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Abstract

This study investigates efficient and strategy-proof mechanisms for allocating indi-
visible goods under constraints. First, we examine a setting without endowments. In
this setting, we introduce a class of constraints, ordered accessibility, for which the serial
dictatorship mechanism is Pareto-efficient (PE), individually rational (IR), and group
strategy-proof (GSP). Then, we prove that accessibility is a necessary condition for the
existence of PE, IR, and GSP mechanisms. Moreover, we show that the SD mechanism
with a dynamically constructed order satisfies PE, IR, and GSP if one school has an
arbitrary accessible constraint and each of the other schools has a capacity constraint.
Second, we examine a setting with endowments. We find that the generalized matroid
is a necessary and sufficient condition on the constraint structure for the existence of
a mechanism that is PE, IR, and strategy-proof (SP). We also demonstrate that a top
trading cycles mechanism satisfies PE, IR, and GSP under any generalized matroid
constraint. Finally, we observe that any two out of the three properties—PE, IR, and
GSP—can be achieved under general constraints.
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1 Introduction

Our focus is on the problem of allocating indivisible goods among agents in the presence
of constraints. For example, when assigning schools to students, each school should satisfy
not only the usual capacity constraints but also meet diversity requirements, including type-
specific quotas (Abdulkadiroğlu and Sönmez, 2003) and proportionality constraints (Nguyen
and Vohra, 2019). Additionally, schools may have minimal quotas to determine the min-
imum number of students required for their operations. In the case of refugee resettle-
ment (Delacrétaz et al., 2023), the central authority must consider factors such as hetero-
geneous family sizes and other requirements—such as job training and language classes—
resulting in multidimensional knapsack constraints. In student-project assignment problems
(Abraham et al., 2007), in which an instructor can offer multiple projects, certain subsets
of projects may share common quotas, as both projects and instructors have capacity con-
straints.

Our goal is to characterize those constraints that admit the existence of allocation mech-
anisms that are Pareto efficient (PE), individual rational (IR), and strategy-proof (SP) for
the agents. PE is a natural efficiency requirement and IR ensures that agents have incen-
tives to participate in the mechanism. SP is often considered desirable because it eliminates
the need for participating agents to engage in sophisticated reasoning; truthful reporting of
preferences becomes a dominant strategy. We also examine group strategy-proofness (GSP),
which is a stronger requirement than SP, as GSP mechanisms are robust to manipulation by
groups of agents.1

We consider two settings. In the first, agents are not endowed with any goods, as in the
case of school choice. In the second, some agents are endowed with a good, such as in the
case with teacher reassignment (Combe et al., 2022b,a). Refugee resettlement would fit into
either setting (Delacrétaz et al., 2023).

Before summarizing our results, we will establish a context: agents will be referred to
as students, and objects are seats within schools. Constraints on how students must be
assigned to schools, beyond the obvious requirement that no school exceeds its capacity, will
be referred to as feasibility constraints.

For the no-endowment setting, there are a variety of PE, IR, and GSP mechanisms
for allocating students to schools that satisfy various feasibility constraints. For example,
Delacrétaz et al. (2023) proposed a modified version TTC mechanism for multidimensional
knapsack constraints. Kamada and Kojima (2023) introduced general upper bound (hered-
itary, or downward-closed). This class also yields the existence of PE, IR, and GSP mech-
anisms. However, there is no PE, IR, and GSP mechanism for arbitrary constraints. For
example, a desired mechanism may not exist under proportionality constraints (see Exam-
ple 3).

Our result delineates the boundary between what is possible and what is not. We show
that the SD mechanism with a dynamically constructed order satisfies PE, IR, and GSP if

1Instances of coordinated reporting to manipulate school choice mechanisms have been documented in
Pathak and Sönmez (2008).
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one school has an accessible constraint and each of the other schools has a capacity constraint
(Theorem 2). Furthermore, we prove that accessibility is a necessary condition (in a maximal
domain sense) to guarantee the existence of a mechanism that satisfies PE, IR, and GSP
(Theorem 3). Moreover, a PE, IR, and GSP mechanism exists when the feasibility constraints
satisfy a property called σ-accessibility for some permutation σ of the students (Theorem 1).

An example of a σ-accessible constraint is when a school requires that the number of
minority students matched to it must be at least half the number of majority students
matched to it. This constraint is σ-accessible for a permutation σ in which the minority
students are ahead of the majority students. σ-accessible constraints also arise in school
choice in China (Huang, 2021). In China, each district contains multiple schools, and al-
though students can apply to schools in other districts, the government imposes limits on the
proportion of cross-district students in schools. Note that these constraints are accessible
but not downward-closed. In contrast, every downward-closed constraint is σ-accessible for
any σ, and every σ-accessible constraint is accessible.

Now, let us turn to the setting with endowments. Here, IR requires that each student be
assigned to a school that is at least as good as her endowment. In general, there is no PE, IR,
and SP mechanism under arbitrary constraints. Delacrétaz et al. (2023) provide an example
with multidimensional knapsack constraints (see Example 4). This raises the question of
which constraint structure is essential for the existence of PE, IR, and SP mechanisms. We
show that the feasibility constraints being generalized matroid (g-matroid) is both “necessary
and sufficient” condition to guarantee existence.

To establish sufficiency, we modify the TTC-M mechanism introduced by Suzuki et al.
(2018) (Theorem 4). Our modification of TTC-M not only handles the constraints covered
by Suzuki et al. (2018) but also accommodates a wider range of more complex constraints,
as detailed in Section 1.1. To establish the necessity of the g-matroid condition, we provide
an example of a market in which a single school has a constraint that is not a g-matroid,
and for which no PE, IR, and SP mechanism exists (Theorem 5).

1.1 Related work

Our study is closely related to the papers by Suzuki et al. (2018, 2023). These studies ex-
plored settings with endowments and a generalized TTC, where the distributional constraint
is represented by an M-convex set on the vector of the number of students assigned to each
school. Suzuki et al. (2018, 2023) proposed the TTC-M mechanism and proved that it is
PE, IR, and GSP. We make two major contributions to the literature.

First, we identify that g-matroid is a necessary condition of the constraint structure for
the existence of mechanisms that satisfy the three desirable properties. This finding partially
addresses the open question posed by Suzuki et al. (2023). In addition, g-matroid is an
important concept in the literature on indivisible goods allocation problems with monetary
transfers. Kelso and Crawford (1982) introduced the gross substitutes condition and showed
that a competitive equilibrium exists under this condition. The key fact is that a demand
correspondence derived from the gross substitutes condition forms a g-matroid for every
price vector (Gul and Stacchetti, 1999; Fujishige and Yang, 2003; Nguyen and Vohra, 2024).
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Second, our model generalizes theirs because constraints are imposed on the matched
student-school pairs. An example of such constraints can be found in academic hiring,
where each student (or applicant) has multiple labels based on their expertise, and each
school (or university) provides an upper and lower quota on each label (Huang, 2010; Fleiner
and Kamiyama, 2016; Yokoi, 2017). Another example is a model in which a student has
multiple types but is allocated as one of her types (Kurata et al., 2017). This model includes
important real-life applications, such as affirmative action in India (Sönmez and Yenmez,
2022) and Brazil (Aygün and Bó, 2021).

