
Mechanism Design for Acquisition of/Stochastic

Evidence1

Elchanan Ben-Porath2 Eddie Dekel3 Barton L. Lipman4

First Preliminary Draft

September 2019

Current Draft

July 2025

1We thank the National Science Foundation, grant SES–1919319 (Dekel and Lipman),
the US–Israel Binational Science Foundation, and the Foerder Institute at Tel Aviv Univer-
sity for support for this research. We also thank Ricky Vohra and three anonymous referees
for useful comments and suggestions.

2Department of Economics and Center for Rationality, Hebrew University. Email: ben-
porat@math.huji.ac.il.

3Economics Department, Northwestern University, and School of Economics, Tel Aviv
University. Email: eddiedekel@gmail.com.

4Department of Economics, Boston University. Email: blipman@bu.edu.



Abstract

We explore two interrelated models of “hard information.” In the evidence–

acquisition model, an agent with private information searches for evidence to show

the principal about her type. In the signal–choice model, a privately informed agent

chooses an action generating a random signal whose realization may be correlated

with her type. The signal–choice model is a special case and, as we show, under cer-

tain conditions, a reduced form of the evidence–acquisition model. We develop tools

for characterizing optimal mechanisms for these models by giving conditions under

which some aspects of the principal’s optimal choices can be identified only from the

information structure, without regard to the utility functions or the principal’s priors.



1 Introduction

We explore two models of “hard information.” In the first, the evidence–acquisition

model, the agent chooses among actions that generate random signals depending on

her type. The agent then chooses which realization to present to a principal who

chooses an action affecting both of their utilities. The second model is a special case

and, under some conditions, a reduced form of the evidence–acquisition model. In

this signal–choice model, the agent chooses among random signals, the realization of

which the principal observes.

Most of the literature on evidence analyzes a principal–agent model where the

agent is endowed with evidence and the question is what evidence he will disclose.

Our two models extend the usual model by considering decisions by the agent which

generate evidence and where there is ex ante uncertainty regarding the evidence that

will materialize. Both models are natural for applications. For an example of the

evidence–acquisition model, consider a division within an organization which wants

additional funding for a project it is developing, say, a new product. The division

can develop and test a prototype or do other market research to obtain evidence

regarding the profitability of the product. The evidence resulting from the research

is random ex ante. The division may choose which parts of its results to share with

the organization.

As an example of a signal–choice model in applications, consider a lawyer who has

private information about the innocence or guilt of her client trying to persuade a

judge. When the lawyer calls a witness to the stand, she may know more about what

the witness will say than the judge does, but may not be able to perfectly predict the

witness’ testimony. In this sense, the witness is a random signal, the realization of

which depends stochastically on the lawyer’s private information. Similarly, when an

agent gives the name of a recommender to the principal, she may not know exactly

what the recommender will say. In both cases, the agent effectively chooses a random

variable, the realization of which she and the principal will see together.

We develop conditions under which we can restrict attention to a relatively simple

class of mechanisms in these two classes of problems. For the evidence–acquisition

model, we identify a sufficient condition for the evidence structure to be simplifiable
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in the sense that the evidence the principal requests from the agent is independent

of the utility functions and priors. Identifying this request eliminates the need to

optimize over it, making the analysis much less complex. We develop this result in

Section 3.2 and show in Section 3.3 that when the evidence structure is simplifiable,

we can reduce the evidence–acquisition model to the signal–choice model.

In Section 4, we give conditions under which we can similarly identify the signal

choice the principal requests from the agent, leading to a further simplification. Proofs

are in the Appendix.

2 Models

In this section, we discuss the “primitives” of the model, reserving discussion of the

specifics of the mechanism for later sections.

We consider a principal and an agent. The agent has a finite set of types T where

the realization t ∈ T is the agent’s private information. The principal’s prior over T

is denoted τ and is assumed to have full support. The principal has a finite set of

actions X. An element of X specifies all aspects of the principal’s action, including

allocation of goods, monetary transfers, provision of resources, or other activities.

After possibly several rounds of information exchange between the agent and the

principal, the principal chooses some x ∈ X. The utility functions of the agent and

principal are u : T ×X → R and v : T ×X → R respectively.1 In what follows, we

refer to (X, τ, u, v) as the payoff structure.

There is a set L of all possible evidence messages which could potentially be shown

by the agent. For simplicity, we assume L is finite, but this is not needed for the

results. Information exchange includes the transmission of an evidence message and

possibly also includes cheap talk reports by the agent.

We consider two ways of modeling information transmission, one of which is a

1For some purposes, it is natural to also let the agent’s and/or principal’s utility depend on aspects
of the information transmission (discussed next). We avoid adding these to the utility functions as it
would complicate the notation even further, but note that adding costs of evidence acquisition (for
the principal or the agent) would not affect any of our results for the evidence–acquisition model.
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special case and, under certain conditions, a reduced form of the other. First, we

consider the evidence–acquisition model, a model where the agent searches to find

evidence. The agent has a variety of ways to try to obtain evidence. This search

process could be sequential or one–shot. Rather than model this process, we focus

on its outcomes by treating the agent as choosing a probability distribution over the

evidence set she ultimately obtains. Formally, let At denote the set of evidence–

gathering actions available to type t, with typical element a ∈ At, where we identify

the action a with the probability distribution over evidence sets it generates. That is,

a ∈ ∆(2L \ {∅}).2 We denote a typical set of evidence as M ⊆ L. Let M be the set

of possible message sets M that can be produced. That is, M is the collection of M

such that there exists t and a ∈ At with M ∈ supp(a). The assumption that ∅ /∈ M
means that the agent can always say something, even if it is not informative — e.g.,

“I have no evidence to present.” If M is the realized set of messages, then the agent

can present any one m ∈M to the principal.3

While we assume that the principal observes only the m sent by the agent and

not the chosen evidence acquisition action a, the model (implicitly) includes the

possibility that a is observable as well. To see this, suppose every set of messages

that could be realized by the agent’s choice of action a is disjoint from any set that

could be realized from a′. Then observing message m reveals the evidence acquisition

action to the principal. Similarly, we can assume that only some distribution choices

are observable or that only some messages reveal a in this sense, so whether the

distribution is observed is itself random and/or in the control of the agent.

The model incorporates the important specific case where there is a set of tests,

say Q, where each q ∈ Q and t ∈ T define a probability distribution over sets of

evidence messages (test results). In some settings (e.g., college admissions tests), it is

natural to assume that the principal observes the test q selected by the agent. Again,

our model allows but does not require such observability.

When we discuss the evidence–acquisition model, we refer to {At}t∈T as the evi-

dence structure.

2For any set B, ∆(B) is the set of probability distributions over B.
3As in the usual deterministic evidence model, the assumption that the agent can present only

one message is without loss of generality. For example, if the agent could present two messages, we
would simply replace L with the set of pairs of messages.
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A special case of the evidence–acquisition model is where the agent has no choice

of what message to send at the last step. Formally, this special case is when for every

t ∈ T and every a ∈ At, every M ∈ supp(a) is a singleton. For convenience, we write

this special case, the signal–choice model, differently. Instead of referring to agent’s

choices as evidence acquisition actions, we write the set of options available to type

t ∈ T as a nonempty set St ⊆ ∆(L) and refer to an s ∈ ∆(L) as a signal distribution.

The interpretation is that if the agent chooses s ∈ ∆(L), then the principal sees

message m ∈ L with probability s(m). Equivalently, we can think of this as the

singleton message in the realized evidence set.

Similarly to our comments above about the observability of a, the model allows

the possibility that the realized m reveals the agent’s choice of s always, reveals it

with some probability, or reveals it for some s choices but not others. We refer to

{St}t∈T as the signal structure.

While we discuss the details of mechanisms below, we use the following timing

structure throughout. In both models, we assume the agent knows her type at the

outset. There may be cheap talk between the principal and the agent before the agent

chooses an evidence action or a signal distribution. After this, the agent sees the

realization of her action. In the evidence–acquisition case, this is a set of evidence

messages and (perhaps after further cheap talk) she can then send one evidence

message to the principal. In the signal–choice model, the principal also sees the

realization, perhaps followed by more cheap talk. After this, the principal chooses

x ∈ X.

Running Example, Part 1. We use the following example to illustrate ideas and

results. The principal is an employer and the agent an employee. The agent’s private

information t is her productivity for the principal. Hence the agent wants the principal

to think she has a high type and the principal wants to know the true type.

For an example of an evidence–acquisition technology in this context, suppose

the agent of type t can choose a variety of ways to potentially demonstrate her

ability. Each of these options gives a probability distribution over an “outcome” she

generates, where this outcome is, on average, equal to her true type. However, she

can also withhold part of this “outcome” and show a lower realization than what she

actually generates. More formally, a ∈ At if and only if the following two statements
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are true. First, every M ∈ supp(a) takes the form [0,m] for some m ∈ R+. (Note

that this means the set L in this example is infinite, unlike in the general model.

Nothing changes in the example if we take L to be a finite but “dense” subset of

an appropriate interval of real numbers.) Note that any a ∈ At corresponds to a

probability distribution over R+ where if the realization of this random variable is

m, this means the set of available evidence messages is [0,m]. The second property

is that for any a ∈ At, the expectation of this associated random variable is t. That

is, in the case where a has a finite support,∑
[0,m]∈supp(a)

a([0,m])m = t.

The agent wants to persude the principal that her type is large, so it is natural to

conjecture that the option of showing a lower outcome will never be used by the agent

and hence is irrelevant. In fact, one of our results will be that only the upper bound of

a given evidence set will be shown by the agent in an optimal mechanism. However,

this result is independent of the preferences of the agent — the same is true even in

a different problem where the agent wants to persuade the principal that her type is

small (e.g., if the agent’s type determines the level of effort the principal wants her

to exert).

