signals)

will have no impact on the extent of coordination failure.

5 Beyond two signals (N > 2)

Above, we assumed that agents have an opportunity to acquire only one additional signal.

In this section, we extend our baseline model by allowing agents to acquire up to N −1

additional private signals, N > 2. The cost of the nth additional signal is Cn > 0, and the

cost increases with the number of signals, that is, Cn+1 ⩾Cn . All additional signals have

the same precision τ, and the nth signal is given by xi n = θ+τ−1/2εi n , where εi n is i.i.d.

across agents and independent of θ and εi k , k ̸= n. The following theorem characterizes

the threshold equilibrium in this case.

Theorem 2 (Invariance for N > 2). For all θ̂ ∈ R, we have p(θ̂; θ̂) = 1−γ. Therefore, the

unique threshold equilibrium is characterized by the regime-change threshold θ∗, where

θ∗ is the unique value satisfying R(θ∗,1−γ) = 0.

Theorem 2 shows that the invariance result extends to the case with N > 2 signals.

As in the baseline model, this result follows from the observation that, starting with any

N , introducing an additional signal leaves the volume of agents attacking the regime

unchanged.

However, allowing for more signals leads to interesting new conclusions about min-

imizing coordination failure. As before, consider a planner whose goal is to minimize
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the regime-change threshold. The planner can control agents’ information choices but

not their use of information.14 Let θ∗(N ) denote the regime-change threshold that the

planner can achieve when agents can observe up to N signals and p(N ) denote the size

of the aggregate attack when fundamentals take value θ∗(N ).

Proposition 5. The following statements hold:

(i) p(N ) is strictly increasing in N and θ∗(N ) is strictly decreasing in N .

(ii) We have limN→∞ p(N ) = 1 and limN→∞θ∗(N ) = θ.

Proposition 5 shows that the planner can do better with more signals, as she now can

provide more signals to agents with pessimistic beliefs in order to change their minds and

make them attack the regime. It also establishes that as N →∞, the proportion of agents

attacking the regime converges to 1, while the regime-change threshold converges to the

lower bound of the coordination region, θ. Thus, for a sufficiently large N , the planner is

able to almost completely eliminate coordination failure. This is because the planner’s

solution guarantees that for a large enough N , at some point, almost every agent will

reach a posterior higher than µ∗
n(θ∗), n ∈ {1,2, . . . , N }, and, thus, will choose to attack the

regime.15

6 Further Discussion and Extensions

In this section, we briefly discuss some possible extensions of our model.

Heterogeneity It is straightforward to show that Theorem 1 extends to the case with

ex-ante heterogeneous agents as in Sakovics & Steiner (2012). To see this, suppose that,

as in Sakovics & Steiner (2012), there are K groups of agents (K <∞) with groups indexed

by k, where each group k consists of a continuum of identical agents with measure mk ,∑K
k=1 mk = 1. Groups may differ in terms of cost, availability, and precision of information,

as well as in their payoffs. Then, holding θ̂ fixed, we can apply the same argument as used

in the proof of Theorem 1 to establish that the measure of agents in group k attacking

the regime is equal to mk (1−γk ), where γk is the payoff parameter of group k defined

analogously to γ in our benchmark model. This leads to the following result.

14Formally, the planner minimizes the regime-change threshold θ∗ by choosing a set of functions
J = {Jn}N−1

n=1 , where Jn : R → [0,1] is the probability that she offers an agent the (n +1)th private signal at
each possible posterior that an agent can reach after observing n signals. As before, we focus on information
policies that induce unique regime-change thresholds.

15A similar result, although in a different setting and under the equilibrium play, is established in the
context of a dynamic global game model in Dasgupta et al. (2012).
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Corollary 1 (Heterogeneous agents). For all θ̂ ∈ R, we have p(θ̂; θ̂) = ∑
k mk (1 − γk ).

Therefore, the unique threshold equilibrium in the model with heterogeneous agents

is characterized by the regime-change threshold θ∗, which is the unique solution to

R(θ∗,
∑

k mk (1−γk )) = 0.

Signals of varying precision In the baseline model as well as in its extension to N > 2

signals, we have assumed for expositional ease that all additional signals have the same

precision. However, by inspecting the proof of the invariance result, one can readily

observe that Theorem 1 continues to hold without this assumption. Thus, our main

results continue to hold when signals are of varying precision.

Learning about others’ choices In the model, we assume that agents acquire additional

information directly about θ. In some situations, it might be more natural to think that

agents can learn about the proportion of agents who attacked the regime in previous

periods. However, as Dasgupta et al. (2012) argue, the distinction between learning

about fundamentals and learning about others’ final decisions in global games is, to

a large extent, superficial. This is because, in a threshold equilibrium, the measure of

agents attacking the regime after observing n or fewer signals is an increasing function

of θ. Therefore, each signal about the fundamental can be shown to be informationally

equivalent to a noisy observation of other players’ past actions. Thus, our results continue

to hold when agents can acquire information about the actions of others.

Multiple information sources In the baseline model, agents’ information choices are

restricted to stopping or continuing information acquisition. In reality, however, people

may have access to multiple information sources and, thus, can choose the source

from which to acquire additional information (where information sources differ in the

precision and the cost of the information they provide). It turns out that our main insights

carry over to the extended version of our model that features multiple information sources.

That is, the invariance result continues to hold if agents can choose the next signal to

acquire from a finite set of signals, each with a different cost and precision.16

Proper Prior and Public Information As discussed in Section 3.2, the invariance result

does not hold when agents have a common proper prior. It is then natural to ask how a

proper prior might influence the equilibrium behavior. To address this, we incorporate a

common proper prior into the model and assume that agents initially share the belief

16The proof of this result can be found in the working paper version of this article.
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θ ∼ N (µθ,τ−1
θ

) with τθ ∈ (0,+∞). Since the prior belief is common information, it can be

interpreted as resulting from agents’ observing a public signal with value µθ and precision

τθ. We then ask how the mean of the prior (or, equivalently, the value of the public signal)

affects agents’ information choices and the equilibrium regime-change threshold.

Not surprisingly, an increase in µθ has a non-monotone effect on information acquisi-

tion. When µθ is low, few agents acquire information because most agents are confident

that the regime will survive. As µθ increases, uncertainty about the regime outcome

first intensifies because the public information becomes less indicative of the regime

outcome. This increases agents’ incentives for the acquisition of additional information.