Another difference from the model proposed by Suzuki et al. (2018, 2023) is that our
model includes outside options and allows for unmatched agents. Therefore, our model
is flexible enough to include house allocation with existing tenants (Abdulkadiroğlu and
Sönmez, 1999) and kidney exchanges (Roth et al., 2004) as special cases. In addition, our
TTC generalizes the You Request My House—I Get Your Turn (YRMH-IGYT) mechanism
(Abdulkadiroğlu and Sönmez, 1999) and the Top Trading Cycles and Chains (TTCC) mech-
anism with the SP and PE chain rule (Roth et al., 2004).

Hafalir et al. (2023) studied the existence of a desired mechanism that weakly improves
a distributional objective upon the initial matching. They showed that if the distributional
objective satisfies a notion of discrete concavity, called pseudo M♮-concavity, their generalized
TTC satisfies (constrained) PE, IR, and SP. It should be noted that the set of matchings
which weakly improves the distributional objective upon the initial matching forms a g-
matroid if the distributional objective satisfies pseudo M♮-concavity.

Kamiyama (2013) explored the case where the outside option is assumed to be worst for
every student (every school is acceptable to any student). He showed that a mechanism,
called the Generalized Serial Dictatorship with Project Closures (GSDPC), satisfies PE and
SP for general constraints. The GSDPC sequentially assigns each student to her best school
to the extent that the remaining students can be feasibly assigned. It is not difficult to
see that the GSDPC satisfies GSP. Furthermore, in the setting without endowments, any
mechanism is IR; hence, the GSDPC satisfies PE, IR, and GSP.

Imamura and Kawase (2024) studied PE under a general constraint and, in particular,
provided a method for checking whether a given matching is Pareto efficient. They identified
that matroid is a necessary and sufficient condition for the constraint to characterize the set
of PE matchings by the SD. They also introduced the Constrained Serial Dictatorship (CSD)
to check PE under general constraints. The CSD is almost the same as the GSDPC; however,
it also considers IR. Hence, the CSD can be viewed as a PE and IR mechanism, but it is not
SP.

The field of matching under constraints has grown rapidly (Abdulkadiroğlu and Sönmez,
2003; Biró et al., 2010; Hafalir et al., 2013; Ehlers et al., 2014; Kamada and Kojima, 2015,
2017; Kawase and Iwasaki, 2020) with a primary focus on stability or fairness. However,
our study emphasizes the importance of PE. Several studies examined PE mechanisms un-
der constraints (Root and Ahn, 2020; Yokote, 2022; Delacrétaz et al., 2023). In particular,
Delacrétaz et al. (2023) studied PE, IR, and SP mechanisms under multidimensional knap-
sack constraints. As previously highlighted, they established that desired mechanisms do
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not exist when endowments are present and do exist when they are not. These findings can
be derived from our results.

2 Preliminaries

2.1 Model

A market is a tuple (I, S, (≻i)i∈I , (Fs)s∈S, ω). I = {1, 2, . . . , n} is a finite set of students, and
S is a finite set of schools. Each student i has a strict preference ≻i over S ∪ {∅}, where ∅
means being unmatched (or an outside option). We write x ⪰i x

′ if either x ≻i x
′ or x = x′

holds. Fs is the family of subsets of students that school s can accept; ω : I → S ∪ {∅} is
an endowment function, where ω(i) = s denotes that the endowment of i is s ∈ S ∪ {∅}. In
a setting without endowments, we assume that ω(i) = ∅ for all i ∈ I.

A matching µ is a subset of I×S such that each student i appears at most in one pair of
µ; that is, |µ ∩ {(i, s) : s ∈ S}| ≤ 1 for all i ∈ I. For each i ∈ I, we write µ(i) to denote the
school to which i is assigned at µ, that is, µ(i) = s if (i, s) ∈ µ and µ(i) = ∅ if (i, s) ̸∈ µ for
all s ∈ S. Similarly, for each s ∈ S, we write µ(s) to denote the set of students assigned to
s at µ, that is, µ(s) = {i ∈ I : (i, s) ∈ µ}. A matching is called feasible if µ(s) ∈ Fs for all
s ∈ S. For notational simplicity, we sometimes add unmatched pairs (i,∅) to a matching,
but we ignore such pairs.

Let µ0 denote the endowment matching (or initial matching), that is, µ0(i) = ω(i) for all
i ∈ I. We assume that the endowment matching is feasible, that is, µ0 ∈ F .

2.2 Constraints

The aggregated constraint is sometimes represented by F =
{
X ⊆ I × S : X(s) ∈ Fs (∀s ∈

S)
}
, where X(s) = {i ∈ I : (i, s) ∈ X}.2 Using this notation, a matching µ is feasible if and

only if µ ∈ F . In addition, we will also consider a distributional constraint F ⊆ I × S that
may not be expressible through individual constraints (Fs)s∈S.

Let E be a ground set. A family of subsets F ⊆ 2E is a matroid if it satisfies the following
three properties: (i) ∅ ∈ F ; (ii) if X ∈ F and X ′ ⊆ X, then X ′ ∈ F ; and (iii) if X, Y ∈ F
and |X| < |Y |, then y ∈ Y \X exists such that X ∪{y} ∈ F . If individual constraint Fs is a
matroid for every s ∈ S, then the aggregated constraint F is also a matroid. Given a matroid
F , an element B ∈ F is called a base if B is an inclusion-wise maximal subset of E in F .
According to property (iii), all the bases of a given matroid have the same cardinality. The
collection of all the bases is called the matroid base family. The matroid base family can be
characterized as a nonempty family of subsets B ⊆ 2E that satisfies the following property:
for any B,B′ ∈ B and b ∈ B \B′, there exists b′ ∈ B′ \B such that (B \ {b}) ∪ {b′} ∈ B.

Matroid constraints include many real-life examples of constraints. Abdulkadiroğlu and
Sönmez (2003) formally studied type-specific quotas to address student diversity require-
ments within schools. Kamada and Kojima (2015) studied the regional maximum quotas in

2Note that X ∈ F may not be a matching because some students may appear multiple times.
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the context of medical residency matching in Japan. These constraints are special cases of
matroid.