For an example of signal choice, we “convert” this evidence structure into a signal

structure. Note that, in the acquisition model, the agent can pick a distribution over

evidence sets and decide what message she will use from each set. That is, she can

choose a particular distribution over sets of the form [0,m] and decide for each upper

bound m what message m′ ∈ [0,m] she will send to the principal. Recall that the

agent of type t can only generate a distribution over sets of the form [0,m] with the

property that the expectation of the upper bound m is t. Hence when we convert

to signals, this generates the set of signal distributions with expected value less than

or equal to t. In other words, for a signal–choice version of this example, we let St,

the set of signal distributions for type t, be the set of all probability distributions on

R+ with expected value less than or equal to t. Thus signal distributions are either

unbiased or biased “against” the agent. One can think of this as a stylized model

where the agent can give the principal one name of a reference for the principal to

contact. References cannot be systematically biased in the agent’s favor, but the
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agent generally cannot predict exactly what a given reference will say.

Related literature: The usual model of evidence considers games or mechanism

design problems where the agent’s set of feasible messages is a deterministic function

of her type. Thus by presenting a message which is only feasible for a certain set

of types, the agent proves her type is in this set. The usual model is a special

case of our evidence–acquisition model where each type has a single evidence action

that generates a single evidence set with probability 1 and a special case of our

signal–choice model where every signal is degenerate. For early contributions in game

theory, see Grossman (1981), Milgrom (1981), and Dye (1985). For early contributions

in mechanism design theory, see Green and Laffont (1986), Glazer and Rubinstein

(2004, 2006), Forges and Koessler (2005), Bull and Watson (2007), and Deneckere

and Severinov (2008). More specific connections to some of these papers will be

discussed below.

Several earlier papers consider models of evidence acquisition, but, with few ex-

ceptions, all assume the agent does not know her type and do not consider optimal

mechanisms. Matthews and Postlewaite (1985), Che and Kartik (2009), Felgenhauser

and Schulte (2014), DeMarzo, Kremer, and Skrzypacz (2019), and Shishkin (2024)

consider models in which an uninformed agent chooses a test or experiment which

may reveal information about her type. These papers vary in the specifics, but in all

cases, the agent’s action produces a probability distribution over a set of options for

the agent to reveal, as in our model. While not a model of evidence acquisition, some

similar issues arise in Banerjee and Chen (2025), which considers full implementa-

tion in a model with multiple agents who have exogenously determined probability

distributions over the evidence they have available. The paper closest to ours, Ball

and Kattwinkel (forthcoming), considers one privately informed agent and optimal

mechanisms. It will be more convenient to discuss their model and its relationship to

ours at the end of Section 3.

Our signal–choice model is related to several different literatures. There are a

number of papers related to the testing/experimentation papers discussed above but

where the principal directly observes the outcome of any experiments conducted by

the agent — see, for example, Henry and Ottaviani (2019) or McClellan (2022). To

the best of our knowledge, all of these papers consider uninformed agents, unlike our

6



model.

Similarly, the signal–choice model can be thought of as an “informed agent” ver-

sion of the Bayesian persuasion model of Kamenica–Gentzkow (2011). As in the

Bayesian persuasion model, the agent chooses an “experiment” which reveals infor-

mation to the principal. Our model differs from Kamenica–Gentzkow in four ways.

First, we do not assume that every possible signal is feasible. Second, we assume the

agent knows her type, though she may not know the outcome of the experiment.4

Third, while Kamenica and Gentzkow assume the principal observes the full experi-

ment, we do not assume this. Specifically, while we can allow the principal to observe

the signal choice of the agent as discussed above, he cannot observe the signals that

would have been chosen by other types. Finally, Kamenica and Gentzkow character-

ize the optimal structure for the agent, while our mechanism design results focus on

the best choice for the principal.

Deb, Pai, and Said (2018), Silva (2020), Perez-Richet and Skreta (2022), and

Espinosa r○ Ray (2023) also develop models that can be thought of a signal–choice

models. However, these papers, while broadly related, focus on issues very different

from the ones we explore.

3 Simplification in Evidence Acquisition

3.1 General Mechanisms

Using standard Revelation Principle type arguments, one can show that we can re-

strict attention to a certain class of direct truth–telling mechanisms. However, these

mechanisms are rather complex for the signal–choice model and quite involved for

the evidence–acquisition model. Henceforth we use the term protocol to refer to the

sequence of stages of communication in a mechanism.5

4For work on Bayesian persuasion with privately informed agents, see Perez–Richet (2014), Hed-
lund (2017), Kosenko (2023), and Koessler and Skreta (2023).

5Gerardi and Myerson (2007) have shown that the Revelation Principle may not hold for se-
quential equilibrium in dynamic environments, raising questions about our multi–stage mechanisms.
However, Sugaya and Wolitzky (2021) show that such problems do not arise in our single–agent
setting.
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For the signal–choice model, we have, in effect, an adverse selection problem (the

agent’s private knowledge regarding her type), followed by moral hazard (the agent’s

unobserved choice of a signal distribution). Thus a variation on Myerson’s Revelation

and Obedience Principle identifies the appropriate protocol.6 First, the agent reports

a type. Then the principal recommends a signal distribution. Finally, the agent

chooses some distribution, the principal observes the realization m, and the principal

chooses x ∈ X.

In the evidence–acquisition model, the problem is much more complex. We start

with adverse selection (the agent’s type), then have moral hazard (the agent’s choice

of a distribution over evidence sets), followed by more adverse selection (the realized

set of evidence messages). Hence we start as in the signal choice case where the

agent reports her type, the principal recommends an action, and the agent chooses

an action. But after this, the agent makes a report of the realized evidence set, the

principal recommends a message choice from this set, and the agent sends a message.

Only then does the principal choose x ∈ X. One can show by examples (omitted for

brevity) that, in general, each of these steps may be necessary for the principal to

obtain the highest possible payoff.

In general, this protocol can be difficult to analyze. Not only are there numerous

objects to choose with constraints that can be quite complex, but in addition (as is

well–known — see, e.g., Glazer–Rubinstein (2004)), the optimum may require ran-

domization by the principal over what recommendation to make. Our main results

establish conditions under which we can identify the principal’s recommendations

in an optimal mechanism based only on the evidence/signal structure. Under these

conditions, we can eliminate some of the above steps, greatly simplifying the class of

mechanisms we need to consider and thus greatly simplifying the analysis.

In this section, we consider the evidence–acquisition model, developing our sim-

plification of the signal–choice model in Section 4. We give a verbal description of the

protocol and state our main result for this model, then develop the relevant notation.

The protocol for evidence–acquisition models has seven stages. We refer to this

as the full protocol for evidence–acquisition models. Recall that M is the collection

6For similar results in the evidence literature, see Bull and Watson (2007) and Deneckere and
Severinov (2008).
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of M such that there exists t and a ∈ At with M ∈ supp(a).

Stage 1. The agent makes a report of a type r ∈ T .

Stage 2. Given the report, the principal requests a distribution a over evidence sets.

Stage 3. The agent chooses some feasible action a′ and the evidence set M is realized.

Stage 4. The agent makes a report M̂ ∈M of her realized message set.

Stage 5. The principal proposes a message m ∈ M̂ for the agent to send.

Stage 6. The agent sends a message m̂ from the set of messages she has available.

Stage 7. The principal chooses an action x as a function of the history he has

observed.

Our main result for evidence acquisition gives a condition on the evidence structure

which implies that each possible evidence set M has a “best” message in the sense

that, without changing the mechanism’s outcome, the principal can always ask for

this message from M if the agent reports M . This allows us to drop Stages 4 and

5, going from the realization of the message set to the agent’s choice of an evidence

message in Stage 6. This simplification enables us to reduce the evidence–acquisition

model to a signal–choice model.

The reader may prefer to skip the following notation (which continues to the

end of this subsection) on first reading. To state the mechanism protocol formally,

we use b’s to denote the agent’s pure strategies at various stages and g’s to denote

the principal’s pure strategies. The agent chooses three objects. For stage 1, the

agent chooses a reporting strategy bT : T → T . For stage 3, the agent chooses an

action strategy giving her action as a function of her true type, her report, and the

principal’s recommendation, so bA : T × T × A → A, where we require the agent’s

choice to be feasible for her in the sense that bA(t, ·, ·) ∈ At for all t. For stage 5, the

agent has a second reporting strategy, again a function of all she has seen and done,

so bM : T × T × A × A ×M →M. Finally, for stage 6, the agent has an evidence

presentation strategy, bL : T × T ×A×A×M×M×L → L. Of course, we require

that bL(t, r, a, a′,M, M̂,m) ∈ M — that is, if the agent’s type is t, her report r, the

recommended action a, her chosen action a′, the realized message set M , the reported
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message set M̂ , and the requested message m, the evidence message the agent sends

must be in M , the true message set. We let BT , BA, BM, and BL denote the sets of

these functions respectively.

Similarly, for stage 2, the principal chooses a recommendation strategy gA : T →
A, giving his recommended action as a function of the reported type. For stage

5, he chooses a message request strategy gL : T × A ×M → L. We require that

gL(r, a, M̂) ∈ M̂ . That is, if the agent reported r, the principal requested action a,

and the agent reported evidence set M̂ , the message the principal requests must be

feasible for the agent given her reported evidence set. For stage 7, he chooses an

action strategy gX : T ×A×M×L×L → X. Let GA, GL, and GX denote the sets

of these functions.

Let the principal’s set of pure mechanisms or pure strategies be denoted G =

GA×GL×GX . Let Γ = ∆(G) with typical element γ. We let (γA, γL, γX) denote the

equivalent behavior strategy to γ. Let B = BT × BA × BM × BL denote the agent’s

set of pure strategies. Let β ∈ ∆(B) denote a typical mixed strategy for the agent.

A version of the standard Revelation Principle for this class of models says that

without loss of generality, we can restrict attention to mechanisms where it is optimal

for the agent to report truthfully and to obey the principal’s recommendations at

every stage along the equilibrium path.

To define incentive compatibility more precisely, note that any (β, γ, t) induces a

probability distribution over the principal’s action x. We denote this distribution by

µ(x | β, γ, t). Let U(β, γ, t) denote the agent’s expected utility in the mechanism γ

given strategy β when her type is t or

U(β, γ, t) =
∑
x∈X

u(t, x)µ(x | β, γ, t).

We say that a pure strategy b̂ = (b̂T , b̂A, b̂M, b̂L) is truthful and obedient if for all

t, a, M , and m, we have b̂T (t) = t, b̂A(t, t, a) = a, b̂M(t, t, a, a,M) = M , and

b̂L(t, t, a, a,M,M,m) = m. That is, the agent reports truthfully and obeys the prin-

cipal at all stages. Throughout, we use b̂∗ to denote any such honest and obedient

10



strategy.7 Note that the outcome of the mechanism is the same for any choice of an

honest and obedient strategy.

