
Submitted to Theoretical Economics

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

SAFE IMPLEMENTATION

MALACHY JAMES GAVAN

University of Liverpool, Management School

ANTONIO PENTA

UPF, Dept. of Econ. and Business, ICREA, BSE and TSE,

Implementation theory is concerned with the existence of mechanisms in

which, at each state of the world, all equilibria result in outcomes that are within a

given Social Choice Correspondence (SCC). But if agents make mistakes, if their

preferences or the solution concept are misspecified, or if the designer is limited

in what can be used as punishments, then it may be desirable to insist that also

deviations result in ‘acceptable’ outcomes. Safe Implementation adds this extra

requirement to standard implementation. Our primitives therefore also include an

Acceptability Correspondence, which like the SCC maps states of the world to

sets of allocations. When the underlying solution concept is Nash Equilibrium,

we identify necessary and sufficient conditions (namely, Comonotonicity and Safe

No-Veto) that restrict the joint behavior of the SCC and of the Acceptability Corre-

spondence, and that generalize Maskin’s (1977) conditions. In relevant economic

applications, these conditions can be quite permissive. But in ‘rich’ preference

domains, Safe Implementation is impossible, regardless of the solution concept.
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1. INTRODUCTION

Since Maskin (1977, 1999)’s seminal work, implementation theory has played a central

role in developing our understanding of market mechanisms, institutions, and their foun-

dations. The theory starts out by specifying a set of agents, a set of states that pin down

agents’ preferences, and a Social Choice Correspondence (SCC) that specifies, for each

state, the set of allocations that the designer wishes to induce. While commonly known by

the agents, the state of nature is unknown to the designer, and hence in order to choose the

allocation the designer must rely on agents’ reports. The main objective of the theory is to

study the conditions under which it is possible to specify a mechanism in which, at every

state, the allocations selected by the SCC are sustained as the result of agents’ strategic in-

teraction. The latter is suitably modeled via game theoretic solution concepts, each giving

rise to different notions of implementation.1

In its baseline form, the theory imposes no restriction on the mechanisms that may

achieve implementation, nor on the outcomes that may arise from agents’ deviations.2

In practice, though, the designer does not always have this freedom, or perhaps not in-

dependent of the kind, the circumstances, or the number of deviations. In some contexts,

especially harsh punishments may not be acceptable, and hence certain allocations may be

used to incentivize the agents in some states of the world, but not in others; also, depending

on the states, the designer himself may be able to commit to certain outcomes of the mech-

anism, but not to others. When these considerations are present, the insights we receive

from the classical literature are not applicable. We provide some examples:

(i) In a juridical context, for instance, the viable punishments and rewards in response to

‘deviant’ behavior are often restricted by other constraints or desiderata, such as constitu-

tional rights, higher level legislation, culture, or social norms.

1For instance, Nash (Maskin, 1999) and Subgame Perfect (Moore and Repullo, 1988), or more recently Ratio-

nalizable (Bergemann et al. (2011), Kunimoto and Serrano (2019), Kunimoto et al. (2024)), Level-k (De Clippel

et al., 2019), and Behavioral (De Clippel, 2014) Implementation. Maskin and Sjöström (2002) survey the early

literature. Robustness with respect to misspecification of the solution concept is studied in Jain et al. (2024).
2Restrictions on the mechanisms have sometimes been imposed, but by and large the literature has not paid

attention to a mechanism’s outcomes at profiles that are not consistent with the solution concept. Some exceptions

are Bochet and Tumennasan (2023a,b), Shoukry (2019), and Eliaz (2002), which we discuss in Section 6.
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(ii) A competition authority wants to induce a certain market arrangement, which de-

pends on information that is only available to the firms, but is subject to political constraints

that limit its ability to use certain punishments and rewards at certain states (see Ex. 1).

(iii) The designer may also care that the outcomes of deviations are acceptable, or very

close the first-best ‘target’ allocation, if he is concerned that the agents may make mistakes,

that they are boundedly rational, or that their preferences are misspecified, etc.

To account for these considerations, we enrich the baseline framework by adding an

acceptability correspondence that specifies, for each state of the world, the set of alloca-

tions that the designer wishes to ensure, if up to k agents deviate from the profiles that are

consistent with the solution concept at that state. The resulting notion of Safe Implemen-

tation thus requires that, besides achieving implementation, also the outcomes of up to k

deviations are ‘acceptable’. Besides the illustrative examples above, this notion provides

a flexible framework to study a variety of robustness notions, related to a mechanism’s

safety and resilience properties, and it may also accommodate important and understudied

problems within the implementation literature, such as the case of state-dependent feasible

outcomes (Postlewaite and Wettstein 1989), limited commitment on the designer’s part (as

in Ex. 1 below), a variety of robustness concerns, behavioral considerations, and others.

This modeling change, however, raises a number of challenges. These are due to a tension

between the elicitation of the state of the world, the outcomes that need to be implemented,

and the punishments that the designer can use to discipline agents’ behavior, which are

state-dependent themselves. Intuitively, if achieving standard (i.e., non-safe) implementa-

tion can be thought of as providing agents with the incentives to reveal the state, through

a suitable scheme of punishments and rewards, with Safe Implementation the punishments

that can be used are restricted by the very information they are designed to extract. Hence,

not only must agents be given the incentives to induce socially desirable allocations, but

also to reveal which prizes and punishments can be used to achieve this task.

This interplay becomes apparent in the necessary and sufficient conditions that we pro-

vide, respectively in Sections 3 and 4, when the underlying solution concept is Nash Equi-

librium. Our necessary condition, Comonotonicity, entails a joint restriction on the Social

Choice and on Acceptability Correspondences. For single-valued SCC (or Social Choice

Functions, SCF), for instance, if Maskin Monotonicity requires that an allocation that is

selected by the SCF at one state must also be selected at any other state in which it has
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(weakly) climbed up in all agents’ rankings of the feasible alternatives, Comonotonicity

strengthens it in two ways: first, it states that for such an allocation to be selected by

the SCF at the second state, it suffices that it climbs (weakly) up in everyone’s ranking

only compared to the alternatives that are acceptable at the first state; second, it requires

the acceptability correspondence (not the SCF) to satisfy a form of monotonicity akin to

Maskin’s. As for sufficiency, our results show that Comonotonicity is almost sufficient as

well, since it always ensures Safe Implementation in combination with a generalization of

Maskin’s No-Veto condition that we call Safe No-Veto, which is often automatically satis-

fied.3 Both Comonotonicity and Safe No-Veto coincide with Maskin’s conditions whenever

the acceptability correspondence is vacuous, in which case Safe Implementation also co-

incides with (non-safe) Nash Implementation; but they are stronger in general. For the

necessity part of our results, this is because the safety requirement that we impose does

make implementation harder to obtain, and the conditions we provide directly reflect the

extent to which this is the case.4 Consider the following example:

EXAMPLE 1—Competition Policy with Non-Credible Punishments: Three firms, 1,2,

and 3, are monopolists within their respective countries. While currently active only on their

local markets, firms 1 and 2 could operate in any country. Firm 3 instead is a highly indebted

company, who can only operate in its own country. A competition authority needs to choose

between maintaining the status quo (allocation a), or changing the level of competition in

the three markets by implementing alternatives b or c. In alternative b, all firms are active on

all markets they can access, which they share equally with the competing firms. Alternative

c is the same as the status quo, except that the regulator lets firm 3 go bankrupt, splits 3’s

market equally between 1 and 2, but these firms must each pay half of the debt of firm 3.

There are three possible states for the demand in market 3, which can be low (L), medium

(M) or high (H). The true state is known to the firms but not to the designer. Firms’ prefer-

ence orderings at each state are represented in Figure 1. The competition authority would

3For our general results on SCC, we distinguish between a weak and a strong version of Comonotonicity. The

two notions coincide for SCF. For SCC, the first notion is necessary, the second is for sufficiency.
4This result highlights an important difference between our approach and Eliaz’s (2002), where the restrictions

on the mechanism cannot be thought of as an extra desideratum on top of Nash implementation: implementation

in the sense of Eliaz (2002) may obtain even if Nash Implementation is impossible (see Section 6).
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FIGURE 1.—Firms 1, 2, and 3’s preference orderings over the three alternatives, at the three states, L, M ,

and H (e.g., firm 3’s ordering at state L is a � c � b). The acceptability correspondence, shown in dashed

lines, is such that A(L) = A(M) = {a, b}, A(H) = {a, b, c}. In this setting, the SCF such that f(L) = a and

f(M) = f(H) = b is Nash Implementable, but not Safely so, with respect to acceptability correspondence A.

like to induce the competitive outcome, b, unless all firms prefer to maintain the status quo.

Then, the SCF they wish to implement is such that f(L) = a and f(M) = f(H) = b. Based

on Maskin’s results, absent safety concerns, this SCF is Nash Implementable in this setting.

But now suppose that alternative c is not acceptable at the states where it is at the bottom

for a majority of the firms, even as the outcome of a punishment designed to implement

the SCF above. This may be because it would not be desirable for the designer to let firm 3

go bankrupt, or because it would not be politically credible to commit to enforcing such an

outcome, if needed, in response to someone’s deviation (for instance, the three firms can

be from three different European countries, and it may not be credible that the competition

authority would get the political support to let country’s 3 firm go burst, if needed, at a

state when it is the worst outcome for the majority). That is, suppose that outcome c does

not belong to the acceptability correspondence at states L and M . Then, it turns out that

the SCF above cannot be Safely Implemented in this case. Thus, if the designer is subject

to such political constraints, which make outcome c not credible at some states, then the

insights based on the classical results are misleading.

Specifically, our results imply that in order to fulfill the Safety requirement, the designer

in this case must settle for the status quo also at state H , thereby implementing a SCF that

induces the competitive outcome less often. The intuition is that if b and not a has to be

selected at state H (as entailed by SCF f above), in order to avoid the existence of a Nash

equilibrium at H in which firms collude so as to induce the non-competitive outcome, the
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designer must rely on outcome c as a deterrent, since at such a state all agents prefer a

over b. But if this were allowed, then c could emerge as the outcome of a deviation from

an equilibrium at state L, where it is not acceptable. As a consequence, c cannot be used to

discipline behavior at state H either, and hence only a SCF that chooses the same outcome

at both L and H can be implemented. �

After providing the general necessary and sufficient conditions for Safe Implementation,

and discussing several extensions of the main results, in Section 5 we move on to consider

special cases of interest. Overall, these results show that there are important economic

environments in which safety concerns can be accommodated at minimal or no cost. But

Safe Implementation also has its limits: as we further show, seemingly plausible safety

requirements can never be implemented, regardless of the underlying solution concept (be

it Nash Equilibrium or not), when preferences are ‘rich’ or when the SCF is surjective on the

space of feasible allocations. Thus, safety requirements are demanding in general, and there

are serious limits to their implementability. Nonetheless, economically important settings

exist in which they can be guaranteed under standard and generally weak conditions.

We discuss the related literature in Section 6, and conclude with Section 7, where we

explain how our approach may contribute to the literature on behavioral implementation

(see, e.g., Eliaz (2002), Renou and Schlag (2011), Tumennasan (2013), De Clippel (2014),

De Clippel et al. (2019), Crawford (2021), etc.), both by favoring its integration with clas-

sical notions and by providing a ‘detail free’ way of accounting for the possibility of be-

havioral deviations, without necessarily ascribing to a particular theory thereof.

2. MODEL

We consider environments with complete information, with a finite set of agents, N =

{1, ..., n}, and an outcome space X . Each agent i has a bounded utility ui : X ×Θ→ R,

where Θ is the set of states of nature, with typical element θ ∈Θ, which we assume is com-

monly known by the agents but unknown to the designer. We let E =
〈
N,Θ,X, (ui)i∈N

〉
denote the environment from the viewpoint of the designer, and for any θ ∈ Θ, we let

E (θ) :=
〈
N,X, (ui (·, θ))i∈N

〉
denote the environment in which agents commonly know

that preferences are (ui (·, θ))i∈N . Finally, for any i ∈ N , θ ∈ Θ and x ∈ X , we let

Li(x, θ) := {y ∈X : ui(y, θ)≤ ui(x, θ)} denote i’s lower contour set of x in state θ.
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A social planner aims to choose an outcome (or a set of outcomes), as a function of the

state of nature. These objectives are represented by a social choice correspondence (SCC),

F : Θ→ 2X \ {∅}. The special case when F (θ) is a singleton for every θ is referred to as

social choice function (SCF), and denoted by f : Θ→X .

A mechanism is a tuple M = 〈(Mi)i∈N , g〉, where for each i ∈ N , Mi denotes the set

of messages of agent i, and g :M →X is an outcome function that assigns one allocation

to each message profile, where we let M = ×i∈NMi and M−i = ×j 6=iMj . Similarly, for

subsets of players D ⊂ N , we let MD and M−D denote, respectively, the set of message

profiles of all agents that are inside and outside the set D. For each θ ∈Θ, any mechanism

M = 〈(Mi)i∈N , g〉 induces a complete information game GM(θ) := 〈N, (Mi,U
θ
i )i∈N 〉,

where Mi is the set of strategies of player i, and payoff functions are such that Uθi (m) =

ui(g(m), θ) for all i ∈N and m ∈M .

Our main focus is on the case where agents’ behavior is captured by Nash equilibrium.

To this end, given a mechanism M, we let CM(θ) denote the set of Nash equilibria of

GM(θ). General solution concepts are discussed in Section 6.