A nonempty family of subsets F ⊆ 2E is a g-matroid if, for any X, Y ∈ F and e ∈ X \Y ,
it holds that

(i) X \ {e} and Y ∪ {e} ∈ F , or
(ii) there is e′ ∈ Y \X such that (X \ {e}) ∪ {e′} and (Y ∪ {e}) \ {e′} are in F .

Alternatively, g-matroid can be characterized by another property (Murota and Shioura,
1999; Tardos, 1985): for any X, Y ∈ F and e ∈ X \ Y , it holds that

(i) X \ {e} ∈ F or (X \ {e}) ∪ {e′} ∈ F for some e′ ∈ Y \X, and

(ii) Y ∪ {e} ∈ F or (Y ∪ {e}) \ {e′} ∈ F for some e′ ∈ Y \X.

Moreover, a g-matroid can be represented by F = {S ⊆ E : p(S) ≤ |X ∩ S| ≤ q(S) (∀X ⊆
E)}, with a paramdoular pair (p, q) (Frank, 2011). Here, a pair (p, q) is called paramodular
if

(i) p is supermodular (i.e., p(X) + p(Y ) ≤ p(X ∪ Y ) + p(X ∩ Y ) for all X, Y ⊆ E),

(ii) q is submodular (i.e., q(X) + q(Y ) ≥ q(X ∪ Y ) + q(X ∩ Y ) for all X, Y ⊆ E), and

(iii) p, q satisfy cross inequality (i.e., p(X)− q(Y ) ≥ p(X \Y )− q(Y \X) for all X, Y ⊆ E).

A g-matroid is also called an M♮-convex family because the corresponding set of 0–1
vectors is an M♮-convex set as a subset of ZE (Murota, 2016). The subsequent proposition
gives useful subclasses of g-matroids. Refer to Proposition 17 in Yokoi (2017) for its proof.

Proposition 1. Let L ⊆ 2E be a laminar family3 and let ℓL, uL ∈ Z≥0 for each L ∈ L.
Then, a family F = {X ⊆ E : ℓL ≤ |X ∩ L| ≤ uL (∀L ∈ L)} is a g-matroid if F ̸= ∅.

It is not difficult to see that g-matroid is a class that includes both matroid and matroid
base family. Moreover, a nonempty family of subsets F ⊆ 2E is a g-matroid if and only
if there exists a matroid base family B ⊆ 2E

′
with E ⊆ E ′ such that F = {B ∩ E :

B ∈ B} (Tardos, 1985). Additionally, for a g-matroid F and ℓ, u ∈ Z≥0, its truncation
Fu

ℓ = {X ∈ F : ℓ ≤ |X| ≤ u} is also a g-matroid if Fu
ℓ ̸= ∅ (Tardos, 1985). If individual

constraint Fs is a g-matroid for every s ∈ S, then the aggregated distributional constraint
is also a g-matroid.

A family of subsets F ⊆ 2E belongs to the class of general upper bound (or independence
system) if X ⊆ Y ∈ F implies X ∈ F . A family of subsets F ⊆ 2E is called accessible
if for any X ∈ F \ {∅}, there exists e ∈ X such that X \ {e} ∈ F . By definition, any
nonempty accessible set system must contain the empty set. For an order σ of E, a family
of subsets F ⊆ 2E is called σ-accessible if for any X ∈ F \ {∅}, we have X \ {e} ∈ F for
e ∈ argmax{σ−1(e) : e ∈ X}. By definition, every general upper bound is σ-accessible for
any σ, and every σ-accessible set system (for some σ) is accessible. In addition, these classes
are distinct as {∅, {1}, {1, 2}} is σ-accessible for σ = (1, 2) but not general upper bound, and
{∅, {1}, {3}, {1, 2}, {2, 3}, {1, 2, 3}} is accessible but not σ-accessible for any σ.

Figure 1 illustrates the relationship among classes of constraints.

3A family L ⊆ 2E is called a laminar family if, for any X,Y ∈ L, either X ∩ Y = ∅, X ⊆ Y , or X ⊇ Y .
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Figure 1: Classes of constraints we deal with in this study.

2.3 Properties

A matching µ is said to Pareto dominate µ′ if µ(i) ⪰i µ
′(i) for all i ∈ I and µ(i) ≻i

µ′(i) for some i ∈ I. A feasible matching µ is called Pareto efficient (PE) if there is no
feasible matching µ′ that Pareto dominates µ. Additionally, a feasible matching µ is called
individually rational (IR) if µ(i) ⪰i µ0(i) for all i ∈ I.

A mechanism ψ is a map from a preference profile to a feasible matching. A mechanism
is PE and IR if it always produces a feasible matching that fulfills the conditions of PE and
IR, respectively.

A mechanism ψ is strategy-proof (SP) if for every preference profile ≻I , there is no
i ∈ I and her preference ≻′

i such that ψ[≻′
i,≻−i](i) ≻i ψ[≻I ](i), where ≻I = (≻j)j∈I and

≻−i = (≻j)j∈I\{i}. Intuitively, SP requires that no student can be assigned to a strictly
preferred school by misreporting her preference. Similarly, the mechanism ψ is group strategy-
proof (GSP) if, for every preference profile ≻I , there is no I ′ ∈ 2I \ {∅} and their preference
profile ≻I′ such that ψ[≻′

I′ ,≻−I′ ](i) ⪰i ψ[≻I ](i) for all i ∈ I ′ and ψ[≻′
I′ ,≻−I′ ](i) ≻i ψ[≻I ](i)

for some i ∈ I ′, where ≻′
I′= (≻′

j)j∈I′ and ≻−I′ = (≻j)j∈I\I′ . In other words, GSP requires
that no group of students can make each member weakly better off and that at least one
student in the group is strictly better off by jointly misreporting their preferences. Clearly,
GSP is a stronger property than SP.

A mechanism is nonbossy if no student can influence the assignment of others without
changing her own assignment by misreporting her preference. Formally, for every preference
profile ≻I , i ∈ I, and her preference ≻′

i, ψ[≻I ](i) = ψ[≻′
i,≻−i](i) implies ψ[≻I ] = ψ[≻′

i,≻−i].
Pápai (2000) showed that a mechanism is GSP under unit capacity constraint if and only if it
is SP and nonbossy. It is easy to verify that this equivalence still holds under any constraints
in our model.
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2.4 Applications

In this section, we examine some applications on matching under constraints and show that
our results can be used to check the existence of a desired mechanism in each case.4

Reassignment of teachers with distributional concerns

Combe et al. (2022a,b) studied a teacher reassignment market and focused on improving
distributional welfare over the initial matching µ0. Each teacher i ∈ I has a type τ(i) that
represents her characteristics, such as experience. Each school s has a quota qs and a type
ranking �s over the types Θ := {τ(i) : i ∈ I} ∪ {θ∅}. We assume that τ(i) �s θ∅ for all
i ∈ µ0(s) and s ∈ S. A matching µ is status-quo improving if it is IR for each teacher, and
Lorenz dominates the initial matching for each school s (i.e., τ(i)�s θ∅ for all i ∈ µ(s) and
|{i ∈ µ(s) : τ(i)�sθ}| ≥ |{i ∈ µ0(s) : τ(i)�sθ}| for all type θ ∈ Θ). A matching is status-quo
improving teacher optimal (SI teacher optimal) if it is status-quo improving and not Pareto
dominated for teachers by any other status-quo improving matching. Combe et al. (2022a)
provided a variant of TTC, which is SI teacher optimal and SP.

