
An Analytical Model of Search and Bargaining with

Divisible Money∗

Kazuya Kamiya†and So Kubota‡

October 9, 2024

Abstract

We propose a standard search and bargaining model with divisible money, in which

only the random matching market opens and the generalized Nash bargaining settles

each trade. Assuming fixed production costs, we analytically characterize a tractable

equilibrium, called a pay-all equilibrium, and prove its existence. Each buyer pays

all the money holding as a corner solution to the bargaining problem and each seller

produces a positive amount of goods as an interior solution. The bargaining power pa-

rameter affects the distribution of the money holdings and possibly induces economic

inefficiency. We propose a redistributional monetary transfer that adjusts the bargain-

ing outcome and improves the allocation efficiency. Moreover, we analyze a temporary

expansion of the money supply that increases social welfare through a redistribution.
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1 Introduction

We propose a search and bargaining model with money and study a tractable equilibrium

with simple distributions of money holdings. The model is a straightforward extension of

basic search and bargaining models with indivisible money, such as Trejos and Wright (1995)

and Shi (1995) to divisible money. In this model, both money and goods are divisible and

traded in an environment of only random matching and Nash bargaining. This formulation

has been well-known in the literature since it was first conjectured by Trejos and Wright

(1995). However, to the best of our knowledge, no study has yet succeeded in analytically

characterizing the monetary equilibria because of the technical difficulties in dealing with

the distribution of money holdings. We find that, by assuming fixed production costs, the

model generates a simple but non-degenerate distribution of money holdings. We analytically

characterize the equilibria, prove their existence, and derive the efficiency conditions of the

bargaining power parameter. Our model also has implications for redistributive fiscal and

monetary policies.

Originating from Kiyotaki and Wright (1989), search theory provides a solid microfoun-

dation of money and has implications for real-world economic phenomena. However, its

straightforward extension to divisible money makes its distribution non-degenerate, which is

hard to monitor as a state variable. To overcome this problem, workhorse (or the so-called

third-generation) models impose the large household assumption (Shi (1997)) and central-

ized markets (Lagos and Wright (2005)) to make the distribution degenerate. While these

extended models are attractive in terms of tractability and due to their rich applications,

it is still worth considering basic search and bargaining models. These elementary models

shed light on theoretical properties and policy applications in the search market that may

be hidden by tractability assumptions.

We thus consider a standard search model in which agents randomly match and ex-

change goods with money through Nash bargaining. There is no assumption to ensure the

degenerate distribution of money holdings. Instead, by introducing fixed production costs,

we construct a particular type of tractable equilibrium that satisfies the pay-all property.
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In each Nash bargaining problem, the amount of monetary payment is solved as a corner

solution, that is, the buyer pays all the money holding. By contrast, the amount of goods

sold is determined as an interior solution. Then, a simple stationary non-degenerate distri-

bution of money holdings arises: there is a mass of agents with zero money holding, while

the others save sufficiently large amounts of money to overcome the fixed costs to purchase

goods. Agents alternately move between the two states, and this sorting helps keep track

of the distribution of money holdings. Besides Nash bargaining, this equilibrium also holds

under Kalai (1977b)’s proportional solution.

The equilibrium has an inefficiency caused by the bargaining power parameter between

the buyer and seller, in the manner of the Hosios (1990) condition. Our model suggests a

holdup problem that distorts the buyer’s incentive to save money as in Lagos and Wright

(2005). In addition to these intra-bargaining effects, in our model, bargaining power affects

the distribution of money holdings. This new channel makes a non-monotonic relationship

between social welfare and bargaining power. We thus propose redistributive monetary trans-

fers that mitigates this bargaining power inefficiency while maintaining the budget balance.

Moreover, we study monetary expansions and propose an analytical result of an effective

short-term monetary policy associated with the redistribution of money holdings. This pro-

portional neutrality and distributional effects are in line with Wallace (2014)’s conjecture.

Some models in the literature have succeeded in characterizing the non-degenerate dis-

tribution of money holdings. The first contribution is that of Green and Zhou (1998), who

consider a random-matching model with divisible money in which each exchange is closed

by a take-it-or-leave-it offer; this is a special case of Nash bargaining. The key result is the

real indeterminacy of stationary equilibria: a continuum of steady states exists and each

holds a different real allocation.1 Although the result is theoretically appealing, this prop-

erty hinders applied studies. Zhu (2005) also considers a model with a take-it-or-leave-it

offer and constructs the equilibrium of divisible money as the limit of the indivisible money

equilibrium. Another important model is that of Menzio et al. (2013), which eliminates

one-to-one Nash bargaining and instead assumes a competitive search environment. They

construct a block recursive equilibrium that creates a simple transitional process of agents

on the non-degenerate distribution. In a more recent study, Rocheteau et al. (2021) analyze

1The general framework is constructed by Kamiya and Shimizu (2006). The indeterminacy emerges even
if goods are divisible. See Kamiya and Shimizu (2007, 2011, 2013), and Kubota (2019) for the conditions of
this indeterminacy.
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a discrete distribution caused by a delayed money-holding adjustment based on the Lagos-

Wright model. The use of numerical methods of Molico (2006), Chiu and Molico (2010), and

Chiu and Molico (2021) is also noteworthy. Finally, Camera and Corbae (1999) consider a

model in which agents can hold countable amounts of money. The novelty of our approach,

by contrast, arises from (i) the tractable equilibria constructed only on a random-matching

market with Nash bargaining, (ii) the analytical characterization and existence of equilibria,

and (iii) the policy implications of bargaining power inefficiency.

The remainder of this paper proceeds as follows. Section 2 introduces the economic

environment. Section 3 illustrates the pay-all equilibrium and its properties, and demon-

strates how a perturbation selects a unique equilibrium. Section 4 proves the existence of the

equilibria. Section 5 investigates the economic inefficiency induced by bargaining power on

social welfare, and Section 6 considers a redistributive policy to improve allocation. Section

7 discusses monetary expansion, and Section 8 considers two related problems: the choice of

the bargaining solutions and consistency with axiomatic Nash bargaining. Finally, Section

9 concludes the paper.

2 Economic environment

Time is discrete and the time horizon is infinite, as denoted by t = 1, 2, · · · . There is

a continuum of agents with measure one. Each agent discounts her future payoff with a

discount factor β ∈ (0, 1), and each can produce divisible and non-storable goods. This

incurs disutility following a cost function:

us(x) =

−d− cx if x > 0,

0 if x = 0,

where x is the amount of production, d > 0 is the fixed cost, and c ∈ (0, 1) is the unit cost.

To eliminate the double-coincidence of wants, we assume that each agent cannot consume

her production goods. However, they can consume some others’ production goods with a
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temporal utility function:

ub(x) =

k + x if x > 0,

0 if x = 0,

where k > 0 is a constant. Theoretically, k is introduced for the individual rationality

constraint so that the discounted sum of utility is always positive in equilibrium. Specifically,

the discounted value of agents having no money will be shown as (ck − d)/β(1 − c) in

Proposition 1. Hence, k > 0 is necessary for an agent without money to participate in the

market. We later discuss how these assumptions about utility and cost functions ensure the

tractability of equilibrium.

This good might be considered partially indivisible, that is, production starts with an

indivisible unit and then uses a fully divisible one. First, the fixed costs work as in Green

and Zhou (1998), where the indivisibility makes a kind of sorting of money holdings and

turns the distribution discrete. Similarly, in our model, the fixed costs also make a small

amount of money less valuable and divide the distribution into two parts. The variable costs

are related to the decentralized market in Lagos and Wright (2005). In our model, variable

costs are small enough to derive pay-all property. Interestingly, the Lagos-Wright model also

shows the equilibrium that buyers spend all money holdings.

There is another good, money, which is perfectly divisible and storable. The total supply

in the economy is fixed at M > 0. Each agent’s money holding, m, is a nonnegative real

number with an upper-bound m, that is, m ∈ [0,m]. This assumption allows us to ignore a

behavior of very rich agents who exist only off-path and simplifies the proof of equilibrium

existence.2

The timeline for each period is as follows. At the beginning of each period, agents

observe the current economy-wide distribution of money holdings. Then, pairwise random

matching occurs with probability 2α ∈ (0, 1). In each matching, each agent observes their

partner’s money holding. All matchings are held with a single-coincidence of wants: one

agent becomes a seller with probability 1
2
and the other becomes a buyer. Subsequently,

the seller and buyer negotiate the monetary payment and the amount of goods exchanged

2Zhu (2005) also assumes the upper-bound for the proof of the existence of monetary equilibrium and
Zhou (1999) derives the endogenous emergence of the upper-bound.
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following generalized Nash bargaining with the buyer’s bargaining power, θ ∈ (0, 1).3 At

the end of each period, the matching resolves and proceeds to the next period. Let H

be the distribution of money holdings (a Borel measure) on R+. In a meeting between a

buyer and a seller with money holdings mb and ms, respectively, Nash bargaining decides

the amounts of goods x(mb,ms, H) and of monetary payment p(mb,ms, H) in the trade. No

trade, x(mb,ms, H) = p(mb,ms, H) = 0, is also a solution when bargaining surpluses cannot

be nonnegative.

For the definition of the stationary distribution, we introduce the following two sets.

First, for a Borel set D ⊂ R+, the set of agents who meet an agent (a buyer) with mb and

move to D after the trade is denoted by Q(mb, D) = {ms | ms + p(mb,ms, H) ∈ D}. This

includes trade cases where p(mb,ms, H) > 0, and no-trade cases where p(mb,ms, H) = 0

and ms ∈ D. Second, the set of agents who meet an agent (a seller) with ms and move to

D after the trade is denoted by R(ms, D) = {mb | mb − p(mb,ms, H) ∈ D}, including those

who meet a partner but do not trade and remain in D.

Definition 1. Let v be a function on R+. A pair (H, v) is called a stationary monetary

equilibrium if

(i) The Bellman equation is consistently constructed as

v(m) = α

∫ m

0

[
ub
(
x(m,ms, H)

)
+ βv

(
m− p(m,ms, H)

)]
dH(ms)

+ α

∫ m

0

[
us
(
x(mb,m,H)

)
+ βv

(
m+ p(mb,m,H)

)]
dH(mb) + (1− 2α)βv(m),

(ii) H is a stationary distribution of the process under p(mb,ms, H). That is, for all Borel

sets D ⊂ R+, (i) H(Q(mb, D)) and H(R(ms, D)) are measurable functions4 of mb and

ms, and (ii) the outflow from D, expressed as 2αH(D), is equal to the inflow to D

expressed as

2αH(D) = α

(∫ m

0

H(Q(mb, D)) dH(mb) +

∫ m

0

H(R(ms, D)) dH(ms)

)
.

3Section 8 discusses the consistency of the maximization of the Nash product in our model with the
axiomatic Nash bargaining solution; specifically, we discuss the problem related to the convexity of the
bargaining set and show its consistency.

4Note that the condition of measurability is satisfied in the pay-all equilibrium defined in the following
section.
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(iii) x(mb,ms, H) ≥ 0 and p(mb,ms, H) ≥ 0 solve each Nash bargaining problem that

• if there exists (x, p) such that x > 0, 0 ≤ p ≤ mb, and both the buyer and

seller’s surpluses are nonnegative, that is, k + x+ β
(
v(mb − p)− v(mb)

)
≥ 0 and

−d− cx+ β
(
v(ms + p)− v(ms)

)
≥ 0, then the trade (x(mb,ms, H), p(mb,ms, H))

is determined by

(x(mb,ms, H), p(mb,ms, H)) =

argmaxx,p
[
k + x+ β

(
v(mb − p)− v(mb)

)]θ [−d− cx+ β
(
v(ms + p)− v(ms)

)]1−θ

s.t. x > 0, 0 ≤ p ≤ mb

• Otherwise, x(mb,ms, H) = p(mb,ms, H) = 0.

(iv) v(m) > 0 for all m ≥ 0 and v(m) is strictly increasing.

The last condition represents the individual rationality and positive equilibrium value of fiat

money.

3 Pay-all equilibrium

3.1 The definition and the properties of pay-all equilibrium

Here, we focus on a particular subset of the stationary monetary equilibrium: the pay-all

equilibrium. Specifically, we show that this equilibrium is sufficiently tractable to prove

existence and investigate its characteristics.

Definition 2. A stationary monetary equilibrium is called a pay-all equilibrium if the fol-

lowing two conditions are satisfied. At each Nash bargaining,

(i) if the bargaining is agreed with x(mb,ms, H) > 0, the monetary payment is binding at

p(mb,ms, H) = mb, and

(ii) if both agents hold strictly positive amount of money in the support of H, the bargaining

is disagreed, that is, x(mb,ms, H) = p(mb,ms, H) = 0.

We call this equilibrium pay-all because, as in the first condition, each buyer spends all the

money holding. The second condition means that a seller holding m > 0 in the support
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of the equilibrium distribution of money holdings never sells goods. The two conditions in

Definition 2 are collectively called the pay-all property.

Let the support of distribution H be {0}∪ [z, Z] and H(0) ∈ (0, 1) the measure of agents

holding no money, where 0 < z ≤ Z and H satisfies

∫ Z

z

dH(m) = 1−H(0), (1)

∫ Z

z

mdH(m) = M. (2)

Then, M/(1−H(0)) is the average money holding of the agents with m > 0. An example of

H is shown in Figure 1, where the density function for m ∈ [z, Z] is bell-shaped. However,

the pay-all equilibrium holds with any distribution on a finite interval, as shown in the next

section. For example, a uniform distribution is included. In an extreme case, a degenerate

distribution with z = Z is also possible. In the pay-all equilibrium, only agents holding

m = 0 (m ∈ [z, Z]) sell (buy) goods to the sellers (buyers). Then, there are two types of

transitions in the distribution of money holdings: (i) buyers spend all the money holding

and move to m = 0 and (ii) sellers receive money and move to m ∈ [z, Z]. Given the second

condition of Definition 2, there is no trade in a meeting where both agents hold m ∈ [z, Z].