DEFINITION 1—Implementation: A SCC is (fully) Implementable if there exists some

mechanismM such that g(CM(θ)) = F (θ) for all θ ∈Θ.5

Next we introduce the new primitives that are needed for Safe Implementation. As we

discussed in the introduction, the idea is that the designer not only wishes to attain full

implementation, but also ensure that the implementing mechanism has the property that,

should a number of agents deviate (perhaps due to irrationality, a mistake, or because the

planner’s model of their preferences or of their behavior is misspecified), the mechanism

still induces outcomes that the designer regards as acceptable. Like the ‘target’ allocations

in the SCC, what is regarded as acceptable may depend on the state. This is modelled by an

acceptability correspondence, A : Θ→ 2X \ {∅}, where A(θ) denotes the set of outcomes

that the social planner regards as acceptable at state θ. A natural requirement – which, in

5Since F is assumed to be non empty valued, the requirement g(CM(θ)) = F (θ) implicitly ensures existence

of the solution in the implementing mechanism (i.e., CM(θ) is non-empty for all θ). Hence, with CM(θ) denoting

the set of Nash Equilibria, this definition coincides with the standard notion of Maskin (1999).
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fact, would follow immediately as a necessary condition from Def. 2 below, and which

therefore we maintain throughout – is that F (θ)⊆A(θ) for all θ ∈Θ.

EXAMPLE 2: (Some Examples and Special Cases)
1. Minimal Safety Guarantees: In some settings, it may be natural to require that no agent

should receive their least preferred outcome, even as the result of deviations. This can

be modelled letting the acceptability correspondence A : Θ→ 2X \ {∅} be minimally

safeguarding, i.e. such that for all θ ∈Θ,

A(θ) =X\
{
x ∈X : ∃j ∈N such that x ∈ argmin

x∈X
uj(x, θ)\argmax

x∈X
uj(x, θ)

}
.

2. Planner’s Welfare Guarantees: The acceptability correspondence may explicitly rep-

resent the concerns of a social planner under second best considerations. For instance,

if the planner has state-dependent preferences over allocations, W :X ×Θ→R, then

it is natural to think about the SCC as the set of optimal outcomes at every state (i.e.,

F (θ) = arg maxx∈XW (x, θ) for all θ), and to consider acceptable allocations that

ensure that the planner attains at least a certain (possibly state-dependent) reservation

value w̄(θ). In this case, the acceptability correspondence is defined such that, for all

θ ∈Θ, A(θ) = {x ∈X :W (x, θ)≥ w̄(θ)}.
3. Perfect Safety: Another interesting special case is when A(θ) = F (θ) for all θ ∈ Θ.

This is in a sense the most demanding notion of safety, in that it requires that also the

deviations do not induce outcomes inconsistent with the SCC.6

4. ε-Perfect Safety: When X is a metric space, one reasonable restriction is that the ac-

ceptable allocations are within a given distance from the choices in the SCC or SCF.

For instance, one could define A(θ) = Nε(f(θ)) for all θ ∈ Θ, where Nε is an ep-

silon neighbourhood with respect to the metric on X . In this sense, the acceptable

allocations would be close to the ‘optimal’ ones in the literal sense.

5. Limited Commitment Interpretation: The A(·) correspondence may also represent

other constraints that the planner faces in designing the mechanism. For instance, in

6Earlier work of Shoukry (2019) introduced several related notions of implementation, one of which (weak-

outcome robust implementation) coincides with Perfect Safety in our framework. For that notion he provides one

impossibility result (cf. footnote 17 below). This and other related papers are discussed in Section 6.
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designing punishments and rewards for the agents, the designer may be constrained in

what he can commit to, and for instance mechanisms that prescribe especially harsh

punishments may not be credible at certain states after a small number of deviations.

Then, for each θ, A(θ) can be taken as a primitive that encompasses the set of out-

comes that the planner can credibly commit to using at that state.

6. State-Dependent Feasible Allocations: Our framework can also be used to accommo-

date the case in which the very set of feasible allocations is state-dependent, and the

outcomes of a mechanism are required to be feasible both on and off equilibrium.

This can be accommodated within our framework by reinterpreting A(θ) as the set of

allocations that are feasible at state θ.7

Next, let k ∈ {1, ..., n} denote the safety level that the designer wishes to impose. That

is, the maximum number of deviations from the equilibria m∗ ∈ CM(θ) that the designer

wants to ensure they induce outcomes in A(θ), for all θ. Formally, for each k, let Nk
denote the set of all subsets of N with k elements (that is, Nk := {C ∈ 2N : |C|= k}), and

further define a distance function dN (m,m′) := |{i ∈N :mi 6=m′i}| and a neighbourhood

Bk(m) := {m′ ∈M : dN (m,m′) ≤ k}, which consists of the set of message profiles m′

that differ from m for at most k messages. Also, we say that A∗ : Θ→ 2X \ {∅} is a sub-

correspondence of A : Θ→ 2X \ {∅} if it is such that A∗(θ) ⊆ A(θ) for all θ ∈ Θ. With

this, (A,k)-Safe Implementation is defined as follows:

DEFINITION 2—(A,k) Safe Implementation: Fix a SCC F : Θ→ 2X \ {∅}, and let

A : Θ→ 2X \ {∅} denote an acceptability correspondence, such that F (θ) ⊆ A(θ) for

all θ ∈ Θ. We say that F is (A,k)-Safe Implementable if there exists a mechanism M =

〈(Mi)i∈N , g〉 such that: (i) F is Implemented byM (Def. 1)), and (ii) for all θ ∈Θ, m∗ ∈
CM(θ), and for all m′ ∈Bk(m∗), g(m′) ∈A(θ).

If, furthermore, the acceptability correspondence, A, admits no sub-correspondence A∗

for which (A∗, k)-Safe Implementation is possible, then we say that A is maximally safe.

First note that, for any k, if a SCC is (A,k)-Safe Implementable, then it is (Â, k)-Safe

Implementable for any ‘more permissive’ correspondence, Â : Θ→ 2X \ {∅}, such that

7State-dependent feasibility constraints have been studied by Postlewaite and Wettstein (1989) in the context

of Walrasian Implementation, but the problem has been thoroughly neglected by the subsequent literature.
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FIGURE 2.—Firms 1, 2, and 3’s preference orderings over the three alternatives, at the three states, L, M ,

and H . For each state, the allocation chosen by SCF f∗ in Ex. 3 is indicated by a square. The acceptability

correspondence A from Ex.1 is shown by the dotted lines, and is not maximally safe for this SCF. Acceptability

correspondence A∗ in Ex. 3 is maximally safe, and is represented by the dashed lines in the figure.

A(θ) ⊆ Â(θ) for all θ ∈ Θ. This observation motivates the notion of Maximally Safe ac-

ceptability correspondence in Def. 2: if a SCC is (A,k)-Safe Implementable, but not with

respect to any sub-correspondence of A, then it means that A reflects the most demanding

acceptability correspondence that can be attained.

EXAMPLE 3: Consider again the environment in Ex.1: it will follow from our results that

a SCF such that f∗(L) = f∗(H) = a and f∗(M) = b is Safe Implementable with respect to

the A correspondence in Ex.1 (see Fig.2). That acceptability correspondence, however, is

not maximally safe for such a SCF, because it can be shown that the same SCF can also be

Safe Implemented with respect to a sub-correspondence of A that rules out outcome c also

at state H . Formally, A∗ : Θ→ 2X \ {∅} such that A∗(θ) = {a, b} for all θ. �

With this in mind, it should also be clear that the case A(θ) = F (θ) for all θ ∈ Θ is

the most demanding one, and will be referred to as Perfectly Safe Implementation. We

will instead use the term Almost Perfectly Safe Implementation to refer to the case in

which, for all ε > 0, Safe Implementation can be obtained with respect to an ε-Perfectly

Safe acceptability correspondence (case 4 in Ex.2).

It is also immediate to check that if a SCC is (A,k)-Safe Implementable, then it is

(A,k′)-Safe Implementable for all k′ ≤ k – that is, increasing the number of deviations the

mechanism makes implementation harder – and that it always implies (baseline) Nash im-

plementation (as we discuss in Section 6, no analogous results hold for Eliaz’s (2002) con-
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cept). Also note that, when k > 1, Safe Implementation may accommodate the designer’s

concern for possibly multi-lateral deviations, even if the underlying solution concept is

fully non-cooperative.8

Finally, the baseline notion in Def. 1 obtains as a special case of Def. 2 when the extra

safety requirement is moot (i.e., if A(θ) = X for all θ ∈ Θ). In that case, Maskin (1999)

showed that the following condition is necessary:

DEFINITION 3—Maskin Monotonicity: A SCC is (Maskin) monotonic if for any θ, θ′, if

x ∈ F (θ) is such that Li (x, θ)⊆ Li (x, θ′) for every i ∈N , then x ∈ F (θ′).

Maskin (1999) also showed that, together with the following ‘no veto condition’, mono-

tonicity is also sufficient for (baseline) Nash Implementation, whenever n≥ 3:

DEFINITION 4—Maskin No Veto: A SCF satisfies the ‘no veto property’ if x ∈ F (θ)

whenever x ∈X and θ ∈Θ are such that ∃i ∈N : ∀j ∈N\{i}, x ∈ argmaxy∈X uj(y, θ).

Obviously, Def. 4 has no bite if preferences rule out ‘almost unanimity’, as is the case

in economic environments, where agents have strictly opposing interests (e.g., Mirrlees

(1976), Spence (1980), Arya et al. (2000), Kartik and Tercieux (2012), etc.).

In the next two sections we provide necessary and sufficient conditions for Safe Im-

plementation. Since Nash Implementation is a special case of Safe Implementation, the

necessary conditions for Safe Implementation will have to be a generalization of Def. 3.

Our sufficient conditions will also be a generalization of Maskin’s, and they coincide with

the necessary conditions under an ‘economic condition’ analogous to Kartik and Tercieux

(2012)’s, or if the designer is allowed to adopt stochastic mechanisms.

3. NECESSITY

We introduce next a generalization of (Maskin) Monotonicity, which will be shown to

be necessary for (A,k)-Safe Implementation:

8In the spirit of renegotiation proofness, for instance, one may want to ensure that besides implementing a SCF,

the mechanism also deters joint deviations of subsets of agents. This may be achieved for instance by letting the

acceptability correspondence be such that, for each θ ∈Θ, no two agents prefer some x ∈A(θ) over f(θ).
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DEFINITION 5—Weak Comonotonicity: A SCC, F : Θ→ 2X \ {∅}, and an acceptabil-

ity correspondence, A : Θ→ 2X \ {∅}, are weakly comonotonic if the following holds:

1. [A-Constrained Monotonicity of F ] If θ, θ′ ∈Θ and x ∈ F (θ) are such that Li(x, θ)∩
A(θ)⊆ Li(x, θ′)∩A(θ) for all i ∈N , then x ∈ F (θ′).

2. [weakly F -Constrained Monotonicity of A] If θ, θ′ ∈ Θ are such that, ∀x ∈ F (θ),

Li(x, θ)∩A(θ)⊆ Li(x, θ′)∩A(θ) for all i ∈N , then A(θ)⊆A(θ′).

To understand this condition, first note that weak Comonotonicity implies Maskin mono-

tonicity: If θ, θ′ ∈Θ are such that Li(x, θ)⊆ Li(x, θ′), and x ∈ F (θ), then the condition in

part 1 of Def. 5 is satisfied for any A, and hence x ∈ F (θ′).

Second, if A(θ) = X for every θ – i.e., if the safety requirement is vacuous – then part

2 in Def. 5 holds vacuously, and part 1 coincides with (Maskin) Monotonicity. Other-

wise, part 1 of Def. 5 restricts the SCC more than (Maskin) Monotonicity does. For a

SCF, for instance, this condition requires that f(θ) = f(θ′) whenever Li(f(θ), θ)∩A(θ)⊆
Li(f(θ), θ′)∩A(θ), which may be the case even if Li(f(θ), θ) 6⊆ Li(f(θ), θ′). In the latter

case, (Maskin) Monotonicity alone would leave the SCF free to set f(θ′) 6= f(θ), but weak

Comonotonicity would not (see Ex. 1 in the Introduction). Thus, when the acceptability

correspondence is non-trivial, weak Comonotonicity forces the SCF to be relatively more

constant than Maskin’s monotonicity would, and more so as the acceptability correspon-

dence gets less permissive. More broadly, note that part 1 of Def. 5 gets less restrictive as

the acceptability correspondence gets more inclusive: if A satisfies part 1 of Def. 5, and Â

is such that A(θ)⊆ Â(θ) for all θ ∈Θ, then also Â satisfies it.

Part 2 of Def. 5 states a monotonicity property of the acceptability correspondence, akin

to Maskin’s monotonicity for SCC, which imposes a lower bound on its inclusivity. Look-

ing at the contrapositive statement, if some allocation is acceptable at state θ but not at state

θ′, then there must exist a ‘target’ allocation x ∈ F (θ) that, going from state θ to θ′, has

moved down in the ranking of the allocations within A(θ) for at least one of the agents.

Note that, in this case, the bite of the condition depends on the SCC: the more inclusive

the SCC, the less stringent part 2 of Def. 5. This suggests, for instance, that compared with

the case of SCF, this condition leaves more freedom for the set of acceptable allocations to

vary with the state when the designer aims to implement a (non single-valued) SCC.
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We can now turn to our main results on necessity. As discussed in Section 2, Safe im-

plementation becomes more restrictive as the A correspondence gets finer. Hence, as far

as necessary conditions are concerned, it is natural to start with the case when the accept-

ability correspondence is Maximally Safe, which puts the most stringent constraints on safe

implementation (if a SCC is (maximally) safe implementable with respect to A, then it

would also be Safe-Implementable with respect to any ‘coarser’ acceptability correspon-

dence, A∗, such that A(θ)⊆ A∗(θ) for all θ). We show next that weak Comonotonicity is

necessary for maximally Safe Implementation:

THEOREM 1—Necessity: A SCC, F : Θ→ 2X \ {∅}, is maximally (A,k)-Safe Imple-

mentable only if (F,A) are weakly Comonotonic.