However, beyond a critical level, a further increase in µθ decreases these incentives. This

is because, based on public information, most agents begin to anticipate a regime change.

As a result, additional information becomes less valuable to agents since it is unlikely

to change such an optimistic expectation. As such, the measure of agents who acquire

information is single-peaked in µθ.

In contrast, an increase in µθ always reduces the equilibrium regime-change thresh-

old, thereby facilitating coordination. The intuition behind this result is standard. Other

factors being equal, an increase in µθ shifts agents’ posteriors upward, which leads agents

to assign a higher likelihood to a weak regime, encouraging each agent to attack. The

nature of coordination further amplifies this effect since, now, every agent also expects

that others are more likely to attack. As a consequence, an increase in µθ increases the

size of the aggregate attack, resulting in a lower θ∗.

7 Conclusion

In this paper, we investigate how changes in the costs and precision of private information

affect the incidence of coordination failure when agents decide sequentially how much

information to acquire. To do so, we embed sequential information acquisition into a

general global games model of regime change. Our main finding is the invariance result,

which states that when agents have an improper uniform prior belief, the parameters

governing sequential information choices have no impact on the extent of coordination

failure. Our results broadly suggest that the likelihood of crises driven by coordination

failure (such as bank runs, rollover crises, and sovereign debt crises) is largely unaffected

by the increase in information accessibility and the decrease in its costs. While this insight
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is obtained in a model with an improper prior, it approximately holds when agents have

a proper but diffuse prior, which, we believe, captures the heightened uncertainty typical

for crisis periods well.

Our results contribute to the large theoretical literature on the effect of cheaper and

more abundant information on the likelihood of financial crises. However, the results

of this literature are ambiguous. For example, Iachan & Nenov (2015) find that whether

more precise information decreases or increases the likelihood of crises depends on the

sensitivity of payoffs to fundamentals. Others, such as Szkup & Trevino (2015) or Vives

(2014), link the effect of more precise information to the prior belief. Finally, our paper

suggests that the costs and precision of private information may leave the likelihood

of coordination failure unchanged. The varying conclusions reached by these papers

suggest the need for a careful empirical analysis to test the predictions of these models.

This is a challenging but exciting avenue for future research.

Appendix

A Proofs of results in Section 3

A.1 Proof of Lemma 1

For a fixed regime-change threshold θ̂, an agent with posterior µn chooses to attack if

and only if Pr(θ⩾ θ̂ | µn) ⩾ γ. Since θ | µn ∼ N (µn ,τ−1
n ), this inequality can be written

explicitly as 1−Φ
(
θ̂−µn

τ−1/2
n

)
⩾ γ, from which we obtain µn ⩾ θ̂+τ−1/2

n Φ−1(γ) =µ∗
n(θ̂), as was

to be shown.

A.2 Proof of Lemma 2

Fix an arbitrary regime-change threshold θ̂. It is easy to see that

Un(µn) = max
{

H Pr(θ⩾ θ̂ |µn)+L Pr(θ < θ̂ |µn),0
}

= max{∆Pr(θ⩾ θ̂ |µn)+L,0},
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where ∆ ≡ H −L > 0. An agent with posterior µ1 should optimally acquire the second

signal if and only if B(µ1) >C .1

We first argue that B(µ1) is single-peaked and achieves its maximum at µ1 =µ∗
1 (θ̂). To

this end, note that

B(µ1) =


∫

R
U2(µ2) f (µ2 |µ1)dµ2, if µ1 <µ∗

1 (θ̂)∫
R

max{L,−∆Pr(θ⩾ θ̂ |µ2)} f (µ2 |µ1)dµ2 −L, if µ1 ⩾µ∗
1 (θ̂)

.

Since U2(µ2) increases and is not constant in µ2 while max{L,−∆Pr(θ⩾ θ̂ |µ2)} decreases

and is not constant in µ2, it follows that B(µ1) is strictly increasing on (−∞,µ∗
1 (θ̂)) and

strictly decreasing on [µ∗
1 (θ̂),+∞). The continuity of B(µ1) guarantees that it achieves its

maximum at µ1 =µ∗
1 (θ̂). Moreover, it is straightforward to verify that

lim
µ1→−∞B(µ1) = lim

µ1→+∞B(µ1) = 0.

According to the monotonicity and the limiting property of B(µ1), we see that B(µ1) >
C if and only if µ1 ∈ (µ

1
(θ̂),µ1(θ̂)), where B(µ

1
(θ̂)) = B(µ1(θ̂)) =C , justifying part (i). Part

(ii) then follows from Lemma 1 and part (i) (note that our characterization for µ
1

(θ̂), µ1(θ̂),

and µ∗
1 (θ̂) implies that µ1(θ̂) >µ∗

1 (θ̂) >µ
1
(θ̂)).

For part (iii), we pick an arbitrary ε ∈ R and write Un(µn) and B(µ1) explicitly as

Un(µn ; θ̂) and B(µ1; θ̂). It is easy to see that Un(µn ; θ̂) = max{∆Pr(θ ⩾ θ̂ | µn)+L,0} =
max{∆Pr(θ⩾ θ̂+ε |µn +ε)+L,0} =Un(µn +ε; θ̂+ε), where n = 1,2. As a result,

E[U2(µ2; θ̂) |µ1] =
∫ ∞

µ∗2 (θ̂)

[
∆Pr(θ⩾ θ̂ |µ2)+L

]
dF (µ2 |µ1)

=
∫ ∞

µ∗2 (θ̂)

[
∆Pr(θ⩾ θ̂+ε |µ2 +ε)+L

]
dF (µ2 +ε |µ1 +ε)

=
∫ ∞

µ∗2 (θ̂+ε)

[
∆Pr(θ⩾ θ̂+ε |µ2)+L

]
dF (µ2 |µ1 +ε)

= E[U2(µ2; θ̂+ε) |µ1 +ε],

where, in the third line, we have employed the fact that µ∗
2 (θ̂+ε) =µ∗

2 (θ̂)+ε (see Lemma

1). As a result, B(µ1; θ̂) = E[U2(µ2; θ̂) | µ1]−U1(µ1; θ̂) = E[U2(µ2; θ̂+ε) | µ1 +ε]−U1(µ1 +
ε; θ̂+ε) = B(µ1 +ε; θ̂+ε), which implies the claimed property of µ

1
(θ̂) and µ1(θ̂).