A mechanism γ for the evidence–acquisition model is incentive compatible if for

all t,

U(b̂∗, γ, t) ≥ U(b, γ, t), ∀b ∈ B

for any truthful and obedient strategy b̂∗. (Clearly, this condition also implies that

b̂∗ is a better strategy for the agent than any mixed strategy β ∈ ∆(B).)

Given any incentive compatible γ, let µ∗(x | γ, t) = µ(x | b̂∗, γ, t). We refer to µ∗

as the mechanism outcome.

3.2 Simplifiability

Clearly, this is a complex protocol, giving us a complex set of mechanisms and in-

centive compatibility constraints. In the rest of this section, we introduce a notion of

simplifiability and identify conditions under which this holds.

The idea is to identify some choices by the principal in a way which depends on

the evidence structure but uses no information about the preferences of the principal

or the agent. The ability to identify such choices allows us to greatly reduce the

complexity of the protocol and the mechanism design problem.

More specifically, we identify the principal’s response at Stage 5. If for every

possible M̂ , there is a specific m ∈ M̂ that the principal will always ask for, regardless

of the preferences or other details of the model, then we can take as given that the

principal requests this message and delete Stage 5. This enables us to eliminate Stage

4 since the agent’s report of a message set is needed only to give the principal the

opportunity to make such a recommendation. Hence we can combine Stages 3 and 6,

skipping Stages 4 and 5.

Thus we say that an evidence structure is simplifiable if for every set of messages

7Note that there are many such strategies since we do not specify how the agent behaves on
histories inconsistent with her strategy. Truth–telling and obedience are without loss of generality
on path, but not necessarily off path.
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M that may be some type’s evidence set, there is a message m∗M ∈M that the prin-

cipal can always ask for, regardless of the payoff structure. More precisely, evidence

structure {At}t∈T is simplifiable if for every M ∈ M, there exists m∗M ∈ M such

that for every payoff structure (X, τ, u, v) and every incentive compatible γ given

that payoff structure, there is an incentive compatible γ∗ for that payoff structure

with the following two properties. First, γ∗L(t, a,M)(m∗M) = 1. That is, the princi-

pal always recommends message m∗M when the reported message set is M . Second,

µ∗(x | γ∗, t) = µ∗(x | γ, t) for all x ∈ X and t ∈ T , so that the two mechanisms have

the same outcome for every t.

As the name of this property is intended to emphasize, when an evidence struc-

ture is simplifiable, the analysis required is indeed much simpler. By identifying the

message the principal can always request, we eliminate the need to determine the best

way to use evidence to incentivize truthful reporting. So we have the answer to the

optimization at Stage 5 of the protocol. In addition, we eliminate the need for ran-

dom requests by the principal, a complication that is necessary in general otherwise.

This means the agent knows what message the principal will request as a function

her report of her evidence set, so we no longer require that report, eliminating Stage

4 and its associated incentive constraints.

We show that a natural generalization of the notion of normal evidence in the

literature gives a sufficient condition for an evidence structure to be simplifiable.

In the literature with exogenously given evidence, it is well–known that one may

need the principal to randomize over which message to request in response to the

agent’s type report. The idea is to prevent the agent from knowing how the principal

will check various possible lies, thus deterring misreporting. See Glazer and Rubin-

stein (2004) for illustrative examples. As shown by Bull and Watson (2007), though,

under a condition they call normality which Lipman and Seppi (1995) had previously

called the full reports condition, this request by the principal is not needed. Nor-

mality or full reports says that the agent has available a message which reveals as

much information as all the messages the agent has available, a message equivalent

to showing the entire set of available messages. Thus asking for this message is the

“best” way to deter lies.

We generalize this property to evidence–acquisition models as follows. We say that
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the evidence structure satisfies normality if for every M ∈M, there exists m∗M ∈M
such that for every M ′ ∈M, we have

m∗M ∈M ′ ⇐⇒ M ⊆M ′.

We refer to the message m∗M as the maximal evidence for M . As the notation suggests,

this will be the message used in simplifiability.

To understand the normality condition, note that M ⊆M ′ trivially implies m∗M ∈
M ′ since m∗M ∈M . However, we write the condition as an “if and only if,” including

this trivial direction, to emphasize the following idea. Intuitively, the only thing that

presenting a particular message m proves to the principal is that the agent is able

to present this message — that is, that the set of messages the agent has available

includes m. With this idea in mind, think of M ′ as the principal’s “guess” about the

agent’s evidence set and M as the true set. Then when the agent presents m∗M , the

principal learns that M ′ contains this message. The statement of normality says that

this is equivalent to the principal learning that M ′ contains all of M . In this sense,

showing m∗M reveals exactly what showing every message in M would reveal. Put

differently, learning that m∗M is feasible (i.e., that the true evidence set contains it)

reveals exactly the same information about the agent’s set of messages as learning

that every message in M is feasible (i.e., is contained in the true evidence set).

Running Example, Part 2. In our evidence–acquisition example, M contains

every interval of the form [0,m] for m ∈ R+ since each such interval can be generated

with positive probability by some (actually, by any) type. Hence it is easy to see that

the most informative message, m∗M , for the interval [0,m] is the upper bound, m.

That is, m∗[0,m] = m or, equivalently, M = [0,m∗M ]. This is true as for any m′ ∈ R+,

we have m∗M ∈ [0,m′] if and only if [0,m∗M ] ⊆ [0,m′]. Hence our running example

satisfies normality. As Theorem 1 below will indicate, this means that there is an

optimal mechanism using only the upper bounds of the intervals, regardless of the

payoff structure, as asserted earlier.

Theorem 1. If the evidence structure is normal, then it is simplifiable. In particular,

the principal can restrict attention to mechanisms which for every reported evidence

set M requests the maximal evidence from M .

Remark 1. The proof of Theorem 1 is trivially adapted to show a stronger result. To
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be specific, say that evidence message m dominates evidence message m′ if for every

M ∈ M such that m ∈M , we have m′ ∈M . In other words, m′ is included in more

evidence sets (in the sense of set inclusion). We prove Theorem 1 by showing that for

any incentive compatible mechanism that asks for some message that is not maximal

evidence when M is reported, we can find another incentive compatible mechanism

with the same outcome that requests the maximal evidence message for M instead.

The argument only uses the fact that the maximal evidence message for M dominates

in this sense any other message in the set. Hence replacing the initial message with

any m′ and the maximal evidence message with any m dominating it gives a proof

that we never need to use any message that is dominated by another.

It is worth emphasizing that the presentation of a message is evidence directly

about the agent’s set of evidence, not about the agent’s type t. It provides evidence

only indirectly about t since types differ in terms of which evidence sets they are

likely to obtain. To see more concretely how normality reflects this fact, consider the

following example.

Example 1. The agent has two types, t1 and t2. Each type has only one distribution

over evidence sets. Type t1 obtains evidence set {m1} with probability 1/2 and

{m1,m2} with probability 1/2. Type t2 receives evidence set {m2} with probability 1.

This evidence technology violates normality. First, note that any singleton evidence

set trivially has a maximal evidence message since if M = {m}, then it is obviously

true that for any M ′, m ∈M ′ iff M ⊆M ′. So if normality fails, it is because {m1,m2}
has no maximal evidence message. It is easy to see that this is the case. For either

message m′ ∈ {m1,m2}, the singleton {m′} is also an element of M. Clearly, then,

m′ cannot be maximal since m′ ∈ {m′} but {m1,m2} 6⊆ {m′}. In Appendix B, we

show that this evidence structure is not simplifiable.

To see why this is surprising, note that if the agent presents m1 to the principal,

she proves that her type is t1 as type t2 never has this message available. Yet m1

is not maximal evidence from {m1,m2}. Intuitively, presentation of m1 proves the

agent’s type but presenting both m1 and m2 would prove more about the agent’s

available messages than m1 proves.

One way to understand this is to observe that in standard deterministic evidence
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models, the agent’s type identifies exactly her set of available messages. In a sense,

in the current model, the agent’s full type is the pair (t,M) where M is the set of

messages the agent has. So in this example, unlike in deterministic evidence models,

proving that the “type” is t does not prove the agent’s full type.8

The following example shows that normality is not necessary for simplifiability.

Example 2. As in Example 1, the agent has two types, t1 and t2, each of which

has only one distribution over evidence sets. Now type t1 has evidence set {m1,m2}
with probability 1, while t2 obtains evidence set {m1} with probability p < 1/2 and

{m2} otherwise. This evidence technology violates normality for the same reasons

as in Example 1. However, as we show in Appendix C, this evidence structure is

simplifiable. More specifically, any outcome achievable by an incentive compatible

mechanism with this evidence structure can be achieved from a mechanism which

requests m1 when the agent reports type t1 and evidence set {m1,m2}. Intuitively,

this is the message t2 is least likely to be able to imitate and this means it is best for

deterring deviations. Note that when an evidence structure is normal, the maximal

evidence message also has the property that it is the message in the evidence set that

other types are least likely to have available.

Necessary and sufficient conditions for simplifiability are not straightforward. Nec-

essary conditions, in particular, are difficult to obtain as they hinge on many details

regarding the variety of distributions over evidence sets that are possible. For exam-

ple, the properties of some evidence set M only matter if M has positive probability

under the evidence–acquisition actions chosen in some optimal mechanism. Hence we

cannot separate necessary properties on the evidence structure from a characteriza-

tion of which actions are “needed,” a difficult undertaking in its own right.

One way to understand normality is to observe that it is necessary and sufficient

for a stronger version of simplifiability. Note that normality only depends onM, the

collection of possible message sets, not which type might have which set. Examples

1 and 2 give evidence structures with the same M but one is simplifiable and one is

not. In fact, normality is the unique condition with this property.

8Another way to see this point is to redefine the type space to be the set of possible (t,M) and
the set of feasible messages for “type” (t,M) to be M . Applying the standard definition of normality
to this model yields our definition.
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To state this more precisely, define an evidence structure to be robustly simplifiable

if it is simplifiable and every type space and evidence structure with the same M is

also simplifiable. Because normality only depends onM and implies simplifiability, it

is clearly sufficient for robust simplifiability. In Appendix D, we show that normality

is also necessary for robust simplifiability.