To gain some intuition for this result, note that if the SCC is (A,k)-Safe Implementable

and A is maximally safe, then for each θ ∈ Θ, A(θ) comprises all the outcomes that the

designer can use to deter agents’ deviations, and no more than those. Thus, from the view-

point of providing agents with the right incentives within the mechanism, at any given θ,

it is only agents’ preferences over the set A(θ) that matter. So, if going from one state θ

to another θ′, one of the ‘target’ allocations x climbs (weakly) up in everyone’s ranking

within the restricted set A(θ) of acceptable allocations (not over all of X), and if – by the

Nash implementation requirement – x must be a Nash equilibrium outcome at state θ for

some mechanism, then it would also have to be a Nash equilibrium outcome at state θ′. But

then x should be within the SCC at both states, otherwise Nash implementation would not

obtain. This explains the necessity of part 1 of Def. 5.

To understand part 2, if going from state θ to θ′ we have that all the allocations in F (θ)

(weakly) ‘climb up’ in everyone’s ranking within the A(θ) set, then all such allocations

would be Nash Equilibrium outcomes at both states θ and θ′, and would each be induced

by some Nash equilibrium profile m∗ in some mechanism. But then, in such a mechanism,

the set of outcomes that are within k deviations from m∗ at state θ, would also be within

k-deviations from a Nash equilibrium at state θ′, and thus they must also be acceptable at

that state. It follows that A(θ′) must contain at least all of the outcomes that are within k

deviations from Nash equilibria at θ, and hence in A(θ).

As we discussed, moving to the case of non-maximally safe acceptability correspon-

dences, Safe Implementation gets less demanding. Nonetheless, it is easy to see from the
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argument above that, if A is not maximally safe, then the first part of Def. 5 is still neces-

sary. The second part, however, need not hold:

EXAMPLE 4: Consider again the environment in Example 3 (see Fig.2). As discussed,

the SCF f∗ from that example is safe implementable with respect to both correspondences

A andA∗, but only the latter is maximally safe with respect to f∗ (A cannot be, sinceA∗ is a

sub-correspondence ofA). It is easy to check that, as it follows from Theorem 1,A∗ satisfies

both conditions in Def. 5, and hence that it is (weakly) comonotonic with respect f∗. In

contrast, the A correspondence only satisfies part 1 of Def. 5 (as implied by Proposition 1),

but not part 2: moving from state θ =H to θ′ = L, allocation a= f∗(H) moves (weakly) up

in everyone’s ranking within the setA(H) = {a, b, c}. Yet,A(H) *A(L). This is obviously

not the case for the A∗ correspondence, since A∗(H) =A∗(L) = {a, b} . �

PROPOSITION 1—Non-maximally safe implementation (necessity): F : Θ→ 2X \{∅},
is (non-maximally) (A,k)-Safe Implementable only if (F,A) satisfy part 1 of Def. 5.

The results above formalize a trade-off between the restrictiveness of the acceptability

correspondence and the way in which the SCC correspondence varies with θ. This is eas-

ier to see considering the case of a SCF. Suppose that the designer starts with a (Maskin)

Monotonic SCF. Then, among the A∗ : Θ→ 2X \ {∅} correspondences that satisfy parts

1 and 2 of Def. 5, those (if they exist) that are minimal with respect to set inclusion at

every state, identify the most demanding acceptability requirements that the designer can

impose, if he wishes to achieve Safe Implementation. If, however, the safety desiderata are

more stringent than this (i.e., if no such ⊆-minimal A∗ is a sub-correspondence of the ac-

ceptability correspondence that the designer wishes to impose), then Safe Implementation

necessarily forces the SCF to be more constant than what is implied by (Maskin) Mono-

tonicity (Ex.1 in the Introduction provides an instance of this).

Theorem 1 also has the following direct implication:

COROLLARY 1—Impossibility of Perfectly Safe Implementation of SCF: For any k ≥
1, if f : Θ→X and A : Θ→ 2X \ {∅} is such that A(θ) = {f(θ)} for some θ, then f is
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(A,k)-Safe Implementable only if f is constant. It follows that only constant SCFs can be

Perfectly Safe Implemented.9

This result follows directly from part 1 of Def. 5: if A(θ) = {f(θ)}, then Li(f(θ), θ) ∩
A(θ) = {f(θ)} ⊆ Li(f(θ), θ′) for any θ′, and the necessity of Comonotonicity implies that

f is (A,k)-Safe Implementable only if x= f(θ′) for all θ′.

Despite Corollary 1, however, in Section 5 we will show that in an important class of

environments it is possible to get arbitrarily close to Perfect Safety. Specifically, under

a standard single-crossing condition, Safe Implementation is possible for any (Maskin)

Monotonic SCF in the Almost Perfectly Safe sense (i.e., for all ε > 0, (A,k)-Safe Imple-

mentation is possible for an A-correspondence that satisfies the condition in point 4 of Ex.

2). We also stress that the negative result above holds for SCF, but as the next example

shows, Perfectly Safe Implementation may be achieved if the SCC is non-single valued.

EXAMPLE 5: Let the environment be such that Θ = {L,R}, X = {a, b, c}, N =

{1,2,3,4}. Preferences are as follows: In state L, players 1 and 2 prefer a to b to c, while

players 3 and 4 prefer b to c to a. In stateR players 1 and 2 prefer c to b to a, while players 3

and 4 prefer a to c to b. The designer wishes to implement a SCC that selects the alternatives

that are at the top of at least half of the agents (hence, F (L) = {a, b} and F (R) = {a, c}),
but ensuring perfect safety, in the sense that only the outcomes consistent with the SCC

are deemed acceptable (that is, A(L) = {a, b}= F (L) and A(R) = {a, c}= F (R).) Fig. 3

summarizes as usual agents’ preferences, the SCC, and the acceptability correspondence.

As it will follow from Theorem 3 in the next section, such a SCC can be perfectly safe

implemented. To see this, first notice that the intersection of player 3’s lower contour set

of b at state L with the acceptable allocations at that state, are not a subset of his lower

contour set at state R. Hence, Comonotonicity does not require that b ∈ F (R). Similarly,

Comonotonicity does not require that c ∈ F (L), even if c ∈ F (R), because the relevant

contour set of player 1 at state L is not a subset of that at state R. Indeed, it will be easy

to verify that this environment satisfies the sufficient conditions that we provide within the

next section, and hence the result will follow directly from Theorem 3. �

9Shoukry (2019) obtains a slightly weaker version of Corollary 1, in thatA(θ) = {f(θ)} is required at all states

as opposed to some. The connection with Shoukry (2019) is further discssed in Section 6.
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FIGURE 3.—Players 1, 2, 3 and 4’s preference orderings over the three alternatives, at the two states, L and R.

For each state, the allocation chosen by SCC F in Ex. 5 is indicated by a square. The acceptability correspondence

A is shown by the dashed lines, and is perfectly safe, as it coincides with the SCC at every state.

Theorem 1 follows directly from the next result, which describes a structural property

of any mechanism that safely implements the SCC. To this end, for any mechanism M,

for any k ≥ 1, and for any θ ∈Θ, let Rk(θ) =
⋃
m∗∈CM(θ)Bk(m

∗), where CM(θ) denotes

the set of Nash equilibria of GM(θ). That is, Rk(θ) consists of all message profiles that,

given M, are within k deviations from some Nash equilibrium at state θ. Finally, given

an acceptability correspondence A∗ : Θ→ 2X \ {∅} and k ≥ 1, we say that a mechanism

M= 〈(Mi)i∈N , g〉 is k-surjective on A∗ if, for every θ ∈Θ, g(Rk(θ)) =A∗(θ).

THEOREM 2—On the Structure of Safe Mechanisms: Any mechanism that (A,k)-Safe

Implements F must be k-surjective on some weakly Comonotonic sub-correspondence of

A. If, moreover, A is maximally safe, then the implementing mechanism is k-surjective on

A itself.

Theorem 2 ties together the restrictions on the acceptability correspondence imposed

by weak Comonotonicity, with the safety level parameter k. First, this result says that if

a mechanism (A,k)-Safely Nash Implements F , then the Ak correspondence defined as

Ak(θ) := g(Rk(θ)) for all θ ∈ Θ is weakly Comonotonic and a sub-correspondence of A.

This directly implies thatAk and F are weakly Comonotonic, and hence Theorem 1 follows

from Theorem 2 when Ak = A, as well as the following further necessary condition for

(non-maximal) Safe Implementation:
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COROLLARY 2: F : Θ→ 2X \ {∅}, is (non-maximally) (A,k)-Safe Implementable only

if A admits a sub-correspondence, A∗, such that (A∗, F ) satisfy part 2 of Def. 5.10

Finally, notice that holding a mechanismM fixed, increasing k (weakly) enlarges the set

of outcomes that are within k deviations from the Nash Equilibria at state θ, Ak. As long as

the correspondingAk defined as above is weakly Comonotonic and such thatAk(θ)⊆A(θ)

for all θ ∈Θ, then the necessary condition for (A,k)-Safe Implementation is satisfied. But

if, as k increases, the Ak correspondence is not a sub-correspondence of A, or not weakly

Comonotonic, then M cannot (A,k)-Safe Nash implement the SCC. In that case, Safe

Implementation byM requires either relaxing the requirement by makingAmore inclusive

(if Ak is not a sub-correspondence of A, or if it violates part 2 of Def. 5), or to ‘reduce’ the

dependence of the SCC on θ (if Ak violates part 1 of Def. 5). In this sense, the structural

properties of any implementing ‘safe’ mechanism in the statement of Theorem 2 reflect

a trade-off between the safety level parameter k ≥ 1, the strictness of the acceptability

correspondence, and the responsiveness of the SCC to the state of the world.

4. SUFFICIENCY

Our sufficiency results rely on the following stronger version of Comonotonicity:

DEFINITION 6—Strong Comonotonicity: A SCC, F : Θ→ 2X \{∅}, and an acceptabil-

ity correspondence, A : Θ→ 2X \ {∅}, are strongly comonotonic if the following holds:

1. [A-Constrained Monotonicity of F ] If θ, θ′ ∈Θ and x ∈ F (θ) are such that

Li(x, θ)∩A(θ)⊆ Li(x, θ′)∩A(θ) for all i ∈N , then x ∈ F (θ′).

2. [strongly F -Constrained Monotonicity of A] If θ, θ′ ∈Θ are such that ∃x ∈ F (θ) such

that Li(x, θ)∩A(θ)⊆ Li(x, θ′)∩A(θ) for all i ∈N , then A(θ)⊆A(θ′).

First, notice that the difference between Strong and Weak Comonotonicity (Def. 5) is

only in the quantifier of the x ∈ X in part 2 of the definition: in the weak version, the

property A(θ) ⊆ A(θ′) is only required for states θ, θ′ ∈ Θ in which Li(x, θ) ∩ A(θ) ⊆
Li(x, θ

′)∩A(θ) holds for all i ∈N and for all x ∈ F (θ). In contrast, in Def. 6, this property

10Proposition 1 and Corollary 2 jointly imply that a SCC is (non-maximally) (A,k)-Safe Implementable only

if A admits a weakly Comonotonic subcorrespondence. Note, however, that a non-maximally safe acceptability

correspondence may still satisfy part 2 of Def. 5, i.e. with A∗ in Corollary 2 such that A∗(θ) =A(θ) for all θ.
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is required to hold for all θ, θ′ ∈ Θ in which Li(x, θ) ∩ A(θ) ⊆ Li(x, θ′) ∩ A(θ) holds for

all i ∈N and for some x ∈ F (θ). The latter definition therefore is clearly more demanding

in general, except when the SCC is single-valued (that is, when the designer wishes to

implement a SCF, f : Θ→X), in which case the two notions of Comonotonicity coincide.

Strong monotonicity ensures that, when any allocation x that is selected at θ climbs up

in the ranks for all agents when moving to θ′, all acceptable allocations that are used within

the mechanism to prevent deviation at θ can also be used at θ′. Our main sufficiency result

will show that, under the following generalization of Maskin’s No-Veto condition, Strong

Comonotonicity is sufficient for (A,k)-Safe Implementation (in the case of SCFs, this will

imply that Comonotonicity (either Def. 5 or 6) is both necessary and sufficient):

DEFINITION 7—Safe No-Veto: (F,A) satisfy Safe No-Veto if x ∈ F (θ) and A(θ) =

X whenever x ∈ X and θ ∈ Θ are such that ∃i, θ′ ∈ N × Θ : ∀j ∈ N\{i}, x ∈
argmaxy∈A(θ′) uj(y, θ).

This property restricts both the SCC and the acceptability correspondence at states θ in

which all agents but one agree that a particular allocation x ∈X is “best” among the set of

allocations A(θ′) that are acceptable at some other state θ′. At any such state, the condition

requires that the SCC include such x and that all allocations be acceptable.

First note that, if the safety requirement is vacuous (i.e., if A(θ) = X for all θ ∈ Θ),

then Def. 7 coincides with Maskin’s no veto condition. In all other cases, the condition is

stronger than Maskin’s No-Veto for two reasons: first, because it suffices that x be at the

top for ‘almost everyone’ only within the set A(θ′)⊂X , for some θ′ ∈Θ, which is implied

by being at the top among all allocations in X , as requested by the condition for Maskin’s

No-Veto; second, because it entails a restriction also on the acceptability correspondence,

which is required to be vacuous at least at such states θ.

THEOREM 3—Sufficiency: If n≥ 3, and (F,A) are strongly Comonotonic and satisfy

Safe No-Veto, then F is (A,k)-Safe Implementable for all k ∈N : 1≤ k < n
2 .

Obviously, Def. 7 has no bite if preferences rule out ‘almost unanimity’ on any subset of

allocations, as is the case in many economic settings, such as the single-crossing environ-

ments that we will consider in Section 5, or whenever the following (weaker) ‘economic’

restrictions hold (cf. Kartik and Tercieux (2012)):
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DEFINITION 8—Economic Restrictions: The acceptability restrictions are economic if,

for all θ, θ′ ∈Θ and x ∈X ,
∣∣∣{i ∈N : x ∈ argmaxy∈A(θ′) ui(y, θ)}

∣∣∣< n− 1.11

COROLLARY 3: If the acceptability restrictions are economic, Strong Comonotonicity

of (F,A) is sufficient for F to be (A,k)-Safe Implementable for all k ∈N : 1≤ k < n
2 .