1Note that both Un(·) and B(·) depend on θ̂.
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A.3 Proof of Theorem 1

The aggregate attack in state θ̂ when all agents believe that θ̂ is the regime-change

threshold is given by

p(θ̂; θ̂) =
∫ ∞

µ∗1 (θ̂)
f (µ1 | θ̂)dµ1 +

∫ µ1(θ̂)

µ
1

(θ̂)

∫ ∞

µ∗2 (θ̂)
f (µ2 |µ1, θ̂) f (µ1 | θ̂)dµ2dµ1.

By Lemma 2(iii), a change in θ̂ will cause each integral bound and each integrand in the

expression above to shift by the same amount, leaving the value of p(θ̂; θ̂) unchanged.

Since p(θ̂; θ̂) is invariant in θ̂, we can treat it as a constant in [0,1] for all θ̂ ∈ R, and so

the uniqueness of threshold equilibrium follows from the monotonicity of R(·, ·).

For the existence of a threshold equilibrium, it suffices to show that p(θ;θ∗) is strictly

increasing in θ, where θ∗ ∈ R is the unique value that satisfies R(θ∗, p(θ∗,θ∗)) = 0. To this

end, note that for any ε ∈ R,

p(θ+ε;θ∗) =
∫ ∞

µ1

f (µ1 | θ+ε)dµ1 +
∫ µ1

µ
1

∫ ∞

µ∗2
f (µ2 |µ1,θ+ε) f (µ1 | θ+ε)dµ2dµ1

=
∫ ∞

µ1

f (µ1 −ε | θ)dµ1 +
∫ µ1

µ
1

∫ ∞

µ∗2
f (µ2 −ε |µ1 −ε,θ) f (µ1 −ε | θ)dµ2dµ1

=
∫ ∞

µ1−ε
f (µ1 | θ)dµ1 +

∫ µ1−ε

µ
1
−ε

∫ ∞

µ∗2−ε
f (µ2 |µ1,θ) f (µ1 | θ)dµ2dµ1

≡ ρ(ε;θ).

Therefore, for each θ ∈ R, ∂p(θ̂;θ∗)/∂θ̂
∣∣
θ̂=θ = ∂ρ(ε;θ)/∂ε

∣∣
ε=0. Note that

∂ρ(ε;θ)

∂ε

∣∣∣
ε=0

=−∂p(θ;θ∗)

∂µ
1

− ∂p(θ;θ∗)

∂µ∗
2

− ∂p(θ;θ∗)

∂µ1
.

It is immediate to see that the first two terms on the RHS of the above equality are positive.

For the third term, observe that

−∂p(θ;θ∗)

∂µ1
= f (µ1 | θ)

[
1−

∫ ∞

µ∗2
f (µ2 |µ1,θ)dµ2

]
> 0,

which justifies the monotonicity claimed above.

We now prove the invariance result. Denote the game in our baseline model as G and

consider an auxiliary game, G ′, identical to our baseline model, except that all agents

observe both private signals for free. Consider an arbitrary regime-change threshold

θ̂ ∈ R, and denote by p and p ′ the aggregate attack in G and G ′, respectively, when θ = θ̂.
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Then,2

p =
∫ ∞

µ1

f (µ1 | θ̂)dµ1 +
∫ µ1

µ
1

∫ ∞

µ∗2
f (µ2 |µ1, θ̂) f (µ1 | θ̂)dµ2,1

=
∫ ∞

µ1

∫
R

f (µ2 |µ1, θ̂) f (µ1 | θ̂)dµ2,1 +
∫ µ1

µ
1

∫ ∞

µ∗2
f (µ2 |µ1, θ̂) f (µ1 | θ̂)dµ2,1,

p ′ =
∫ ∞

µ∗2
f (µ2 | θ̂)dµ2 =

∫
R

∫ ∞

µ∗2
f (µ2 |µ1, θ̂) f (µ1 | θ̂)dµ2,1

It is well-known that p ′ = 1−γ. We aim to show p = p ′.

To this end, we first write p ′−p explicitly as

p ′−p =
∫ µ

1

−∞

∫ ∞

µ∗2
f (µ2 |µ1, θ̂) f (µ1 | θ̂)dµ2,1 −

∫ ∞

µ1

∫ µ∗2

−∞
f (µ2 |µ1, θ̂) f (µ1 | θ̂)dµ2,1,

and so our goal is reduced to demonstrating that∫ µ
1

−∞

∫ ∞

µ∗2
f (µ2 |µ1, θ̂) f (µ1 | θ̂)dµ2,1 =

∫ ∞

µ1

∫ µ∗2

−∞
f (µ2 |µ1, θ̂) f (µ1 | θ̂)dµ2,1.

Note that the LHS of the above equality is the measure of agents who would support the

regime in G but instead attack the regime in G ′. The RHS is the measure of agents who

would attack the regime in G but instead support the regime in G ′. Their difference, thus,

captures the net effect of offering everyone a free signal on the size of aggregate attack,

which, as we will argue below, equals 0.

Define S(µn) as the expected payoff of attacking for an agent with posterior µn ; that

is,

S(µn) =∆Pr(θ⩾ θ̂ |µn)+L, n = 1,2.

Let T (µ1) be the value of acquiring the second signal for an agent with posterior µ1, so

that

T (µ1) =
∫ ∞

µ∗2

[
∆Pr(θ⩾ θ̂ |µ2)+L

]
f (µ2 |µ1)dµ2 −C . (A.1)

Define Q(µ1) = T (µ1)−S(µ1).3 Employing the law of iterated expectation, we obtain

Q(µ1) =
∫ ∞

µ∗2
S(µ2) f (µ2 |µ1)dµ2 −C −S(µ1)

=
∫ ∞

µ∗2
S(µ2) f (µ2 |µ1)dµ2 −C −

∫
R

S(µ2) f (µ2 |µ1)dµ2

2For notational conciseness, we have suppressed the dependence of the thresholds on θ̂ and have
written dµ2dµ1 as dµ2,1.