We will show that, in this case, the seller’s surplus is negative due to fixed costs d.

In this section, we also focus on on-path trades. Specifically, we consider the case in which

mb ∈ [z, Z] and ms = 0. Therefore, we denote x(m) = x(m, 0, H) and p(m) = p(m, 0, H),

where the buyer holds mb = m.

Given corner solution p(m) = m, the Nash bargaining problem derives the amount of

goods by

x(m) = argmax
x

[
k + x+ β

(
v(0)− v(m)

)]θ [−d− cx+ β
(
v(m)− v(0)

)]1−θ
, (3)

and then, its first-order condition is

(1− θ)c
[
k + x+ β

(
v(0)− v(m)

)]
= θ

[
−d− cx+ β

(
v(m)− v(0)

)]
. (4)

The total surplus is divided according to relative bargaining power θ, marginal costs c, and

marginal utility 1. Note that the second-order condition is satisfied globally since, by taking
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Figure 1: An example of the distribution of money holdings in the pay-all equilibrium

the logarithm of the Nash product in (3), the objective function is converted into a concave

function.5 Equation (4) can be rewritten as

cx(m) = β[θ + (1− θ)c]
(
v(m)− v(0)

)
− [(1− θ)ck + θd]. (5)

The on-path Bellman equation, that is, the case ofm ∈ {0}∪[z, Z] in the pay-all equilibrium,

is written as

v(m) = αH(0)
(
k + x(m) + βv(0)

)
+
(
1− αH(0)

)
βv(m) for m ∈ [z, Z], (6)

v(0) = α

∫ Z

z

(
−d− cx(m) + βv(m)

)
dH(m) +

[
1− α

(
1−H(0)

)]
βv(0). (7)

The full Bellman equation, including off-path money holdings, m /∈ {0} ∪ [z, Z], is given

in the next section. Equation (6) is the Bellman equation for an agent holding a positive

amount of money. This agent meets another agent with probability 2α. Subsequently, the

5If either the buyer’s or seller’s surplus is zero, the function value is undefined. This does not occur
under the conditions necessary for the existence of a pay-all equilibrium (see the proof of Lemma 7).
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first agent becomes a buyer with probability 1/2 and the counterpart is no money holder with

probability H(0). After bargaining, this agent obtains surplus k+x(m)+βv(0), pays all the

money holdings, and moves to m = 0 on the distribution of money holdings H in the next

period. The Bellman equation for an agent with m = 0 is (7). This agent meets another

agent and becomes a seller with probability α. The probability that the counterpart has

m ∈ [z, Z] is 1−H(0) =
∫ Z

z
dH(m). Then, this agent obtains surplus −d− cx(m) + βv(m),

where the amount of production x(m) and the next period value v(m) depend on the money

holding of counterpart m ∈ [z, Z]. After the trade, this agent moves from 0 to m in the

support of H.

Discussion about assumptions. The existence of a pay-all equilibrium depends on the

shapes of the utility and cost functions. Fixed costs d separate the equilibrium distribution

between m = 0 and a sufficiently large positive amount m ∈ [z, Z]. Consider a seller who

meets a buyer holding only a small amount of money. The seller will decline production

because the profit will not cover the fixed costs. Then, in a stationary equilibrium, no agents

hold such a small amount of money. This property lets agents play only one role, either

buyer or seller, depending on money holding m. Therefore, the transition of the distribution

of money holdings becomes simple: in each period, the same number of agents is exchanged

between {0} and [z, Z]. The linearity of the utility function and variable costs are also crucial

for tractability. These assumptions induce buyers’ incentives for pay all. By linearity, the

marginal utility in the current period is always higher than that in the next period because of

the discount factor and search friction. Therefore, buyers have no incentives to save money.

Our pay-all equilibrium is similar to Rocheteau et al. (2018)’s full-depletion equilibrium.

In this study, if the cost of having a real balance is higher than the cost of insuring the future

consumption, then the agent uses all real balances. This condition does not necessarily hold

because of the nonlinearity of the utility function. However, if the inflation rate is sufficiently

high, the condition is satisfied and full depreciation occurs. In our case, due to the linearities

of the utility and cost functions, the pay-all (full-depletion) property always holds. Rocheteau

et al. (2018) also use the linear utility function, where the coefficient changes stochastically,

to simply express the probability of full-depletion and to analyze the hot potato effect. In

our case, the coefficient is not stochastic and pay-all always occurs.
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Figure 2: Determination of H(0)

The measure of zero-money holders. Here, we derive the measure of potential sellers

H(0). In what follows, we assume the differentiability of v(m) and x(m) for m ∈ [z, Z]. In

Section 4, we prove the existence of pay-all equilibria with differentiable functions. To derive

H(0), we define ξ(m) ≡ x′(m)/v′(m) for m ∈ [z, Z].

Lemma 1. In a pay-all equilibrium, ξ(m) is constant, denoted by ξ, as follows.

ξ(m) = ξ ≡ βθ(1− c)

c
+ β, (8)

and

H(0) =
(1− β)c

αβθ(1− c)
. (9)

Proof. Equation (8) is derived from the first-order derivative of (4). Similarly, by the first-

order derivative of (6),

ξ(m) =
1− β

αH(0)
+ β. (10)

Equilibrium H(0) is determined such that ξ(m) in (8) and (10) are equal.
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H(0) is the measure of agents holding no money to maintain stationary equilibrium.

It is determined to equate ξ derived by two independent equations (8) and (10). This is

represented by intersection A in Figure 2. ξ is the ratio between the current and future

value of money. The numerator of ξ, x′(m), is interpreted as the buyer’s returns (in the

utility term) from holding an additional unit of money in the current bargaining. The

denominator, v′(m), represents the future marginal value of money.

First, the horizontal line in Figure 2 is derived from the Nash bargaining’s first-order

condition (4). ξ is independent of H(0) because the Nash bargaining decides intratemporal

allocation given the successful matchings. Next, the decreasing curve is derived by the buyer’s

Bellman equation (6). By search friction, a buyer’s trade chance arrives infrequently. As

H(0) increases, the buyer’s meeting probability rises, which results in an increase in the

marginal value of money v′(m). H(0) is determined by equating ξ in these two conditions.

To clarify the role of H(0), assume that the population of no money holders is H̃(0) ̸=
H(0). Under the pay-all property, H̃(0) remains unchanged over time. Therefore, the

economy cannot move H̃(0) back to H(0). Instead, curves must shift to equate ξ in Figure

2. Below, we discuss that this adjustment is achieved by making the economy non-stationary.

We denote v(m) and x(m) in period t as vt(m) and xt(m), respectively. Figure 2 now includes

the non-stationary conditions and shows the case of H̃(0) > H(0). The y-axis is redefined as

ξ = x′
t(m)/v′t+1(m), and, as discussed below, ξ is constant overtime as balanced growth. We

will show that the equilibrium moves from intersection A to B, and the first-order derivative

of the buyer’s Bellman equation shifts upward due to the constant rate of decline in v′t(m)

overtime.

First, Nash bargaining’s condition of Figure 2 remains unchanged, because the Nash bar-

gaining derives only the intratemporal condition. Specifically, in the non-stationary economy,

the first-order condition (4) can be written as follows.

(1− θ)c
[
k + xt(m) + β

(
vt+1(0)− vt+1(m)

)]
= θ

[
−d− cxt(m) + β

(
vt+1(m)− vt+1(0)

)]
, (11)

which means that ξ = x′
t(m)/v′t+1(m) is unchanged from the stationary case (8). Further-

more, we can easily derive from (8) that ξ > β. Intuitively, by the marginal increase in m,

the buyer gains x′
t(m) and loses βv′t+1(m), while the seller loses cx′

t(m) and gains βv′t+1(m).
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In the Nash bargaining, the ratio between the buyer’s and seller’s surpluses is θ to (1− θ)c,

and this holds for all m. Since the seller’s current loss cx′(m) is smaller than the buyer’s

current gain x′(m), to maintain this ratio, xt(m) increases more than βvt+1(m).

Next, we show the shift of the derivative of the buyer’s Bellman equation in Figure 2

caused by a constant rate of decline in v′t(m). In the non-stationary economy, the Bellman

equation (6) is rewritten as

vt(m) = αH̃(0)
(
k + xt(m) + βvt+1(0)

)
+
(
1− αH̃(0)

)
βvt+1(m) for m ∈ [z, Z].

By taking the derivative with respect to m and dividing both sides by v′t+1(m), we obtain

v′t(m)

v′t+1(m)
= αH̃(0)

(
x′
t(m)

v′t+1(m)

)
+
(
1− αH̃(0)

)
β

= αH̃(0)ξ +
(
1− αH̃(0)

)
β. (12)

The left-hand side of (12) is the inverse of the growth rate of v′t(m) and it is one if H̃(0) =

H(0). When H̃(0) > H(0), it is larger than one, because the right-hand side increases due

to ξ > β. Then, v′t(m) non-stationary declines. That is, with an increase in H̃(0), the

current marginal value of m before matching, v′t(m), increases relative to the future one,

v′t+1(m). Intuitively, on the right-hand side of (12), the increase in current marginal value

v′t(m) due to the higher probability of buying, αH̃(0)x′
t(m), compensates for the decrease

in marginal value due to the lower probability of non-matching, αH̃(0)βv′t+1(m), because

x′
t(m) > βv′t+1(m). Under v′t(m)/v′t+1(m) > 1 on the left-hand side of (12), considering ξ

and H̃(0) as variables, the downward sloping curve shifts to the dashed curve in Figure 2. In

other words, the non-stationary decline in v′t(m) shifts the curve so that its intersection with

the Nash bargaining’s condition is at B. For H̃(0) < H(0), equation (12) implies a constant

positive growth of v′t(m).

To summarize, if H̃(0) ̸= H(0), the pay-all equilibrium becomes non-stationary and there

may exist a continuum of locally unstable equilibrium paths where v′t(m) → 0 or v′t(m) → ∞.

The former inflationary paths are similar to the self-fulfilling equilibria generally found in

monetary models.6 Although these models exclude the latter deflationary paths due to the

6See, for example, Coles and Wright (1998) and Lagos and Wright (2003) for search models of indivisible
and divisible money, respectively. This type of inflationary paths are also found in OLG models (Samuelson,
1958; Kehoe and Levine, 1985).
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resource feasibility, our model may keep it given the linearity of the cost function. Note that

this discussion is limited to the local dynamics around the steady-state pay-all equilibrium,

and globally, the pay-all property may eventually break down.7 Moreover, there may exist

equilibrium paths that globally converge from H̃(0) to H(0); however, these paths must

deviate from pay-all equilibrium.8

Macro-level variables. Given H(0), macro-level variables are determined by a simple

system of linear equations. First, we define the average discounted value of positive money

holders as

vb =

∫ Z

z
v(m)dH(m)

1−H(0)
. (13)

Next, the total output of the economy is

Y = αH(0)

∫ Z

z

x(m)dH(m). (14)

In (14), x(m) is the amount of production in the meeting of a buyer with m and a seller

without money. Hence,
∫ Z

z
x(m)dH(m) would be the total production if all buyers succeeded

in matching. We multiply this by meeting probability αH(0) to obtain the actual production.

Then, the average production per meeting is

x =
Y

αH(0)(1−H(0))
=

∫ Z

z
x(m)dH(m)

1−H(0)
. (15)

7Precisely, Proposition 3 may not hold. If v′t(m) → 0, equation (A.13) in Appendix A.2 is not satisfied
and, given the low value of money, sellers do not produce enough goods to let buyers pay all. If v′t(m) → ∞,
(A.10) is violated and money holders may also become sellers.

8If H̃(0) > H(0), the measure of no-money holders must decline. Then, buyers must not pay all but
spend twice or more. If H̃(0) < H(0), to decrease the population of money holders 1− H̃(0), some of them
must become sellers.

14



By integrating over m ∈ [z, Z], equations (5), (6), and (7) are rewritten as macro-level

equations:

cx = β[θ + (1− θ)c]
(
vb − v(0)

)
− [(1− θ)ck + θd], (16)

(1− β)vb = αH(0)
[
k + x+ β

(
v(0)− vb

)]
, (17)

(1− β)v(0) = α
(
1−H(0)

) [
−d− cx+ β

(
vb − v(0)

)]
. (18)

These equations imply our model’s close relationship with the so-called second-generation

models with indivisible money and Nash bargaining, such as Shi (1995) and Trejos and

Wright (1995). Once H(0) is given, the system of equations (16), (17), and (18) is parallel to

the indivisible money models. Our vb corresponds to the value of an agent holding one unit

of money in these models and x is the amount of goods traded with one unit of money. In the

indivisible money models, the total money supply is 1 − H(0), where H(0) is the measure

of zero money holders. In these models, each agent with one unit of money becomes a

buyer with probability α and can trade with probability H(0), whereas each agent without

money becomes a seller with probability α and can trade with probability 1 − H(0). This

meeting pattern is the same as the pattern in our model. Moreover, the quantity of goods

x is determined as an interior solution of Nash bargaining, which is similar to the pay-all

equilibrium. Therefore, our macro-level equilibrium equations are as tractable as indivisible

money models.