Their existence result can be derived from our findings.5 For each school s, define a
constraint as a family of subsets of students that Lorenz dominate the students matched
to s in the initial matching. Then, SI teacher optimality is equivalent to the conjunction
of IR and PE in a setting with endowments. The key fact is that the constraint for each
school forms g-matroid, enabling the application of Theorem 4. Moreover, our result can
strengthen their result from SP to GSP.

Note that the constraint of Lorenz domination for each school s can be represented by a
g-matroid of the form in Proposition 1 by setting L = {Lθ : θ ∈ Θ, θ �s θ∅} and

• Lθ∅ = {i ∈ I : θ∅ �s τ(i)}, uθ∅ = ℓθ∅ = 0, and

• Lθ = {i ∈ I : τ(i) �s θ}, uθ = qs, ℓθ = |{i ∈ µ0(s) : τ(i) �s θ}| for each θ ∈ Θ with
θ �s θ∅.

It is possible to construct a more general g-matroid constraint by using different values for
the upper and lower bounds. For example, setting uθ = |{i ∈ µ0(s) : τ(i)�s θ}|+1 for most
experienced type θ would prevent allocating too many such teachers to one school.

As seen above, our necessary and sufficient condition enables us to appropriately extend
a model while preserving the existence of the desired mechanism.

Proportionality ceiling constraint

The proportionality ceiling constraint arises from school choice in a Chinese district. In this
context, the government has imposed a proportionality ceiling that states the number of

4For additional existing models not discussed in this paper, please refer to the working paper version for
details: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4844451.

5The model studied in Combe et al. (2022b) is a special case where unmatched teachers and schools with
vacant seats are not allowed in the initial matching, and different students cannot have the same type. Thus,
our findings can also derive the existence result of Combe et al. (2022b).
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students from outside a district assigned to a school should not exceed a certain fraction of
the total number of students assigned (Huang, 2021).

For example, let us consider a setting in which there are two students from within the
district, denoted as i1, i2, and two students from outside the district, denoted as u1, u2. If
the proportion to be guaranteed is half, the constraint for a school s with capacity two is

F̂s =
{
∅, {i1}, {i2}, {i1, i2}, {i1, u1}, {i1, u2}, {i2, u1}, {i2, u2}

}
.

The constraint F̂s is σ-accessible with respect to σ = (i1, i2, u1, u2).
In general, the proportionality ceiling constraint is σ-accessible, where σ is an order in

which students from within the district are listed before those from outside the district.
Theorem 1 immediately implies the existence of PE, IR, and GSP mechanisms in a setting
without endowments.

Moreover, similar constraints also appear in various other applications such as resource
allocation during a pandemic (Dur et al., 2021) and dynamic matching (Bando and Kawasaki,
2021). These details are discussed in Section 3.3.

Proportionality constraint

Maintaining a certain balance in the student body is a common practical requirement. Spe-
cific ratios or percentages often define this balance. For example, in 2003, the Cambridge,
Massachusetts, public school district implemented a policy requiring that the percentage of
students from families of low socioeconomic status be within a range of 15 percent of the
district’s overall proportion (Nguyen and Vohra, 2019).

Consider the same students provided in the example of Proportionality ceiling constraint.
Suppose instead of a proportionality ceiling constraint, a proportionality constraint is im-
posed that the number of the two types of students must be equal. Then, the constraint for
school s becomes

F̂s =
{
∅, {i1, u1}, {i1, u2}, {i2, u1}, {i2, u2}

}
.

This constraint is inaccessible; thus, a proportional constraint is inaccessible in general.
Thus, Theorem 3 immediately implies the nonexistence of the desired mechanism under these
constraints in a setting without endowments.

The negative findings on proportionality constraints can be associated with the nonexis-
tence of stable matchings. These details are discussed in Section 3.3.

3 Setting without Endowments

In this section, we consider a setting without endowments. We first prove that, for any order
σ of students, the SD mechanism with σ satisfies PE, IR, and GSP if the constraints are
σ-accessible. We then observe that PE, IR, and SP mechanisms may not exist even when
the constraints are accessible. Furthermore, we demonstrate that accessibility is a necessary
condition for the existence of PE, IR, and GSP mechanisms.
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3.1 SD mechanism for accessible constraints

Let Σ be the set of all permutations of the students. The SD mechanism considers students
one by one in a predetermined order σ ∈ Σ. In each step of the mechanism, the current
student is given the opportunity to select her most preferred school from the remaining
available schools, subject to the imposed constraint. Once the student makes a choice, the
student is fixed on their assignment to the school of her choice. The SD mechanism is
formally described in Algorithm 1.

Algorithm 1: Serial Dictatorship (SD) with σ

input : a market (I, S, (≻i)i∈I ,F) and σ ∈ Σ
output: a matching

1 Let µ(0) ← ∅;
2 for k ← 1, 2, . . . , |I| do
3 r ← argmax≻σ(k)

{
s ∈ S ∪ {∅} : µ(k−1) ∪ {(σ(k), s)} ∈ F

}
;

4 if r ∈ S then µ(k) ← µ(k−1) ∪ {(σ(k), r)};
5 else µ(k) ← µ(k−1);

6 return µ(|I|);

The SD mechanism is IR because each student can at least choose the option of being
unmatched. Furthermore, the mechanism is GSP because of the sequential nature of the
mechanisms. Indeed, as each student selects her preferred school in her turn, there is no
room for a group of students to coordinate and manipulate the outcome strategically.

Unfortunately, the SD mechanism does not satisfy PE under general constraints, even
when there is only one school.6 To observe this, consider a market with I = {1, 2}, S = {s},
≻1 = ≻2 = (s∅), and Fs =

{
∅, {1, 2}

}
. In this market, the SD mechanism outputs a

matching in which no student matches to s, regardless of the order. However, the unique
PE and IR matching is the matching in which both students are matched to school s. The
essential reason why the SD mechanism fails to output the matching is that the constraint
Fs is not accessible.