Theorem 1 implies that we can use a simpler protocol under normality. Since

the principal can always recommend the maximal evidence message for any reported

message set, we do not need the stage where he makes this recommendation. Hence

we do not need the agent to report the message set since the mechanism does not

depend on it.

We refer to the following as the abbreviated protocol for evidence acquisition:

Stage 1. The agent reports a t ∈ T .

Stage 2. Given the report, the principal recommends a distribution over evidence

sets for the agent.

Stage 3. The agent chooses a distribution and the evidence set M is realized.

Stage 4. The agent sends a message m from the set of available messages M .

Stage 5. The principal chooses an action as a function of the history he has observed,

namely the agent’s report, the recommended distribution, and the message m.

Again, the reader may wish to skip the following definitions and proceed directly to

Corollary 1 below. We abuse notation by using the same notation to denote strategies

for this protocol. Hence a pure strategy for the agent is now b = (bT , bA, bL) where

bT : T → T and bA : T × T × A→ A as before. Also, bL : T × T × A× A×M→ L
where bL(t, r, a, a′,M) ∈ M gives the message the agent sends as a function of her

true type t, her reported type r, the principal’s recommended distribution a, the

distribution she actually chose a, and the realized set M . A pure strategy for the

principal is g = (gA, gX) where gA : T → A, with gA(t) ∈ At and gX : T ×A×L → X

gives the principal’s choice of x as a function of the agent’s report, the recommended

distribution, and the observed message. Again, we denote the agent’s pure strategies

by B = BT ×BA ×BL and the principal’s pure strategies by G = GA ×GX .
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The definition of incentive compatibility for this class of mechanisms is similar to

the preceding. Briefly, incentive compatibility requires that an optimal strategy for

the agent is to report t truthfully (so bT (t) = t), to follow the principal’s recommen-

dation (so bA(t, t, a) = a), and to use maximal evidence (so bL(t, t, a, a,M) = m∗M).

We have the following corollary, proved in Appendix E:

Corollary 1. Assume the evidence structure is normal or, more generally, simplifi-

able. Then for any incentive compatible mechanism in the full protocol for evidence–

acquisition models, there is an incentive compatible mechanism for the abbreviated

protocol with the same outcome.

3.3 Reduction to Signal Choice

When the evidence structure is simplifiable, we can reduce the mechanism design

problem for the evidence–acquisition model to the mechanism design problem for the

signal–choice model. To show this, we first describe the latter. It is easy to see that

we can assume the following protocol for signal–choice.

Stage 1. The agent reports a t ∈ T .

Stage 2. Given the report, the principal requests a signal distribution.

Stage 3. The agent chooses a signal distribution s as a function of her type, her

report, and the recommendation of the principal, with the resulting message seen by

the principal.

Stage 4. The principal chooses an outcome as a function of what has been said.

Formally, let a reporting strategy for Stage 1 be denoted bT : T → T . A pure

strategy for the principal for Stage 2 is denoted gS : T → S. Let bS : T × T × S → S

with bS(t, r, s) ∈ St denote a typical pure strategy for the agent for Stage 3. Finally,

let gX : T × S × L → X denote a typical pure strategy for the principal for the last

stage. Abusing notation, again let B = BT ×BS denote the set of pure strategies for

the agent and G = GS×GX the set of pure strategies for the principal in this protocol.

By the Revelation Principle, we can focus on mechanisms γ ∈ Γ with the property
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that any strategy b̂∗ = (b̂∗T , b̂
∗
S) for the agent satisfying b̂∗T (t) = t and b̂∗S(t, t, s) = s

is a best reply for the agent to γ. Again, we refer to any such b̂∗ as truthful and

obedient. Given an incentive compatible mechanism γ, we can define the mechanism

outcome as the function mapping t to probability distributions over X, analogously

to the above. I.e., we can write µ̂∗(x | γ, t) as the probability distribution over x

induced by the strategies (b̂∗, γ) given the agent’s type is t.

In the evidence–acquisition model, we can think of the agent choosing a and

simultaneously choosing her messaging strategy — that is, her strategy for which

message m to send as a function of the realization of the message set M . As we

vary the agent’s choice of distribution and messaging strategy, we trace out a set of

probability distributions over messages m that the principal will observe. Thus we

can replace the selection of a distribution/messaging strategy with the selection of a

signal distribution. In general, this change reduces the principal’s ability to influence

the agent’s decisions and will lead to a less effective mechanism. However, when the

evidence structure is simplifiable, the ability to reduce to the abbreviated protocol

implies that this change does not harm the principal.

Formally, fix an evidence–acquisition model. We construct a signal–choice model

from it as follows. For any a ∈ A and any function σ : supp(a) → L such that

σ(M) ∈M , we can define a signal s ∈ ∆(L) by

s(m) = a ({M | σ(M) = m}) .

Let Σ(a) denote the set of such σ functions given a and let s(a,σ) denote the distribution

on L induced by (a, σ). Let

St = {s(a,σ) | a ∈ At, σ ∈ Σ(a)}.

The following result explains the sense in which the signal–choice model so con-

structed is equivalent to the evidence–acquisition model under simplifiability.

Theorem 2. In the evidence–acquisition model, fix any incentive compatible mecha-

nism γ. If the evidence structure is simplifiable, there exists an incentive compatible

mechanism γ∗ in the signal–choice model constructed from it that is equivalent to γ

in the following sense. For any truthful and obedient strategy b̂∗ for the agent in the
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signal–choice model given γ∗, we have

µ∗(x | γ, t) = µ̂∗(x | γ∗, t), ∀x ∈ X, t ∈ T,

so γ and γ∗ have the same mechanism outcomes for every t ∈ T .

In short, given normality or, more generally, simplifiability, any outcome that can

be induced by a mechanism for the evidence–acquisition model can be induced by a

mechanism in the protocol for the associated signal–choice model.

One can consider mechanisms with different timing. For example, perhaps the

agent only comes to the principal after having generated evidence. Recognizing this,

the optimal mechanism takes into account the way the rules of the mechanism affect

these incentives. For example, this seems like a natural way to think about courts.

The lawyers know the rules of the court in advance and work to obtain evidence before

bringing the case to court. It is easy to show the analogs of Theorem 1, Corollary 1,

and Theorem 2 for this model. More specifically, it is still true that normality implies

an appropriate generalization of simplifiability, enabling us to use (an appropriately

modified version of) the abbreviated protocol and reduce to a version of the signal–

choice model.

4 Simplification in Signal Choice

In this section, we focus on the signal–choice model, where, as just shown, this can be

interpreted as a reduced form of the evidence–acquisition model under simplifiability.

While simplifiability (as the name indicates) greatly simplifies the mechanism

design problem, the problem is still complex. We next turn to conditions under

which we can identify the signal choice the principal requests as a function of the

type.

Recall that L is finite. In this section, we write a signal distribution s ∈ S as a

row vector of length #L. Fix t∗ and s∗, ŝ∗ ∈ St∗ . We say that s∗ is more informative

than ŝ∗ if there exists an #L × #L Markov matrix Λ such that s∗Λ = ŝ∗ and for
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every t and every s ∈ St, sΛ ∈ conv(St).
9

In the case where each St is finite, we can give an equivalent statement which

will aid in clarifying the intuition of this condition. Let S denote the matrix formed

by “stacking” the signal distributions. In other words, this is a matrix with #L
columns and a number of rows equal to

∑
t #St. The first #St1 rows are the signal

distributions available to t1, the next #St2 rows those available to t2, etc. Note that

if s ∈ St ∩ St′ for t 6= t′, then s appears (at least) twice in the matrix. Then s∗ is

more informative than ŝ∗ if there exists a Markov matrix Λ such that SΛ = Ŝ where

the matrix Ŝ has ŝ∗ in the row corresponding to s∗ in S and for any row s of Ŝ
corresponding to one of type t’s signal distributions, we have s ∈ conv(St).

To see the intuition, recall Blackwell–Girshick’s (1954) (BG) comparison of ex-

periments. In their model, there are n states of the world. An experiment gives a

probability distribution over a finite set of observations as a function of the state of

the world. If there are N possible observations, we can write this as an n×N matrix

E where eij is the probability of observation j in state i. Suppose we have two ex-

periments, E and F . BG say experiment E is more informative than experiment F if

there exists a Markov matrix Λ such that EΛ = F . The matrix Λ defines a garbling

of the results of experiment E, so this says that F can be obtained from E by adding

random noise.

Thus we can interpret our informativeness comparison as saying that the “exper-

iment” S is more informative than “experiment” Ŝ in the sense that we can obtain

the latter by adding noise to the former. To understand the sense in which S and Ŝ
can be thought of as experiments, note that the rows in an experiment correspond to

states of the world, while a row in S corresponds to a (type, signal distribution) pair.

Intuitively, just as we can think of (t,M) as the (partly endogenous) “full type” in the

evidence–acquisition model, it is natural to think of (t, s) as the (partly endogenous)

“full type” in the signal–choice model.

To see why the existence of Λ implies s is more informative than s′, suppose

we have a mechanism in which the principal recommends s′ if the agent reports

that her type is t. Suppose the principal changes the mechanism to recommend s

9A matrix is Markov if all entries are non–negative and every row sum is 1.
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in this situation instead and changes no other recommendations. Suppose that the

principal’s response to messages he subsequently receives from the agent after this

recommendation is to “garble” them according to the Markov matrix Λ and then to

respond the way the original mechanism specified. If the agent uses signal s, then the

resulting distribution over the garbled message will be sΛ. By hypothesis, this is s′.

Thus the distribution over the principal’s choice of x will be the same as in the original

mechanism. Suppose that the agent’s true type is t̂, she reports t, and that after

receiving a signal recommendation from the principal, she uses some signal ŝ ∈ St̂.
Then the induced distribution over garbled messages will be ŝΛ. By hypothesis, this

is an element of conv(St̂). In other words, in the original mechanism, type t̂ could

have generated this distribution over messages by a particular randomization over her

available signals. Thus the expected outcome this type would generate is something

she could have generated in the original mechanism. If the original mechanism was

incentive compatible, then this deviation is not profitable. Thus the new mechanism

is incentive compatible and generates the same outcome as the original one.