However, there is a fundamental difference in that H(0) is determined endogenously and

does not depend on the money supply M in our model. Therefore, in our model, there is

room for policy intervention to improve social welfare by changing H(0) even if M is fixed.

Another innovation is the non-degenerate distribution of money holdings among potential

buyers, while in Shi (1995) and Trejos and Wright (1995), it is degenerate and all money

holders have one unit of money. Our model allows for redistributive policy exercises that

adjust each agent’s money holding. In indivisible money models, policies are limited to

changing H(0).

From equation (4), the ratio of the buyer’s surplus to the seller’s surplus is θ/[(1− θ)c].

This ratio is the same at the aggregate level because of the linearity of the preferences. Then,
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equations (17) and (18) imply that

vb
v(0)

=

(
H(0)

1−H(0)

)(
θ

(1− θ)c

)
. (19)

The ratio of the average discounted value of the buyers to that of the sellers is determined

as the surplus ratio multiplied by the population ratio. Similar properties can be found in

indivisible money models.

Proposition 1. In a pay-all equilibrium,

vb =
θ(1− β)(ck − d)

β(1− θ)(1− c)[αβθ(1− c)− (1− β)c]
, (20)

v(0) =
ck − d

β(1− c)
, (21)

x =
θ(1− β)(1− c)[θ(ck − d)− cd] + c2(k − d)(1− β)− αβθ(1− θ)c(1− c)(k − d)

(1− θ)c(1− c)[αβθ(1− c)− (1− β)c]
.

(22)

Proof. The above equalities are obtained by solving the system of linear equations (16), (17),

and (18), where H(0) is given by (9).

In equations (20) and (21), the discounted utilities are positive if ck > d holds. Therefore,

a sufficiently large k > 0 supports the individual rationality of market participation as

discussed in Section 2.

This result also implies the determinacy of social welfare, W , which is defined as

W ≡ H(0)v(0) +

∫ Z

z

v(m)dH(m) = H(0)v(0) + (1−H(0))vb. (23)

Social welfare W is also expressed as the discounted sum of the total surplus multiplied by

the number of meetings. By the linearities of the utility and cost functions,

W =
αH(0)

(
1−H(0)

)
[(1− c)x+ k − d]

1− β
. (24)

From (8), (19), and (23), it can also be written as

W =
H(0)v(0)ξ

β(1− θ)
. (25)
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Micro-level indeterminacy. As shown above, macro-level variables H(0), vb, v(0), and x

are uniquely pinned downed by the equilibrium conditions. By contrast, H(m) for m ∈ [z, Z]

and the shape of the value function v(m) for m > 0 are indeterminate. This is due to a

lack of equations. There are two remaining equilibrium conditions: (1) and (2). There are

also a few conditions for the existence of pay-all equilibria, as outlined in the next section.

However, even if we consider these conditions, a continuum of functions v and H can be

pay-all equilibrium value functions and the distribution of money holdings, respectively. As

shown in the proof of the existence of the pay-all equilibrium, only inequality conditions on

the shape of the value function are required. Then, micro-level indeterminacy occurs among

positive money holders, owing to the indeterminacy of v and H for m ∈ [z, Z]. Furthermore,

this indeterminacy is not nominal but real because x(m) and v(m) are indeterminate for

m ∈ [z, Z]. Note that a perturbation eliminates the micro-level indeterminacy, that is, only

one distribution survives under the perturbation. (See Section 3.2.)

Our result differs from other real indeterminacies found in some models of divisible money,

such as Green and Zhou (1998). This type of indeterminacy arises due to some identity

hidden in the monetary exchange.9 It causes both macro- and micro-level indeterminacies

and leads to the social welfare indeterminacy. Specifically, in these models, H(0) is typically

indeterminate and the discounted values and social welfare depend on H(0). In our pay-all

equilibrium, this type of indeterminacy does not occur because H(0) is uniquely determined.

3.2 A selection of distributions by a perturbation

Despite the micro-level indeterminacy above, we can demonstrate that the application of a

perturbation method, specifically a trembling hand, effectively resolves this indeterminacy.

Specifically, our analysis reveals that non-stationary distributions invariably converge to-

wards a unique two-point distribution. This method of selection notably enhances model

tractability and stability.

As in the original model, we assume that buyers have incentives for pay-all. However,

due to a small tremble, each buyer cannot spend all the money holding; that is, at each

bargaining, the buyer with mb cannot pay ζmb and uses only (1 − ζ)mb unit of money,

where ζ > 0 is a small number. Under this pay-almost-all property, there may exist a non-

9See Kamiya and Shimizu (2006) and Kamiya and Shimizu (2007) for the finite support of the distribution
of money holdings and Kamiya (2019) for the infinite support.
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degenerate distribution H̃t, which consists of positive measures in two ranges: [z, Z] and

[ζz, ζZ]. We hereafter add subscript t to consider non-stationary distributions. Since the

same measure of agents are exchanged between two ranges, H̃t satisfies

H̃t([ζz, ζZ]) = H(0) and H̃t([z, Z]) = 1−H(0), (26)

where H is the stationary distribution in the original pay-all equilibrium.

We show that the unique stationary distribution is a two-point distribution where z = Z

and has two masses at

m̃b ≡
M

1−H(0) + ζH(0)
and m̃s ≡

ζM

1−H(0) + ζH(0)
= ζm̃b. (27)

Moreover, any non-degenerate distribution H̃t satisfying (26) is shown to converges to this

two-point distribution (27).10 To demonstrate this convergence, we represent the distribution

using random variables. We define a set function

H̃s,t(D) ≡ H̃t(D)

H(0)
for a Borel set D ⊂ [ζz, ζZ].

Then, H̃s,t is a probability measure of sellers. Similarly, we define the probability measure

of buyers as

H̃b,t(D) ≡ H̃t(D)

1−H(0)
for a Borel set D ⊂ [z, Z].

Let Xs,t and Xb,t are random variables following H̃s,t and H̃b,t, respectively. The means

of both variables are constant with E[Xs,t] = m̃s and E[Xb,t] = m̃b. However, variances

V ar[Xs,t] and V ar[Xb,t] can be non-stationary. In the following proposition, we show that

the variances converge to zero as t → ∞, and therefore Xs,t and Xb,t converge stochastically

to m̃b and m̃s.

Proposition 2. Suppose that both H̃s,t and H̃b,t are non-degenerate. Then, there exists a

ζ̄ > 0 such that for all ζ ∈ (0, ζ̄), V ar[Xs,t] → 0 and V ar[Xb,t] → 0 as t → ∞.

10Note that, under two-point distribution (27), the equilibrium condition is satisfied as in the original
case. Suppose ṽ is the associated value function. Then, the equilibrium condition holds with ṽ(m̃s) = v(0)
and ṽ(m̃b) = vb. H(0) is determined as in Lemma 1 by taking the derivative of ṽ in the neighborhood of m̃b.
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Proof. See the Appendix.

The intuitive reason for convergence is as follows. Consider agents (buyers) with m > m̃b.

Trading partners (sellers) will obtain (1−ζ)m in the trade, whereas their money holding isms

with mean being ζm̃b. That is, the ζ fraction of the money holding is replaced with ms, with

the mean being ζm̃b. Therefore, the total money holdings of agents with m > m̃b approaches

m̃b. A similar argument applies to agents (buyers) with m < m̃b. For agents (sellers) with

m ∈ [ζz, ζZ], trading partners’ money holdings approach m̃b as discussed above. Therefore,

their money holdings converge to ζm̃b.

4 Existence

We now show the existence of a continuum of pay-all equilibria using a guess-and-verify

method. Namely, we present a candidate for the pay-all equilibrium and prove that it

satisfies the equilibrium conditions. As stated in Section 3, on-path behavior satisfies the

pay-all property between a seller holding ms = 0 and a buyer holding mb ∈ [z, Z]. Moreover,

we consider off-path behaviors, that is, the case of agents holding m /∈ {0} ∪ [z, Z].

Each agent’s choice of trade depends on a cut-off level of money holding m1. On the

off-path, an agent holding m < m1 may sell goods but never purchases whoever this agent

meets. However, an agent holding m ≥ m1 does not sell goods at any meeting, but purchases

goods when she is a buyer and the partner has ms ∈ [0,m1). We show that this cut-off

strategy is optimal and holds at equilibrium. The equilibrium is verified by checking the

no-deviation of each agent, given that all the others follow the pay-all equilibrium under

the stationary equilibrium distribution of money holdings. Since the measure of this agent

is zero, we exclude strategic reactions to each deviation. Here, we use x(mb,ms, H) and

p(mb,ms, H) instead of x(m) and p(m) because we consider off-path cases. The associated

Bellman equations are

v(m) = αH(0)
(
k + x(m, 0, H) + βv(0)

)
+
(
1− αH(0)

)
βv(m) for m ∈ [m1,m], (28)

v(m) = α

∫ Z

z

(
−d− cx(mb,m,H) + βv(m+mb)

)
dH(mb)

+
[
1− α

(
1−H(0)

)]
βv(m) for m ∈ [0,m1). (29)
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Equation (28) is a generalization of (6), and (29) is a generalization of (7). Since [m1,m] is

an expanded range for being a buyer, it must include on-path cases. Therefore,

m1 ≤ z ≤ M

1−H(0)
≤ Z ≤ m. (30)

These Bellman equations are associated with the following cases of meeting and trade.

We consider both the on-path and off-path behaviors of a single agent given that all the

others follow the pay-all equilibrium with the stationary money holding distribution. This

agent holds m ∈ R+ and matches with other agents holding m ∈ {0} ∪ [z, Z]. Then, in this

economy, the following four on-path and off-path bargaining outcomes are expected in the

pay-all equilibria at the beginning of each period (see Figure 3 for a graphical representation).

Equilibrium Bargaining Outcomes (EBOs)

(i) Among the on-path cases, a trade occurs and the pay-all property holds between

• ms = 0 and mb ∈ [z, Z]

(ii) Trades never occur in the other on-path cases:

• ms = mb = 0

• ms ∈ [z, Z] and mb = 0

• ms ∈ [z, Z] and mb ∈ [z, Z]

(iii) Among the off-path cases, a trade occurs and the pay-all property holds between

• mb ∈ [z, Z] and ms ∈ (0,m1)

• ms = 0 and mb ∈ [m1,m] \ [z, Z]

(iv) Trades never occur in the other off-path cases:

• mb = 0 and ms ∈ (0,m1),

• mb ∈ {0} ∪ [z, Z] and ms ∈ [m1,m] \ [z, Z]

• ms ∈ {0} ∪ [z, Z] and mb ∈ (0,m1)

• ms ∈ [z, Z] and mb ∈ [m1,m] \ [z, Z]
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Figure 3: Equilibrium Bargaining Outcomes (EBOs)

Figure 4: Equilibrium value function
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Finally, the following is a candidate equilibrium value function that satisfies (28) and

(29).

v(m) =


ck−d
β(1−c)

+ am for m ∈ [0,m1),

ck−d
β(1−c)

+ F + bm for m ∈ [m1,m],
(31)

where b > a > 0. (32)

The value function is shown in Figure 4. Here, m1, a, b, and F are endogenous variables.

At the cut-off level of buyer/seller choice m1, the value function has a jump associated with

gap F . The slopes are represented by a and b. The value function is indeterminate, that is,

m1, a, b, and F can take any number within a certain range consistent with no deviation

condition from the EBOs.

The shape of the candidate value function is designed to satisfy the on-path equilibrium

behavior and eliminate off-path deviations as follows. The linearity of the value function

derives the pay-all property. If v(m) is concave, buyers may save a small amount of money

for future purchases. However, under the linearity assumption, the marginal value of money

savings is always bounded by αH(0)βb. If it is sufficiently small, buyers have incentives for

pay-all.

One role of the jump at m1 is to derive the on-path behavior. After each trade, the

seller’s discounted value increases from v(0) to v(m) for m ∈ [z, Z]. The jump in v(m) at

m1 covers fixed costs d. This jump is necessary to maintain the buyer’s incentive to pay-all.

If there is no jump, to induce the seller’s incentive to sell goods, the slope of v(m) should be

sufficiently steep. However, this would incentivize the buyers to save money.

Another role of the jump is to eliminate off-path trades when both the buyer and seller

hold m ≥ m1. If a trade occurs, the seller’s discounted value would not jump because

ms ≥ m1. Then, the increase in v(m) would be too small to cover fixed costs d and, thus,

the bargaining would fail. There is another off-path case that we need to exclude: the seller’s

money holding ms satisfies 0 < ms < m1 and m1 −ms < mb −m1, where mb is the buyer’s

money holding. If the buyer pays mb −m1, then the increase in the seller’s value includes

the jump at m1, but the decrease in the buyer’s value does not include the drop at m1. They

are likely to reach an agreement and deviate from EBOs. To eliminate this case, we need
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the condition that the gain from obtaining mb − m1 is not sufficiently large to cover fixed

costs.

Before presenting an existence theorem, we explain the reason the theorem of maximum

fails and the value function is discontinuous. In Green and Zhou (1998)’s indivisible goods

model, the theorem of maximum fails because the value function is a (discontinuous) step

function due to a jump in the cost function. That is, the cost is zero for no-production and

a positive number for the production of indivisible goods. In our model, the reason why

the theorem of maximum fails is similar to that in Green and Zhou (1998): the objective

function is discontinuous at zero due to fixed costs. Another reason may be that it is not

a single-person optimization but a game-theoretic optimization. In our model, a buyer and

a seller jointly maximize the Nash product, and thus the theorem of maximum cannot be

directly applicable.

Proposition 3. Suppose that the following conditions are satisfied.