3The dependence of these functions on θ̂ is suppressed for notational simplicity.
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=−
∫ µ∗2

−∞

[
∆Pr(θ⩾ θ̂ |µ2)+L

]
f (µ2 |µ1)dµ2 −C . (A.2)

We now differentiate (A.1) with respect to µ1 and integrate by parts to obtain

T ′(µ1) =
∫ ∞

µ∗2
S(µ2)

∂ f (µ2 |µ1)

∂µ1
dµ2 =−

∫ ∞

µ∗2
S(µ2)

∂ f (µ2 |µ1)

∂µ2
dµ2

=∆
∫ ∞

µ∗2
f (θ̂ |µ2) f (µ2 |µ1)dµ2, (A.3)

where the second equality is due to the fact that
∂ f (µ2 |µ1)

∂µ1
=−∂ f (µ2 |µ1)

∂µ2
.

Similarly, we can differentiate (A.2) with respect to µ1 to obtain

Q ′(µ1) =−∆
∫ µ∗2

−∞
f (θ̂ |µ2) f (µ2 |µ1)dµ2. (A.4)

Observe that

lim
µ1→−∞T (µ1) = lim

µ1→∞Q(µ1) =−C (A.5)

and that

T (µ
1
) =Q(µ1) = 0. (A.6)

Therefore, we arrive at

C

∆
= lim
µ1→−∞

−T (µ1)

∆
=

[∫ µ
1

−∞
T ′(µ1)dµ1 −T (µ

1
)

]
∆

=
∫ µ

1

−∞

∫ ∞

µ∗2
f (θ̂ |µ2) f (µ2 |µ1)dµ2,1,

where the first equality is based on (A.5); the second equality employs the (extended)

fundamental theorem of calculus; and the last equality uses (A.3) and (A.6). A symmetric

argument with respect to Q(µ1) gives

C

∆
= lim
µ1→∞

−Q(µ1)

∆
=

[∫ ∞

µ1

Q ′(µ1)dµ1 +Q(µ
1
)

]
∆

=
∫ ∞

µ1

∫ µ∗2

−∞
f (θ̂ |µ2) f (µ2 |µ1)dµ2,1,

The desired result then follows from the identity4

f (θ̂ |µ2) f (µ2 |µ1) = f (µ2 |µ1, θ̂) f (µ1 | θ̂)

for all (µ2,µ1, θ̂) ∈ R3.

4This identity relies on the property that f (θ̂ |µ1) = f (µ1 | θ̂), which holds in our improper prior setup.
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A.4 Proof of Proposition 1

Part (i): That (µ
1
,µ1) shrinks as C increases follows from the observation that B(µ1) is

single-peaked (see the proof of Lemma 2). As τ increases, the second private signal

becomes more (Blackwell) informative, as the information structure is Gaussian, yielding

a higher value for B(µ1) for each µ1 ∈ R. The characterization of µ
1

and µ1 (see the proof

of Lemma 2) then implies that the size of the information acquisition region expands as τ

increases.

Part (ii): Define C ≡ B(µ∗
1 ). It is clear that p(θ;θ∗) is constant in C for all C ⩾C , and

it only remains to consider the case of C ∈ [0,C ). The equilibrium volume of agents

attacking the regime in state θ, denoted by p(θ,C ;θ∗), is

p(θ,C ;θ∗) = 1−F (µ1 | θ)+
∫ µ1

µ
1

[1−F (µ∗
2 |µ1,θ)] f (µ1 | θ)dµ1.

Note that µ
1

and µ1 satisfy

C =
∫ ∞

µ∗2
[∆Pr(θ⩾ θ∗)+L] f (µ2 |µ1

)dµ2 =−
∫ µ∗2

−∞
[∆Pr(θ⩾ θ∗)+L] f (µ2 |µ1)dµ2,

and so
∂µ

1

∂C
= 1

∆[1−F (µ∗
2 |µ

1
,θ∗)] f (θ∗ |µ

1
)

∂µ1

∂C
=− 1

∆F (µ∗
1 |µ1,θ∗) f (θ∗ |µ1)

.

Therefore, one deduces that

∆∂p(θ,C ;θ∗)

∂C
=−F (µ∗

2 |µ1,θ) f (µ1 | θ)
∂µ1

∂C
−

[
1−F (µ∗

2 |µ
1
,θ)

]
f (µ

1
| θ)

∂µ
1

∂C

= F (µ∗
2 |µ1,θ) f (µ1 | θ)

F (µ∗
2 |µ1,θ∗) f (µ1 | θ∗)

−
[1−F (µ∗

2 |µ
1
,θ)] f (µ

1
| θ)

[1−F (µ∗
2 |µ

1
,θ∗)] f (µ

1
| θ∗)

.

Therefore, ∂p(θ,C ;θ∗)/∂C ⩾ 0 if and only if
[1−F (µ∗

2 |µ
1
,θ∗)] f (µ

1
| θ∗)

F (µ∗
2 |µ1,θ∗) f (µ1 | θ∗)

⩾
[1−F (µ∗

2 |µ
1
,θ)] f (µ

1
|θ)

F (µ∗
2 |µ1,θ) f (µ1 | θ)

,

or, more explicitly,

Φ
(τθ∗+τ1µ1p

τ
− τ+τ1p

τ
µ2

)
φ

(p
τ1(µ

1
−θ∗)

)
Φ

(
τ+τ1p

τ
µ2 − τθ∗+τ1µ1p

τ

)
φ

(p
τ1(µ1 −θ∗)

) ⩾ Φ
(τθ+τ1µ1p

τ
− τ+τ1p

τ
µ2

)
φ

(p
τ1(µ

1
−θ)

)
Φ

(
τ+τ1p

τ
µ2 − τθ+τ1µ1p

τ

)
φ

(p
τ1(µ1 −θ)

) .

Define the RHS of the above inequality as function Γ(θ). Observe that the LHS of this

inequality is Γ(θ∗). Now we show that Γ(θ) is strictly increasing for each θ ∈ R. To this
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end, note that5

Γ′(θ)
sgn=p

τ
[
Φ

(
τ+τ1p

τ
µ∗

2 −
τθ+τ1µ1p

τ

)
φ

(
τθ+τ1µ1p

τ
− τ+τ1p

τ
µ∗

2

)

+Φ
(
τθ+τ1µ1p

τ
− τ+τ1p

τ
µ∗

2

)
φ

(
τ+τ1p

τ
µ∗

2 −
τθ+τ1µ1p

τ

)]
−Φ

(
τ+τ1p

τ
µ∗

2 −
τθ+τ1µ1p

τ

)
Φ

(
τθ+τ1µ1p

τ
− τ+τ1p

τ
µ∗

2

)
τ1(µ1 −µ1

)

sgn=
φ

(
τθ+τ1µ1p

τ
− τ+τ1p

τ
µ∗

2

)
Φ

(
τθ+τ1µ1p

τ
− τ+τ1p

τ
µ∗

2

) + φ

(
τ+τ1p

τ
µ∗

2 −
τθ+τ1µ1p

τ

)
Φ

(
τ+τ1p

τ
µ∗

2 −
τθ+τ1µ1p

τ

) − τ1p
τ

(µ1 −µ1
). (A.7)

Define A = τ1p
τ

(µ
1
−µ1), g (t) = φ(t)/Φ(t), and let y(θ) = τθ+τ1µ1p

τ
− τ+τ1p

τ
µ∗

2 . Then, we can

rewrite (A.7) as

Γ′(θ)
sgn= g (y(θ))+ g (A− y(θ))+ A.