To understand this condition better, consider the following examples.

Example 3. Suppose there are three types, so T = {t1, t2, t3}, and three messages,

so L = {m1,m2,m3}. The first two types have only one signal distribution each, so

St1 = {s1} and St2 = {s2}, but t3 has two signal distributions so St3 = {s3, s′3}. The

distributions are given by

m1 m2 m3

St1 s1 1 0 0

St2 s2 0 1 0

St3 s3 0 0 1

s′3 1/2 1/2 0

It seems very intuitive that if the agent claims to be t3, the principal should insist

on signal s3. It is easy to see that there is a Markov matrix Λ establishing that s3 is

more informative than s′3. In particular, if we let

Λ =

Ö
1 0 0

0 1 0

1/2 1/2 0

è
,

21



we get that s1Λ = s1, s2Λ = s2, and s3Λ = s′3Λ = s′3, so the conditions are met.

Example 4. Suppose T = {t1, t2}, L = {m1,m2}, St1 = {s1}, and St2 = {s2, s′2}
where

m1 m2

St1 s1 1 0

St2 s2 0 1

s′2 1/2 1/2

Again, it seems intuitive that if the agent claims to be t2, the principal should ask for

signal s2. However, s2 is not more informative than s′2 according to our definition. To

have s2 more informative than s′2, we require the Markov matrix Λ to satisfy, among

other properties, s1Λ = s1 and s2Λ = s′2. It’s easy to show that the only Markov

matrix satisfying these two properties is

Λ =

(
1 0

1/2 1/2

)
.

But then s′2Λ = (3/4, 1/4) which is not in the convex hull of (0, 1) and (1/2, 1/2).

Intuitively, our construction has the principal changing from a mechanism where t2

sends s′2 to one where she sends s2 by treating a message of m2 as if it were a 50–

50 randomization over m1 and m2 and treating m1 as m1. But then by playing s′2,

t2 can effectively put more probability on the principal interpreting her message as

m1 in this mechanism than in the original, potentially creating profitable deviations.

In Appendix G, we give an example of an outcome that can only be achieved by

requesting s′2 from t2 to illustrate.

Example 5. As in Example 4, suppose T = {t1, t2}, L = {m1,m2}, St1 = {s1}, and

St2 = {s2, s′2}, but now we have

m1 m2

St1 s1 1/2 1/2

St2 s2 1/4 3/4

s′2 2/3 1/3

Here it is not obvious what signal the principal should ask type t2 to use since s1 is

“between” s2 and s′2. However, the fact that s′2 is “closer” to s1 than is s2 implies s2

22



is more informative than s′2. More specifically, letting

Λ =

(
1/6 5/6

5/6 1/6

)
,

we get s1Λ = s1, s2Λ = s′2, and s′2Λ = (7/18, 11/18) ∈ conv{(1/4, 3/4), (2/3, 1/3)}.

Theorem 3. In the signal–choice model, fix any incentive compatible mechanism γ

with marginal γS on GS. If there exists t∗ and s∗, ŝ∗ ∈ St∗ such that s∗ is more

informative than ŝ∗, then there exists an incentive compatible mechanism (γ∗S, γ
∗
X)

satisfying the following two properties. First,

γ∗S(t)(s) =


γS(t)(s), if t 6= t∗ or s /∈ {s∗, ŝ∗};
γS(t∗)(s∗) + γS(t∗)(ŝ∗), if t = t∗ and s = s∗;

0, if t = t∗ and s = ŝ∗.

That is, γ∗ moves any probability on recommending ŝ∗ for t∗ to recommending s∗

instead. Second, for all t,

µ̂∗(x | γ, t) = µ̂∗(x | γ∗, t), ∀x ∈ X.

That is, γ and γ∗ generate the same probability distribution over actions by the prin-

cipal for every t ∈ T .

Remark 2. Theorems 1 and 3 are connected in the following way. Suppose we begin

with an evidence–acquisition model satisfying normality. By Theorem 2, we can

reduce this to a signal–choice model where each signal distribution corresponds to a

choice of a distribution over evidence sets and a messaging strategy for which message

to send as a function of the realized set. Fix a particular distribution over evidence

sets and let s be a signal distribution generated from this choice and any messaging

strategy which does not always select the maximal evidence message. Let s∗ be the

signal distribution generated from the same distribution over evidence sets and the

message strategy which does always select the maximal evidence message. Then s∗ is

more informative than s. (See Section I in the Appendix for proof.) Thus the result

in Theorem 1 that we can restrict attention to mechanisms where the principal always

induces use of maximal evidence can be thought of as an implication of the result in

Theorem 3 that we can restrict to mechanisms where the principal always induces
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more informative signals. We present these results separately since the reduction of

the evidence–acquisition model to the signal–choice model requires showing Theorem

1, so we cannot present only Theorem 3.

Ball and Kattwinkel (forthcoming) study a model where the agent reports her

type and then the principal selects a probabilistic pass–fail test out of a given set of

such tests. Ball and Kattwinkel propose a comparison of tests that is related to our

notion of more informative signals. In their model, a given test τ together with a

type t and an effort choice by the agent determines a probability distribution over

results where the set of results is {0, 1}. If the agent takes effort, the agent passes the

test (gets an outcome of 1) with probability π(τ | t) and fails otherwise. If the agent

does not take effort, she fails with probability 1.

Ball and Kattwinkel say that a test τ̂ is more t–discerning than a test τ if there

are probabilities k1 and k0 with k1 ≥ k0 such that

k1π(τ̂ | t) + k0[1− π(τ̂ | t)] = π(τ | t) (1)

and

k1π(τ̂ | t′) + k0[1− π(τ̂ | t′)] ≤ π(τ | t′), ∀t′ 6= t.

Intuitively, this says that a certain kind of garbling of τ̂ (namely, one which puts more

weight on the success probability than the failure) gives the same success probabilities

as τ for type t and lower success probabilities for all other types.

To relate this to our more informative signals, note that they assume the test

is observable by the principal (in fact, is chosen by the principal) but the agent’s

effort is not. To fit this into our framework, we think of the message observed by

the principal as success or failure on a specific test. More formally, we let 1τ denote

the observation by the principal of the agent passing test τ and 0τ the observation of

the agent failing test τ . The signal distribution generated if type t takes test τ and

exerts effort, then, puts probability π(τ | t) on 1τ , 1 − π(τ | t) on 0τ , and 0 on all

other messages. We denote this signal distribution by s+τ (t). If type t takes test τ

but doesn’t take effort, the signal distribution is the degenerate distribution on 0τ ,

which we denote s0τ (t).
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In Appendix J, we show that signal s+τ̂ (t) is more informative than s+τ (t) in our

sense if and only if test τ̂ is t–more discerning than τ . In this sense, in Ball and

Kattwinkel’s setting, our comparison is equivalent to theirs.

Theorem 3 implies that if type t has some signal distribution s∗ ∈ St which is more

informative than any other s ∈ St, then the principal may as well always recommend

s∗ to t. If every t has such a most informative signal distribution, then Stage 2 of the

mechanism protocol is not needed as we can restrict attention to mechanisms where

every type of the agent is induced to choose her most informative signal distribution.

In such a case, we can focus on the following succinct protocol:

Stage 1. The agent reports a t ∈ T and chooses a signal distribution s. Denote a

reporting strategy by bT : T → T and a signal distribution strategy by bS : T → S

with b(t) ∈ St.

Stage 2. The principal observes the report, the realized m, and chooses an outcome.

Let gX : T × L → X denote a typical pure strategy for the principal.

Abusing notation yet again, let B = BT ×BS denote the set of pure strategies for

the agent and G the set of pure strategies for the principal in this protocol. When

each type t has a most informative signal distribution s∗t , we can focus on mechanisms

γ ∈ Γ with the property that the strategy b̂T (t) = t and b̂S(t) = s∗t is a best reply for

the agent to γ.

Running Example, Part 3. We showed in Part 2 of the example that our evidence–

acquisition technology is normal. In particular, given any realized message set of the

form [0,m], the upper bound m is the most informative message for the set. Hence

Theorem 2 implies that we can focus on the signal–choice model where for each t, St

is the set of all distributions on R+ with expectation less than or equal to t. Since

R+ is not finite, we need to adjust the example to apply our condition. So let L be

any finite subset of R+ containing at least T . Assume St is the set of all probability

distributions on L with expectation less than or equal to t.

We now show that the most informative signal distribution for type t is the de-

generate distribution on t. Fix any type t∗. Let s∗ ∈ St∗ denote the degenerate

distribution putting probability 1 on m = t∗ and fix any other s ∈ St∗ . Let the Λ
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matrix be an identity matrix but with the row corresponding to m = t∗ replaced by

s. That is, we let

Λ =



1 0 0 . . . 0 0

0 1 0 . . . 0 0
...

...
... . . .

...
...

s(m1) s(m2) s(m3) . . . s(m#L−1) s(m#L)
...

...
... . . .

...
...

0 0 0 . . . 1 0

0 0 0 . . . 0 1


.

Then s∗Λ = s. Fix any other type t and any ŝ ∈ St. Let s̃ = ŝΛ. For m 6= t∗, we

have s̃(m) = ŝ(m) + ŝ(t∗)s(m). For m = t∗, we have s̃(t∗) = ŝ(t∗)s(t∗). So∑
m

s̃(m)m =
∑
m 6=t∗

[ŝ(m) + ŝ(t∗)s(m)]m+ ŝ(t∗)s(t∗)t∗

=
∑
m 6=t∗

ŝ(m)m+
∑
m 6=t∗

ŝ(t∗)s(m)m+ ŝ(t∗)s(t∗)t∗

=
∑
m 6=t∗

ŝ(m)m+ ŝ(t∗)
∑
m

s(m)m

≤
∑
m 6=t∗

ŝ(m)m+ ŝ(t∗)t∗

=
∑
m

ŝ(m)m ≤ t.