By contrast, the SD mechanism is PE if the individual constraints are σ-accessible for
a common σ ∈ Σ. We prove this fact for a more general case in which the distributional
constraint is σ-accessible. A distributional constraint F is σ-accessible if µ \ {(i, µ(i))} ∈ F
for any feasible nonempty matching µ ∈ F \ {∅} and i ∈ argmax{σ−1(i) : i ∈ I, µ(i) ̸= ∅}.
Note that, for any σ-accessible individual constraints (Fs)s∈S, the aggregated constraint F
is also σ-accessible. Indeed, we have the following theorem.

Theorem 1. If the distributional constraint is σ-accessible for an order σ ∈ Σ, the SD
mechanism (Algorithm 1) with σ satisfies PE, IR, and GSP.

6In contrast, the CSD (Imamura and Kawase, 2024) is PE, IR, and GSP for any market consisting of
only one school s. The mechanism is PE and IR in general. In addition, it is GSP since each student can
only indicate whether she desires the school s, and misreporting affects the outcome only when it makes the
agent worse off.
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Proof. The SD mechanism satisfies IR and GSP, as we have stated above. Therefore, it is
sufficient to prove that it also satisfies PE. Suppose, on the contrary, that the SD mechanism
outputs a matching µ that is not PE. Then, there exists a feasible matching µ′ (̸= µ) that
Pareto-dominates µ. Let k be the smallest index such that µ(σ(k)) ̸= µ′(σ(k)). Then, we
have µ(σ(j)) = µ′(σ(j)) for j = 1, 2, . . . , k − 1 and µ′(σ(k)) ≻σ(k) µ(σ(k)). This leads to a
contradiction because σ(k) could have chosen µ′(σ(k)) on her turn in the SD mechanism.

We remark that σ-accessibility is not a necessary condition to guarantee the existence of
a PE, IR, and GSP mechanism.

Example 1. Let I = {1, 2, 3}, S = {s1, s2}, Fs1 = {∅, {1}, {3}, {1, 2}, {2, 3}, {1, 2, 3}}, and
Fs2 = {X ⊆ I : |X| ≤ 1}. Note that Fs1 is not σ-accessible for any σ.

However, this market admits a PE, IR, and GSP mechanism. Indeed, the SD mechanism,
which employs the order (1, 2, 3) if s1 is the most preferable school for student 1, and (1, 3, 2)
otherwise, satisfies PE, IR, and GSP. This is because student 1 is assigned to the most
preferrable school and the sets {X \ {1} : 1 ∈ X ∈ Fs1} and {X : 1 /∈ X ∈ Fs1} are (2, 3)-
and (3, 2)-accessible, respectively.

More generally, if one school s∗ has an arbitrary accessible constraint Fs∗ and each of
the other schools s ∈ S \ {s∗} has a capacity constraint Fs = {X ⊆ I : |X| ≤ qs}, then
the SD mechanism with a dynamically constructed order (which is formally described in
Algorithm 2) satisfies PE, IR, and GSP.

Algorithm 2: Serial Dictatorship (SD) with a dynamically constructed order

input : a market (I, S, (≻i)i∈I , (Fs)s∈S) where Fs∗ is accessible and
Fs = {X ⊆ I : |X| ≤ qs} (∀s ∈ S \ {s∗}) and σ ∈ Σ

output: a matching
1 Let µ(0) ← ∅ and P ← I;
2 for k ← 1, 2, . . . , |I| do
3 if ∃i ∈ P such that µ(k−1)(s∗) ∪ {i} ∈ Fs∗ then
4 Let i(k) be the first such an i according to the order of σ;

5 else Pick the first i(k) ∈ P according to the order of σ;

6 Let r ← argmax≻
i(k)

{
s ∈ S ∪ {∅} : µ(k−1) ∪ {(i, s)} ∈ F

}
;

7 if r ∈ S then µ(k) ← µ(k−1) ∪ {(i(k), r)};
8 else µ(k) ← µ(k−1);

9 P ← P \ {i(k)};
10 return µ(|I|);

Theorem 2. If one school s∗ has an accessible constraint Fs∗ and each of the other schools
s ∈ S \ {s∗} has a capacity constraint Fs = {X ⊆ I : |X| ≤ qs}, then Algorithm 2 satisfies
PE, IR, and GSP.

Proof. The mechanism is IR since each student can at least choose the option of being
unmatched. The mechanism is GSP because each student selects her preferred school in her
turn.
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To prove PE, suppose to the contrary that the mechanism outputs a matching µ that is
not PE. Let µ′ be a feasible matching that Pareto-dominates µ. Let k∗ ∈ {1, 2, . . . , |I|} be the
smallest integer such that µ′(i(k

∗)) ≻i(k
∗) µ(i(k

∗)). Then, regardless of whether µ′(i(k
∗)) = s∗

or not, i(k
∗) can select µ′(i(k

∗)) = s∗ in the k∗th round of Algorithm 2. This contradicts the
assumption, and thus the mechanism is PE.

3.2 Impossibility for inaccessible constraints

If more than one school does not have a capacity constraint, a PE, IR, and SP mechanism
may not exist even when the constraints are accessible.

Example 2. Let I = {1, 2} and S = {s1, s2}. The constraint Fs of each school s is defined
as follows:

Fs1 =
{
∅, {2}, {1, 2}

}
and Fs2 =

{
∅, {1}, {1, 2}

}
.

Note that Fs1 and Fs2 are accessible. Suppose that the true preference ≻i of each student i
is given as follows:

≻1 = (s1 s2∅) and ≻2 = (s2 s1∅).

It is not difficult to see that there exist only two PE and IR matchings for their true pref-
erences: µ1 := {(1, s1), (2, s1)} and µ2 := {(1, s2), (2, s2)}. If student 1 misreports her
preference as ≻′

1 = (s1∅ s2), whereas student 2 reports her true preference ≻2, then µ1 is
the unique PE and IR matching. Conversely, if student 1 reports her true preference ≻1,
and student 2 misreports her preference as ≻′

2 = (s2∅ s1), then µ2 is the unique PE and IR
matching. Therefore, in any PE and IR mechanism, either student 1 or 2 can benefit from
misreporting their preferences. This means that no mechanism can simultaneously satisfy
PE, IR, and SP for the market.

Consequently, accessibility is insufficient to guarantee the existence of a mechanism that
satisfies PE, IR, and SP. Nevertheless, accessibility is a necessary condition in a maximal
domain sense for the existence of a mechanism that satisfies PE, IR, and GSP.

We first observe a simple market does not admit a desired mechanism. We then prove that
any market does not admit a desired mechanism if there is one school with an inaccessible
constraint and another school with unit capacity constraint.