H(0) =
(1− β)c

αβθ(1− c)
< 1, (33)

v(0) =
ck − d

β(1− c)
> 0, (34)

m

2
<

M

1−H(0)
< m, (35)

Moreover, given A ≡ (1−θ)ck+θd
β[(1−θ)c+θ]

, if either

A

1− c
< vb − v(0) ≤ d(1− c)

c
(36)

or

max

[
Ac

(1− c)(vb − v(0)− A)
,

(
M

1−H(0)

)−1
m

2

]
< min

[
d

vb − v(0)− d(1−c)
c

, 1

]
(37)

holds, then there exists a continuum of stationary pay-all equilibria.

Proof. See Appendix A.2.

Note that some parameters satisfy all conditions in Proposition 3.11 The intuition of the

11 For example, our benchmark parameters are α = 0.1, β = 0.9, c = 0.17, k = 1.0, d = 0.1, θ = 0.5,

23



sufficient conditions is as follows. Inequality (33) ensures that the population of zero-money

holders is lower than the total population, while inequality (34) corresponds to the individual

rationality of participating in the search market.

In inequality (35), M/(1 − H(0)) is the average money holding. The first inequality

means that the money holdings are close enough to the upper-bound, m. Then, the agent

holding m > 0 declines to be a seller because the monetary profit is limited by m−m. The

second inequality simply means that the average money holding does not exceed the upper

bound.

Inequalities (36) and (37) are incentive conditions that prevent deviation from EBOs.

For a clear intuition, we focus on (36). The first inequality means that, since the seller’s gain

from trade vb − v(0) is sufficiently large, a positive amount of goods is traded as the interior

solution of Nash bargaining problems. By (16), this inequality is sufficient for x > 0. The

second inequality excludes an off-path seller’s incentive to produce goods for poor buyers.

Specifically, fixed costs d must be sufficiently large relative to the equilibrium seller’s gain

from trade vb−v(0). Moreover, c should be sufficiently small to make fixed costs d relatively

more important and strengthen the above incentive.

The condition in Proposition 3 is sufficient, and pay-all equilibrium may exist even if this

is not met. In some cases, however, pay-all equilibrium clearly does not exist. For example,

when c or k is close to zero, then from Proposition 1, v(0) and vb are negative. Another

example is when θ is close to 0. In this case, from equation (22), x is negative and there does

not exist a pay-all equilibrium. The last example is when d is close to zero. Then sellers will

sell goods even to poor buyers, that is, the off-path EBOs are not satisfied.

Finally, we discuss the case of a large m that does not satisfy the first inequality in (35).

Then a pay-all equilibrium may no longer exist because a seller with ms ∈ [z, Z] may sell

goods to a buyer with a large amount of money, and the off-path EBOs may not be satisfied.

5 Bargaining power and social welfare

The Hosios condition, a condition on bargaining power θ for efficiency, is often discussed

in the literature on search models. In our model, the impact of θ on social welfare W is

M = 1, and m = 3. These meet (33), (34),(35), and (36) with strict inequalities. Alternatively, if c is
changed to 0.18, (36) is violated, but (37) is satisfied.
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non-monotone and simply characterized by the following proposition.12

Let the average surpluses of buyers and sellers be B = k + x + β(v(0) − vb) and S =

−d− cx+ β(vb − v(0)), respectively. From (24), social welfare is written as

W =
αH(0)(1−H(0))

1− β
(B + S).

From (4), B =
(
θ/[(1− θ)c]

)
S, and from (18), S = [(1− β)v(0)]/[α(1−H(0))]. Therefore,

B + S =

(
θ

(1− θ)c
+ 1

)
S =

(
θ

(1− θ)c
+ 1

)
(1− β)v(0)

α(1−H(0))
,

and by H(0) = (1− β)c/(αβθ(1− c)),

W =

(
αH(0)(1−H(0))

1− β

)(
θ

(1− θ)c
+ 1

)(
(1− β)v(0)

α(1−H(0))

)
(38)

=

(
(1− β)cv(0)

αβ(1− c)

)(
1

θ

)(
θ

(1− θ)c
+ 1

)
. (39)

In (38), W is decomposed into three elements: the first parenthesis represents the number

of matchings multiplied by (1− β)−1, the second represents the ratio of B to S, θ/(1− θ)c,

plus one, and the third represents S.

Proposition 4. The sign of the welfare improvement is determined as

∂W

∂θ
> 0 if and only if θ >

c

c+
√
c
. (40)

Proof. The derivative of
(
1
θ

) (
θ

(1−θ)c
+ 1

)
in (39) with respect to θ is

(
θ

(1− θ)c
+ 1

)
−1

θ2
+

(1− θ)c+ cθ

(1− θ)2c2
1

θ
=

1

cθ2(1− θ)2
((1− c)θ2 + 2cθ − c).

Since (1 − c)θ2 + 2cθ − c = 0 has one negative and one positive solution, θ = c
c−

√
c
and

θ = c
c+

√
c
, the proposition holds.

To interpret the above proposition, we analyze the effect of θ on H(0), x, and W . Figure

5 illustrates the comparative statistics for H(0), x, and W with respect to θ. The solid

12For simplicity, we assume that a pay-all equilibrium exists even if θ is changed. A large change in θ
may violate the sufficient conditions for existence in Proposition 3.
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Figure 5: Comparative statics with respect to θ
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Notes: The solid line represents the results of the baseline model and the dashed line the case with fixed

H(0). In this exercise, all parameters except for θ are the same as the benchmark parameters in Footnote

11. The fixed H(0) is calculated given θ = 1/2. Although the solid line shows a U-shaped relationship in the

bottom diagram, the decreasing region is quantitatively limited. This is due to the constraint of H(0) < 1

for θ being lower than 0.25. The range of dashed lines is also restricted for θ between 0.46 and 0.58. This

is because x becomes negative if θ is too low and x does not exist for a too high θ. Social welfare W is

minimized at θ = c/(c+
√
c), as proven by Proposition 4.

line represents the baseline results and the dashed line represents the case with fixed H(0).

Condition (40) corresponds to the social welfare’s U-shaped relationship of the solid line in

the bottom diagram. This nonlinearity of social welfare is caused by a combination of three

separate effects.
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(i) Number of matchings: The first parenthesis of (38) means that more matchings in-

crease social welfare given the average production is unchanged. Since the number of

matchings is αH(0)
(
1−H(0)

)
, H(0) = 1/2 is the best.

(ii) Change in the bargaining power θ on x: In the middle panel of Figure 5, the dashed line

is increasing in θ. As buyers gain more bargaining power, matched sellers are required

to produce more. This is the direct effect in the bargaining problem (3). Moreover,

this effect is magnified by an increase in buyers’ discounted utility, v(m). Each buyer’s

threat point of Nash bargaining βv(m) rises and it leads to an increase in the matched

seller’s production. Since the marginal utility, 1, is always larger than variable costs,

c, social welfare increases as the average production x increases. These effects explain

the increasing part of social welfare: the solid line in the bottom figure. In our model,

these bargaining power channels are represented in the second parenthesis of (38). As

θ increases, the ratio of B to S, θ/(1− θ)c, also rises.

(iii) Change in H(0) on x: This channel corresponds to the decreasing part of the solid line

in the middle panel. A decline in H(0) implies that the measure of sellers becomes

relatively smaller than that of buyers. It limits the buyer’s chance of trade and reduces

the average discounted value of buyers, vb, relative to the value of sellers v(0). Then,

being buyers becomes less attractive for sellers. It decreases x and worsens the holdup

problem. In (38), this effect is represented by the third parenthesis that equals to

S. Given that v(0) is constant, a decline in H(0) reduces the future value of being a

buyer, which is included in S. This effect is multiplied by the second parenthesis and

also changes B.

For a low θ, the middle panel implies that the third channel dominates the second.

Since H(0) is close to 1, a decline in H(0) drastically drops down the ratio between the

discounted utilities of buyers and sellers following equation (19). However, W is nearly flat

because, again, by H(0) close to 1, the number of matchings increases significantly in the

first channel and offsets the second. For a high θ, H(0) is still in the middle range. Even

if θ = 1, H(0) > 0 from equation (9). Then, the first and third channels are mild, and the

second channel increases W .

Condition (40) depends only on c because the three channels cancel each other out in

equation (38). First, the third parenthesis represents the relative value of the buyer to
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the seller, which depends inversely on 1 − H(0). Next, this term cancels out the matching

probability’s 1 − H(0) in the first parenthesis. Then, θ remains in the second parenthesis

and is included in H(0) in the first parenthesis. Finally, by the linearities of the utility and

cost functions, all factors, including parameters other than θ and c, become multiplicative

as in (39) in the proof.

Our model’s U-shape result is unique in the literature because it is caused by a change

in H(0). If H(0) is fixed, only the second channel works as the dashed lines and social

welfare increases monotonically. This case is similar to the indivisible money models (Shi,

1995; Trejos and Wright, 1995), where the distribution is fixed by the money supply as

1 −H(0) = M . This monotonicity also appears in Lagos and Wright (2005) because there

are no distributional effects.

6 Redistributive monetary transfer under the budget

balance

We here consider a long-run redistributional monetary transfer under fixed money supply

and balanced government budget. This policy is implemented using a combination of per-

unit tax (subsidy) and an asset tax (subsidy) at the steady state. We show that this policy

changes the relative strengths in bargaining, defined below as effective bargaining power and

can improve social welfare, as in Proposition 4.

At time 0, the government commits two time-independent taxes implemented after each

trade under keeping the stationary equilibrium. First, the government collects (provides) a

linear per-unit tax (subsidy) tx, where t is the tax (subsidy) rate if t > 0 (t < 0) and x is the

amount of goods sold. Second, the government imposes an asset tax (subsidy) depending

on the seller’s gross money holdings. This tax depends on m, which is the amount of money

after trade and before per-unit tax. The transfer schedule follows a function g(m), which is

a tax (subsidy) if g(m) > 0 (g(m) < 0).

Since both t and g(m) are given to each agent, Nash bargaining is solved given the seller’s

after-tax money holdings

m− tx− g(m). (41)
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The government perfectly predicts the equilibrium outcomes at time 0, where production is

represented as x
(
m | t, g(m)

)
. The government first decides t. Then, it can decide g(m) to

balance its budget for each individual m as the functional solution of

g(m) = −tx
(
m | t, g(m)

)
. (42)

See Appendix A.3 for the existence and derivation of g(m). In contrast to the usual aggregate

level budget balance, this policy is more strict and imposes the balance in micro-level. The

distribution of money holdings remains unchanged over time. However, this policy matters

for real variables because it separately affects the decision in production x and payment m

for each Nash bargaining. Note that this policy implicitly assumes the perfect ability of the

government to collect taxes. Although it appears inconsistent with the anonymity of the

search market, in our interpretation, it can be implemented by government agents, as in

Aiyagari and Wallace (1997).13

As in the baseline no-policy model, the system is characterized by three equations: the

first-order condition of Nash bargaining problem, value function for positive money holders,

and that for zero-money holders. For simplicity, we use x(m) instead of x
(
m | t, g(m)

)
.

First, the Nash bargaining problem is written as

max
x

[
k + x+ β

(
v(0)− v(m)

)]θ [−d− cx+ β
(
v(m− tx− g(m))− v(0)

)]1−θ
(43)

in a pay-all equilibrium. Then, under the budget balance (41), the first-order condition is

(1− θ)
(
c+ βtv′(m)

) [
k + x+ β

(
v(0)− v(m)

)]
= θ

[
−d− cx+ β

(
(v(m)− v(0)

)]
. (44)

Next, the Bellman equation for a buyer is unchanged from equation (6). We write it again

here for convenience.

v(m) = αH(0)[k + x(m) + βv(0)] + [1− αH(0)]βv(m). (6)

13There are many government agents who randomly meet pairs of private agents. They collect taxes
(provide subsidies) and adjust the money holdings of the matched pairs. In this case, the policy applies
to a subset of matched pairs. We implicitly assume that government agents find all matched pairs, whose
measure is αH(0)(1−H(0)) for simplicity. Note that all arguments in this section remain valid with minor
changes even when they match a subset of matched pairs, that is, the case that the government agents match
παH(0)(1−H(0)) measure of pairs, where 0 < π < 1 is the meeting probability of each government agent.
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Finally, the seller’s value function is also unchanged because

v(0) = α

∫ Z

z

(
−d− cx(m) + βv(m− tx− g(m))

)
dH(m) +

[
1− α

(
1−H(0)

)]
βv(0).

= α

∫ Z

z

(
−d− cx(m) + βv(m)

)
dH(m) +

[
1− α

(
1−H(0)

)]
βv(0). (7)

We suppose that t and g(m) are sufficiently small to satisfy the pay-all property and in-

equalities in Proposition 3, which guarantees the existence of equilibria.

Below, we assume a linear value function, that is, slope v′ = v′(m) is a constant for

m ∈ [z, Z]. As proven by Proposition 3, we can consider such a linear value function. First,

we derive the population of zero-money holders.

Lemma 2.

H(0) =
(1− β)[c+ (1− θ)βtv′]

αβθ(1− c)
(45)

Proof. Equation (44) holds for all m ∈ [z, Z] and x depends on m. By the first-order

derivative with respect to m,

(1− θ)(c+ βtv′)(x′ − βv′) = θ(−cx′ + βv′).

As in the no-policy case, define ξ(m) = x′(m)/v′(m). Then,

ξ = β +
βθ(1− c)

c+ β(1− θ)tv′
.

Since (6) is unchanged, the buyer’s condition of ξ(m) is also unchanged from (10). Then,

H(0) is obtained from these two equations.