The next–to–last line follows from s ∈ St∗ and therefore
∑

m s(m)m ≤ t∗. The last

inequality on the last line follows from ŝ ∈ St and therefore
∑

m ŝ(m)m ≤ t. So for

every ŝ ∈ St, ŝΛ is a probability distribution over L with expectation weakly less

than t and hence is an element of St and therefore of conv(St). Hence s∗ is more

informative than s.

Given this, the incentive compatibility constraints are that each type reports

truthfully and chooses the signal distribution with probability 1 on her true type.
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Appendix

A Proof of Theorem 1

Assume the evidence structure is normal and fix any incentive compatible mechanism

(γA, γL, γX). We show how to construct an incentive compatible mechanism with the

same mechanism outcome with the property that the principal always recommends

m∗M when the agent reports message set M , establishing that the evidence structure

is simplifiable.

Fix any profile (t̂, â, M̂ , m̂) consisting of a type report t̂ ∈ T , a recommended

distribution over evidence sets â ∈ supp(γA(t̂)), a reported message set M̂ ∈ M,

and a requested message m̂ ∈ supp(γL(t̂, â, M̂)) such that m̂ 6= m∗
M̂

. If there is

no such tuple, then the principal always recommends maximal evidence, so there is

nothing to prove. We construct an alternative mechanism which replaces the recom-

mendation m̂ with a recommendation of m∗
M̂

in this situation and will show that this

mechanism is incentive compatible and implements the same outcome as the original

mechanism. For brevity, let ĥ = (t̂, â, M̂), the history on which we are changing the

recommendations. We use h to denote a typical element of T × A×M.

Define the new mechanism, (γ∗A, γ
∗
L, γ

∗
X), as follows. First, γ∗A = γA. Let γ∗L

satisfy γ∗L(h)(m) = γL(h)(m) if h 6= ĥ. Similarly, let γ∗L(ĥ)(m) = γL(ĥ)(m) for

m /∈ {m̂,m∗
M̂
}. Finally, let

γ∗L(ĥ)(m) =

{
γL(ĥ)(m∗

M̂
) + γL(ĥ)(m̂), if m = m∗

M̂
;

0, if m = m̂.

In other words, the probability that was on recommendation m̂ is moved to m∗
M̂

.

Let γ∗X(h,m,m′)(x) = γX(h,m,m′)(x) if (h,m) 6= (ĥ,m∗
M̂

). In other words, on

histories other than ĥ and on ĥ if the principal did not request maximal evidence,

we do not change the mechanism’s outcome. Also, for all m ∈ L \ {m∗
M̂
}, we set
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γ∗X(ĥ,m∗
M̂
,m)(x) equal to

γL(ĥ)(m̂)γX(ĥ, m̂,m)(x) + γL(ĥ)(m∗
M̂

)γX(ĥ,m∗
M̂
,m)(x)

γL(ĥ)(m̂) + γL(ĥ)(m∗
M̂

)
.

Finally, we set γ∗X(ĥ,m∗
M̂
,m∗

M̂
)(x) equal to

γL(ĥ)(m̂)γX(ĥ, m̂, m̂)(x) + γL(ĥ)(m∗
M̂

)γX(ĥ,m∗
M̂
,m∗

M̂
)(x)

γL(ĥ)(m̂) + γL(ĥ)(m∗
M̂

)
.

In other words, if m∗
M̂

is requested and anything else is reported, then the response

is the “average response” to this form of disobedience, averaging over the cases where

m̂ or m∗
M̂

was requested in the original mechanism. On the other hand, if m∗
M̂

is

requested and reported, then the response is the average response to obedience in

response to a request for either m̂ or m∗
M̂

in the original mechanism.

We first show that this change in the mechanism does not change the outcome if

the agent is truthful and obedient. The only situation in which a truthful and obedient

agent is affected by the change is when her type is t̂, the principal recommends

(and she chooses) action â, and the resulting message set is M̂ . Conditional on

history ĥ and obeying the principal’s recommendations, the probability of x in the

new mechanism is∑
m∈L

γ∗L(ĥ)(m)γ∗X(ĥ,m,m)(x)

=
∑

m∈L\{m̂,m∗
M̂
}

γL(ĥ)(m)γX(ĥ,m,m)(x)

+ 0 + γ∗L(ĥ)(m∗
M̂

)γ∗X(ĥ,m∗
M̂
,m∗

M̂
)(x)

=
∑

m∈L\{m̂,m∗
M̂
}

γL(ĥ)(m)γX(ĥ,m,m)(x)

+ [γL(ĥ)(m̂) + γL(ĥ)(m∗
M̂

)]γ∗X(ĥ,m∗
M̂
,m∗

M̂
)(x)

=
∑
m∈L

γL(ĥ)(m)γX(ĥ,m,m)(x).
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Hence, as asserted, the outcome under truth–telling is the same in the new mech-

anism as in the original mechanism. Therefore, the agent’s expected payoff from

truth–telling and obedience is the same in the two mechanisms.

We now show that for any type t and any deviation feasible for t in the new

mechanism, there is a deviation that is feasible for type t in the original mechanism

which yields the same expected payoff. Since truth–telling is superior to any feasible

deviation in the original mechanism, then, truth–telling is superior to any feasible

deviation in the new mechanism.

To see this, fix any type t (which may equal t̂) and consider any feasible deviation.

Obviously, if the deviation involves reporting a type other than t̂, this deviation is also

available in the original mechanism and yields the same payoff in the new mechanism

as in the original one since the way the mechanism responds to such a report has

not changed. Hence we can restrict attention to deviations which involve reporting

type t̂. So fix any such deviation. Clearly, we may as well condition on the event

that the principal requests the distribution â, the agent chooses a (which may equal

â), the agent obtains message set M , and reports message set M̂ (which may equal

M). Let z : M̂ → M give the message the agent sends as a function of the message

the principal requests from her. Then the agent’s expected payoff conditional on this

event is ∑
(x,m)∈X×L

γ∗L(ĥ)(m)γ∗X(ĥ,m, z(m))(x)u(t, x).

We can write this as ∑
(x,m)∈X×(L\{m̂,m∗

M̂
})

γL(ĥ)(m)γX(ĥ,m, z(m))(x)u(t, x)

+γ∗L(ĥ)(m∗
M̂

)
∑
x∈X

γ∗X(ĥ,m∗
M̂
, z(m∗

M̂
))(x)u(t, x).

We have two cases. First, suppose z(m∗
M̂

) 6= m∗
M̂

. In this case, the last term is

equal to ∑
(x,m)∈X×{m̂,m∗

M̂
}

γM(ĥ)(m)γX(ĥ,m, z(m∗
M̂

))(x)u(t, x).

Thus the conditional payoff to the deviation in the new mechanism is the same as the
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conditional payoff in the original mechanism where the agent responds to a request

for either m̂ or m∗
M̂

by sending z(m∗
M̂

). So in this case, the payoff to the deviation in

the new mechanism is the same as the payoff to a certain deviation which was also

feasible in the original mechanism.

Second, suppose z(m∗
M̂

) = m∗
M̂

. In this case, the last term is equal to∑
(x,m)∈X×{m̂,m∗

M̂
}

γM(ĥ)(m)γX(ĥ,m,m)(x)u(t, x).

In other words, the payoff in the new mechanism is the same as the payoff in the old

mechanism where the agent responds to a request for m̂ with m̂ and a request for

m∗
M̂

with m∗
M̂

. Note that we are assuming that the deviation in the new mechanism

is feasible for the agent, so m∗
M̂
∈ M . By the definition of normality, this implies

m̂ ∈ M . Hence this deviation has the same payoff as a feasible deviation in the

original mechanism.

In either case, then, the best deviation payoff in the new mechanism cannot exceed

the best deviation payoff in the original mechanism, so the new mechanism is incentive

compatible.

Clearly, we can repeat this argument as needed to obtain an incentive compatible

mechanism which has the same mechanism outcome as γ and which has the property

that γL(t, a,M)(m∗M) = 1 for all (t, a,M) ∈ T × A×M.

B Proof of Comment in Example 1

To see that this evidence structure is not simplifiable, suppose that it is. Consider

the preference structure where X = {a, b} and u(t, a) = 1 and u(t, b) = 0 for all

t. Consider the incentive compatible mechanism which requests m1 from {m1,m2},
always responds to m1 with a regardless of the reports, and always responds to m2

with b regardless of the reports. It is easy to see that the agent has no incentive to

misreport her type or evidence set. Since m1 yields the better outcome from {m1,m2},
the agent has no incentive to disobey, so the mechanism is incentive compatible. The

outcome of the mechanism is that t1 gets a and t2 gets b. It is not hard to see that
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there is no incentive compatible mechanism achieving this outcome which asks for

m2 from {m1,m2}. Since this mechanism would need to give t1 outcome a, it would

have to respond to a type report of t1, evidence set report of {m1,m2}, and evidence

presentation of m2 with a. But then t2 would deviate to making this claim and

presenting m2, a contradiction. So if this evidence structure is simplifiable, it must

be that the principal can always ask for m1 from {m1,m2}.

But then consider the following preference structure. As above, X = {a, b} and t1

strictly prefers a to b. Now, though, suppose t2 strictly prefers b to a. Consider the

incentive compatible mechanism which requests m2 from {m1,m2}, always responds

to m1 with b, and always responds to m2 with a. Clearly, t1 obeys when she has

{m1,m2} so this mechanism is incentive compatible. It gives a 50–50 lottery between

a and b for t1 and a with probability 1 for t2. It is impossible to obtain this outcome

from an incentive compatible mechanism that requests m1 from {m1,m2}. To see this,

note that t2 gets her worst possible outcome from this mechanism. So any incentive

compatible mechanism with this outcome must give a for any reports followed by

evidence m2. Otherwise, t2 could send these reports and evidence and improve her

payoff. Since this is t1’s preferred outcome, the only way to induce t1 to send m1 when

she has {m1,m2} is to also respond to m1 with outcome a. But then t1 will claim to

have evidence {m1,m2} when she actually has {m1} unless this report also leads to

outcome a. Then t1 is getting outcome a, not the 50–50 lottery, a contradiction.
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C Proof of Comment in Example 2

Suppose we have some outcome that we implement asking t1 for m1 with probability

α < 1 and for m2 with probability 1− α. We can write the mechanism as

report request evidence outcome

t1, {m1,m2} m1 m1 a

t1, {m1,m2} m1 m2 w1

t1, {m1,m2} m2 m1 w2

t1, {m1,m2} m2 m2 b

t2, {m1} m1 c

t2, {m1} m2 w3

t2, {m2} m1 w4

t2, {m2} m2 d

Incentive compatibility requires that t1 prefers a to w1 and b to w2. Also, we can

assume without loss of generality that t2 prefers a to w1 and b to w2. To see this,

suppose, for example, that t2 strictly prefers w1 to a. Then we could change w1 to a,

satisfy t1’s incentive constraint, and reduce t2’s incentive to claim to be t1.