To proceed, we need the following lemma:

Lemma A1. g (t )+ t > 0 for all t ∈ R.

PROOF OF LEMMA A1. This is equivalent to φ(t )+ tΦ(t ) > 0 for all t ∈ R. Let h(t ) =φ(t )+
tΦ(t ). It is straightforward to show that h′(t ) =Φ(t ) > 0 and limt→−∞ h(t ) = 0, justifying

the claimed property. ■

Note that g (−t ) is the hazard rate of the standard normal distribution at t , which is

well known to be (strictly) convex, and so g (t) is (strictly) convex as well. Thus, by the

convexity of g (t ) and Lemma A1, we have

g (y(θ))+ g (A− y(θ))+ A ⩾ 2g

(
A

2

)
+ A

sgn= g

(
A

2

)
+ A

2
> 0,

which implies that Γ′(θ) > 0, and so ∂p(θ,C ;θ∗)/∂C
sgn= θ∗−θ, as was to be shown.

5We define
sgn= as the binary relation on R such that a

sgn= b if and only if a and b have the same sign.
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B Proofs of results in Section 4

B.1 Proof of Proposition 2

We start with a formulation of the planner’s problem. For an arbitrarily given θ̂ ∈ R, denote

by p(θ; θ̂, J) the aggregate attack when (i) the true state is θ; (ii) everyone takes θ̂ as the

regime-change threshold; and (iii) the planner’s policy is J . Explicitly, we have

p(θ; θ̂, J ) =
∫ ∞

µ∗1 (θ̂)
f (µ1 | θ)[1− J (µ1)]dµ1

+
∫

R

∫ ∞

µ∗2 (θ̂)
f (µ2 |µ1,θ) f (µ1 | θ)J (µ1)dµ2,1, (A.8)

where µ∗
n(θ̂) = θ̂+τ−1/2

n Φ−1(γ), n = 1,2.

An information policy J is said to induce a threshold equilibrium with regime-change

threshold θ̂ if sgn[R(θ, p(θ; θ̂, J))] = sgn(θ− θ̂) for all θ ∈ R. The planner’s problem can,

thus, be formally stated as

min
J
θ̂, s.t. sgn [R(θ; p(θ; θ̂, J ))] = sgn(θ− θ̂) for all θ ∈ R.

The relaxed problem of the planner inherits the objective function but has a looser

constraint:

min
J
θ̂, s.t. R(θ̂, p(θ; θ̂, J )) = 0.

An information policy J is said to admit θ̂ as a quasi-regime-change threshold if R(θ̂, p(θ̂; θ̂, J )) =
0.

Lemma A2. For every information policy J , there exists some θ̂ ∈ R such that J admits θ̂ as

a quasi-regime-change threshold.

PROOF OF LEMMA A2. Fix an arbitrary information policy J , and for each θ̃ ∈ [θ,θ], define

ψJ (θ̃) as the unique solution to the equation about θ: R(θ, p(θ̃; θ̃, J )) = 0 (i.e., R(ψJ (θ̃), p(θ̃; θ̃, J )) =
0). Thus, ψJ (θ̃) is the fundamental level required to trigger a regime change when the

aggregate attack equals p(θ̃; θ̃, J ). It is clear that ψJ (θ̃) is continuous, and so by Brouwer’s

fixed point theorem, there is θ̂ ∈ [θ,θ] such that ψJ (θ̂) = θ̂, as was to be shown. ■

For any information policy J and any ε ∈ R, the ε-shift of J , denoted by Jε, is the

information policy such that Jε(µ1) = J (µ1 −ε) for all µ1 ∈ R.
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Lemma A3. For each information policy J , each θ̂ ∈ R, and ε ∈ R, we have

p(θ̂; θ̂, J ) = p(θ̂+ε; θ̂+ε, Jε).

PROOF OF LEMMA A3. By definition,

p(θ̂+ε; θ̂+ε, Jε) =
∫ ∞

µ∗1 (θ̂+ε)
f (µ1 | θ+ε)[1− Jε(µ1)]dµ1

+
∫

R

∫ ∞

µ∗2 (θ̂+ε)
f (µ2 |µ1,θ+ε) f (µ1 | θ+ε)Jε(µ1)dµ2,1.

Observe that∫ ∞

µ∗1 (θ̂+ε)
f (µ1 | θ̂+ε)[1− Jε(µ1)]dµ1 =

∫ ∞

µ∗1 (θ̂)+ε
f (µ1 | θ̂+ε)[1− J (µ1 −ε)]dµ1

=
∫ ∞

µ∗1 (θ̂)
f (µ1 +ε | θ̂+ε)[1− J (µ1)]dµ1

=
∫ ∞

µ∗1 (θ̂)
f (µ1 | θ̂)[1− J (µ1)]dµ1

and that ∫
R

∫ ∞

µ∗2 (θ̂+ε)
f (µ2 |µ1, θ̂+ε) f (µ1 | θ̂+ε)Jε(µ1)dµ2,1

=
∫

R

∫ ∞

µ∗2 (θ̂)+ε
f (µ2 |µ1, θ̂+ε) f (µ1 | θ̂+ε)J (µ1 −ε)dµ2,1

=
∫

R

∫ ∞

µ∗2 (θ̂)
f (µ2 +ε |µ1 +ε, θ̂+ε) f (µ1 +ε | θ̂+ε)J (µ1)dµ2,1

=
∫

R

∫ ∞

µ∗2 (θ̂)
f (µ2 |µ1, θ̂) f (µ1 | θ̂)J (µ1)dµ2,1.