Since Def. 5 and 6 coincide for SCFs, Theorems 1 and 3 also imply the following:

COROLLARY 4: Let f : Θ→X be such that (f,A) satisfy Safe No-Veto (as it is the case,

for instance, under the economic condition in Def. 8). Then: (i) f is maximally (A,k)-Safe

Nash implementable only if (f,A) are Comonotonic; (ii) (f,A) are Comonotonic only if f

is (A,k)-Safe Nash implementable for all k ∈N : 1≤ k < n
2 .

In the next subsections we further discuss the Safe No-Veto condition and various ways

in which it can be weakened or dispensed with. The proofs of these results follow from

minor adaptations of the results above, and hence we omit them. We point interested readers

to the working paper version for the full proofs (Gavan and Penta (2024)).12

4.1. Weakenings and Dispensability of Safe No-Veto

Safe No-Veto holds in most standard environments, as it is unusual to have preferences

where almost all agents agree. An example of this are environments that satisfy the standard

single-crossing condition that we discuss in Section 5, or those that satisfy the economic

condition in Def. 8, where Safe No-Veto can be entirely dispensed with. But even outside

of these cases, under a weak ‘no unanimity’ condition, the requirement that A(θ) = X at

those special θ can be weakened to the much more permissive condition that A(θ)⊆A(θ′):

DEFINITION 9—No unanimity in A: An environment satisfies no unanimity in A if for

all θ, θ′ ∈Θ and x ∈X ,
∣∣∣{i ∈N : x ∈ argmaxy∈A(θ′) ui(y, θ)}

∣∣∣< n.

11Kartik and Tercieux (2012)’s ’economic condition’ obtains if A(θ) =X for all θ.
12We also note that, in the same sense as Maskin’s No-Veto is almost necessary for Nash implementation, so is

Def. 7 for Safe Implementation. The formal statement and proof can also be found in the working paper version.
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DEFINITION 10—weak Safe No-Veto: (F,A) are said to satisfy weak Safe No-Veto if

x ∈ F (θ) and A(θ)⊆A(θ′) whenever x ∈X and θ ∈Θ are such that ∃i ∈N,θ′ ∈Θ : ∀j ∈
N\{i}, x ∈ argmaxy∈A(θ′) uj(y, θ).

RESULT 1—Safe Implementation under weak Safe No-Veto: For any n ≥ 3, if (F,A)

are strongly Comonotonic, satisfy no unanimity in A and weak Safe No-Veto, then F is

(A,k)-Safe Implementable for all k ∈N : 1≤ k < n
2 − 1.

Under mild conditions on the environment, Safe No-Veto can also be dropped from the

sufficient conditions via the use of a stochastic mechanism. Hence, if stochastic mecha-

nisms are allowed, Strong Comonotonicity is sufficient on its own. Formally: first assume

that each ui(·, θ) represents von Neumann-Morgenstern preferences, and say that a SCC is

(A,k)-Safe Implementable by a stochastic mechanism if there exists M = (〈(Mi)i∈I , g〉,
where g :M →∆(X), such that (i)M Nash Implements the SCC and (ii) for all θ, for all

Nash equilibria m∗ of GM(θ), and for all m ∈Bk(m∗), supp(g(m))⊆A(θ). Then, Strong

Comonotonicity is sufficient under the following mild domain restriction:

DEFINITION 11: Preferences satisfy No Total Indifference across F and A if, for all

θ, θ′ ∈Θ, x ∈ F (θ′) and y ∈A(θ′)\{x}, ∃i ∈N such that ui(x, θ) 6= ui(y, θ).

RESULT 2—Safe Implementation via Stochastic Mechanisms: Under the condition in

Def. 11, for all n≥ 3 and finite X , if (F,A) are strongly Comonotonic, then F is (A,k)-

Safe Implementable by a stochastic mechanism for all k ∈N : 1≤ k < n
2 − 1.

For SCFs, this result immediately implies that comonotonicity (weak or strong) is both

necessary and sufficient for Safe Implementation via stochastic mechanisms:

COROLLARY 5: Let n ≥ 3 and X be finite. Under the condition in Def. 11: f is

maximally (A,k)-Safe Nash implementable by a stochastic mechanism only if (f,A) are

Comonotonic; (ii) (f,A) are Comonotonic only if f is (A,k)-Safe Nash implementable by

a stochastic mechanism for all k ∈N : 1≤ k < n
2 − 1.

Finally, another beaten path within the literature is to consider preferences that favor

‘truthfully’ reporting the state and allocation (for similar ideas, see Matsushima (2008),

Dutta and Sen (2012), Kartik et al. (2014), and Lombardi and Yoshihara (2020)). In this
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case, it can be shown that even if such preferences for honesty are ‘weak’ in the sense

of being lexicographically subordinated to the outcome of the mechanism, then a mild

Unanimity restriction suffices for Safe Implementation (see Gavan and Penta (2024)).

4.2. On the Gap between Weak and Strong Comonotonicity

Unlike Nash Implementation, where Maskin Monotonicity is both necessary and suf-

ficient when using stochastic mechanisms under mild domain restrictions (Bochet, 2007,

Benoît and Ok, 2008), a gap between necessity and sufficiency remains for Safe Implemen-

tation, since weak and strong Comonotonicity only coincide for SCFs.

In Appendix B we provide a stronger condition than Weak Comonotonicity that is nec-

essary and almost sufficient in general environments, thereby reducing the gap between

necessity and sufficiency. Similar to the ‘µ Condition’ in Moore and Repullo (1990), this

condition relies on identifying which sub-correspondences of A are used, within an im-

plementing mechanism, to support each of the different allocations in the SCC. Specif-

ically, for each x ∈ F (θ), and for each equilibrium that induces x, we can think of the

sub-correspondences of A that consist of all allocations that are within κ = 1, ..., k devia-

tions from such equilibrium. If, moving from θ to θ′, preferences do not change within the

sub-correspondences used to prevent unilateral deviations from an equilibrium that induces

x ∈ F (θ), then x must also be implemented at θ′, and hence x ∈ F (θ′). Furthermore, the

sub-correspondence of A that consists of the allocations that are reachable in k deviations

from the equilibria that induce x at θ, must also be in the analogous sub-correspondence

used for x at θ′ (see App. B). We refer to this condition as ‘Safe µ’. But much like Moore

and Repullo’s µ-condition compared to Maskin Monotonicity, Safe-µ is a more complex

definition to check. For this reason, we elect to provide weak and strong Comonotonicity as

transparent and easy to check definitions, and leave instead this analysis for the appendix.

Turning back to stochastic mechanisms, however, it is possible provide a parallel result

to Bochet (2007) and Benoît and Ok (2008). Specifically, ‘Safe µ’ implies the following

weaker notion of comonotonicity, which under a mild domain restriction is both necessary

and sufficient for Safe Implementation via stochastic mechanisms (cf. Gavan and Penta

(2024)): (A,F ) satisfy sub-comonotonicity if there exists a correspondence G, that maps

each pair (θ, x) in the graph of F to a subset of A(θ), such that if moving from state θ to
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θ′, an allocation x ∈ F (θ) ‘climbs up’ in the ranking of all agents within the allocations

in G(x, θ), then we have that x ∈ F (θ′) and G(x, θ) ⊆ G(x, θ′). (For a closely related

condition, see Bochet and Maniquet (2010).) Note that sub-comonotonicity also boils down

to Maskin’s, if one takes G to be constant and equal to X .

5. APPLICATIONS AND EXTENSIONS

We now turn to two canonical applications of Nash Implementation, and include safety

concerns. In the first application we explore implementation of SCFs in environments that

satisfy a standard single-crossing condition. In these settings, we show that essentially any

SCF can be implemented in the Almost Perfectly Safe sense that we discussed in p. 10. We

then go on to explore the problem of allocating one unit of an indivisible good. We show

that, when there is an appropriate null allocation that is acceptable at all states of the world,

Safe Implementation of the efficient SCF is possible. Finally, we explain how our frame-

work can accommodate arbitrary solution concepts, and we provide some negative results

in environments that satisfy a strong but standard ‘richness condition’ on preferences.

5.1. Environments with Private Goods and Single-Crossing Preferences

Consider a private value settings with two private goods and single-crossing prefer-

ences.That is, for each i ∈ {1, ..., n}, let Xi := R2
+ denote the consumption space, with

generic element xi = (x1
i , x

2
i ), with xgi denoting the quantity of good g consumed by i. The

space of feasible allocations is X ⊆ ×i∈NXi, assumed to be compact and convex, with

generic element x = (xi)i∈N , which is sometimes convenient to write as x = (xi, x−i), to

separate i’s own consumption bundle from the profile of consumption bundles of the others.

For each agent i, there is a set of types Θi = {θ1
i , ..., θ

li
i } ⊂ R+ that pin down i’s prefer-

ences over X , labelled so that θ1
i < ... < θlii , and let Θ :=×i∈NΘi, with typical element θ.

The assumption of private goods is reflected in that each agent i’s utility over X is constant

in x−i, and hence utility functions can be written as ui(xi, θi), assumed to be continuously

differentiable and strictly increasing in both x1
i and x2

i for each θi ∈ Θi. Finally, we as-

sume that preferences are single-crossing in the sense that for each i, the marginal rate of

substitution between good 1 and good 2 is increasing in θi.

Letting f : Θ→ X denote the SCF, it seems sensible to include in the acceptability

correspondence allocations that are sufficiently close to f(θ) at every θ ∈ Θ. (This would
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be natural, for instance, if the social planner chooses f(θ) to be in the argmax of a wel-

fare functional that is continuous in x). Formally, for some ε > 0 and neighbourhood

Nε(f(θ)) = {(x1, x2) ∈X : d(f(θ), (x1, x2))< ε}, where d(·, ·) is the Euclidean distance,

we assume that Nε(f(θ))⊆A(θ).

LEMMA 1: Under the maintained single-crossing condition, if A : Θ→ 2X \{∅} is such

that, for some ε > 0, we have that Nε(f(θ))⊆ A(θ) for all θ ∈ Θ, then for any SCF such

that f(θ) ∈ int(X) for all θ ∈Θ then (f,A) satisfies (weak and strong) Comonotonicity.

In addition, this weak condition also suffices for Safe Implementation:

PROPOSITION 2: Suppose that n ≥ 3, and that the single crossing condition above is

satisfied. If (f,A) is such that f(θ) ∈ int(X) for all θ ∈Θ and ∃ε > 0 such thatNε(f(θ))⊆
A(θ) for all θ ∈Θ, then f can be (A,k)-Safe Implemented for any 1≤ k < n

2 .

5.2. Efficient Allocation of an Indivisible Good

A social planner wants to allocate an indivisible good to one of the agents in N , or to

no agent. The set of feasible outcomes therefore is X = N ∪ {∅}. Like Eliaz (2002), we

assume that the set of states and agents’ preferences are such that: (P.1) agents always pre-

fer getting the object themselves than having it assigned to someone else; (P.2) conditional

on not obtaining the object, agents always prefer it being assigned to agents with a higher

utility, and prefer it not being assigned at all over being assigned to someone other than

the highest utility agent; and (P.3) at any state of the world, there is always a single agent

with the highest valuation.13 Finally, we assume that the SCF and the acceptability corre-

spondence are such that: (A.1) the SCF is efficient; (A.2) not assigning the object is always

acceptable; and (A.3) whenever agent i is the designated winner, some other allocation is

also acceptable.14 Under these assumptions, the following possibility result obtains:

13Formally, for all i and θ: (P-1) ui(i, θ)> ui(j, θ) for all j ∈N\{i}; (P.2) ∀j, k ∈N\{i}, ui(j, θ)> ui(k, θ)

if uj(j, θ)> uk(k, θ), and ui(∅, θ)> ui(j, θ) if j /∈ arg maxi∈N ui(i, θ); and (P.3) |arg maxi∈N ui(i, θ)|= 1.
14Formally: (A.1) f(θ) ∈ arg maxi∈N ui(i, θ) for all θ ∈Θ; (A.2) ∀θ ∈Θ, {∅, f(θ)} ⊂A(θ); and (A.3) For

any i, whenever f(θ) = i, ∃x 6= i,∅ such that x ∈A(θ).



24

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

PROPOSITION 3: If n ≥ 3 and preferences satisfy assumptions P.1-3, any (f,A) that

satisfies assumptions A.1-3 is (A,k)-Safe Implementable for all 1≤ k < n
2 .

The assumptions on the preferences (P.1-3) are the same as in Eliaz (2002), and they are

mild. Given the weakness of A.1-3, this proposition provides a rather permissive result for

Safe Implementation of the efficient SCF in single-good assignment problems.

5.3. Safe Implementation with General Solution Concepts

Our framework can be easily extended to accommodate arbitrary solution concepts, be-

yond Nash equilibrium. To this end, note that for any mechanism M, any solution con-

cept for complete information games induces a correspondence CM : Θ→ 2M that assigns

a (possibly empty) set of message profiles to every state of the world. So far, we took

such C to denote the Nash Equilibrium correspondence (i.e., CM(θ) := {m∗ ∈M : ∀i ∈
N,Uθi (m∗)≥ Uθi (mi,m

∗
−i)} for each θ), but both Definitions 1 and 2 extend seamlessly to

any correspondence CM : Θ→ 2M that may be taken to model agents’ strategic interac-

tion, provided that one reinterprets notation CM(θ) above as the set of ‘solutions’ (whether

Nash equilibrium or not) in mechanismM at state θ. With this, the conceptual apparatus

of Safe Implementation extends to general solution concepts: A SCC F is (A,k)-Safe C-

Implemented if it is C-Implemented by a mechanism in which, at every state, any deviations

of up to k agents from the profiles consistent with the solution concept C induce outcomes

that are within the acceptability correspondence (cf. Gavan and Penta (2024)).