Note that incentive compatibility requires t2 to prefer pc + (1 − p)d (where this

denotes the lottery giving c with probability p and d otherwise) to

α[pa+ (1− p)w1] + (1− α)[pw2 + (1− p)b].

Since t2 prefers b to w2, p < 1/2 implies that the second term above is better for her

than (1− p)w2 + pb, so incentive compatibility implies that she prefers pc+ (1− p)d
to

α[pa+(1−p)w1]+(1−α)[pb+(1−p)w2] = p[αa+(1−α)b]+(1−p)[αw1 +(1−α)w2].
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So change the mechanism to always ask t1 for m1 and to give

report request evidence outcome

t1, {m1,m2} m1 m1 αa+ (1− α)b

t1, {m1,m2} m1 m2 αw1 + (1− α)w2

t2, {m1} m1 c

t2, {m1} m2 w3

t2, {m2} m1 w4

t2, {m2} m2 d

t1 prefers αa+(1−α)b to αw1+(1−α)w2, so this is incentive compatible for her if the

original mechanism was. From the argument above, t2 prefers reporting truthfully

and getting pc+ (1− p)d to claiming to be t1 and getting

p[αa+ (1− α)b] + (1− p)[αw1 + (1− α)w2].

We haven’t changed anything about what happens when she reports t2, so if the

original mechanism was incentive compatible, this one is as well.

Hence the evidence structure is simplifiable.

D Robust Simplifiability

Suppose, contrary to the claim, that there is an evidence structure which is not

normal but which satisfies robust simplifiability. Let M denote the collection of

possible evidence sets under this evidence structure. Since normality is violated,

there is a set M0 ∈ M such that for every m ∈ M0, there is M ′ ∈ M such that

m ∈ M ′ but M0 6⊆ M ′. Let K be the number of messages in M0 and write this

set as {m1, . . . ,mK}. For each mk ∈ M0, let M ′
k denote any set with mk ∈ M ′

k and

M0 6⊆M ′
k.

Because the evidence structure is robustly simplifiable, we must also get simplifia-

bility in the following model. Let T = {t0, t1, . . . , tK , tK+1}. Types tk for k ≤ K, each

have only a single evidence acquisition action yielding evidence set Mk with proba-
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bility 1. Type tK+1 has a single evidence action whose support is all the other M ’s

inM. To show that this evidence structure is not simplifiable, consider the following

payoff structure. Let X = {a, b, c}. Types tk for k ≤ K get utility 1 from a, 0 from

b, and −K from c. tK+1 is indifferent over all outcomes.

Consider a mechanism which responds to type report t0 by randomizing uniformly

over which of the K messages in M0 to request. If the evidence message provided

matches the request, the outcome is a. If not, the outcome is c. For any other

type report and evidence provision, the outcome is b. This mechanism is incentive

compatible and gives outcome a for t0 and b for every other type. Since type tK+1

is indifferent over all outcomes, truth telling is certainly optimal for her. Any type

tk 6= t0, k ≤ K, has at most K − 1 of the messages in M0. Hence for any such type,

reporting t0 gives, at best, an expected payoff ofÅ
K − 1

K

ã
(1) +

Å
1

K

ã
(−K) < 0,

so reporting honestly is better.

For any message mk ∈ M0, no incentive compatible mechanism which requests

mk from t0 can achieve the same outcome. Such a mechanism would have to respond

to a report of t0 and the presentation of evidence mk with outcome a to give t0 the

same outcome. Since type tk has mk in her evidence set, tk would deviate to this type

report and evidence presentation rather than get outcome b. Hence this evidence

structure is not simplifiable and hence the original evidence structure is not robustly

simplifiable.

E Proof of Corollary 1

Fix an incentive compatible mechanism γ = (γA, γL, γX). By Theorem 1, we can

assume without loss of generality that γL(t, a,M)(m∗M) = 1 for all (t, a,M) ∈ T ×
A ×M. We construct a mechanism (γ∗A, γ

∗
X) for the abbreviated protocol which is

incentive compatible and has the same outcome as γ. To do so, first let γ∗A = γA.

To construct γ∗X , note that in the abbreviated protocol, γ∗X : T ×A×L → ∆(X),
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while in the full protocol, γX : T × A ×M× L × L → ∆(X) since the choice of x

can depend on the agent’s report of an evidence set and the message the principal

requests, in addition to the type report, distribution recommendation, and received

message as in the abbreviated protocol.

Given any m ∈ L, define M∗(m) as follows. First, if there is any M such that

m = m∗M , then let M∗(m) equal this message set M .10 Otherwise, let M∗(m) denote

any M ∈M such that m ∈M . Given this, let

γ∗X(t, a,m) = γX(t, a,M∗(m),m∗M∗(m),m).

In other words, if the agent reports t, the principal recommends a, and the agent shows

message m, then the outcome is the same as in the original mechanism when the agent

reports t, the principal recommends a, the agent reports evidence set M∗(m), the

principal requests the maximal evidence message for this set, and the agent provides

message m.

If the agent truthfully reports her type, follows the principal’s recommended dis-

tribution a, and provides the maximal evidence message from any evidence set she

obtains, this construction implies that the resulting distribution over X in the new

mechanism will be the same as in the original mechanism. Hence if this mechanism

is incentive compatible, it yields the same outcome as the original mechanism.

So consider an agent of type t who reports type t̂ (which may or may not equal t),

has a recommended to her by the principal, chooses â, obtains evidence set M , and

sends message m from it. In this situation, the outcome under the new mechanism is

γX(t̂, a,M∗(m),m∗M∗(m),m), exactly the same outcome the agent could have obtained

by reporting t̂, choosing â, reporting M∗(m) as her evidence set, and then sending m.

That is, any outcome the agent can generate in the new mechanism using a strategy

which deviates from truth–telling, obedience, and sending maximal evidence is an

outcome she could have generated in the original mechanism using a certain strategy

which deviated from truth–telling and obedience. Since the original mechanism was

incentive compatible, truth–telling and obedience were superior to this deviation.

Hence the agent prefers truth–telling, obedience, and maximal evidence in the new

10It is straightforward to show that if m∗
M = m∗

M̂
, then M = M̂ . That is, M∗(m) is unambiguously

defined in this case.
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mechanism to any deviation, so the mechanism is incentive compatible.

F Proof of Theorem 2

Fix an incentive compatible mechanism for the evidence–acquisition model under

normality. By Corollary 1, we can take this mechanism to be based on the abbreviated

protocol. Hence it consists of a pair of functions γA : T → ∆(A) and γX : T×A×L →
∆(X). For the signal choice model, a mechanism is a pair of functions γ∗S : T → ∆(S)

and γ∗X : T × S × L → ∆(X).

Given the incentive compatible mechanism for the abbreviated protocol, we con-

struct an equivalent incentive compatible mechanism for the associated signal–choice

model as follows. Let

γ∗S(t)(s(a,σ∗)) = γA(t)(a).

That is, given a report of t, the principal recommends the signal distribution generated

by evidence distribution a followed by showing maximal evidence with the same

probability he recommended a in the original mechanism. Let

γ∗X(t, s(a,σ∗),m) = γX(t, a,m).

That is, if the agent report type t and the signal distribution the principal recommends

is the one corresponding to a and maximal evidence, then the principal replies to

message m in the new mechanism the same way he replied in the original mechanism

given type report t and recommendation a.

It is easy to see that if the agent reports her type truthfully and follows the princi-

pal’s recommended signal distribution, then the outcome is equivalent to that of the

original mechanism as defined in the statement of the theorem. If the agent deviates,

this corresponds to a particular deviation strategy in the original mechanism and

hence cannot be profitable for her. In particular, if type t reports t̂, receives the rec-

ommendation s(a,σ∗), and uses signal distribution s(â,σ̂) instead, she generates exactly

the outcome she would have generated in the original mechanism if she reported t̂, re-

ceived the recommendation a, chose the distribution â instead, and selected a message
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to send using the function σ̂. So the mechanism is incentive compatible.

G Proof of Comment in Example 4

Consider the following payoff structure. The set of outomes is {a, b, c}. The utilities

of the two types are given by the following table:

t1 t2

a 0 1

b 1 0

c 3 −3

Suppose the mechanism recommends s′2 to t2 and gives outcome a in response to m1

and b in response to m2. Clearly, t2 will choose s′2 as this gives a 50–50 lottery over a

and b, while choosing s2 would give b for sure. So we implement the outcome giving

a for t1 and the 50–50 lottery between a and b for t2.

To see that no mechanism can implement this outcome with t2 choosing s2 instead,

note that t1 receives her worst possible outcome. So any report followed by evidence

m1 must lead to an outcome of a or else t1 would deviate.

Clearly, if some incentive compatible mechanism does generate this outcome with

t2 choosing s2, it must respond to a type report of t2 and evidence presentation of

m2 with the 50–50 lottery between a and b. But t2 could deviate to s′2 and generate

a 50–50 lottery between this outcome and a, which she strictly prefers.

H Proof of Theorem 3

Fix an incentive compatible mechanism (γS, γX) where γS(t1)(ŝ1) = α̂ > 0. Let

α = γS(t1)(s1) (where this can be 0). We construct an incentive compatible mecha-

nism (γ∗S, γ
∗
X) with the same outcome where the principal recommends s1 to t1 with

probability α + α̂ and never recommends ŝ1 to t1.
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For any t 6= t1, γ
∗
S(t) = γS(t) and γ∗X(t, s,m) = γX(t, s,m) for all (s,m). For

s 6= s1, ŝ1, we have γ∗S(t1)(s) = γS(t1)(s) and γ∗X(t1, s,m) = γX(t1, s,m). That is, if

the agent reports a type other than t1, the new mechanism is the same as the original

one and if the agent reports t1, the principal recommends signals other than s1 or ŝ1

with the same probability and treats them the same way as in the original mechanism.