Example 3. Suppose there are two students 1, 2 and two schools s1, s2. The constraint Fs

on each school s is defined as follows:

Fs1 =
{
∅, {1, 2}

}
and Fs2 =

{
∅, {1}, {2}

}
.

The constraint Fs1 could appear as a proportional constraint; for example, the number of
male and female students who match with a particular school must be equal. This market
does not admit a mechanism that simultaneously satisfies PE, IR, and SP.

To obtain a contradiction, suppose that ψ is a mechanism that satisfies PE, IR, and SP.
We define 8 preference profiles as follows:
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• P (1) = (s2∅ s1, s1∅ s2)

• P (2) = (s2 s1∅, s1∅ s2)

• P (3) = (s2 s1∅, s1 s2∅)

• P (4) = (s2∅ s1, s1 s2∅)

• Q(1) = (s1∅ s2, s2∅ s1)

• Q(2) = (s1∅ s2, s2 s1∅)

• Q(3) = (s1 s2∅, s2 s1∅)

• Q(4) = (s2∅ s1, s2 s1∅)

In profile P (1), student 1 prefers s2, followed by ∅, and then s1. Student 2 prefers s1,
followed by ∅, and then s2. Based on PE and IR, we derive that ψ[P (1)] = {(1, s2)}. For
profile P (2), the outcome ψ[P (2)] must be {(1, s1), (2, s1)} or {(1, s2)} by PE and IR. However,
ψ[P (2)] = {(1, s1), (2, s1)} is impossible by SP because it incentivizes student 1 to misreport
so that the preference profile becomes P (1). Hence, we obtain ψ[P (2)] = {(1, s2)}. Similarly,
we have ψ[P (3)] = {(1, s2)} by PE, IR, and SP. This implies ψ[P (4)] = {(1, s2)} by PE, IR,
and SP.

Applying similar reasoning, we can determine that ψ[Q(1)] = ψ[Q(2)] = ψ[Q(3)] =
{(2, s2)}. In addition, we can conclude that ψ[Q(4)] = {(2, s2)} by PE, IR, and SP. However,
this contradicts SP because it incentivizes student 2 to misreport at P (4).

Theorem 3. Fix a set of students I with |I| ≥ 2, a set of schools S with |S| ≥ 2, and a
school s∗ ∈ S with the constraint Fs∗ . Suppose that Fs∗ is not accessible. Then, there must
exist a market (I, S, (Fs)s∈S) with s

∗ ∈ S and Fs = {X ⊆ I : |X| ≤ 1} for all s ∈ S \ {s∗}
such that no mechanism simultaneously satisfies PE, IR, and GSP.

Proof. We first consider the case where |S| = 2. We consider a market in which S = {s∗, t}
and Ft = {X ⊆ I : |X| ≤ 1}. As Fs∗ is not accessible, there exists a nonempty X∗ ∈ Fs∗

such that X∗ \ {i} ̸∈ Fs∗ for all i ∈ X∗. Note that X∗ must contain at least two students
because ∅ ∈ Fs∗ by assumption. Suppose, to the contrary, that there exists a mechanism ψ
that satisfies PE, IR, and GSP. Note that ψ is also nonbossy because it is GSP.

For each i ∈ X∗, we define P (i) as a preference profile such that P
(i)
i = (t∅ s∗), P

(i)
j =

(s∗∅ t) for each j ∈ X∗\{i}, and P (i)
j = (∅ s∗ t) for each j ∈ I \X∗. By PE and IR, student i

must be matched with school t at P (i) (i.e., (i, t) ∈ ψ[P (i)]). In addition, at least one student
j ∈ X∗ \{i} is unmatched at P (i) (i.e., (j, s∗) ̸∈ ψ[P (i)]) because X∗ \{i} ̸∈ Fs∗ . We draw an
arrow from each student i ∈ X∗ to an agent j ∈ X∗ \ {i} who is unmatched at P (i). Then,
there must be at least one cycle. Let (i1, i2, . . . , ik) be such a cycle, where (iℓ+1, s

∗) ̸∈ ψ[P (iℓ)]
for ℓ = 1, 2, . . . , k (we use ik+1 to represent i1 for simplicity). Note that k ≥ 2 because there

is no self-loop. For each j ∈ {1, 2, . . . , k}, we define the preference profiles P̂ (ij), ˆ̂P (ij), and
Q(ij) as follows:

• P̂
(ij)
ij

= (t s∗∅) and P̂
(ij)
i = P

(ij)
i for each i ∈ I \ {ij};

• ˆ̂P
(ij)
ij+1

= (s∗ t∅) and ˆ̂P
(ij)
i = P̂

(ij)
i for each i ∈ I \ {ij+1};

• Q
(ij)
ij+1

= (t s∗∅) and Q
(ij)
i = ˆ̂P

(ij)
i for each i ∈ I \ {ij+1}.
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The preference profiles are summarized in Table 1. By PE and SP, we have ψ[P̂ (ij)](ij) = t

for j = 1, 2, . . . , k. Hence, by nonbossiness, ψ[P̂ (ij)] = ψ[P (ij)] for j = 1, 2, . . . , k. Moreover,

by a similar argument, we also have ψ[Q(ij)] = ψ[ ˆ̂P (ij)] = ψ[P̂ (ij)] = ψ[P (ij)].

{i1, . . . , ik} \ {ij, ij+1} ij ij+1 X∗ \ {i1, . . . , ik} I \X∗

P (ij) (s∗∅ t) (t∅ s∗) (s∗∅ t) (s∗∅ t) (∅ s∗ t)

P̂ (ij) (s∗∅ t) (t s∗∅) (s∗∅ t) (s∗∅ t) (∅ s∗ t)
ˆ̂P (ij) (s∗∅ t) (t s∗∅) (s∗ t∅) (s∗∅ t) (∅ s∗ t)
Q(ij) (s∗∅ t) (t s∗∅) (t s∗∅) (s∗∅ t) (∅ s∗ t)
R (t s∗∅) (t s∗∅) (t s∗∅) (s∗∅ t) (∅ s∗ t)

Table 1: Preference profiles in the proof of Theorem 3

Now, let us consider the preference profile R such that Ri = (t s∗∅) for each i ∈
{i1, . . . , ik}, Ri = (s∗∅ t) for each i ∈ X∗ \{i1, . . . , ik}, and Ri = (∅ s∗ t) for each i ∈ I \X∗.
Recall that school t has a capacity of one. By symmetry, we may assume, without loss
of generality, that no student other than ik is matched to t in ψ[R] (i.e., ψ[R](ik) = t or
ψ[R] = {(i, s∗) : i ∈ X∗}). For each j ∈ {1, 2, . . . , k}, let R(j) be the preference profile such

that R
(j)
i = (t s∗∅) for each i ∈ {ij, . . . , ik}, R(j)

i = (s∗∅ t) for each i ∈ X∗ \{ij, . . . , ik}, and
R

(j)
i = (∅ s∗ t) for each i ∈ I \X∗. Note that R(1) = R and R(k−1) = Q(ik−1). By PE, IR, and

GSP, it is not difficult to see that ψ[R] = ψ[R(1)] = ψ[R(2)] = · · · = ψ[R(k−1)] = ψ[Q(ik−1)].
This implies that (ik−1, t) ∈ ψ[Q(ik−1)] = ψ[R]. However, this contradicts the assumption
that no student other than ik is matched to t in ψ[R]. Hence, it can be concluded that no
mechanism simultaneously satisfies PE, IR, and GSP.