Comparing the sum of the last line of each of the two arrays of equalities above with

p(θ̂; θ̂, J ) yields the desired result. ■

Lemma A4 (Optimality criterion). An information policy J admitting θ̂ as a quasi-regime-

change threshold solves the relaxed problem if there does not exist any information policy

J ′ such that p(θ̂; θ̂, J ′) > p(θ̂; θ̂, J ).

PROOF OF LEMMA A4. Consider the contrapositive of the statement. If there exists some

J ′ such that p(θ̂; θ̂, J ′) > p(θ̂; θ̂, J), then by the monotonicity of R(·, ·), we must have

R(θ̂, p(θ̂; θ̂, J ′)) > R(θ̂, p(θ̂; θ̂, J )) = 0, and so there must exist some ε> 0 such that

R(θ̂−ε, p(θ̂; θ̂, J ′)) = 0.

Note by Lemma A3, p(θ̂; θ̂, J ′) = p(θ̂−ε; θ̂−ε, (J ′)−ε), and so R(θ̂−ε, p(θ̂−ε; θ̂−ε, (J ′)−ε)) = 0;

that is, the information policy (J ′)−ε (i.e., the information policy obtained by shifting J ′
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by −ε) admits a lower quasi-regime-change threshold θ̂−ε, and, hence, J does not solve

the relaxed problem. ■

Lemma A5. There is a unique (up to a Lebesgue null set in R) information policy Jθ̂
such that Jθ̂ = 1(−∞,µ∗1 (θ̂)), J admits θ̂ as a quasi-regime-change threshold, and µ∗

1 (θ̂) =
θ̂+τ−1/2

1 Φ−1(γ).

PROOF OF LEMMA A5. Because for any real number ε, Jθ̂+ε = Jε
θ̂

, by Lemma A3, we see

that p(θ̂; θ̂, Jθ̂) is constant in θ̂. Denote this constant by p. Thus, the equation about

θ′, R(θ′, p) = 0, has a unique solution θ∗ ∈ [θ,θ]. Therefore, Jθ∗ is the unique (up to a

Lebesgue null set in R) information policy that satisfies the conditions stated in Lemma

A5. ■

Lemma A6. The information policy Jθ∗ = 1(−∞,µ∗1 (θ∗)), where θ∗ is defined in the proof of

Lemma A5, solves the relaxed problem.

PROOF OF LEMMA A6. It suffices to show that Jθ∗ satisfies the optimality criterion estab-

lished in Lemma A4. This is obvious, as any deviation from Jθ∗ involves either offering an

extra signal to agents whose posteriors will induce an attack without further information,

or withholding an extra signal to agents who will not attack without further information.

Thus, for any information policy J ′, we must have p(θ∗;θ∗, J ′)⩽ p(θ∗;θ∗, Jθ∗), as was to

be shown. ■

Notice that the information policy Jθ∗ is an interval policy. An interval policy solves

the relaxed problem if and only if it solves the planner’s problem, as is formally stated

and proven below.

Lemma A7. An interval policy induces a threshold equilibrium with regime-change thresh-

old θ̂ if and only if it admits θ̂ as a quasi-regime-change threshold.

PROOF OF LEMMA A7. The necessity is obvious. For sufficiency, let J = 1(ν1,ν1) be an

arbitrary interval policy and θ̂ be the quasi-regime-change threshold it admits. By (A.8),

we have

p(θ; θ̂, J ) =
∫ ∞

max{ν1,µ∗1 (θ̂)}
f (µ1 | θ)dµ1 +

∫
R

∫ ∞

µ∗2 (θ̂)
f (µ2 |µ1,θ) f (µ1 | θ)J (µ1)dµ2,1.

Employing an argument similar to the proof of Theorem 1, we can show that p(θ; θ̂, J ) is

strictly increasing in θ, which yields the desired result. ■
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We have shown that Jθ∗ solves the planner’s problem. To complete the proof, it only

remains to show that p has the form given in Proposition 2. To this end, observe that

p = 1−
∫ µ∗1 (θ∗)

−∞

∫ µ∗2 (θ∗)

−∞
f (µ2 |µ1,θ∗) f (µ1 | θ∗)dµ2,1

= 1−
∫ Φ−1(γ)

−∞

∫ √
τ2
τ Φ

−1(γ)

−∞
φ(ν1)φ

(
ν2 −

√
τ1

τ
ν1

)
dν2,1,

where, from the first line to the second, we have employed the definition of µ∗
n(θ∗), the

fact that

µ2 | (µ1,θ) ∼N

(
τθ+τ1µ1

τ+τ1
,

τ

(τ+τ1)2

)
, µ1 | θ ∼N (θ,τ−1

1 ),

and have conducted the change-of-variables

ν1 =p
τ1(µ1 −θ∗) and ν2 =

√
τ2

τ
(µ2 −θ∗).

Our proof is now complete.

B.2 Proof of Proposition 3

According to Theorem 1 and Proposition 2, we have θ∗ = γ and

θ∗ = 1−p =
∫ Φ−1(γ)

−∞

∫ √
τ2
τ Φ

−1(γ)

−∞
φ(ν1)φ

(
ν2 −

√
τ1

τ
ν1

)
dν2,1

=
∫ Φ−1(γ)

−∞
Φ

(√
τ2

τ
Φ−1(γ)−

√
τ1

τ
ν1

)
φ(ν1)dν1.

Note that ∫
R
Φ

(√
τ2

τ
Φ−1(γ)−

√
τ1

τ
ν1

)
φ(ν1)dν1 =Φ


√

τ2
τ
Φ−1(γ)√
1+ τ1

τ

= γ,

from which we obtain

θ∗−θ∗ = γ−
∫ Φ−1(γ)

−∞
Φ

(√
τ2

τ
Φ−1(γ)−

√
τ1

τ
ν1

)
φ(ν1)dν1

=
∫ ∞

Φ−1(γ)
Φ

(√
τ2

τ
Φ−1(γ)−

√
τ1

τ
ν1

)
φ(ν1)dν1

Now we write θ∗ and θ∗ as θ∗γ and θ∗γ, respectively, to make explicit their dependence on

γ. Note that

θ∗1−γ−θ∗1−γ =
∫ ∞

Φ−1(1−γ)
Φ

(√
τ2

τ
Φ−1(1−γ)−

√
τ1

τ
ν1

)
φ(ν1)dν1

=
∫ ∞

−Φ−1(γ)
Φ

(
−

√
τ2

τ
Φ−1(γ)−

√
τ1

τ
ν1

)
φ(ν1)dν1
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=
∫ Φ−1(γ)

−∞

[
1−Φ

(√
τ2

τ
Φ−1(γ)−

√
τ1

τ
ν1

)]
φ(ν1)dν1

= γ−
∫ Φ−1(γ)

−∞
Φ

(√
τ2

τ
Φ−1(γ)−

√
τ1

τ
ν1

)
φ(ν1)dν1

= θ∗γ −θ∗γ,

establishing the claimed symmetry. Finally, observe that
∂(θ∗γ −θ∗γ)

∂γ
= 1−2Φ

(p
τ2 −p

τ1p
τ

Φ−1(γ)

)
,

which implies that θ∗γ −θ∗γ is strictly increasing when γ ∈ (0,1/2) and is strictly decreasing

when γ ∈ (1/2,1).