Note that H(0) depends on the per-unit tax rate t and the slope of the value function v′.

Given the indeterminacy of the value function, H(0) also becomes indeterminate.

To obtain an analytical solution, we convert the micro-level equations to macro-level

equations using the average buyer’s value vb defined by (13) and average production x defined

by (15). Under the linearity of v(m), by the integration of (44) over m ∈ [z, Z], we derive

(1− θ) [c+ βtv′] [k + x+ β(v(0)− vb)] = θ [−d− cx+ β(vb − v(0))] . (46)
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To compare it with the no-policy case, we define the effective bargaining power as

θe =
θc

θc+ (1− θ)(c+ βtv′)
. (47)

Then, (46) is rewritten as

(1− θe)c
[
k + x+ β

(
v(0)− vb

)]
= θe

[
−d− cx+ β

(
vb − v(0)

)]
. (48)

This condition is the same as the equation of no-policy case (4) except that θ is replaced by

θe in (48). In the case of no policy, t = 0 and θe = θ hold. Next, we rewrite the population

of zero money holders, (45), using θe as.

H(0; θe) =
(1− β)c

αβ(1− c)θe
. (49)

Equations (47) and (49) provide another interpretation of the policy. By choosing the per-

unit tax rate t (and implicitly g(m)), the government can directly control effective bargaining

power θe, which also affects the distribution of money holdings.

Given θe and H(0; θe), the macro-level variables are obtained from (6), (7), and (48) as.

cx = β[θe + (1− θe)c][vb − v(0)]− [(1− θe)ck + θed] , (50)

(1− β)vb = αH(0; θe){k + x+ β[v(0)− vb]}, (51)

(1− β)v(0) = α[1−H(0; θe)]{−d− cx+ β[vb − v(0)]}. (52)

This system of equations is the same as that in the no-policy case, except that θ is replaced

with θe. The welfare effects of the policy are also equivalent to the comparative statics

according to θ in Proposition 4. Let Wg(θe) be social welfare, given θe. The government

policy changing θe coincides with the comparative statics for θ in the original case.

Proposition 5. The sign of the welfare improvement of the policy is determined as

∂Wg(θe)

∂θe
> 0 if and only if θe >

c

c+
√
c
, (53)
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or equivalently

∂Wg

(
θe(t)

)
∂t

> 0 if and only if tv′ >
θ
√
c− (1− θ)c

(1− θ)β
(54)

Proof. The system of equations, (50), (51), (52), and (49) is equivalent to (16), (17), (18),

and (9). Therefore, ∂W
∂θ

= ∂Wg(θe)

∂θe
and the same conditions as in Proposition 4 hold. From

equation (47), it is rewritten as

θe(t) =
θc

θc+ (1− θ)(c+ βtv′)
>

c

c+
√
c
.

Since θe(t) is decreasing in t, (54) follows.

Condition (53) implies that the marginal introduction of the policy to the laissez-faire

economy derives the same welfare effects as the comparative statics on θ. This is the case of
∂Wg(θe)

∂θe
evaluated at θe = θ or, equivalently, at t = 0. Moreover, condition (54) implies that

welfare Wg

(
θe(t)

)
is a U-shaped function, which is similar to Figure 5. Therefore, to improve

social welfare, the government should make t as low as possible, or as large as possible, under

consistency with the existence of the pay-all equilibrium.

Micro indeterminacy turns to macro. In the no-policy case, although the micro-level

indeterminacy remains, the macro-level variables and social welfare are determinate. How-

ever, given t ̸= 0, the micro-level indeterminacy about the slope of value function v′ causes

indeterminacy in H(0) and W . This indeterminacy still remains even if the distribution of

money holdings is selected by the tremble in Section 3.2.

Can the government achieve target allocation under this indeterminacy? If people’s ex-

pectations about v′ are fixed, the government can adjust t and perfectly control θe using (47).

However, v′ may change after policy implementation. The government can still determinate

the allocation by introducing one more policy measure. For example, at the same time as

offering t, the government can also adjust H(0) by directly redistributing money between

positive and non-money holders. Then, θe is uniquely chosen by (49) and v′ is determined

by (47).

Even if the equilibrium is unpredictable, this policy is still worth considering. Policy

uncertainty is only about its magnitude. Equation (47) implies that, given the sign of t, the
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direction of the change in θe is predictable. Hence, given the U-shaped welfare function, the

government can better steer the economy.

Necessity of per-unit tax. The per-unit tax is a crucial assumption in our exercise. It is

independent from the monetary unit and this feature makes a crucial difference to fiscal and

monetary policy in the literature depending on monetary transfer. For example, consider a

combination of lump sum transfer and interest on money holdings to the seller.14 The Nash

bargaining problem can be written as

max
x

[
k + x+ β

(
v(0)− v(m)

)]θ {−d− cx+ β
[
v
(
(1 + im)m+ τ

)
− v(0)

]}1−θ
, (55)

where im is the interest on money and τ is the lump-sum transfer. The government budget

can be balanced with im > 0 and τ < 0. Under the Lagos-Wright framework, social welfare

is maximized under the Friedman rule: im = β−1 − 1. However, equation (55) implies that

this policy does not affect the first-order condition of the Nash bargaining with respect to

x.15 In the Lagos-Wright model, the interest rate affects marginal costs of saving money

to the next period in the centralized market. It also eventually affects the intra-temporal

condition in the decentralized market. However, in our model, this type of saving choice is

inelastic to the interest rate because of the corner solution under the pay-all equilibrium.

Therefore, to modify the intra-temporal condition in Nash bargaining, a policy tool directly

affecting production, such as the per-unit tax, is necessary. This feature also implies the

ineffectiveness of monetary transfers among non-matched agents in the stationary equilibrium

because they conduct no production.16 From this viewpoint, our policy explores another

aspect of government intervention on the Friedman rule based on the literature.

14See, for example, Chapter 6.2 of Rocheteau and Nosal (2017)
15There may exist an indirect effects on x through the change in the distribution of money holdings. Given

im > 0 and τ < 0, the distribution of positive money holders expands. Since this expansion is proportional
and the average money holding remains unchanged, there is no effect on average production x and social
welfare. However, the distribution of x(m) possibly changes. This indirect effect is eliminated under the
two-point distribution selected by a trembling hand in Subsection 3.2.

16In the non-stationary equilibrium, short-run policies changing the distribution of money holdings may
matter. We provide one example of one-time lump-sum transfer with tax collection in Section 7.
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7 Monetary Expansion

Here, we introduce monetary expansion to the model and analyze its welfare consequences.

We obtain analytical results in a variety of lump-sum transfers and emphasize that monetary

expansion is possibly effective when it is distributional.

The common framework is as follows. Let τt(m) be the monetary transfer for agent m in

period t. The timing of the transfer is at the beginning of each period t. Suppose the money

growth rate is µt. Then, the transfer τt(m) satisfies

∫ mt

0

τt(m)dHt(m) = µtMt. (56)

We assume that the upper bound of money holdings also grows with the same rate: mt+1 =

(1 + µt)mt. In the case of a proportional transfer, τt(m) = µm for all m ∈ [0,mt], both

constant and one-time injections cause no real effects, as in Molico (2006) for the former

scenario.

Lump-sum transfer. First, we consider the lump-sum transfer with constant money

growth: τt(m) = µMt for all m ∈ [0,mt]. However, this lump-sum transfer requires some

advancements for equilibrium analysis. Under the pay-all equilibrium, there exists a mass

at m = 0. The no money holders accumulate the lump-sum transfers each period until suc-

cessful matching with buyers. Then a non-degenerate distribution emerges from m = 0 and

expands toward the right. Eventually, this left-hand side distribution overlaps with the right-

hand side distribution of m ∈ [z, Z]. The analytical characterization of this model requires

another condition that uniquely determines cutoff point m1, although it is indeterminate in

the original model. See Appendix A.6 for a simulation result.

Another scenario is the one-time lump-sum transfer, that is, a helicopter drop. The

money growth has been zero and expected to be zero for all future periods. However, only

in one period, unexpectedly, each agent receives the fixed amount of the transfer. This case

is also challenging because the right tail of the distribution extends toward infinity, and is

discussed in Appendix A.6 in detail.

Lump-sum transfer with tax collection We provide an analytically solvable case of

one-time lump-sum monetary injection with future tax collection. The government sud-
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Figure 6: Money-holding distribution under lump-sum transfer with tax collection

Notes: It is an example of the evolution of the money holding distribution, where ht−1(m) ∈ [z, Z] is a triangular distribution.

denly conducts a helicopter drop by distributing the fixed amount of money in period t. It

announces that, in period t + 1, it will collect money from positive amount holders. This

combination of positive and negative transfers retain the tractability of the model because

it makes the distribution of money holdings stationary after t+ 1. We also show that social

welfare can be improved.
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The economy is in a stationary pay-all equilibrium in period t − 1. At the beginning of

period t, the government unexpectedly announces the following policy.

• It injects the same τ unit of money to everybody at the beginning of period t.

• It is going to collect τ unit of money in period t+1, if an agent has m ≥ τ . If an agent

has m < τ , it is going to collect m.

For simplicity, assume that density function ht(m) associated with Ht exists for m ∈ [z, Z].

This policy moves the stationary distribution of money holdings to another stationary dis-

tribution in one period. An example of a triangle distribution ht(m) for [z, Z] is drawn in

Figure 6.

On the left-hand side, at the beginning of period t, zero money holders move to m = τ .

In period t, some fail to sell goods and remain at m = τ . Additonary, some buyers pay all

the money holding and move to m = 0. At the beginning of period t + 1, τ money holders

pay tax and move to 0. This transition recovers the stationary pay-all equilibrium again at

period t + 1 because Ht−1(0) = Ht+1(0). On the right-hand side, the distribution extends

to the right in period t because some sellers holding τ earn money with additional τ held

by buyers. This one-time chance to earn extra money makes sellers work hard and improve

social welfare.

Proposition 6. The lump-sum transfer with tax collection improves social welfare if and

only if

β(1− c)θ2 > [θ(1− c) + c](1− β)c. (57)

Proof. See Appendix A.4.

Intuitively, this short-run transfer policy makes being a buyer more attractive and en-

courage seller’s production in period t. Under this policy, the number of sellers, buyers,

and the matches in period t remain unchanged. Therefore, the improvement in social wel-

fare depends only on the increase in total production per matching. Under inequality (57),

buyers’ values relative to sellers’ are inefficiently small in the stationary equilibrium.17 The

17Inequality (57) is rewritten as (1−β)c
βθ(1−c) < θ

θ(1−c)+c . From equation (19), we can derive vb

v(0) =

θc( (1−β)c
βθ(1−c) )

(1−θ)(α− (1−β)c
βθ(1−c) )

. Hence, a small enough (1−β)c
βθ(1−c) means that vb

v(0) is also small.
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negotiated amount of production x(m) is also small. This policy shifts the money holding

distribution at period t + 1 toward the right. If a seller trades good in period t, this seller

will hold relatively more money at t+1. Compared to the original steady state, this change

increases the discounted sum of utilities of being a buyer in period t+1, which leads to higher

production. Note that the quantitative welfare improvement by this policy is indeterminate.

Although Proposition 6 shows the direction of the welfare change, its quantitative impact

is indeterminate. The seller’s incentive depends on the value of extra revenue τ in period t.

Its real value is determined by the indeterminate slope of the value functions. Moreover, the

seller also cares how much he/she will earn relative to other agents. This effect is affected

by the indeterminate shape of the distribution of money holdings.

Our results are parallel to Wallace (2014)’s conjecture. Namely, the optimal monetary

policy requires the lump-sum part of transfer schemes. Although we do not directly show the

conjecture, our results support the importance of distributive feature of monetary expansion.

That is, on the one hand, proportional transfers are neutral under the pay-all equilibrium,

and on the other hand, Proposition 6 suggests that a non-linear change in the distribution

of money holdings between period t − 1 and t + 1 is effective. Further work is needed to

establish more direct connections to the conjecture.

8 Discussion

Here, we further analyze the characteristics of the pay-all equilibrium. The first one is about

the robustness of pay-all equilibrium by replacing the bargaining protocol with the propor-

tional solution of Kalai (1977b). Second, we prove the equivalence between the axiomatic

Nash bargaining solution and the joint surplus maximization under the possible violation of

the convexity of the bargaining set in pay-all equilibrium.

8.1 Proportional Solution

Aruoba et al. (2007) show that Lagos and Wright (2005)’s results depend on the choice of

bargaining solution. Specifically, they show that changing the Nash bargaining solution to

Kalai (1977b)’s proportional solution affects the results both qualitatively and quantitatively.

In the following, we show that, in our model, the same changes result in the almost same

result.
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As in Section 3, we focus on on-path trades, that is, each buyer holds m ∈ [z, Z] and

each seller has zero. Following Thomson (1994), the proportional solution under the pay-all

equilibrium is x in the following equation.

(1− θP )
[
k + x+ β

(
v(0)− v(m)

)]
= θP

[
−d− cx+ β

(
v(m)− v(0)

)]
, (58)

where θP ∈ [0, 1] is the buyer’s bargaining power.18 In other words, the ratio of the buyer’s

and seller’s surpluses is θP to 1−θP . Compared to Nash bargaining equation (4),the difference

is in the coefficients of the buyer’s surpluses, which is (1 − θ)c under the Nash bargaining

but 1 − θ under the proportional solution. The two solutions are qualitatively equivalent.