For the case where |S| > 2 can be proved in the same way by setting ∅ ≻i s for all i ∈ I
and s ∈ S \ {s∗, t}.

By combining Theorem 2 and Theorem 3, we can conclude that accessibility is a necessary
and sufficient condition for the existence of a PE, IR, and GSP mechanism when there are
at least two schools and at most one school does not have a capacity constraint.

3.3 Relation to stability

Finally, we discuss the relationship between the results obtained in this section and the
existence of stable matchings. Note that stability is a stronger condition than IR, but not
comparable to PE. In addition, it is clear that the mechanism that always outputs the
endowment matching satisfies both IR and SP. In order to discuss stability, we introduce a
model to allocate indivisible goods with priorities. In this model, each school s is endowed
with a priority, which is represented by a choice function over sets of students. Let Chs : 2

I →
2I be the choice function of s ∈ S, where Chs(X) ⊆ X for allX ⊆ I. The choice function Chs

induces the feasibility constraint Fs = {X ⊆ I : Chs(X) = X}. The condition Chs(X) = X
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is called individual rationality of school s. A matching µ is stable if it is individually rational
for both sides and there exists no (i, s) ∈ I × S such that s ≻i µ(i) and i ∈ Chs(µ(s) ∪ {i}).

We introduce conditions that impose restrictions on the priorities. A choice function
Ch satisfies path-independence (Plott, 1973) if for any sets of students X and Y , we have
Ch(X∪Y ) = Ch(Ch(X)∪Ch(Y )). Furthermore, a choice function Ch satisfies unidirectional
substitutes and complements conditions (Huang, 2021; Dur et al., 2021) if there exists an
ordered type t : I → R such that for any X ⊆ I and i ∈ Ch(X), the following conditions
hold: (a) {i′ ∈ Ch(X) \ {i} : t(i′) = t(i)} ⊆ {i′ ∈ Ch(X \ {i}) : t(i′) = t(i)}, and (b)
{i′ ∈ Ch(X) : t(i′) < t(i)} \ {i} = {i′ ∈ Ch(X \ {i}) : t(i′) < t(i)}.

When every choice function satisfies path-independence, a stable matching exists (Roth,
1984; Aygün and Sönmez, 2013). Intuitively, a path-independent choice function rules out
complementarities, which are associated with the nonexistence of stable matchings. How-
ever, Huang (2021) demonstrated that a choice function can accommodate a specific type
of complementarity. When every choice function satisfies unidirectional substitutes and
complements conditions for a common t, a stable matching still exists. Note that a path-
independent choice function C induces a general upper bound since C(X) = X implies
C(Y ) = Y for all Y ⊆ X.7 Moreover, a choice function that satisfies unidirectional substi-
tutes and complements induces a σ-accessible constraint, as discussed in a similar manner
to the arguments presented in Section 2.4.8

An inaccessible constraint is associated with stronger complementarities. A choice func-
tion Ch with the following complementarities leads to an inaccessible constraint: there exists
X ⊆ I with Ch(X) ̸= ∅ such that for any i ∈ Ch(X), we have Ch(Ch(X)\{i}) ⊊ Ch(X)\{i}.
The set Ch(X) with such an X is inaccessible in the feasibility constraint induced by Ch.
This type of complementarity is encountered in choice functions under proportional con-
straints and lower bounds and is also observed in matchings involving couples. The presence
of this complementarity is known to lead to the nonexistence of a stable matching (Nguyen
and Vohra, 2019; Biró et al., 2010; Ehlers et al., 2014; Fragiadakis et al., 2016; Fragiadakis
and Troyan, 2017). Importantly, this complementarity not only implies the absence of stable
matchings but also rules out the existence of mechanisms that satisfy the properties of PE,
IR, and GSP, as required by our necessity of accessibility.

4 Setting with Endowments

In this section, we establish that g-matroid is a maximal domain for the existence of PE, IR,
and SP mechanisms in a setting with endowments. To demonstrate this, we first prove that
a TTC mechanism satisfies PE, IR, and GSP if the constraints are g-matroid. Subsequently,
we construct a market that permits no PE, IR, and SP mechanisms for each constraint Fs∗

7If a path-independent choice function induces a matroid constraint, it satisfies the law of aggregate
demand (Yokoi, 2019). Consequently, this class of choice functions guarantees the existence of stable and
SP mechanisms (Hatfield and Milgrom, 2005).

8Bando and Kawasaki (2021) introduced a broader class of choice functions and studied dynamic match-
ing. The constraints induced by the choice functions are also σ-accessible.
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that is not g-matroid.

4.1 Motivating example

We begin with the following example, a simplified version of one found in Delacrétaz et al.
(2023), illustrates that no mechanism can simultaneously achieve PE, IR, and SP under a
general constraints. Specifically, Delacrétaz et al. (2023) demonstrated that no mechanism
satisfies PE, IR, and SP under multidimensional knapsack constraints.9

Example 4. Suppose that there are three students 1, 2, 3 and three schools s1, s2, s3. The
preference ≻i of each student i is given as follows:

≻1 = (s3 s1 s2∅), ≻2 = (s3 s1 s2∅), ≻3 = (s2 s3∅ s1).

For this preference, student 1 prefers school s3 the most and least prefers the outside option
∅. The constraint Fs of each school s is given as follows:

Fs1 =
{
∅, {1}, {2}, {3}

}
, Fs2 =

{
∅, {1}, {2}, {3}, {1, 2}

}
, Fs3 =

{
∅, {1}, {2}, {3}

}
.

Here, Fs1 and Fs3 are (unit) capacity constraints, whereas Fs2 is not. Indeed, {1, 2}, {3} ∈
Fs2 but {1, 3}, {2, 3} ̸∈ Fs2 . Constraints such as Fs2 appear as budget constraints (e.g.,
student 3 requires more scholarship money). The endowments of students 1 and 2 are s2,
and the endowment of student 3 is s3.