B.3 Proof of Proposition 4

We state a preliminary result that we will rely on below.

Lemma A8. Let (s, t ) be the conditional subsidies the policymaker offers. Then, agents

attack the regime following acquisition of the second signal if and only if their posterior

after observing the second signal is larger than µ∗
2 (γ̂), where

µ∗
2 (γ̂) =


−∞ if γ̂⩽ 0

θ∗+τ−1/2
2 Φ−1(γ̂) if γ̂ ∈ (0,1)

+∞ if γ̂⩾ 1

(A.9)

and γ̂= γ+ (t − s) C
H−L .

PROOF OF LEMMA A8. This result follows immediately from solving the indifference con-

dition when agents receive conditional subsidies (s, t) after acquiring the second sig-

nal. ■

PROOF OF PROPOSITION 4. When γ̂⩽ 0 or γ̂⩾ 1, the result follows from the observation

that no agent will acquire information. Thus, in this case, the model becomes a static one

with an improper prior, in which the aggregate attack is well-known to be equal to 1−γ
in equilibrium (see, for example, Morris & Shin (2004)).

Thus, we focus on the case of γ̂ ∈ (0,1). Consider, first, the indifference condition that
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determines µ
1
, which (in the presence of conditional subsidies) is given by6

∫ ∞

µ∗2

{
H

[
1−Φ

(
θ∗−µ2

τ−1/2
2

)]
+LΦ

(
θ∗−µ2

τ−1/2
2

)}√
τ1τ2

τ
φ

µ2 −µ1√
τ

τ1τ2

 dµ2

+ sC
∫ ∞

µ∗2

√
τ1τ2

τ
φ

µ2 −µ1√
τ

τ1τ2

 dµ2 + tC
∫ µ∗2

−∞

√
τ1τ2

τ
φ

µ2 −µ1√
τ

τ1τ2

 dµ2 =C

Dividing by H −L, performing a change of variables z =p
τ2(µ2−θ∗), integrating by parts,

and simplifying, we obtain

(1−γ)−
∫ ∞

Φ−1(γ̂)
φ(z)Φ

(√
τ1

τ
(z −a)

)
dz = C (1− s)

H −L
, (A.10)

where a =p
τ2(µ

1
−θ∗). Next, consider the indifference condition that determines µ1,

which (in the presence of conditional subsidies) is given by∫ µ∗2

−∞

{
H

[
1−Φ

(
θ∗−µ2

τ−1/2
2

)]
+LΦ

(
θ∗−µ2

τ−1/2
2

)}√
τ1τ2

τ
φ

µ2 −µ1√
τ

τ1τ2

 dµ2

+ sC
∫ ∞

µ∗2

√
τ1τ2

τ
φ

µ2 −µ1√
τ

τ1τ2

 dµ2 + tC
∫ µ∗2

−∞

√
τ1τ2

τ
φ

µ2 −µ1√
τ

τ1τ2

 dµ2 =C

Following similar steps as in the case of the equation determining µ
1
, we arrive at∫ Φ−1(γ̂)

−∞
φ(z)Φ

(√
τ1

τ
(z −a)

)
dz = C (1− s)

H −L
, (A.11)

where a ≡p
τ2(µ1 −θ∗). Equations (A.10) and (A.11) imply that∫ Φ−1(γ̂)

−∞
φ(z)Φ

(√
τ1

τ
(z −a)

)
dz +

∫ ∞

Φ−1(γ̂)
φ(z)Φ

(√
τ1

τ
(z −a)

)
dz = 1−γ (A.12)

Finally, note that the proportion of agents attacking the regime is given by

p(θ∗;θ∗) =
∫ ∞

µ1

f (µ1|θ∗)dµ1 +
∫ µ1

µ
1

∫ ∞

µ∗2
f (µ2|µ1,θ∗)dµ2dµ1

Using the functional forms of all conditional densities, observing that f (µ1|θ) = f (θ|µ1)

and f (µ2|µ1,θ) f (µ1|θ) = f (θ|µ2) f (µ2|µ1), and performing change of variables z =p
τ2(µ2−

θ∗), we obtain

p(θ∗;θ∗) =
∫ Φ−1(γ̂)

−∞
φ(z)Φ

(√
τ1

τ
(z −a)

)
dz +

∫ ∞

Φ−1(γ̂)
φ(z)Φ

(√
τ1

τ
(z −a)

)
dz, (A.13)

where a and a are defined as above. Therefore, Equations (A.12) and (A.13) imply that

p(θ∗;θ∗) = 1−γ, which is independent of the subsidies. This completes the proof. ■
6For notational simplicity, we have suppressed the dependence of µ

1
, µ1, and µ∗

2 on γ̂.
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B.4 A sufficient condition that guarantees the existence of threshold equilibria

Lemma A9. Every information policy induces a threshold equilibrium if

Rθ

Rp

>
√

6+4
p

2

π
max{

p
τ1,

p
τ},

where Rθ ≡ inf(θ,p)∈[θ,θ]×[0,1] Rθ(θ, p) and Rp ≡ sup(θ,p)∈[θ,θ]×[0,1] Rp (θ, p).