This general framework is useful to provide a unified view of a few related papers (which

we discuss in the next Section), as well as to highlight a few methodological points regard-

ing the agenda on behavioral implementation (which we will return to in the Conclusions).

But, as we discuss next, some insights about the bite of Safety considerations may be pro-

vided independent of the solution concept, at least in environments that satisfy a richness

condition analogous to the Universal Domain assumption in Social Choice Theory:

DEFINITION 12—Richness: We say that Θ is rich if for every possible profile of strict

preference orderings over X , �= (�i)i∈N , there exists θ ∈Θ such that ui(·, θ) represents

�i for all i ∈N .
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Under this condition, we provide two negative results for Safe Implementation. For the

first result, take an arbitrary solution concept C, and consider the minimal safety guarantee

that we introduced in point 1 of Ex. 2. Under these restrictions, the social planner wishes to

ensure that, in the case of deviations from the profiles admitted by the solution concept, no

agent receives their least preferred outcome. This is a plausible, seemingly weak criterion

for safety restrictions. Yet, under richness, we obtain the following negative result:

PROPOSITION 4: Suppose that Θ is rich, 1 < |X| ≤ n. No SCF is (A,k)-Safe C-

Implementable for some k ≥ 1, if A satisfies the minimal safeguarding guarantee.

Hence, contrary to what could perhaps be surmised from the previous subsections, Safety

is not a trivial restriction, regardless of the underlying solution concept.

When Nash equilibrium is taken as the underlying solution concept, as was the case in

the previous sections, then this message is further reinforced by the following result: Under

richness, if the SCF is onto, then the Safety requirement can only hold vacuously. Formally:

PROPOSITION 5: Suppose that Θ is rich, and that the SCF, f , is surjective. Then, f is

(A,k)-Safe(Nash) Implementable for some k ≥ 1 only if A(θ) =X for all θ.

Muller and Satterthwaite (1977) showed that any SCF satisfying the above conditions

must be dictatorial, and can be trivially implemented via a simple mechanism which asks

the dictator for their most preferred outcome. Further to this, our result shows that all such

rules require the acceptability correspondence to be vacuous. Hence, no safety considera-

tions can be accommodated in these settings: such dictatorial rules cannot be Safe.

6. RELATED LITERATURE

The closest paper to ours is Eliaz (2002), who studies an implementation problem im-

posing the requirement that the mechanism’s outcome is not affected by deviations of up

to k agents. In that sense, the robustness desideratum in Eliaz (2002) is more demanding

than ours, as it coincides with the special case of ‘perfect safety’, in which the acceptability

correspondence coincides with the SCC (cf. point 3 in Ex. 2). Another important difference

is in the solution concept: in Eliaz’s (2002) k-Fault Tolerant Nash equilibrium (k-FTNE),

agents reports are required to be optimal not only at the equilibrium profile, but also at all

profiles in which up to k agents have deviated. Thus, the solution concept is stronger than
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Nash equilibrium, and more so as k increases, with the implementation notion approach-

ing dominant-strategy implementation as k approaches the number of opponents. This has

important implications for the comparison with our approach: first, it may be that a SCC

is implementable in the sense of Eliaz (2002) but not Nash Implementable – hence, unlike

our notion, k-FT Implementation is not necessarily more demanding than baseline Nash

Implementation; second, it may be that FT implementation is possible for some k, but not

for some smaller k′ – hence, unlike our notion, the implementation notion in Eliaz (2002)

does not necessarily become more demanding as k increases.

In contrast, even if one replaces Nash Equilibrium in Def. 1 and 2 with a general solution

concept CM : Θ→M (see Section 5.3), Safe Implementation always gets more demanding

as k increases.15 Fault Tolerant Implementation (FTI) fails this monotonicity because, let-

ting CMk (θ) denote the set of k-FTNE at state θ, it may be that ∅ 6= CMk (θ)⊂ CMk′ (θ) 6= ∅ for

some k′ < k. Thus, although k-FTNE is monotonic with respect to k (that is, all k-FTNE

are also (k− 1)-FTNE), the resulting notion of implementation is not, since the finer solu-

tion concept may make it easier to avoid the ‘bad’ equilibria. Hence, k-FTI does not imply

(k − 1)-FTI.16 For the same reason, k-FTI may be more permissive than (baseline) Nash

Implementation. With this, one may still ask whether (A,k)-Safe (Nash) Implementation

collapses to k-FTI in the event that A(θ) = F (θ) for all θ. This is not the case. First, con-

trary to k-FTI, (A,k)-Safe (Nash) Implementation is not possible for non-constant SCFs

(Corollary 1). Thus, k-FTI may be more permissive than our concept, even though the two

solution concepts are nested under perfect safety (i.e., when A = F , all k-FTNE are also

(A,k)-Safe Nash equilibria). Also, for any A : Θ→ 2X \ {∅}, it is not possible to have a

non-constant SCF be double-implemented in k-FTI and (A,k)-Safe Nash. Finally, it can

also be shown that (A,k)-Safe (Nash) Implementation may be possible when k-FTI is not

(Gavan and Penta, 2024). Hence, despite the similarity in their motivation, the two im-

plementation concepts are distinct: (i) they are not nested; (ii) unlike k-FTI, (A,k)-Safe

15More precisely: if the solution concept C does not vary with k, for any acceptability correspondenceA : Θ→
2X \ {∅}, a SCC is (A,k)-Safe C-Implementable only if it is (A,k′)-Safe C-Implementable for all k′ ≤ k.

16The non-monotonicity of implementation with respect to nestedness of the solution concepts is well known.

It provides one of the main motivations for the notion of strategically robust implementation in Jain et al. (2024).
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Implementation is monotonic in k; (iii) unlike k-FTI, (A,k)-Safe Implementation implies

Nash Implementation. Appendix C provides examples to illustrate these points.

Eliaz (2002) also inspired Shoukry (2019), which maintains Nash equilibrium as we do,

but like Eliaz (2002) only considers ‘perfect safety’. As noted, this implies that the SCF is

constant (cf. Corollary 1). Possibility results for non-constant SCFs are recovered allowing

for transfers and a preference for the truth.17 In contrast, here we follow the standard ap-

proach of full implementation, with standard preferences and study SCC that select subsets

of the whole space of outcomes.18As for the safety requirement, our framework allows a

wide range of acceptability correspondences, beyond the case of ‘perfect safety’, and we

insist that all equilibria be safe.

Perhaps the closest to our conditions can be found in Bochet and Maniquet (2010), who

study virtual implementation with support restrictions. Their extended monotonicity also

restricts the joint behavior of two correspondences, the SCC and the (state dependent) sup-

port, in a very similar way to the sub-comonotonicity we discussed in Section 4.2. Jackson

and Palfrey (2001) instead study voluntary implementation, with state-contingent partici-

pation constraints that can be seen as a special case of our acceptability correspondence.

Another related paper is Hayashi and Lombardi (2019), which studies Nash implemen-

tation in a two-sector economy, in which the social planner can only design the mechanism

for one sector, taking the other mechanism as given. With this restriction, the possibility of

preference interdependence between the two goods leads to a constraint on the planner’s

ability that is akin to our acceptability correspondence, because only certain allocations

within the fixed sector can be achieved by deviations from a candidate equilibrium.

Postlewaite and Wettstein (1989) and Hong (1995) study continuous implementation in a

Walrasian economy. They show that the implementing mechanism can be designed so that

17SCCs are also studied in Shoukry (2019), but relying on an even stronger restriction than ‘perfect safety’,

which demands that the outcome does not change if up to k agents deviate, not just that it stays within the SCC.

The concept of weak outcome robust implementation instead coincides with perfect safety in our framework. For

this notion, he provides an impossibility result under strict unanimity and rich preferences.
18That is, we do not leave dimensions of the outcome space, such as transfers, outside of the SCC’s codomain.

Shoukry (2014) studies a distinct special case of our A-correspondence, where some agents cannot obtain alter-

natives that are too low in their rankings, which yields an impossibility under rich preferences. Positive results are

obtained by weakening the implementation requirement so as to effectively allow some equilibria to not be safe.
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the outcome function is continuous, and hence such that small deviations from the equilib-

ria lead to small changes in the allocation, which can also be seen as a special instance of

our acceptability correspondence. More broadly, also the literature on feasible implemen-

tation (Postlewaite and Wettstein, 1989, Hong, 1995, 1998) is related to our approach: as

the allocations that occur upon deviations must be feasible at a given state, and feasibility

constraints are state-dependent in this literature, the notion of implementation indirectly

restricts the allocations that can be used upon deviations, much like Safe Implementation.

A distinct strand of literature includes concerns for robustness via changes to the so-

lution concept. For instance, Renou and Schlag (2011) study an implementation problem

where agents are unsure about the rationality of others, using a solution concept based on

ε-minmax regret. Similarly, Tumennasan (2013) studies implementation under quantile re-

sponse equilibrium, letting the logit parameter approach the perfect rationality benchmark.

Barlo and Dalkıran (2021) explicitly model the possibility of preference misspecification,

letting the states not pin down agents’ preferences, and pursuing a notion of implementa-

tion where agents act a la Nash for all preferences that are consistent with each state.19 In

our paper, in contrast, we maintain Nash equilibrium and capture the possibility of mistakes

(or preference misspecification) as an extra desideratum, on top of the standard notion of

implementation. Bochet and Tumennasan (2023b) also maintain Nash Equilibrium, but add

the extra requirement that, in a direct mechanism, not only all non-truthful profiles admit

a profitable deviation (as required by baseline Nash implementation), but that deviating to

truthful revelation is profitable in such instances. This notion is motivated by resilience con-

siderations. A related notion can be found in De Clippel (2014), where the designer takes

into account that agents may display specific deviations from rationality. For further recent

approaches to behavioral implementation, see De Clippel et al. (2019), Crawford (2021),

Kneeland (2022), Barlo and Dalkıran (2023), and Bochet and Tumennasan (2023a).

Finally, our results are also connected with the literature on implementation with ev-

idence (e.g., Kartik and Tercieux (2012), Ben-Porath et al. (2019)), which also enriches

19In that sense, Barlo and Dalkıran (2021) can be seen as an original take on the broader idea of robust im-

plementation, where the types that are relevant for the allocation rule pin down agents’ preferences, but not their

beliefs, which however matter since implementation is required to be achieved for all beliefs consistent with the

designer’s information (cf. in Bergemann and Morris (2005, 2009a,b), Ollár and Penta 2017, 2022, 2023).



29

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

the baseline framework with an extra feature, the ability to produce evidence. Similar to

our Comonotonicity, their main conditions are also suitably adjusted versions of mono-

tonicity. Unlike ours however, their conditions are more permissive than Maskin’s (1977),

effectively restricting the set of states over which monotonicity is required.

7. CONCLUSIONS

We introduce Safe Implementation, a notion that adds to the standard implementation

requirements the restriction that deviations from the baseline solution concept induce out-

comes that are acceptable. This is modelled by introducing, next to the Social Choice Cor-

respondence (which represents the ‘first best’ objectives when agents behave in accordance

with the solution concept), an Acceptability Correspondence that assigns to each state of

the world the set of allocations that are considered acceptable. This framework generalizes

standard notions of implementation and can accommodate a variety of questions, including

robustness with respect to mistakes in play, model misspecification, behavioral considera-

tions, state-dependent feasibility restrictions, limited commitment, etc.

Robustness concerns for mistakes in play and other behavioral considerations have been

considered in the literature, mainly through changes to the solution concept (e.g., Eliaz

(2002), Renou and Schlag (2011), Tumennasan (2013), De Clippel (2014), De Clippel et al.

(2019), Crawford (2021), etc.) Our approach differs mainly in that we impose restrictions

also on the outcomes of players’ deviations, and may thus be adopted to capture concerns

for misspecification of agents’ behavior of any kind, as something which can be superim-

posed on any solution concept, be it ‘classical’ or ‘behavioral’ (see Section 5.3). This way,

our framework can also be used to accommodate broad robustness concerns, to account

for the possibility that even a behavioral model, which may have been developed in order

overcome certain limitations of ‘classical’ notions, may of course also be misspecified. This

modeling innovation therefore has the further advantage of addressing the frequent critique

of behavioral models, of being ad hoc: in our approach, the deviations that are the object

of Safety considerations are unrestricted in their nature, and hence model-free.

Decoupling these concerns from the outcomes of the solution concept, however, raises

some challenges: on the one hand, like in the standard approach, the outcomes that ensue

from deviations must provide the agents with the incentives to induce socially desirable out-

comes, consistent with the criteria that are embedded in the underlying solution concept;
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on the other hand, our concerns for safety limit precisely the designer’s ability to specify

such outcomes. The fact that the acceptable allocations are themselves state-dependent,

like the SCC, means that not only must agents be given the incentives to induce socially

desirable allocations, but also to reveal which outcomes can be used as punishments to

achieve this objective. Our main results, which refer to Nash equilibrium as the underlying

solution concept, precisely formalize this interplay: the necessary and sufficient conditions

that we provide entail joint restrictions on the structure of the SCC and of the acceptability

correspondence, and formally generalize the standard conditions for baseline Nash Imple-

mentation (Maskin, 1999). While we also offer some results for general solution concepts,

that identify substantive limits to the possibility of achieving non-trivial Safety desiderata,

a systematic exploration of solution concepts other than Nash equilibrium is beyond the

scope of this paper, and provides an interesting direction for future research in this area.