By defining

θ̂ =
cθP

1− θP + cθP
,

(58) can be rewritten as

(1− θ̂)c
[
k + x+ β

(
v(0)− v(m)

)]
= θ̂

[
−d− cx+ β

(
v(m)− v(0)

)]
, (59)

which is the same as the first order condition of Nash bargaining (4), except that θ is replaced

by θ̂. Therefore, H(0), x =
∫ Z

z
x(m)dH/(1−H(0)), v(0), and vb =

∫ Z

z
v(m)dH/(1−H(0))

can be obtained by exactly the same way as in Section 3.

8.2 Consistency with the axiomatic Nash bargaining solution

In the previous sections, we applied the maximization of Nash product without checking

the convexity of the bargaining set. Therefore, the solution is possibly different from the

axiomatic Nash bargaining solution. The convexity is assumed in the standard proof of the

equivalence between the non-symmetric Nash bargaining solution and the point maximizing

the non-symmetric Nash product (see, for example, Kalai (1977a)). Specifically, the con-

vexity is used to show that the maximizing point is a unique one satisfying the axiomatic

conditions for the non-symmetric Nash bargaining solution. In our case, the bargaining set

might be non-convex around the threat point, because there are jumps in the utility and

cost functions at x = 0 and a jump in the value function at m1. However, our non-convexity,

18For a strategic foundation of the proportional solution, see, for example, Hu and Rocheteau (2020).
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even if it exists, is not crucial. To prove that the non-symmetric Nash solution coincides

with the unique point maximizing the non-symmetric Nash product, Kalai (1977a) uses the

convexity only for proving the uniqueness of the point maximizing the Nash product and

for the existence of a hyperplane separating the optimal point and the set of points inferior

to it.19 In our case, we can show the uniqueness and existence of a hyperplane using the

linearity of the bargaining frontier.

We consider bargaining between a buyer with mb ≥ m1 and a seller with ms ∈ [0,m1].

Under the EBOs (see Figure 3), this case covers all possible trades, both on-path and off-

path. We respectively define the buyer’s and the seller’s surpluses as

B(p, x) ≡ k + x+ β(v(mb − p)− v(mb)),

S(p, x) ≡ −d− cx+ β(v(ms + p)− v(ms)).

From the following lemma, we can derive the bargaining frontier.

Lemma 3. Let

L ≡
{
(z1, z2) | cz1 + z2 = β

(
v(ms +mb)− v(ms)

)
+ cβ

(
v(0)− v(mb)

)
+ ck − d

}
.

Under the assumptions in Proposition 3,
(
B(p, x), S(p, x)

)
is below L for all p ∈ [0,mb] and

x > 0, that is

cB(p, x) + S(p, x) ≤ β
(
v(ms +mb)− v(ms)

)
+ cβ

(
v(0)− v(mb)

)
+ ck − d.

Proof. See the Appendix.

Under the pay-all property, p = mb holds, and

cB(mb, x) + S(mb, x) = β
(
v(ms +mb)− v(ms)

)
+ cβ

(
v(0)− v(mb)

)
+ ck − d

holds for all x > 0, because the coefficient of x in cB(mb, x) is c and that in S(mb, x) is −c.

19Note that the compactness of the bargaining set is also assumed by Kalai (1977a). This study uses
the compactness only for proving the existence of a point maximizing the Nash product. Although the
bargaining set might not be closed because of the jumps in our case, existence can be proved, as shown in
the proof of Proposition 3.
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From Lemma 3, it immediately follows that the bargaining frontier is

LF ≡
{(

B(mb, x), S(mb, x)
)
| x > 0, B(mb, x) ≥ 0, S(mb, x) ≥ 0

}
⊂ L.

Moreover, hyperplane L separates the set of feasible
(
B(p, x), S(p, x)

)
and the point maxi-

mizing the Nash product, which is in LF and in the relative interior of L, as shown in the

proof of Proposition 3. Finally, since LF is linear, the Nash product is maximized at a unique(
B(mb, x), S(mb, x)

)
. Note that another way to deal with the non-convexity is to introduce

a lottery, which makes the bargaining set convex. Since the bargaining frontier is linear, the

point maximizing the Nash product is not a lottery.

9 Conclusions

We proposed an analytical model of search and bargaining of divisible money. Owing to fixed

production costs, the distribution of money holdings is separated into two regions and the

associated equilibrium becomes sufficiently tractable for the proof of existence and analytical

characterization. The equilibrium is possibly inefficient due to bargaining power parameter;

however, it can be improved by redistributive policies.

One important extension is pending in our analysis of monetary expansions. Although

we derive analytical results on one case of temporary distributional policy, there are unsolved

cases of standard lump-sum transfers on the constant money growth and the one-time he-

licopter drop. Those obstacles are on the possibility of infinite support and non-separation

of the distribution of money holdings. We conjecture that both can be resolved by the

introduction of separated buyer/seller sides in the market.

Preference assumptions may also be relaxed. Our pay-all equilibrium is obtained under

linear utility and cost functions. However, pay-all equilibrium arises even if these functions

are slightly nonlinear or if the fixed terms are significantly large. Moreover, the equilibrium

may still be characterized without the pay-all property. The tractability of our model hinges

on the separation of the distribution of money holdings to a countable number of regions.

Such a distribution may be attained again by the fixed costs that allow buyers to spend

money two or more finite times.

Moreover, there is another potential direction towards quantitative studies combined
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with the real-world distribution of liquidity asset holdings. For example, using Japan’s bank

account microdata, Kubota et al. (2021) and Kaneda et al. (2021) document that about 20-

30% of households live hand-to-mouth in terms of liquid assets. Interestingly, their monthly

balances follow our model’s alternate transition of money holdings. Quantitative studies

possibly solve more general classes of equilibria and provide more realistic implications for

policy analyses.
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Appendix

A.1 Proof of Proposition 2

Proof. Over agents mt ∈ [z, Z], fraction 1 − αH(0) keeps the same mt. The other αH(0)

fraction is replaced by agents moved from mt ∈ [ζz, ζZ]. Their money holdings follow Xs,t

and additionally obtain (1− ζ)Xb,t by selling goods. Therefore, Xb,t+1 is expressed as

Xb,t+1 =

Xb,t with prob. 1− αH(0),

Xs,t + (1− ζ)Xb,t with prob. αH(0).

Since the matchings are random, Cov(Xs,t, Xb,t) = 0 holds, therefore the variance of Xb,t+1

is calculated as follows.

V ar[Xb,t+1] = E
[(
Xb,t+1 − m̃b

)2]
= (1− αH(0))E

[
(Xb,t − m̃b)

2]+ αH(0)E
[(

Xs,t + (1− ζ)Xb,t − m̃b

)2
]

= (1− αH(0))E
[
(Xb,t − m̃b)

2]+ αH(0)E
[(

(Xs,t − m̃s) + (1− ζ)(Xb,t − m̃b)
)2
]

= (1− αH(0))V ar(Xb,t) + αH(0)V ar(Xs,t)

+ αH(0)(1− ζ)2V ar(Xb,t) + αH(0)(1− ζ)Cov(Xs,t, Xb,t)

=
[
1− αH(0)ζ(2− ζ)

]
V ar(Xb,t) + αH(0)V ar(Xs,t). (A.1)

Next, consider the agents with mt ∈ [ζz, ζZ]. Among them, fraction 1 − α
(
1 − H(0)

)
keeps the same mt, and α

(
1−H(0)

)
fraction is replaced by agents moved from mt ∈ [z, Z]

and they keep ζmt. Then

Xs,t+1 =

Xs,t with prob. 1− α
(
1−H(0)

)
,

ζXb,t with prob. α
(
1−H(0)

)
.
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Similarly, we can show that

V ar[Xs,t+1] =
[
1− α

(
1−H(0)

)]
V ar(Xs,t) +

[
α
(
1−H(0)

)
ζ2
]
V ar(Xb,t) (A.2)

From equations (A.1) and (A.2), the transition of the two variances can be expressed by a

system of linear difference equations:V ar[Xb,t+1]

V ar[Xs,t+1]

 = Π

V ar[Xb,t]

V ar[Xs,t]

 ,

where

Π =

π11 π12

π21 π22

 =

1− ζ(2− ζ)αH(0) αH(0)

α
(
1−H(0)

)
ζ2 1− α

(
1−H(0)

)
 .

Let the eigenvalues of Π be λ1 and λ2 where λ1 ≥ λ2. The convergence can be proven by

|λ1| < 1 and |λ2| < 1 given a sufficiently small ζ > 0. The eigenvalues are the solutions of

(π11 − λ)(π22 − λ)− π12π21 = 0. (A.3)

Suppose that ζ = 0. Then π21 = 0, λ1 = π11 = 1 and λ2 = π22 = [1 − α(1 −H(0))] < 1

hold. It is the original case that H̃s,t is degenerate at m = 0 and H̃b,t is non-degenerate and

stationary.

Next, consider a sufficiently small ζ > 0. We show λ1 < 1 by proving that the derivative

dλ
dζ

is strictly decreasing around ζ = 0 and λ = 1. By the implicit function theorem applied

to (A.3)

dλ

dζ

∣∣∣∣
ζ=0,λ=1

=
−dπ11

dζ
(π22 − 1) + π12

dπ21

dζ

2− (π11 + π22)
,

where dπ11

dζ
= 0, π22 − 1 < 0, π12 > 0, dπ21

dζ
> 0, and 2 − (π11 + π22) > 0. Therefore,

dλ
dζ

∣∣∣
ζ=0,λ=1

< 0. Since Π and its characteristic equation are C1 functions of ζ, then, there

exists a ζ̄ > 0 such that, for all ζ ∈ (0, ζ̄), V ar[Xs,t] → 0 and V ar[Xb,t] → 0 as t → ∞.
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A.2 Proof of Proposition 3

The sketch of the proof is as follows.

• Step 1. Properties of the pay-all equilibrium. We derive two lemmas to be used in

the following discussion. The first is the optimality condition of the Nash bargaining

where buyers and sellers hold arbitrary amounts of money (Lemma 4). The second one

is about the shape of v(m), that is, the ratio between the two slopes below/above m1

(Lemma 5).

• Step 2. Endogenous variables and bargaining outcomes. We derive the conditions

for endogenous variables that satisfy the existence of pay-all equilibria. These are

consistent with both on-path and off-path bargaining outcomes (EBOs in Section 4).

• Step 3. Sufficient parameter conditions. We show that the parameter conditions in

the premises of Proposition 3 are sufficient to support the existence conditions of

endogenous variables in Step 2.

• Step 4. Verification. Finally, we confirm that the candidates for v and H are consistent

with the equilibrium, that is, H is stationary and v satisfies Bellman equations (28)

and (29).

Step 1. Properties of pay-all equilibrium.

This step first derives some properties of the Nash bargaining solution in the meeting between

a buyer holding mb ∈ [0,m] and a seller holding ms ∈ [0,m]. The optimality condition is

derived given a positive amount of trade. Note that, in this step, we do not assume the

linearity of v.

Lemma 4. Consider a bargaining problem between a buyer holding mb and a seller holding

ms. For a given p > 0, suppose the optimal x∗ is positive. Then,

cx∗ = (1− θ)cβ[v(mb)− v(mb − p)] + θβ[v(ms + p)− v(ms)]− [(1− θ)ck + θd] (A.4)
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holds. The seller’s surplus is

(1− θ)
{
β[v(ms + p)− v(ms)]− cβ[v(mb)− v(mb − p)] + (ck − d)]

}
, (A.5)

and the buyer’s surplus is

(θ/c)
{
β[v(ms + p)− v(ms)]− cβ[v(mb)− v(mb − p)] + (ck − d)

}
. (A.6)

Proof. Since x∗ > 0, it is determined by the first-order condition for the Nash bargaining

problem with respect to x, that is,

−(1− θ)c[k + x∗ + β(v(mb − p)− v(mb))] + θ
[
−d− cx∗ + β

(
v(ms + p)− v(ms)

)]
= 0,

which yields (A.4), (A.5), and (A.6).

Next, we derive a property regarding the shape of the value function. It was guessed as

v(m) =


ck−d
β(1−c)

+ am if 0 ≤ m < m1,

ck−d
β(1−c)

+ F + bm if m1 ≤ m,
(31)

where m1 < m, b > a > 0, and F > 0, are endogenous variables. Recall that the candidate

for an equilibrium distribution of money holdings H is the one with the support of {0}∪[z, Z]
satisfying (1), (2), and (30).

Here, we derive the relationship between slopes a and b. Slope a is the marginal life-time

utility of money of an agent being a seller. To use money, this agent needs to first sell the

good and then become a buyer. This takes at least one period; hence, the marginal value is

discounted by β. By contrast, b is for a potential buyer holding m ≥ m1. Because this agent

may immediately use money, b > a holds.

Lemma 5. Suppose that the EBOs in Section 4 are satisfied. Then, the coefficients a and b

satisfy

a = χb, (A.7)
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where χ ≡ αβ(1−θ)[1−H(0)]
{αβ(1−θ)[1−H(0)]+1−β} < 1.

Proof. Consider an agent holding m < m1. Because this agent sells goods when they become

a seller and the partner has mb ∈ [z, Z], by substituting p(mb,ms, H) and x(mb,ms, H) into

the Bellman equation, the value function satisfies

v(m) = α

∫ m

m1

{
−d− cx(mb,m,H) + β[v(m+ p(mb,m,H))− v(m)]

}
dH(mb) + βv(m).

Substituting (A.4) into the above yields

(1− β)v(m)

= α(1− θ)

∫ m

m1

{
β[v(m+ p(mb,m,H))− v(m)]− cβ[v(mb)− v(0)] + (ck − d)]

}
dH(mb).