PROOF OF LEMMA A9. Fix an arbitrary information policy J and let θ̃ satisfy R(θ̃, p(θ̃; θ̃, J )) =
0 (the existence of such θ̃ has been established in Lemma A2). For each θ ∈ R, employing

the identity that for all (µ2,µ1,θ) ∈ R3

f (µ2 |µ1,θ) f (µ1 | θ) = f (θ |µ2) f (µ2 |µ1),

we have7

p(θ; θ̃, J ) =
∫ ∞

µ∗1
f (µ1 | θ)[1− J (µ1)]dµ1 +

∫
R

∫ ∞

µ∗2
f (µ2 |µ1,θ) f (µ1 | θ)J (µ1)dµ2,1

=
∫ ∞

µ∗1
f (µ1 | θ)[1− J (µ1)]dµ1︸ ︷︷ ︸

≡p1(θ;θ̃,J )

+
∫

R

∫ ∞

µ∗2
f (θ |µ2) f (µ2 |µ1)J (µ1)dµ2,1︸ ︷︷ ︸

≡p2(θ;θ̃,J )

.

Note that∣∣∣∂p1(θ; θ̃, J )

∂θ

∣∣∣= ∣∣∣∫ ∞

µ∗1

∂ f (θ |µ1)

∂θ
[1− J (µ1)]dµ1

∣∣∣⩽ ∫ ∞

µ∗1

∣∣∣∂ f (θ |µ1)

∂θ

∣∣∣dµ1

=
∫ ∞

µ∗1

∣∣∣− ∂ f (θ |µ1)

∂µ1

∣∣∣dµ1 ⩽ 2max
µ1∈R

f (µ1 | θ)⩽

√
2

π
max{

p
τ1,

p
τ}

and that ∣∣∣∂p2(θ; θ̃, J )

∂θ

∣∣∣= ∣∣∣∫
R

∫ ∞

µ∗2

∂ f (θ |µ2)

∂θ
f (µ2 |µ1)J (µ1)dµ2,1

∣∣∣
⩽

∫
R

∫ ∞

µ∗2

∣∣∣∂ f (θ |µ1)

∂µ1

∣∣∣ f (µ2 |µ1)dµ2,1

=
∫ ∞

µ∗2

∣∣∣∂ f (θ |µ2)

∂θ

∣∣∣dµ2,1 =
∫ ∞

µ∗2

∣∣∣− ∂ f (θ |µ2)

∂µ2

∣∣∣dµ2,1

⩽ 2max
µ2∈R

f (µ2 | θ)⩽

√
4

π
max{

p
τ1,

p
τ}.

Therefore, we have

∂p(θ; θ̃, J )

∂θ
⩾−

(√
2

π
+

√
4

π

)
max{

p
τ1,

p
τ} =−

√
6+4

p
2

π
max{

p
τ1,

p
τ}.

7See the beginning of Subsection B.1 for the definition of p(θ; θ̃, J ).

34



Given the condition stated in Lemma A9, we have
∂R(θ, p(θ; θ̃, J ))

∂θ
= Rθ(θ, p(θ; θ̃, J ))+Rp (θ, p(θ; θ̃, J ))

∂p(θ; θ̃, J )

∂θ

⩾Rθ−Rp ·
√

6+4
p

2

π
max{

p
τ1,

p
τ} > 0.

Thus, sgn[R(θ, p(θ; θ̃, J))] = sgn(θ− θ̃) for all θ ∈ R, which implies that θ̃ is the regime-

change threshold of a threshold equilibrium induced by J . ■

C Proofs of results in Section 5

C.1 Sketch of the proof of Theorem 2

The proof of Theorem 2 is a generalization of the proof of Theorem 1. In particular, we

introduce a series of auxiliary games {Gm}N
m=1, where in game Gm the first m private

signals are free to all agents. As in the proof of Theorem 1, G1 corresponds to the extended

model as specified in Section 5, and GN (where agents observe all signals for free) is

equivalent to a static global game model in which agents observe a single signal with

precision Nτ. Denote by p(θ̂; θ̂,m) the aggregate attack in Gm when θ = θ̂ and every agent

takes θ̂ as the regime-change threshold.

Since p(θ̂; θ̂, N ) = 1−γ, it is enough to establish that p(θ̂; θ̂,m) = p(θ̂; θ̂,m − 1) for

all 2 ⩽ m ⩽ N . The desired result will then follow from backward induction on m. To

establish that p(θ̂; θ̂,m) = p(θ̂; θ̂,m −1), one can use essentially the same steps as those

employed in the proof of Theorem 1. The key step is to establish a recursive form for the

derivative of each of the value functions Tm(·) and Qm(·), the counterparts of T (·) and

Q(·) in Gm . Such recursive forms are then used to show that the net effect of reducing a

free signal (i.e., from Gm to Gm−1) on the aggregate attack is zero. For more details, see

the working paper version of this article.

C.2 Proof of Proposition 5

Part (i) The planner’s solution to the N -signal case is in the same spirit of that to the

2-signal case; that is, the planner will offer an extra signal to an agent (if feasible) only if

the agent will choose to not attack the regime without any further information. Based on
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this characterization, we have8

1−p(N )

=
∫ Φ−1(γ)

−∞

∫ √
τ2
τ Φ

−1(γ)

−∞
· · ·
∫ √

τN
τ Φ

−1(γ)

−∞

[
N∏

m=3
φ(νm −νm−1)

]
φ

(
ν2 −

√
τ1

τ
ν1

)
φ(ν1)dνN↓1

=
∫ Φ−1(γ)

−∞

∫ √
τ2
τ Φ

−1(γ)

−∞
· · ·
∫ √

τN
τ Φ

−1(γ)

−∞

∫
R

[
N+1∏
m=3

φ(νm −νm−1)

]
φ

(
ν2 −

√
τ1

τ
ν1

)
φ(ν1)dνN+1↓1

>
∫ Φ−1(γ)

−∞
· · ·
∫ √

τN
τ Φ

−1(γ)

−∞

∫ √
τN+1
τ Φ−1(γ)

−∞

[
N+1∏
m=2

φ(νm −νm−1)

]
φ

(
ν2 −

√
τ1

τ
ν1

)
φ(ν1)dνN+1↓1

= 1−p(N +1),

which implies that p(N +1) > p(N ). Since R(θ(N ), p(N )) = 0 = R(θ(N +1), p(N +1)), one

concludes, from the monotonicity of R(·, ·), that θ(N +1) < θ(N ).

Part (ii) When N →∞, using the same argument as in the proof of Lemma 1 in Das-

gupta et al. (2012), one can show that for all θ̂ ∈ R, limN→∞ p(N ) = 1. Therefore, θ∗ ↓ θ as

N →∞.
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