Our framework is also general in the specification of the acceptability correspondence,

which can be used to accommodate different special cases, which include: (i) “perfectly

Safe implementation”, which deems acceptable only the outcomes of the SCC (e.g. Eliaz

(2002)); (ii) “ almost perfectly Safe implementation”, when only outcomes that are arbitrar-

ily close to those in the SCC are acceptable, which provides a connection with the literature

on continuous implementation (e.g., Postlewaite and Wettstein (1989), Hong (1995)); (iii)

state-dependent feasibility constraints (e.g., Postlewaite and Wettstein (1989), Hong (1995,

1998)); (iv) minimal guarantees based on a variety of welfare criteria (cf. Ex. 2); (v) limited

commitment in mechanism design, if the designer can only commit to carrying through, de-

pending on the state, certain punishments but not others (cf. Ex. 1); etc. But these are only

some of the possibilities that can be cast within our framework. Further exploring these or

other special cases, explicitly tailored to address specific concerns in more applied settings,

may provide another promising direction for future research.

Finally, as it is customary when conceptual innovations are introduced within implemen-

tation theory, we have maintained the complete information assumption and imposed no

further restrictions on the mechanisms. Combining safety considerations with incomplete

information, or with other restrictions on the mechanisms (e.g., Jackson (1991, 1992), Ollár

and Penta (2017, 2022, 2023), etc.), is yet another direction for future research.
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APPENDIX A: PROOFS

Proof of Theorem 1: Suppose that F is (A,k)-Safe Implementable. Further, suppose

that it is maximally so. Therefore there is some mechanismM that (A,k)-Safe Implements

F and is such that A(θ) = g({m ∈M |d(m,m∗)≤ k, m∗ ∈ CM(θ)}).

We will show that F and A are weakly comonotonic in two steps.

Firstly, we will show that if for some θ, θ′ ∈ Θ, if there exists x ∈ F (θ) such that

Li(x, θ) ∩ A(θ) ⊆ Li(x, θ
′) ∩ A(θ) for all i ∈ N , then x ∈ F (θ′). To do so, take m∗ to

be a Nash Equilibrium at θ that induces x. Hence g(m∗) = x ∈ F (θ). Let θ′ ∈ Θ be a

state such that x /∈ F (θ′). Therefore m∗ is not a Nash Equilibrium at θ′ and hence ∃i ∈N ,

m′i ∈Mi such that ui(g(m′i,m
∗
−i), θ

′)> ui(x, θ
′). It follows that g(m′i,m

∗
−i) ∈X\Li(x, θ′)

and g(m′i,m
∗
−i) ∈ g({m ∈M |d(m,m∗)≤ k, m∗ ∈ CM(θ)}) =A(θ). However, as m∗ is

a NE at θ we have that g(m′i,m
∗
−i) ∈ Li(x, θ) ∩A(θ). Therefore it cannot be the case that

Li(x, θ)∩A(θ)⊆ Li(x, θ′)∩A(θ), a contradiction.

Now we show that if for some θ, θ′ ∈ Θ, all x ∈ F (θ) are such that Li(x, θ) ∩ A(θ) ⊆
Li(x, θ

′) ∩ A(θ) for all i ∈ N , then A(θ) ⊆ A(θ′). Suppose that θ and θ′ are states such

that Li(x, θ) ∩ A(θ) ⊆ Li(x, θ′) ∀i ∈ N for all x ∈ F (θ). Suppose by contradiction that

A(θ) 6⊆A(θ′), and let m∗ be a Nash Equilibrium at θ that induces x ∈ F (θ).

We consider two cases: (1) If m∗ is a Nash Equilibrium at θ′, then Bk(m
∗) ⊆ A(θ′)

by definition. (2) If m∗ is not a Nash Equilibrium at θ′. In this case, there must be some

i ∈ N , who at the state θ′ has a profitable deviation from m∗, i.e. ui(g(m′i,m
∗
−i), θ

′) >

ui(x, θ
′). We conclude that g(m′i,m

∗
−i) ∈X\Li(x, θ′). By (A,k)-Safe Implementation, and

by definition we have that A(θ) = g({m ∈M |d(m,m∗)≤ k, m∗ ∈ CM(θ)}), it must be

that g(m′i,m
∗
−i) ∈ Li(x, θ) ∩ A(θ). A contradiction to Li(x, θ) ∩ A(θ) ⊆ Li(x, θ′) for all

x ∈ F (θ).

We conclude that all m∗ that are Nash Equilibria at θ and induce x, are also Nash Equi-

libria at θ′. Now notice that if this holds for all y ∈ F (θ) then all Nash Equilibria at θ are

also Nash Equilibria at θ′. Given this, the outcomes induced by k agents deviating from

Equilibrium at θ are also reached within k deviations of an Equilibrium at θ′, and hence

A(θ)⊆A(θ′). Thus, (F,A) must be weakly comonotonic. �

Proof of Proposition 1: Suppose that F is (A,k)-Safe Implementable. Therefore there

is some mechanism M that (A,k)-Safe Implements F . We will show that if for some
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θ, θ′ ∈Θ, if there exists x ∈ F (θ) such that Li(x, θ)∩A(θ)⊆ Li(x, θ′)∩A(θ) for all i ∈N ,

then x ∈ F (θ′). That is, A-Constrained Monotonicity of F is satisfied. To do so, take m∗ to

be a Nash Equilibrium at θ that induces x. Hence g(m∗) = x ∈ F (θ). Let θ′ ∈Θ be a state

such that x /∈ F (θ′). Therefore m∗ is not a Nash Equilibrium at θ′ and hence ∃i ∈N , m′i ∈
Mi such that ui(g(m′i,m

∗
−i), θ

′)> ui(x, θ
′). It follows that g(m′i,m

∗
−i) ∈X\Li(x, θ′) and

g(m′i,m
∗
−i) ∈ g({m ∈M |d(m,m∗)≤ k, m∗ ∈ CM(θ)})⊆A(θ) by definition of Safety.

However, asm∗ is a NE at θ we have that g(m′i,m
∗
−i) ∈ Li(x, θ)∩A(θ). Therefore it cannot

be the case that Li(x, θ)∩A(θ)⊆ Li(x, θ′)∩A(θ). �

Proof of Theorem 2: Suppose that F is (A,k)-Safe Implementable. Therefore there is

some mechanismM that (A,k)-Safe Implements F and is such that g({m ∈M |d(m,m∗)≤
k, m∗ ∈ CM(θ)}) ⊆ A(θ). Take A∗ to be a sub-correspondence of A such that g({m ∈
M |d(m,m∗)≤ k, m∗ ∈ CM(θ)}) =A∗(θ) for all states. By definition,M is k-surjective

on A∗. Moreover, for maximal safety, we require A∗(θ) = A(θ) for all θ, else some alter-

natives could be removed, contradicting maximally safe. With this, the logic of theorem 1

holds exactly, as the proof only relies on the outcomes obtainable within k deviations of

the implementing mechanism. That is, one could replace A(θ) with A∗(θ) throughout. �

Proof of Theorem 3: For each i ∈ N , let Mi =
⋃
θ′∈ΘA(θ′) × Θ × N, with typical

element mi = (xi, θi, ni). Let g(m) be as follows:

(i) If mi = (x, θ,ni) ∀i ∈N and x ∈ F (θ) then g(m) = x

(ii) If mi = (x, θ,ni) ∀i ∈N\{j} with x ∈ F (θ) and mj = (y, ·, ·) then

g(m) =

y if y ∈ Lj(x, θ)∩A(θ)

x if y 6∈ Lj(x, θ)∩A(θ)

(iii) if k > 1 and mi = (x, θ, ·), x ∈ F (θ), ∀i ∈ N\D, 2 ≤ |D| ≤ k s.t. ∀j ∈ D mj 6=
(x, θ, ·)

g(m) =

xi
∗

if D∗(θ,D) 6= ∅

x if D∗(θ,D) = ∅

whereD∗(θ,D) = {j ∈D|xj ∈A(θ)}, i∗ = min{i ∈D∗(θ,D)|ni ≥ nj j ∈D∗(θ,D)}
(iv) Otherwise, let g(m) = xi

∗
where i∗ = min{i ∈N |ni ≥ nj ∀j ∈N}
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From here we can complete the proof in three steps: showing that all x ∈ F (θ) are in-

duced by a Nash Equilibrium at θ, showing that there is no y /∈ F (θ) such that y is induced

by an Equilibrium at θ, and finally showing that the mechanism is indeed (A,k)-Safe.

Step 1. First we show that all x ∈ F (θ) are induced by Nash Equilibria at θ. Con-

sider m∗ s.t. m∗i = (x, θ, ·), ∀i ∈ N where x ∈ F (θ) at the state θ. To be a Nash Equi-

librium we need to rule out the possibility that ∃j ∈N,m′j ∈Mj s.t. uj(g(m∗−j ,m
′
j), θ)>

uj(g(m∗), θ). However, g(m∗−j ,m
′
j) = y must be s.t. y ∈ Lj(x, θ) by rule (ii), therefore it is

not possible that uj(y, θ)> uj(x, θ). Hence, m∗ is a Nash Equilibrium leading to x ∈ F (θ).

Step 2. We show there is no Nash equilibrium m∗ at θ such that g(m∗) = y /∈ F (θ).

Case 1. Suppose m∗ is a Nash equilibrium in rule i) at state θ such that g(m∗) = y /∈
F (θ). It must be that m∗i = (y, θ′, ni) for all i ∈N and, necessarily as y /∈ F (θ), that θ′ 6= θ.

Given this, it must be that there is no profitable deviation as m∗ is a Nash equilibrium. As

deviations may only lead to rule (ii), it must be that for all i ∈ N , for any z ∈ Li(y, θ′) ∩
A(θ′) we have that z ∈ Li(y, θ), as there is no profitable deviation to report mi = (z, θ, ·)
inducing outcome z from rule (ii). With this, Li(y, θ′)∩A(θ′)⊆ Li(y, θ)∩A(θ′). Therefore,

by strong comonotonicity, we have that y ∈ F (θ), a contradiction.

Case 2. Now suppose that there is a Nash equilibrium m∗, which is in rule (ii), at state

θ such that g(m∗) = y /∈ F (θ). It must be that ∃j ∈ N such that, ∀i ∈ N\{j} we have

m∗i = (x, θ′, ni), while m∗j 6= (x, θ′, ·). For this to be a Nash equilibrium it must be that

there is not an incentive for any agent to deviate. If k > 1 a deviation can lead to rule (i),

(ii), or (iii), regardless, as m∗ is a Nash equilibrium at θ, no agent i 6= j to wish to change

their report, inducing rule (iii), it must be that y ∈ argmaxz∈A(θ′) ui(z, θ). By Safe No-

Veto, it must therefore be that y ∈ F (θ), a contradiction to y /∈ F (θ). For k = 1 we have

that a deviation can lead to rule (i), (ii), or (iv), which in the case of rule (iv) can induce any

outcome. Those that can deviate to impose rule (iv) are all agents other than j. With this,

we have that, as there is no incentive to deviate, that y ∈ argmaxz∈
⋃
θ′′∈ΘA(θ′′) ui(z, θ) for

all i ∈N\{j}. With this, it must be that y ∈ argmaxz∈A(θ′) ui(z, θ) for all i ∈N\{j}, and

therefore by Safe No-Veto we have that y ∈ F (θ), a contradiction.

Case 3. Now suppose that there is a Nash equilibrium m∗, which is in rule (iii), at state

θ and g(m∗) = y /∈ F (θ). Suppose that |D| < k and m∗i = (x, θ′, ·) for all agents i /∈ D.

Given this, it must be that there is no profitable deviation for any agent. As there exists

a message for any player that leads to any allocation in A(θ′) via rule (iii), we conclude
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that y ∈ argmaxz∈A(θ′) ui(z, θ) for all i ∈N . Therefore by Safe No-Veto, we have that y ∈
F (θ). Now suppose that |D|= k. For there to be no profitable deviation, it must be that for

∀i ∈D, y ∈ argmaxz∈A(θ′) ui(z, θ). For all agents in i ∈N\D it must be that for any x ∈⋃
θ′′∈ΘA(θ′′)⊇A(θ′), we have that ui(y, θ)≥ ui(x, θ), as there is no profitable deviation.

Given this, we conclude that y ∈ argmaxz∈A(θ′) ui(z, θ) for all i ∈N , and therefore by Safe

No-Veto we conclude that y ∈ F (θ), a contradiction.

Case 4. Finally, if there is a Nash equilibrium m∗ at θ in rule (iv), we can see that a

unilateral deviation can lead to any outcome in
⋃
θ′′∈ΘA(θ′′) via rule (iv). With this, it

must be that for m∗ with g(m∗) = y to be a Nash equilibrium in this state we have that

y ∈ argmaxz∈
⋃
θ′′∈ΘA(θ′′) ui(z, θ) for all i ∈ N . Therefore, y ∈ argmaxz∈A(θ′) ui(z, θ) for

some θ′, and therefore by Safe No-Veto we have that y ∈ F (θ).

Step 3. We will now show that all Nash equilibria are safe. We consider four cases:

Case 1. If m∗ is a Nash equilibrium at θ that falls into rule (i) it must be that m∗i =

(y, θ′, ni). By the previous analysis, we know that y ∈ F (θ). If θ′ = θ, we conclude that

safety is satisfied as k deviations can only lead to rule (ii) or (iii). Either way, we remain in

A(θ). Now suppose that θ′ 6= θ while m∗ is a Nash equilibrium at θ. Notice that regardless,

k deviations must lead to remaining within A(θ′) via rule (ii) or (iii). By the previous

analysis, we know that this only occurs when Li(y, θ′)∩A(θ′)⊆ Li(y, θ)∩A(θ′) for all i ∈
N . Given this, A(θ′)⊆A(θ) must hold for strong comonotonicity to be satisfied. Therefore

any deviation from this Nash equilibrium must remain in A(θ′)⊆A(θ), maintaining safety.