(A.8)

By the pay-all property, ∂p(mb,m,H)/∂m = 0, ∂v(m)/∂m = a, and ∂v(m+p(mb,m,H))/∂m =

b hold. By taking the first-order derivative with respect to m of both sides of (A.8),

(1− β)a = αβ(1− θ)[1−H(0)](b− a)

is obtained and (A.7) holds.

Step 2. Endogenous variables and bargaining outcomes.

In this step, we derive the conditions for the endogenous variables that satisfy EBOs. The

next lemma derives sufficient conditions that bargaining never reaches agreement if either

mb < m1 or ms ≥ m1. These cover all no-agreement cases in the EBOs.

Lemma 6. Suppose that

m

2
< m1 < m, and (A.9)

bm1 < d. (A.10)
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Then, the bargaining can reach an agreement with x(mb,ms, H) > 0 only if

ms < m1 ≤ ms + p(mb,ms, H). (A.11)

It also implies that any buyer with mb < m1 does not trade in pay-all equilibria.

Proof. Suppose (A.11) does not hold and the bargaining reaches an agreement with x(mb,ms, H) >

0. Then, in the seller’s surplus, v(ms + p(mb,ms, H))− v(ms) does not contain F .

We first consider the case in which ms < m1. Because m1 ≤ ms + p(mb,ms, H) does not

hold and the increase in the seller’s discounted utility depends only on the linear term, the

maximum increase in v(ms + p)− v(ms) is obtained when acquiring the maximum amount

of money, that is, am1. Therefore, the maximum amount of the surplus does not exceed

−d + am1 < −d + bm1 and is negative because of (A.10). Therefore, the seller’s surplus

is negative and bargaining does not reach an agreement with x > 0. However, this is a

contradiction.

Next, we consider case ms ≥ m1. The increase in the seller’s discounted utility depends

only on the linear term and its maximum increase is obtained when acquiring the maximum

amount of money, that is, b(m −ms) < b(2m1 −m1) = bm1. Then, the maximum surplus

does not exceed −d+ bm1 and is negative because of (A.10).

Finally, we consider a buyer with mb < m1. The buyer’s payment satisfies p ≤ mb < m1.

Because each seller holds ms = 0 in equilibrium, ms + p = 0 + p < m1, which violates

(A.11).

Next, we derive the conditions for all agreement cases in the EBOs. Under the conditions

of the following lemma, x(mb,ms, H) > 0 and p(mb,ms, H) = mb hold on the equilibrium

path. That is, the buyer is not afraid of the discontinuous decline of v(m) at m1 by spending

all the money holding.

Lemma 7. Suppose

[(1− θ)c+ θ]βF > (1− θ)ck + θd, and (A.12)

F <

(
1− c

c

)
bm1. (A.13)
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Then, x(mb,ms, H) > 0 and p(mb,ms, H) = mb hold in the bargaining between a seller with

ms ∈ [0,m1) and a buyer with mb ∈ [m1,m].

Proof. We first show that, given pay-all case p = mb, the surplus at the optimal production,

denoted by x∗
p=mb

, is positive. This means that both agents agree with the trade. Later, we

show the optimality of p = mb. From Lemma 4,

cx∗
p=mb

= [(1− θ)c+ θ]β(F + bmb) + θβ(b− a)ms − [(1− θ)ck + θd]

holds. Because (A.12) holds and b > a is a property of the candidate value function,

x∗
p=mb

> 0 holds. From (A.5) and (A.6), both seller and buyer surpluses are positive because

β[v(ms +mb)− v(ms)]− cβ[v(mb)− v(0)] + (ck − d)

= (1− c)β(F + bmb) + β(b− a)ms + (ck − d) > 0. (A.14)

Whether p = mb is optimal or not, the optimal solution provides positive surpluses that are

equal to or higher than (A.14). Therefore, x(mb,ms, H) > 0 holds.

Then, from Lemma 6, we can focus on case ms + p ≥ m1. For a buyer, we consider the

regions of p satisfying (a) mb − p < m1 and (b) mb − p ≥ m1. Below, we show that the

Nash product is maximized at p = mb in region (a). In addition, we prove that the Nash

product at p = mb in region (a) is larger than the Nash product at any p in region (b), that

is, p(mb,ms, H) = mb.

In region (a), we show that the derivative of the Nash product with respect to p is

always positive, which implies the optimality of p = mb. We define the buyer’s surplus as

B ≡ k+x+β
(
v(mb−p)−v(mb)

)
and the seller’s surplus as S ≡ −d−cx+β

(
v(ms+p)−v(ms)

)
.

By ms + p ≥ m1, mb − p < m1, and (31), ∂v(ms + p)/∂p = b and ∂v(mb − p)/∂p = −a.

Then, the derivative of the Nash product BθS1−θ with respect to p is

∂

∂p

(
BθS1−θ

)
= βBθ−1S−θ[b(1− θ)B − aθS].

The first-order condition of Nash bargaining problem with respect to x leads to θS = (1 −
θ)cB. Thus,

∂

∂p

(
BθS1−θ

)
= βBθS−θ(b− ca)(1− θ) > 0. (A.15)
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This implies that Nash product reaches its maximum at the upper bound, p = mb.

Next, we consider region (b). Suppose, on the contrary, that the optimal p(mb,ms, H)

is in region (b), that is, mb − p(mb,ms, H) ≥ m1. Because x(mb,ms, H) > 0, we can apply

Lemma 4 for the optimal allocation. From (A.5), seller’s surplus S satisfies

S = (1− θ) {β[F + (b− a)ms] + bβ(1− c)p(mb,ms, H) + (ck − d)} .

By p(mb,ms, H) ≤ mb −m1,

S ≤ (1− θ)
{
β[F + (b− a)ms] + bβ(1− c)

(
mb −m1

)
+ (ck − d)

}
. (A.16)

The total surplus is the term after (1−θ) in (A.16). Under (A.13), it is dominated by (A.14),

which is the maximum surplus in region (a). Therefore, the optimal p(mb,ms, H) is not in

region (b) but in region (a), and p(mb,ms, H) = mb holds.

Step 3. Sufficient parameter conditions.

In Lemmas 6 and 7, we have shown the relationships of the endogenous variables consistent

with the EBOs. In this step, we show that the parameter restrictions of Proposition 3 derive

those relationships.

Lemma 8. Under the assumptions in Proposition 3, there exists a continuum of

(m1, H, a, b, F ) satisfying the premises of Lemmas 6 and 7, the candidate distribution H

in (1) and (2), and value function v in (31).

Proof. The premises and the properties are summarized as

• (A.9): m
2
< m1 < m,

• (A.10): bm1 < d,

• (A.12): [(1− θ)c+ θ]βF − (1− θ)ck − θd > 0,

• (A.13): F <
(
1−c
c

)
bm1,

• (1) and (2): [z, Z] ⊂ [m1,m],
∫ Z

z
dH(m) = 1−H(0) and

∫ Z

z
mdH(m) = M .
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The main inequalities we need to derive are (A.9), (A.10), (A.12), and (A.13). First, we

rewrite these conditions as inequalities with parameters m1 and b. To do so, we assume the

pay-all property and x(0,m,H) > 0 for m ∈ [m1,m). Note that the pay-all property and

x(0,m,H) > 0 will be verified because we will find (m1, H, a, b, F ) satisfying all the premises

in Lemma 7. From (13),

vb =
1

1−H(0)

∫ Z

z

(
v(0) + F + bm

)
dH(m) = v(0) + F +

bM

1−H(0)
.

Therefore,

F = vb − v(0)− bM

1−H(0)
. (A.17)

Note that b and F are indeterminate, but each pair satisfies (A.17). Therefore, F is deter-

mined for a given b. By using (A.17), we can eliminate F from conditions (A.10), (A.12),

and (A.13).

b <
d

m1
, (A.18)

b <

(
1−H(0)

M

)[
vb − v(0)− (1− θ)ck + θd

β[(1− θ)c+ θ]

]
, (A.19)

b >
vb − v(0)

(1−c)m1

c
+ M

1−H(0)

. (A.20)

The existence of b requires the right-hand side of (A.20) to be smaller than those of (A.18)

and (A.19), and written as

vb − v(0)
(1−c)m1

c
+ M

1−H(0)

<
d

m1
(A.21)

vb − v(0)
(1−c)m1

c
+ M

1−H(0)

<

(
1−H(0)

M

)
[vb − v(0)− A] , (A.22)

where A = (1−θ)ck+θd
β[(1−θ)c+θ]

. Note that A < F holds by (A.12).

We now consider the conditions that m1 satisfies the above inequalities. The right-hand

side of (A.22) is positive because, from (A.17),

vb − v(0)− A > vb − v(0)− F =
bM

1−H(0)
> 0.
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Then, we rewrite (A.22) as

m1 >

(
M

1−H(0)

)(
Ac

(1− c)(vb − v(0)− A)

)
, (A.23)

Inequality (A.21) is equivalent to

vb − v(0)− d(1− c)

c
<

(
M

1−H(0)

)(
d

m1

)
. (A.24)

As for (A.9), we rewrite it and add condition m1 < M
1−H(0)

, which is for the existence of H

satisfying (1) and (2), as follows.

m

2
< m1 <

M

1−H(0)
< m. (A.25)

Under (A.25), we can find z ≤ Z and H satisfying
∫ Z

z
mdH(m) = M . To summarize, if

there exists m1 that satisfies (A.23), (A.24), and (A.25), there also exists b satisfying (A.10),

(A.12), and (A.13), and equilibrium exists.

There are two possible cases. First, suppose

vb − v(0) ≤ d(1− c)

c
. (A.26)

Then (A.24) is immediately satisfied. Since m/2 < M/(1−H(0)) is assumed in Proposition

3, then, if(
M

1−H(0)

)(
Ac

(1− c)(vb − v(0)− A)

)
<

M

1−H(0)
(A.27)

is satisfied, taking m1 close enough to M/(1 − H(0)) all inequalities hold. We can rewrite

inequality (A.27) as A/(1−c) < vb−v(0). Together with (A.26), this condition is equivalent

to (36) in Proposition 3.

Next, suppose vb − v(0) > d(1−c)
c

. Inequalities (A.23), (A.24), and (A.25) allow the

existence of m1 if

max

[
Ac

(1− c)(vb − v(0)− A)
,

(
M

1−H(0)

)−1
m

2

]
< min

[
d

vb − v(0)− d(1−c)
c

, 1

]
.
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This is (37) in Proposition 3.

Step 4: Verification

Below, we show that candidate distribution H and value function v in (31) satisfy the

stationarity of the distribution of money holdings (Lemma 9) and Bellman equations (28)

and (29) (Lemmas 10 and 11). In the following three lemmas, we assume the conditions in

Proposition 3; thus, all lemmas in the previous steps can be used.

Lemma 9. The distribution H defined by (1) and (2) is stationary.

Proof. The support for the distribution of money holdings is {0}∪ [z, Z]. From Lemma 7, in

each trade, a buyer with m = 0 and a seller holding m ∈ [z, Z] trade. Moreover, the pay-all

property holds and after the trade, the seller will hold m and the buyer will have no money

in the next period. Therefore, the distribution of money holdings remains the same.

Lemma 10. The candidate value function v defined in (31) for m ∈ [m1,m] is the solution

to (28).

Proof. We substitute (31) into the right-hand side of equation (28) and then check that it is

indeed the left-hand side of (31). Equation (28) can be rewritten as

v(m) = αH(0){k + x(m) + β[v(0)− v(m)]}+ βv(m). (A.28)

By the pay-all property, this buyer pays m in each matching. From (31) and (A.6), this

buyer’s surplus is

k + x(m) + β[v(0)− v(m)]

=
θ

c

{
β[v(m)− v(0)]− cβ[v(m)− v(0)] + ck − d

}
=

θ

c
[(1− c)β(F + bm) + (ck − d)] .
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Therefore, by using (31), the right-hand side of equation (A.28) is written as

αH(0)
θ

c
[(1− c)β(F + bm) + (ck − d)] + β

(
bm+ F +

ck − d

β(1− c)

)

= α

(
(1− β)c

αβθ(1− c)

)
θ

c
[(1− c)β(F + bm) + (ck − d)]+β

(
bm+ F +

ck − d

β(1− c)

)
(from Lemma 1)

= (1− β)

(
F + bm+

ck − d

β(1− c)

)
+ β

(
bm+ F +

ck − d

β(1− c)

)
= bm+ F +

ck − d

β(1− c)
.

The last line is v(m) in (31) for m ∈ [m1,m], that is, (31) for m ∈ [m1,m] is a solution to

(28).

Lemma 11. The candidate value function v defined in (31) for m ∈ [0,m1) is a solution to

(29).

Proof. We first consider the seller’s surplus when we use (31). Let mb ∈ [z, Z] and consider

the bargaining between mb and ms = m. From (A.5),

−d− cx(mb,m,H) + β[v(m)− v(0)]

= (1− θ)[(1− c)β(F + bmb) + β(b− a)m] + ck − d] (by (31))

= (1− θ)

[
(1− c)β

(
bmb + F +

ck − d

β(1− c)

)
+ β(b− a)m− (1− c)β

ck − d

β(1− c)
+ ck − d

]
= (1− θ)

[
(1− c)β

(
bmb + F +

ck − d

β(1− c)

)
+ β(b− a)m

]
. (A.29)

Using (31) and (A.29), the right-hand side of (29),

α

∫ Z

z

{−d− cx(mb,m,H) + β[v(m+mb)− v(m)]}dH(mb) + βv(m),

is equal to

= α

∫ Z

z

(1−θ)

[
(1− c)β

(
bmb + F +

ck − d

β(1− c)

)
+ β(b− a)m

]
dH(mb)+β

(
am+

ck − d

β(1− c)

)
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= α(1− θ)(1− c)β
(
1−H(0)

)
vb + α(1−H(0))(1− θ)β(b− a)m+ β

(
am+

ck − d

β(1− c)

)
= α

(
1− c

c

)
H(0)θβ

ck − d

β(1− c)
+(1−β)am+β

(
am+

ck − d

β(1− c)

)
(by (19) and (A.7))

= am+
ck − d

β(1− c)
.