Let γ∗S(t1)(ŝ1) = 0 and γ̂∗S(t1)(s1) = α+ α̂. Since the principal never recommends

ŝ1 in response to a report of t1 in this mechanism, we only need to specify γ∗X(t, s,m)

for (t, s) = (t1, s1). For notational convenience, we enumerate the messages as L =

{m1, . . . ,mL} and for the Markov matrix Λ, we write the entry corresponding to

(mi,mj) as λij rather than λmi,mj .

Let

γ∗X(t1, s1,mi) =
α

α + α̂
γX(t1, s1,mi) +

α̂

α + α̂

∑
j

λijγX(t1, ŝ1,mj).

Because all the λij’s are non–negative and because
∑

j λij = 1 for every i, we see that

γ∗(t1, s1,mi) is a convex combination of probability distributions over X and hence

is a probability distribution over X.

Given this specification, suppose all types report honestly and obey the principal’s

recommendations. Obviously, if the true type t 6= t1, we have the same outcome as

before. So suppose t = t1. Then the expected outcome is

(α + α̂)
∑
i

s1(mi)γ
∗
X(t1, s1,mi) +

∑
s∈St1\{s1,ŝ1}

γ∗S(t1)(s)
∑
M

s(m)γ∗X(t1, s,m). (2)

Substituting for γ∗X , the first term in equation (2) is

α
∑
i

s1(mi)γX(t1, s1,mi) + α̂
∑
i

s1(mi)
∑
j

λijγX(t1, ŝ1,mj)

= α
∑
i

s1(mi)γX(t1, s1,mi) + α̂
∑
j

γX(t1, ŝ1,mj)
∑
i

s1(mi)λij.
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But s1Λ = ŝ1, so that for every j,
∑

i s1(mi)λij = ŝ1(mj). Hence this is

= α
∑
i

s1(mi)γX(t1, s1,mi) + α̂
∑
i

ŝ1(mi)γX(t1, ŝ1,mj).

Substituting this for the first term in equation (2) and substituting for γ∗S and γ∗X in

the second term, we see that the expected outcome under truth–telling and obedience

is the same as under the original mechanism.

To show that the new mechanism is incentive compatible, we show that any de-

viation from truth–telling and obedience by any type generates a distribution over

outcomes that the same type could have generated in the original mechanism. Since

the original mechanism was incentive compatible, this deviation is not profitable, so

the new mechanism is incentive compatible.

To see that this holds, fix any type t and any signal s′ ∈ St. If t makes any type

report other than t1, the mechanism has not changed, so the claim obviously holds. So

suppose type t reports type t1. If the mechanism makes any signal recommendation

other than s1, then, again, the mechanism is the same as before, so the claim holds.

So suppose the mechanism recommends signal s1 and the agent uses s′. The expected

outcome times the probability of this event is

(α+α̂)
∑
i

s′(mi)γ
∗
X(t1, s1,mi) = α

∑
i

s′(mi)γX(t1, s1,mi)+α̂
∑
i

s′(mi)
∑
j

λijγX(t1, ŝ1,mj).

By assumption, s′Λ ∈ conv(St). Hence we can write s′Λ =
∑

k aks
k where ak ≥ 0 for

all k,
∑

k ak = 1, and sk ∈ St for all k. In particular, for every j,∑
i

s′(mi)λij =
∑
k

aks
k(mj).

Hence we can rewrite the above as

α
∑
i

s′(i)γX(t1, s1,mi) + α̂
∑
k

aks
k(i)γX(t1, ŝ1,mi).

This is exactly what t would generate in the original mechanism if she responded to

a recommendation of s1 with s′ and a recommendation of ŝ1 by randomizing with
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probability ak on sk. Thus, as asserted, any expected outcome t can generate in the

new mechanism is identical to some outcome she could have generated in the original

mechanism. Hence the new mechanism is incentive compatible.

I Proof of Remark 2

Fix any a and message strategy σ and let s = s(a,σ). For the same a, let σ∗(M) = m∗M
for all M ∈ supp(a) and let s∗ = s(a,σ∗). Abusing notation, write σ(M) not as

the message s sends from M but as the probability distribution over M when M is

realized. So write σ(M)(m) as the probability that message m is sent from set M .

Enumerate L, the set of all evidence messages, as m1, . . . ,mK . If mi = m∗M , we write

M = Mi. Since no message can be maximal evidence for more than one evidence set,

we have s∗(mi) = a(Mi).

Define a Markov matrix Λ as follows. If s∗(mi) = 0, then λii = 1 and λij = 0

for j 6= i. If s∗(mi) > 0, then λij = σ(Mi)(mj). In other words, if s∗ sends mi with

positive probability, then λij is the probability that mj is the message s sends given

message set Mi.

Note that the jth element of s∗Λ is∑
i

s∗(mi)λji =
∑
M∈M

a(M)σ(M)(mj) = s(mj).

Hence s∗Λ = s, as required. For any other ŝ, the jth element of ŝΛ is∑
i|s∗(mi)>0

ŝ(mi)σ(Mi)(mj) +
∑

i|s∗(mi)=0

ŝ(mi)λji

or { ∑
i|s∗(mi)>0 ŝ(mi)σ(Mi)(mj), if s∗(mj) > 0;∑
i|s∗(mi)>0 ŝ(mi)σ(Mi)(mj) + ŝ(mj), otherwise.

In other words, ŝΛ is constructed as follows. We choose a message, say mj, according

to distribution ŝ. If s∗(mj) = 0, then this message is sent. If s∗(mj) > 0, then instead

we randomize the message to send according to the distribution σ(Mi).
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We now show that this must be feasible for any type for whom ŝ is feasible.

Clearly, if ŝ generates a message mj, it must be able to send that message. So we

need to show that the randomization is feasible — that is, that whenever mj could

be sent, every message in Mj is also feasible. But this follows from the fact that

mj = m∗Mj
. By definition, this means that if the feasible set is M and mj ∈M , then

Mj ⊆M . So if ŝ ∈ St, then ŝΛ ∈ St, completing the proof.

J Proof of Relationship to Ball and Kattwinkel

We first show that if s+τ̂ (t) is more informative than s+τ (t) in our sense, then τ̂ is more

t–discerning than τ . Since s+τ̂ (t) is more informative than s+τ (t), there exists a Markov

matrix Λ such that (among other properties) s+τ̂ (t)Λ = s+τ (t) and s0τ̂ (t
′), s+τ̂ (t′) ∈

conv(St′) for all t′.

Because s+τ̂ (t′) puts positive probability only on 1τ̂ and 0τ̂ for any t′, the only ele-

ments of Λ that are relevant to this calculation are the ones in the rows corresponding

to these messages. For intuition, think of Λ as a Markov transition matrix where el-

ement in the kth row and nth column is the probability that message k “transitions”

to message n. So we focus only on the transitions from 0τ̂ and 1τ̂ . Let k0 denote the

transition probability from 0τ̂ to 1τ and k1 the transition probability from 1τ̂ to 1τ .

Letting λm,m′ denote the transition probability from m to m′, we can write the

entry of the vector s+τ̂ (t)Λ corresponding to some message m′ as∑
m

s+τ̂ (t)(m)λm,m′ = s+τ̂ (t)(0τ̂ )λ0τ̂ ,m′+s
+
τ̂ (t)(1τ̂ )λ1τ̂ ,m′ = [1−π(τ̂ | t)]λ0τ̂ ,m′+π(τ̂ | t)λ1τ̂ ,m′ .

For m′ = 1τ , s
+
τ̂ (t)Λ = s+τ (t) implies

[1− π(τ̂ | t)]k0 + π(τ̂ | t)k1 = π(τ | t),

Ball and Kattwinkel’s first condition, equation (1).

Similarly, the component of the vector s+τ̂ (t′)Λ giving the probability on 1τ is

[1 − π(τ̂ | t′)]k0 + π(τ̂ | t′)k1. Since this vector is in the convex hull of St′ , the
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probability on 1τ must be weakly less than the maximum probability any s ∈ St′ puts

on this message. But the only signal distribution in St′ with nonzero probability on

1τ is s+τ (t′). Hence we must have

[1− π(τ̂ | t′)]k0 + π(τ̂ | t′)k1 ≤ π(τ | t′),

Ball and Kattwinkel’s second condition.

Finally, we show that k1 ≥ k0. We have that s0τ̂ (t)Λ is in the convex hull of

St. Hence the component giving the probability on 1τ must be less than or equal to

π(τ | t). It is not hard to see that this probability is k0 so π(τ | t) ≥ k0. But equation

(1) (which we already showed must hold) is equivalent to

(k1 − k0)π(τ̂ | t) = π(τ | t)− k0.

So π(τ | t) ≥ k0 implies k1 ≥ k0.

For the converse, suppose τ̂ is t–more discerning than τ . Fix the k0 and k1 in

the definition. Define the matrix Λ as follows. Set the transition probability from

0τ̂ to 1τ equal to k0, the transition probability from 1τ̂ to 1τ equal to k1. Similarly,

let the transition probability from 0τ̂ to 0τ be 1 − k0 and from 1τ̂ to 0τ be 1 − k1.
Finally, for any m other than 0τ̂ and 1τ̂ , let the transition probability from m to itself

be 1 (so the transition to any different message is 0). It is easy to see that for any

signal s generated by a test other than τ̂ , we have sΛ = s, so obviously sΛ is in the

appropriate convex hull. For any t′ (including t), we have

s+τ̂ (t′)Λ = k1π(τ̂ | t′) + k0[1− π(τ̂ | t′)].

For t′ = t, equation (1) implies s+τ̂ (t)Λ = s+τ (t). For other t′, Ball and Kattwinkel’s

second equation implies that s+τ̂ (t′) is a convex combination of s+τ (t′) and s0τ (t
′) and

so is in the convex hull of St′ . Finally, just as above, s0τ̂ (t
′) = k0 and k1 ≥ k0 implies

this is below π(τ | t). Hence s0τ̂ (t
′) is also in the convex hull of St′ . So s+τ̂ (t) is more

informative than s+τ (t).
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