Case 2. Now suppose that m∗ is a Nash equilibrium at θ that falls into rule (ii). It must

be that ∀i 6= j m∗i = (x, θ′, ni) while m∗j 6= (x, θ′, ni). Notice that k deviations can lead to

rule (i), rule (iii) if k > 1, and rule (iv). Notice k deviations can lead to rule (iii) for some

state θ′′ 6= θ′ if k = n
2 − 1, depending on the report of j. Regardless, safety will require

that A(θ) =
⋃
θ′′∈ΘA(θ′′) for this mechanism. To see this is implied by the condition of

Safe No-Veto we only have a Nash equilibrium at such a state if ∀i /∈ N\{j} they prefer

g(m∗) = y rather than inducing any outcome in rule (iii), in the case k > 1, or rule (iv), in

the case, that k = 1. Given this, it must be that y ∈ argmaxz∈A(θ′) ui(z, θ) for all i /∈N\{j},
and hence by Safe No-Veto A(θ) =X⇒X =

⋃
θ′′∈ΘA(θ′′) so safety is not violated.

Case 3. Now suppose that m∗ is a Nash equilibrium at θ that falls into rule (iii), and

therefore k > 1. It must be that all agents in i ∈ N\D for some D ⊂ N with |D| ≤ k,

are reporting m∗i = (x, θ′, ni). By the structure of the mechanism, k deviations can lead to
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rules (i), (ii) if n = 3 and k = 1 or k ≥ |D| > n
4 if all those in D report mj = (z, θ′′, nj),

(iii), or (iv). With this, it is possible that for safety to be achieved we require that A(θ) =⋃
θ′′ A(θ′′). Notice that for y = g(m∗) to be a Nash equilibrium at state θ, by the previous

analysis it must be that y ∈ argmaxz∈A(θ′) ui(z, θ) for all i ∈N . With this, it must then be

that by safety no veto A(θ) =
⋃
θ′′∈ΘA(θ′′). Therefore Safety is necessarily achieved.

Case 4. Finally, suppose that m∗ is a Nash equilibrium at θ with g(m∗) = y. Note that

by the rules of the mechanism, k deviations can lead to any outcome via rule (iv). If we

have a Nash equilibrium within this rule, it must be that y ∈ argmaxz∈
⋃
θ′′∈ΘA(θ′′) ui(z, θ)

for all i ∈ N , as else any agent could deviate to induce any outcome in
⋃
θ′′∈ΘA(θ′′)

they wish via announcing a higher integer. With this, we conclude that it must be that

y ∈ argmaxz∈A(θ′) ui(z, θ) for any A(θ′) such that y ∈ A(θ′). With this, by Safe No-Veto,

we conclude that A(θ) =X⇒
⋃
θ′′∈ΘA(θ′′) =X , and therefore Safety is achieved. �

Proof of Lemma 1: Take θ, θ′ ∈Θ such that f(θ) = x 6= f(θ′). Let agent i be such that

θi 6= θ′i. Without loss of generality, suppose that θ′i > θi. We need to show ∃y ∈ A(θ) such

that y ∈ Li(f(θ), θ) while y 6∈ Li(f(θ), θ′). By Taylor’s theorem, ∃ε > 0 such that forNε(x)

the remainder term of the 1 Taylor expansion is sufficiently small to preserve inequalities.

Therefore we need to show that there exists y ∈Nε(x) such that (yi1−xi1)∂ui(f(θ),θi)

∂xi1
+(yi2−

xi2)∂ui(f(θ),θi)

∂xi2
< 0 while (yi1 − xi1)

∂ui(f(θ),θ′i)
∂xi1

+ (yi2 − xi2)
∂ui(f(θ),θ′i)

∂xi2
> 0 as Nε(f(θ)) ⊆

A(θ). With some rearranging we find

∂ui(f(θ),θi)

∂xi2
∂ui(f(θ),θi)

∂xi1

<−y
i
1−xi1
yi2−xi2

<

∂ui(f(θ),θ′i)
∂xi2

∂ui(f(θ),θ′i)

∂xi1

, which as θ′i > θi

is satisfied by single crossing, as we can find −y
i
1−xi1
yi2−xi2

satisfying the inequalities needed in

the neighbourhood. �

Proof of Proposition 2: Let each agent i ∈N announce an outcome, which excludes all

reports that would be their maximal allocation, and the state. Therefore Mi = int(X)×Θ,

with typical element mi = (x(i), θ(i)) Let g(m) be as follows:

(i) If mi = (x(i), θ(i)) is such that θ(i) = θ ∀i ∈N then g(m) = f(θ).

(ii) If mi = (x(i), θ(i)) is such that θ(i) = θ ∀i ∈N\{j} where mj = (x(j), θ′), θ′ 6= θ

g(m) =

x(j) if x(j) ∈ Lj(f(θ), θ)∩N ε
2
(f(θ))

f(θ) if x(j) 6∈ Lj(f(θ), θ)∩N ε
2
(f(θ))



36

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

(iii) If ∃D ⊂ N such that k ≥ |D| > 1, where mi = (x(i), θ(i)) and θ(i) = θ,∀i ∈ N\D,

then g(m) is constructed by the following: Let ε be fixed across agents such that

Nε(f(θ))⊆ A(θ). ∀i ∈D let x̃(i) = x(i) if x(i) ∈ N ε
|D|

(f(θ)). x̃(i) = λix(i) + (1−
λi)f(θ) such that d(f(θ), x̃(i)) = ε

|D|+1 , λi ∈ (0,1) otherwise. where Now let g(m) =

f(θ) +
∑

i∈D(x̃(i)− f(θ)).

(iv) Otherwise, let g(m) = 1
n

∑
i∈N x(i).

Step 1. First to show that x = f(θ) is a Nash Equilibrium at θ. Consider m∗ satisfying

rule (i) Any unilateral deviation of agent i leads to rule (ii), where the only way to change

the allocation is in Li(f(θ), θ), which cannot give a strictly higher utility by definition.

Therefore all m∗ satisfying rule (i) are Equilibria.

Step 2. We want to show that @m∗ that is an Equilibrium at θ with g(m∗) 6= f(θ).

Case 1: Suppose that there is an Equilibrium in Rule (i) where g(m∗) 6= f(θ), where the

true state is θ. It follows that all agents are announcing some state θ′ 6= θ. With this, there

exists some agent who announces their own type to be θj(j) = θ′j 6= θj . For this agent ∃xj
s.t. xj ∈ Lj(f(θ′), θ′) ∩N ε

2
(f(θ′)) while xj 6∈ Lj(f(θ′), θ) ∩N ε

2
(f(θ′)) by the same logic

as lemma 1 via the single crossing condition. Therefore m∗ cannot be a Nash Equilibrium.

Case 2: There are no Nash Equilibria for any θ in rule (ii). Suppose that m∗ is an

equilibrium at that θ where for all i ∈N\{j} we have that mi = (x(i), θ(i)) with θ(i) = θ′

while mj = (x(j), θ(j)) with θ(j) 6= θ′. Regardless of whether g(m∗) = f(θ) or g(m∗) =

x(j), notice that any agent i 6= j can induce an increase in both dimensions of the bundle

by announcing mi = (x′(i), θ′(i)), where θ′(i) 6= θ′ and x′(i) such that x′j(i) = fj(θ) and

x′i(i) is chosen such that x′(i) ∈ N ε
2
(f(θ)) and

xk,′i (i)+x̃kj (j)

2 > fki (θ), which is achievable

by the construction of rule (iii). As ui is strictly increasing, m∗ is not a Nash equilibrium.

Case 3: There cannot be an Equilibrium in Rule (iii), any agent i ∈D can announce an

allocation to the north east of x̃(i) such that x(i) ∈N ε
|D|

(f(θ)), leading to rule (iii) or (iv),

regardless, monotonically increase their allocation.

Case 4: The final case is within rule (iv). Again, this cannot be an Equilibrium, as agents

can deviate to announcing an allocation to the north east of the current one, leading to rule

(iv). This deviation is profitable given the assumption of increasing utility. As the message

can only be interior in X , such a profitable deviation always exists.
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Step 3: Notice all Equilibria lie in Rule (i). Further, any such equilibrium m∗ at θ lead

to g(m∗) = f(θ) by Case 1 of Step 2. k deviations that remains in rule (i) must lead to the

same allocation, and therefore safety is guaranteed. k deviations that lead to rule (ii) lead to

allocations in N ε
2
(f(θ))⊂Nε(f(θ))⊆ A(θ) and therefore safety is maintained. The only

check needed for this is that rule (iii) lies within an ε neighbourhood of f(θ), and therefore

within A(θ). To see this, notice that:

d(f(θ), g(m)) = d

(
f(θ), f(θ) +

∑
i∈D

(x̃(i)− f(θ))

)
= ‖

∑
i∈D

(x̃(i)− f(θ))‖

≤
∑
i∈D
‖x̃(i)− f(θ)‖=

∑
i∈D

d(f(θ), x̃(i))< |D| 1

|D|
ε= ε

(the weak inequality comes from the triangle inequality). Hence, g(m) ∈Nε(f(θ)) for any

m within rule (iii) that is k deviations from an equilibrium at θ. �

Proof of Proposition 4: If |X| ≤ n, by richness ∃θ ∈Θ such that for every x ∈X ∃i ∈N
such that {x}= argminy∈X ui(y, θ). Hence if A is minimally safeguarding then X∗(θ) = ∅
and therefore no SCC can be safely C-implemented for any k ≥ 1 and any C.�

Proof of Proposition 5: If it is not the case that A(θ) = X for some θ, then it must be

that some x ∈X is not in A(θ). By surjectivity, there is some state where x = f(θ′), and

x 6= z = f(θ). By richness, ∃θ′′ ∈ Θ where x is the top ranked alternative for all players,

while z is second ranked for all players. Hence, by Comonotonicity, both z and x are chosen

by the SCF at θ′′. But since x 6= z, and we have a SCF, this is a contradiction. �

Proof of Proposition 3: Let X =N ∪ {0}, where 0 represents the good not being allo-

cated. For each θ ∈ Θ let θ ∈ Rn+ denote the vector of agents’ values. Let Mi = X × Rn+
for all i ∈N with a typical message mi = (j, v) ∈N ∪ {0} ×Rn+. Let g(m) be as follows:

(i) If ∀i ∈N mi = (j′, v) with v = θ ∈Θ and j′ = f(θ) then g(m) = j′ = f(θ).

(ii) If mi = (j′, v) ∀i ∈N\{j} with v = θ ∈Θ and f(θ) = i′ and mj = (l, ·), then

g(m) =

l if l ∈ [Lj(j
′, θ)∩ Ã(θ)]\{j′}

∅ if l /∈ [Lj(j
′, θ)∩ Ã(θ)]\{j′}
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(iii) If mi = (j′, v) such that v = θ ∈ Θ and j′ = f(θ) for ∀i ∈ N\D, 2 ≤ |D| < n
2 such

that ∀j ∈D mj = (lj , ·), lj 6= j′ then

g(m) =

li
∗

if D∗(θ,D) 6= ∅

j′ if D∗(θ,D) = ∅

where D∗(θ,D) = {j ∈ D|lj ∈ Ã(θ)} and i∗ = min{i ∈ D∗(θ,D)|vii ≥ vjj j ∈
D∗(θ,D)}.

(iv) otherwise let g(m) = li
∗

where mi = (li, ·) and i∗ = min{i ∈N |vii ≥ v
j
j j ∈N}.

Where Ã(θ) =
⋂
θ′∈Θ|f(θ′)=f(θ)A(θ′).

Notice that, at state θ, with messages that fall into rule (i) with m∗ = (j′, θ), m∗ is a

Nash equilibrium, since any deviation from m∗ either leads to the good not being allocated

or it must be that a less deserving agent receives the good. To show all Nash Equilibria are

safe, we will do so by showing that rule i) constitute the only Nash Equilibria, and always

allocate the f(θ) at state θ.

Suppose that there is a Nash Equilibrium in rule ii) m∗ at state θ. Let m∗i = (j′, θ′) for

all i 6= j and m∗j = (l, ·). It must be either g(m∗) = l ∈ Ã(θ′), l ∈ N\{j′}, or g(m∗) = 0.

Suppose that j = j′. Here there is a profitable deviation to announce mj = (j′, θ′) and

be allocated the good, which cannot be case under rule (ii). Suppose instead that j 6= j′.

Let i = j′, who can announce mi = (i, v′′) such that v′′i is strictly higher than the ith (or

equivalently j′,th) component of θ′ and receive the good by inducing rule (iii).

As all agents prefer to have the good allocated to themselves, there can be no Equilibria

in rule iii) and iv). To see that in the case of rule (iii) there is no Nash equilibrium, suppose

that the message of |N | − k agents is mi = (j′, v′), with v′ = θ′ and f(θ′) = j′, while m∗

is a Nash equilibrium. Given that there is some agent j ∈ Ã(θ′) such that g(m∗) 6= j by

(A.3.). Such an agent prefers to have the good allocated to themself, they can announce

mj = (j, v′′), such that v′′j = maxi6=j v
i
i + ε, and therefore would induce that the good is

allocated to them. For rule (iv), but any agent who is not allocated the good could deviate.

Suppose that there is some Nash Equilibrium in rule i) m∗ at θ such that, for some θ′

we have g(m∗) = f(θ′) = j′ 6= f(θ). j′ is undeserving. Any agent can announce l = 0 (or

any l /∈ A(θ)), which given rule (ii) and (P.2.), induces no agent to receive the good, as is
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not preferred at θ′. However, this is preferred at θ as reverting to the empty allocation is

attainable and by assumption gives a higher payoff than an undeserving agent.