The last line is v(m) in (31) for m ∈ [0,m1], that is, (31) for m ∈ [0,m1) is a solution to

(29).
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A.3 Derivation of g(m) in equation (42)

Assume the linearity of v(m), which can be written as v(m) = v(0) + F + bm as in (31).

Below, we show that g(m) is also linear for m ∈ [z, Z].

The first-order condition of Nash bargaining problem (43) is

(1− θ)(c+ βtb) [k + x− β(F + bm)] = θ
[
−d− cx+ β

(
F + b

(
m− tx− g(m)

))]
,

which is rewritten as

(c+ βtb)x =
[
(1− θ)(c+ βtb) + θ

]
βbm− βθbg(m)

+ (1− θ)(c+ βtb)(βF − k) + θ(βF − d).

Solving x as a function of m and g(m) yields

x
(
m, g(m)

)
= Am−Bg(m) + C,

where A =
[
(1 − θ)(c + βtb) + θ

]
βb/(c + βtb), B = βθb/(c + βtb), and C =

[
(1 − θ)(c +

βtb)(βF − k) + θ(βF − d)
]
/(c+ βtb). Given t, the government solves g(m) = −tx

(
m, g(m)

)
for g(m). That is, from

g(m) = −t(Am−Bg(m) + C),

the government obtains

g(m) = −tAm+ tC

1− tB
,

which is a linear function of m.
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A.4 Proof of Proposition 6

Proof. Given the pay-all equilibrium, the transition of the distribution can be described as

follows. In period t− 1 and before, the money holding distribution is stationary with

• Ht−1(0) = H(0) = (1−β)c
αβθ(1−c)

,

• ht−1(m) = h(m) ≥ 0 for all m ∈ [z, Z].

At the beginning of period t, τ is injected to everybody. The distribution shifts to the right

by τ .

• Ht(τ) = Ht−1(0),

• ht(m) = ht−1(m− τ) for all m ∈ [z + τ, Z + τ ].

In period t, suppose that the pay-all property still holds. Then, each buyer with m ∈ [z +

τ, Z+τ ] pays all the money holding. Each seller finds a buyer with probability α
(
1−Ht(τ)

)
,

and each buyer finds a seller with probability αHt(τ). Let Hafter
t be the money holding

distribution after the trade at period t, and is derived as follows.

• m = 0: buyers who spend all money holding,

Hafter
t (0) = αHt(τ)

(
1−Ht(τ)

)
= αHt−1(0)

(
1−Ht−1(0)

)
.

• m = τ : sellers who do not find buyers,

Hafter
t (τ) = Ht(τ)

[
1− α

(
1−Ht(τ)

)]
= Ht−1(0)

[
1− α

(
1−Ht−1(0)

)]
.

• m ∈ [z + τ, z + 2τ): buyers hold m ∈ [z + τ, z + 2τ) at the beginning of period t and

do not find sellers,

hafter
t (m) = ht(m)

(
1− αHt(τ)

)
= ht−1(m− τ)

(
1− αHt−1(0)

)
.

• m ∈ [z + 2τ, Z + τ ]: two groups are possible. One are the buyers who hold m ∈
[z + 2τ, Z + τ ] at the beginning of period t and do not find sellers. The other group
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are the sellers who meet buyers holding m ∈ [z + τ, Z] at the beginning of period t.

hafter
t (m) = ht(m)

(
1− αHt(τ)

)
+ αHt(τ)ht(m− τ)

= ht−1(m− τ)
(
1− αHt−1(0)

)
+ αHt−1(0)ht−1(m− 2τ).

• m ∈ (Z + τ, Z + 2τ ]: sellers who meet buyers holding m ∈ (Z,Z + τ ] at the beginning

of period t.

hafter
t (m) = αHt(τ)ht(m− τ) = αHt−1(0)ht−1(m− 2τ).

At the beginning of period t+1, all agents except m = 0 return τ money to the government.

• m = 0: non-money holders and agents holding τ at the end of period t:

Ht+1(0) = Hafter
t (0) +Hafter

t (τ)

= αHt−1(0)
(
1−Ht−1(0)

)
+Ht−1(0)

[
1− α

(
1−Ht−1(0)

)]
= Ht−1(0) = H(0).

• m ∈ [z, Z + τ ]: for all agents in this category, ht+1(m) = hafter
t (m− τ) holds.

ht+1(m) =


ht−1(m)[1− αHt−1(0)] if m ∈ [z, z + τ)

ht−1(m)[1− αHt−1(0)] + αHt−1(0)ht−1(m− τ) if m ∈ [z + τ, Z]

αHt−1(0)ht−1(m− τ) if m ∈ (Z,Z + τ ]

(A.30)

Compared to Ht−1(m), the new money holding distribution holds the same population of

non-money holders: Ht+1(0) = Ht−1(0). However, the distribution of positive money holders

ht+1(m) ≥ z stretches out to the right. Note again that the pay-all property holds, because

Ht+1(0) = Ht−1(0) = (1−β)c
αβθ(1−c)

, and ht+1(m) can have any shape for m ∈ [m1,m] under

Proposition 3. Hence, the new stationary money holding distribution Ht+1(m) = Ht+2(m) =

· · · can also hold in the pay-all equilibrium if τ is sufficiently small. By Proposition 1, the
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macro-level variables and social welfare are the same before t−1 and after t+1. Therefore, at

the macro-level, the policy makes one-period deviation from the same steady state. However,

at the micro-level, the transition path converges to a different steady state in one period.

Given the one-period transition path of the money holdings, we derive the allocation of

goods using value functions and Nash bargaining solutions. The stationarity implies that

vt−1(0) = vt+1(0) = v(0). However, vt−1(m) and vt+1(m) can be different for m ≥ z by the

indeterminacy. At the beginning of period t, each seller holds τ amount of money. The Nash

bargaining problem at period t between a seller holding τ and a buyer holding mt is

max
xt

[
k + xt + β

(
v(0)− vt+1(mt − τ)

)]θ · [−d− cxt + β
(
vt+1(mt)− v(0)

)]1−θ
. (A.31)

Here, the pay-all property still holds at period t, that is, the buyer pays an mt+τ amount of

money. The agents expect that τ unit will be collected by the government at the beginning

of t+ 1. If the bargaining fails, the buyer will hold mt − τ at the beginning of period t+ 1,

and the seller will have no money. If τ is sufficiently small, then pay-all equilibria exist,

because the conditions in Proposition 3 are strict inequalities. Moreover, for a sufficiently

small τ , agents having τ money cannot be a buyer and purchase goods because of fixed cost

d. By rearranging the first-order condition and replacing mt by mt−1 + τ , we get

cxt(mt−1) = β [θvt+1(mt−1 + τ) + (1− θ)cvt+1(mt−1)]−β[(1−θ)c+θ]v(0)− [(1−θ)ck+θd],

Because each buyer finds a seller with probability αH(0), the total production at period t is

defined as Yt ≡ αH(0)
∫ Z

z
xt(m)dHt−1(m). Then,

Yt =
αβH(0)

c

∫ Z

z

[
θvt+1(m+ τ) + (1− θ)cvt+1(m)

]
ht−1(m)dm

− αH(0)[1−H(0)]

c
{β[(1− θ)c+ θ]v(0) + (1− θ)ck + θd} (A.32)

Now, we will show a condition that Yt is larger than the steady-state total production

Y = αH(0)
∫ Z

z
x(m)dH(m). Then, by the linearities of utility and cost functions, Yt > Y

also means an improvement in social welfare. Since the economy reaches to a steady state

61



at period t+ 1, from equation (5)

Y = Yt+1 =
αβH(0)

c

∫ Z+τ

z

[θ + (1− θ)c]vt+1(m)ht+1(m)dm

− αH(0)[1−H(0)]

c
{β[(1− θ)c+ θ]v(0) + [(1− θ)ck + θd]} . (A.33)

From equations (A.32) and (A.33), Yt > Y is equivalent to

θ

∫ Z

z

vt+1(m+ τ)dht−1(m)dm+ (1− θ)c

∫ Z

z

vt+1(m)dht−1(m)dm

> [θ + (1− θ)c]

∫ Z+τ

z

vt+1(m)ht+1(m)dm

= [θ + (1− θ)c]αH(0)

∫ Z

z

vt+1(m+ τ)ht−1(m)dm

+ [θ + (1− θ)c]
(
1− αH(0)

) ∫ Z

z

vt+1(m)ht−1(m)dm, (A.34)

where the last equality is derived by equation (A.30). By vt+1(m + τ) > vt+1(m), equation

(A.34) implies that Yt > Y is equivalent to θ > [θ + (1− θ)c]αH(0), which can be rewritten

as condition (57).
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A.5 Proof of Lemma 3

Proof. As shown in Lemma 8, the assumptions in Proposition 3 imply those in Lemma 7.

Therefore, the pay-all property holds. Define T (p, x) ≡ cB(p, x) + S(p, x). Then, from

Lemma 4,

T (mb, x
∗) = cB(mb, x

∗)+S(mb, x
∗) = β

(
v(ms+mb)−v(ms)

)
+cβ

(
v(0)−v(mb)

)
+ck−d,

(A.35)

where the Nash product is maximized at x∗ for p = mb. Note that the right-hand side of

(A.35) is independent of x∗ due to linearities of the utility and cost functions.

Suppose, on the contrary, that there exist p̂ ∈ [0,mb] and x̂ > 0 satisfying T (p̂, x̂) >

T (mb, x
∗). Then, T (p̂, x̂∗) > T (mb, x

∗), where the Nash product is maximized at x̂∗ for

p = p̂. Lemma 4 also implies that

B(p̂, x̂∗) = (θ/c)T (p̂, x̂∗) > (θ/c)T (mb, x
∗) = B(mb, x

∗),

S(p̂, x̂∗) = (1− θ)T (p̂, x̂∗) > (1− θ)T (mb, x
∗) = S(mb, x

∗).

These inequalities contradict the fact that (mb, x
∗) maximizes the Nash productB(p, x)θS(p, x)1−θ.

Therefore, for all p ∈ [0,mb] and x > 0,

T (p, x) ≤ T (mb, x
∗) = β

(
v(ms +mb)− v(ms)

)
+ cβ

(
v(0)− v(mb)

)
+ ck − d
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A.6 Lump-sum Transfers

In Section 7, we noted that the straightforward introduction of lump-sum transfers requires

some advancements for equilibrium analysis. Below, we consider two major cases.

Under the constant money growth, each agent receives τt = µMt for all t given a fixed

money growth rate µ. Figure 7 simulates a transition of the distribution of money holdings

starting from the two-point distribution, where the x-axis is the real money holding mt/Mt.

We assume the cut-off point between seller/buyer choice as m1
t/Mt = 1. In this simulation,

the support of distributions is separated exactly at this point. Therefore, the cut-off is

critically connected to the equilibrium equations and should be determined endogenously.

However, this condition is not considered in the original model because the distribution has

no measure around the cut-off point. In fact, it is indeterminate in the original model.

Hence, the extension to lump-sum transfer needs additional conditions for the cut-off. Note

also that the distribution of real balances is bounded because the inflation tax is larger than

the lump-sum transfer for large money holders.

Next, we consider the one-time transfer in Figure 8. Suppose µt = 0 for all t ≤ T −1 and

the money supply is constant at M . Then, unexpectedly, µT increases to a positive number

in period T . Each agent receives τ = µTM . After that, µt = 0 for all t ≥ T + 1. At time

T , the distribution of the money holdings shifts to the right and the maximum amount of

money holding increases to Z + τ . In the next period, all sellers hold τ and some make a

revenue Z + τ . Then, the maximum amount becomes Z + 2τ . Since some sellers still hold

τ in period T + 1, by the same logic, maxmT+2 = Z + 3τ . Eventually, limt→∞ mt = ∞ and

it violates the assumption about the maximum money holding m. In our conjecture, the

distribution will converge to one with a range {0} ∪ [z + τ̄ ,∞). Although the upper-bound

m matters only off-path, we may need another assumption to eliminate it for the proof of

existence.
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Figure 7: The distribution under repeated lump-sum transfers with constant money growth

0.0

0.1

0.2

0.3

0.4

0.5

0 1 2 3 4
m

co
un

t

t=1

0.0

0.1

0.2

0.3

0 1 2 3 4
m

co
un

t

t=2

0.00

0.05

0.10

0.15

0 1 2 3 4
m

co
un

t

t=5

0.00

0.05

0.10

0.15

0 1 2 3 4
m

co
un

t

t=100

Note: The initial distribution in period 0 is H0(0) = H0(2) = 1/2. From the left, we plot histograms in period 1, 2, 5, and 100.

The parameters are µ = 0.1 and α = 0.5. Moreover, this simulation assumes the seller/buyer cutoff as m1
t /Mt = 1. The x-axis

is the real money balance mt/Mt and each bar width is 0.1.

Figure 8: The distribution responding to one-time lump-sum transfer
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Note: The initial distribution in period 0 is H0(0) = H0(2) = 1/2. From the left, we plot histograms in period 1, 2, 5, and 100.

The parameters are µ = 0.1 and α = 0.5. The x-axis is the real money balance mt/Mt and each bar width is 0.1.
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