Notice that they all lie within rule (i) withm∗i = (j′, θ) at state θ′, where j′ has the highest

valuation in state θ′. Up to k deviations can only lead to rules (ii) or (iii), where the majority

still announces (j′, θ). With this, we remain in Ã(θ)⊆A(θ′). �

APPENDIX B: ON THE GAP BETWEEN WEAK AND STRONG COMONOTONICITY

Strong and Weak Comonotonicity coincide for SCFs, but when the SCC is not single

valued, there is a gap between necessary and sufficient conditions. In this appendix we show

that a stronger condition than Weak Comonotonicity is necessary and almost sufficient,

thereby reducing the gap between necessity and sufficiency. Similar to Moore and Repullo

(1990)’s ‘Condition µ’, this condition relies on identifying which sub-correspondences ofA

are used, within an implementing mechanism, to support each of the different allocations in

the SCC. Like Moore and Repullo (1990)’s ‘Condition µ’ compared Maskin Monotonicity,

however, this condition too is harder to check than Weak Comonotonicity.

Specifically, letM= 〈(Mi)i∈N , g〉 be a mechanism that (A,k)-Safe Implements F . For

any θ and x ∈ F (θ), let NE(x, θ)⊆M denote the (non-empty) set Nash equilibria at state

θ that induce x. Then, for each m∗(x, θ) ∈ NE(x, θ) we know that (i) x = g(m∗), and

(ii) g(m) ∈ A(θ) for any m ∈ Bk(m∗) (i.e., for any m that is within k deviations from

m∗). Next, let Gk(x, θ) := ∪m∗∈NE(x,θ)Bk(m
∗). By definition of Safety, Gk(x, θ)⊆A(θ).

Essentially, for each θ and x ∈ F (θ), Gk(x, θ) is the subset of A(θ) that consists of all the

allocations that are used to ‘sustain’ the implementation of outcome x.

Notice that, for k = 1, the set G1(x, θ) consists of the set of allocations that can be

induced by unilateral deviations from one of the Nash equilibria m∗ ∈NE(x, θ), and sim-

ilar to Moore and Repullo (1990), let Ci(x, θ)⊆G1(x, θ) denote the set of allocations that

can be induced by unilateral deviations of player i alone. Then, Ci(x, θ)⊆Gk(x, θ)⊆A(θ)

and x ∈ argmaxy∈Ci(x,θ) ui(y, θ) for all i ∈N .20 Next notice that if for some θ′ it holds that

20To see why the latter condition holds, for any m∗ ∈ NE(x, θ), let Ci(m
∗) := {y ∈ X :

∃mi ∈ Mi such that y = g(mi,m
∗
−i)}. Then, Ci(x, θ) = ∪m∗∈NE(x,θ)Ci(m

∗), and since x ∈
argmaxy∈Ci(m∗) ui(y, θ) for all i and for all m∗ ∈ NE(x, θ), it follows that x ∈ argmaxy∈Ci(x,θ)

ui(y, θ)

for all i ∈N .
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x ∈ argmaxy∈Ci(x,θ) ui(y, θ
′) for all i, then all m∗ ∈NE(x, θ) are also equilibria at θ′, and

hence NE(x, θ)⊆NE(x, θ′). It follows that (i) x ∈ F (θ′), and (ii) Gk(x, θ)⊆Gk(x, θ′).21

With this, we obtain that the following condition is necessary:

DEFINITION 13: (A,F ) satisfy the Safe-µ Condition if there exist correspondences G :

X × Θ ⇒ X and Ci : X × Θ ⇒ X such that G(x, θ) ⊆ A(θ) and Ci(x, θ) ⊆ Li(x, θ) ∩
G(x, θ) for all i, θ and x ∈ F (θ), which satisfy the following: if θ, θ′ ∈Θ and x ∈ F (θ) are

such that Ci(x, θ)⊆ Li(x, θ′) for all i, then: (i) x ∈ F (θ′), and (ii) G(x, θ)⊆G(x, θ′).

THEOREM 4: F is (A,k)-Safe Implementable only if the Safe-µ Condition is satisfied.

If, moreover, A is maximally safe, then ∪x∈F (θ)G(x, θ) =A(θ) for each θ.

The gap between Comonotonicity and Def. 13 is analogous to the gap between Mono-

tonicity and Condition µ of Moore and Repullo (1990). Similarly, under the appropriate

No-Veto condition, the Safe-µ Condition can be shown to be sufficient for (A,k)-Safe Im-

plementation when k < n
2 . All the results in Section 4.1 would also hold under the suitable

adaptations of No Unanimity and No Total Indifference, and hence a tight characterization

can be provided for general SCC in those environments.

This condition also identifies the exact source of the gap between strong and weak

Comonotonicity when the SCC is non-single valued: if, for some state θ, F (θ) contains

multiple allocations, say x,x′ ∈ F (θ), different subsets of A(θ) may be used to sustain

them, namely Gk(x, θ) and Gk(x′, θ). When x ‘climbs up’ from θ to θ′, then it must

be that the x ∈ F (θ′) and that all Gk(x, θ) must also be acceptable at θ′. However, un-

less this happens for all allocations in F (θ) (cf. point 2 in Def. 5), we cannot conclude

that A(θ) ⊆ A(θ′), even under maximal (A,k)-Safe Implementation. We may only con-

clude that some subset of allocations of A(θ) are a subset of A(θ′) (more precisely,

that Gk(x, θ) ⊆ Gk(x, θ′) ⊆ A(θ′)). Clearly, A(θ) ⊆ A(θ′) would follow immediately if

Gk(x, θ) = A(θ) for all θ ∈Θ and x ∈ F (θ), in which case in fact Safe-µ boils down pre-

cisely to Strong Comonotonicity. But when theGk are strict subcorrespondences of A, then

the condition becomes much harder to check. For these reasons, we elect to provide Weak

and Strong Comonotonicity as more transparent and easy to check conditions.

21Point (i) follows from implementation; point (ii) from the fact that NE(x, θ)⊆NE(x, θ′).
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APPENDIX C: ON THE RELATIONSHIP BETWEEN SAFE IMPLEMENTATION AND

FAULT TOLERANT IMPLEMENTATION

In this appendix we provides two examples to show that, despite their similar motivation,

Safe Implementation and Fault Tolerant Implementation of Eliaz (2002) are distinct and

non-nested notions. We first recall the definition of Fault Tolerant Nash Equilibrium:

DEFINITION 14: A k-Fault Tolerant Nash Equilibrium (k-FTNE) for the instance (θ, k)

is a profile of messages m∗ ∈M having the property that ∀i ∈N , ∀mi ∈Mi, ∀mD ∈MD

and ∀D ⊆N such that |D| ≤ k:

ui(g(m∗i ,m
∗
N\{D∪{i}},mD), θ)≥ ui(g(mi,m

∗
N\{D∪{i}},mD), θ).

Let CMk (θ) denote the set of k-FTNEin mechanismM at state θ.

The definition of k-Fault Tolerant Implementation (k-FTI) requires that the set of k-

Fault Tolerant Implementation coincide with the designer’s desired outcomes, as dictated

by the social choice correspondence (SCC), and additionally that the set of outcomes that

are reachable within k deviations from any such equilibria are also within the SCC.

DEFINITION 15: Let 〈N,Θ,X, (ui)i∈N 〉 be an environment. The SCC F : Θ→ 2X\{∅}
is k-Fault Tolerant implemented by g :M →X , if ∀θ ∈Θ, ∀m∗ ∈ CMk (θ): (i) g(CMk (θ)) =

F (θ); and (ii) g(B(m∗, k))⊆ F (θ).

Eliaz (2002) introduced two key conditions, k-monotonicity and weak k-monotonicity,

and shows that the first is necessary for k-FTI in the case of SCF, and the second for SCC.

(In the case of SCFs, the two notions coincide):

DEFINITION 16: A SCC F : Θ→ 2X\{∅} is k-monotonic if, whenever x ∈ F (θ) and

x /∈ F (θ′), there exists D ⊂ N and ∃y ∈ X such that |D| ≥ k + 1, every i ∈M satisfies

ui(x, θ)≥ ui(y, θi) and at least one player j ∈M satisfies uj(y, θ′j)> uj(x, θ
′
j).

DEFINITION 17: A SCC F : Θ→ 2X\{∅} is weakly k-monotonic if, whenever F (θ) 6⊆
F (θ′), there exists D ⊆ N have at least k + 1 players and ∃y ∈ X such that, for every

player i ∈D, there is an outcome xi ∈ F (θ) satisfying ui(xi, θ)≥ ui(y, θ), and for at least

one of these players j ∈D, uj(y, θ′)> uj(x
j , θ′)
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The next example shows that a non-(Maskin) monotonic SCC may be 1-FTI. This il-

lustrates three things, all of which were discussed in the main text: first, 1-FTI is possible

when Safe Implementation is not, regardless of the acceptability correspondnece; second,

since 0-FTI coincides with Nash Implementation, that k-FTI need not imply (k − 1)-FTI;

third, k-FTI cannot be seen as an extra desideratum on top of Nash Implementation.

EXAMPLE 6—A rule that is Implementable in 1-Fault Tolerant Equilibrium but not

Nash Equilibrium: TakeN = {1,2,3}, Θ = {θ1, θ2}X = {a, b, c, d, e}, ui(x, θ2) = 0,∀x ∈
X,∀i ∈ N , and let utilities u(x, θ1) = (u1(x, θ1), u2(x, θ1), u3(x, θ1)) of each outcome at

state θ1be as follows: u(a, θ1) = (1,1,1), u(b, θ1) = (1,0,1), u(c, θ1) = (0,1,1),u(d, θ1) =

(0,0,0), and u(e, θ1) = (1,1,2). Finally, the SCC is F (θ1) = {a, b, c} and F (θ2) =X .

Note this SCC violates (Maskin) monotonicity: since X = Li(e, θ1) = Li(e, θ2) for all

i, monotonicity would require e ∈ F (θ1). Hence, this rule is not Nash Implementable, and

thus not Safe Implementable, for any acceptability correspondence or k. Yet, the following

mechanism achieves 1-FTI of this SCC: For each i, Mi = {1,2,3}, and g(m) is as follows:

m2

1 2 3

m1

1 a c c

2 b d d

3 b d d

m3 = 1

m2

1 2 3

m1

1 c c c

2 b d d

3 b d d

m3 = 2

m2

1 2 3

m1

1 b c c

2 b d d

3 b d e

m3 = 3
TABLE C.I

A 1-FT IMPLEMENTING MECHANISM: 1 CHOOSES THE ROW MESSAGE, 2 CHOOSES THE COLUMN

MESSAGE, AND 3 CHOOSES THE TABLE MESSAGE; THE OUTCOME g(m) INDUCED BY EACH MESSAGE

PROFILE IS REPRESENTED IN THE CORRESPONDING CELL.

At state θ1, this mechanism induces the following game:
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m2

1 2 3

m1

1 (1,1,1) (1,0,1) (1,0,1)

2 (0,1,1) (0,0,0) (0,0,0)

3 (0,1,1) (0,0,0) (0,0,0)

m3 = 1

m2

1 2 3

m1

1 (1,0,1) (1,0,1) (1,0,1)

2 (0,1,1) (0,0,0) (0,0,0)

3 (0,1,1) (0,0,0) (0,0,0)

m3 = 2

m2

1 2 3

m1

1 (0,1,1) (1,0,1) (1,0,1)

2 (0,1,1) (0,0,0) (0,0,0)

3 (0,1,1) (0,0,0) (1,1,2)

m3 = 3
TABLE C.II

THE INDUCED GAME AT STATE θ1 .

First note that m = (1,1,1) is a 1-FTNE that induces a: under any unilateral devia-

tions of some of i’s opponents, message mi = 1 still yields a payoff at least as high as

that obtained from sending a different message, while at the same time ensuring outcomes

consistent with the SCC at that state (namely, b or c).

Second, m= (1,1,2) induces c and is also a 1-FTNE: if any one opponent deviates, no

player can increase their utility by also deviating, and any unilateral deviation still results

in outcomes (a or c) consistent with the SCC at θ1.

The same is true of m = (1,1,3) which induces b. Further, it can be seen that there

are no other 1-FTNE in this game. Hence, each of the outcomes in F (θ1) is induced as a

1-FTNE outcome, and unilateral deviations from any such equilibrium result in outcomes

within F (θ). Since implementation at state θ2 is trivial, it follows that this mechanism 1-

FT-Implements the SCC. �

We now turn to showing there are cases where Safe Implementation is possible, even

under the most restrictive case of perfect safety, while 1-FTI is not. To do so, we will show

that both 1-monotonicity and weak 1-monotonicity are violated.
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EXAMPLE 7: Let there be four players N = {1,2,3,4}, three alterantives X = {a, b, c}
and two states of the world, L and R, with the SCC such that F (L) = X while F (R) =

{b, c}. Then, consider perfect safety, i.e., A(θ) = F (θ) for all θ (see Fig. C.1):

a

b

c

b

a

c

c

b

a

c

b

a

b

a

c

b

a

c

c

b

a

c

b

a

1 2 3 4 1 2 3 4

L R

FIGURE C.1.—Let F (L) = X = A(L) and F (R) = {b, c} = A(R). The preferences are represented top to

bottom. For instance, in state L player 1 has the ordering a� b� c.

First notice that comonotonicity holds. To see this, we need to consider that a ∈ F (L)

but a /∈ F (R). But since L1(a,R) ∩ A(R) = X while L1(a,L) ∩ A(R) = {a, c}, we have

Li(a,R)∩A(R) 6⊆ Li(a,L)∩A(R) for some i, and hence comonotonicity does not require

that a ∈ F (R). Further, as Safe No-Veto is not violated F is (A,1)-Safe implementable

with A(θ) = F (θ) for all θ.

1-monotonicity, however, does not hold. For it to hold, it must be that two players at state

R prefer some other common allocation to a, and one such agent reverses their preferences

at state L. But a is worst ranked for 3 and 4 in both L and R, and hence the only possible

candidate is agent 2, who only prefers a to c in L. As neither 1 or 2 have a preference

reversals around a and c from L to R, 1-monotonicity does not hold. Since 2’s preferences

do not change, the same logic also applies to show that weak 1-monotonicity does not hold

either, as there is no preference reversal around the only commonly dominated outcome c

in any of the outcomes in F (L) for 1 and 2. �
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