It is not difficult to see that there exist only two PE and IR matchings:

µ1 = {(1, s3), (2, s1), (3, s2)} and µ2 = {(1, s1), (2, s3), (3, s2)}.

Here, if student 1 misreports her preference as ≻′
1 = (s3 s2∅ s1) whereas the other students

report their true preferences, then µ1 is a unique PE and IR matching. Similarly, if student
2 misreports her preference as ≻′

2 = (s3 s2∅ s1) whereas the other students report their true
preferences, then µ2 is a unique PE and IR matching. Hence, in any PE and IR mechanism,
either student 1 or 2 can be better off by misreporting their preference, depending on whether
the outcome for true reporting is µ1 or µ2.

The example raises the question of which constraint structure is crucial for the existence of
PE, IR, and SP mechanisms. We identify that generalized matroid (g-matroid) is a “necessary
and sufficient” condition of constraints to guarantee existence.

4.2 Mechanism for g-matroid constraints

We provide a TTC mechanism that satisfies PE, IR, and GSP when the constraints are
g-matroid. We derive this mechanism by utilizing the TTC-M mechanism introduced by

9In the model with multidimensional knapsack constraints, there is a finite set of service D. Each family

i ∈ I has service needs νi = (νid) ∈ Z|D|
≥0 . Each location s ∈ S has a service capacity profile κs = (κs

d) ∈ Z|D|
≥0 .

The constraint of each school s is represented by Fs ≡ {I ′ ⊆ I :
∑

i∈I′ νid ≤ κs
d for all d ∈ D}.
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Suzuki et al. (2018, 2023). The TTC-M mechanism maintains PE, IR, and GSP for any
distributional constraint that can be represented by an M-convex set on the vector of the
number of students assigned to each school. Let χe ∈ {0, 1}E be the eth unit vector. A set
of integer vectors V ⊆ ZE

≥0 is an M-convex set if for all v, v′ ∈ V and all e ∈ E with ve > v′e,
there exists f ∈ E with vf < v′f such that v − χe + χf ∈ V and v′ + χe − χf ∈ V (Murota,
2003).

Note that the TTC-M mechanism cannot be directly applied to our setting. The primary
reason for this is that in our setting, the constraints are not imposed on the number of
students assigned to each school but rather on the matched student-school pairs. In addition,
our setting allows students to be unmatched whereas their model does not.

To utilize the TTC-M mechanism, we construct a virtual market (I, S̃, (≻̃i)i∈I , F̃ , ω̃) from
the given market (I, S, (≻i)i∈I ,F , ω). The set of schools in the virtual market is defined as
the set of student-school pairs S̃ :=

{
(i, s) : i ∈ I, s ∈ S ∪ {∅}

}
. Each student i ∈ I has a

strict preference ≻̃i over S̃ such that for any (i1, s1), (i2, s2) ∈ S̃, we have

(i) (i1, s1)≻̃i(i2, s2) ⇐⇒ s1 ≻i s2 if i1 = i2 = i, and

(ii) (i1, s1)≻̃i(i2, s2) if i1 = i and i2 ̸= i.

The distributional constraint F̃ ⊆ ZS̃
≥0 is defined as follows:

F̃ :=
{
ν ∈ {0, 1}S̃ :

∑
(i,s)∈S̃ ν(i,s) = |I| and {(i, s) ∈ I × S : ν(i,s) = 1} ∈ F

}
.

The endowment function satisfies ω̃(i) = (i, ω(i)) for each i ∈ I. We will demonstrate that
F̃ is an M-convex set if F is a g-matroid.

The TTC-M mechanism runs on the virtual market as follows. Let � be a common
priority order over the students I. Without loss of generality, we may assume that 1� 2�
· · ·�n. In each round, every (virtual) school (i, s) ∈ S̃ selects a student. If (i, s) belongs to the
endowment matching, then it selects i. Otherwise, (i, s) selects the highest priority student
among the students i′ for which (i, s) can be added to the current matching by removing
(i′, ω(i′)) without violating feasibility. This mechanism gives the selected student the right
to obtain a seat. Each student selects the right to obtain her top applicable school seat.
Subsequently, students with such rights can trade seats among themselves by constructing
trading cycles. Implement the trade indicated by this cycle, and all the involved students
are removed from the market. If any students remain, the procedure continues.

For clarity, we provide an example of how our TTC mechanism works.

Example 5. Let I = {1, 2, 3, 4, 5} and S = {s1, s2}. Suppose that students 1, 2 prefer s2,
s1, ∅ in this order, and students 3, 4, 5 prefer s1, s2, ∅ in this order. The constraints F is a
g-matroid that is defined as the aggregation of

Fs1 =
{
I ′ ⊆ I : |I ′ ∩ {2, 3, 5}| ≤ 1

}
and Fs2 =

{
I ′ ⊆ I : 1 ≤ |I ′| ≤ 2

}
.

Let the endowments be (ω(1), ω(2), ω(3), ω(4), ω(5)) = (s1, s1, s2,∅,∅), that is, the endow-
ment matching is µ(0) = {(1, s1), (2, s1), (3, s2)}.
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In round 1 of Algorithm 3, student 1 points to (1, s2), (1, s2) points to 1, student 2 points
to (2, s2), (2, s2) points to 1, and so on (see Figure 2a). Note that {(2, s1), (3, s2), (2, s2)} is
in F although it is not a matching. The cycle identified at line 13 is (1, (1, s2)). Hence, we
obtain µ(1) = {(2, s1), (3, s2)}, µ̃(1) = {(1, s2)}, and I(1) = {2, 3, 4, 5}.

In round 2, the cycle identified at line 13 is (2, (2, s2), 3, (3, s1)) (see Figure 2b). Thus,
we obtain µ(2) = ∅, µ̃(2) = {(1, s2), (2, s2), (3, s1)}, and I(2) = {4, 5}.

In round 3, there are two cycles (4, (4, s1)) and (5, (5,∅)) (see Figure 2c). Note that
student 5 cannot point to s1, as student 3 was matched to s1 in round 2, and therefore, s1 ̸∈
S
(3)
5 . The trades indicated by these cycles are implemented in rounds 3 and 4. Consequently,

we obtain the matching µ̃(4) = {(1, s2), (2, s2), (3, s1), (4, s1)}.

1

2

3

4

5

(1, s2)

(2, s2)

(3, s1)

(4, s1)

(5, s1)

(a) Round 1

2

3

4

5

(2, s2)

(3, s1)

(4, s1)

(5, s1)

(b) Round 2

4

5

(4, s1)

(5,∅)

(c) Round 3

Figure 2: Cycles obtained by the TTC in Example 5. The blue and red arrows represent the
relationship to which students and virtual schools are pointing, respectively. Virtual schools
that have not been pointed to by any student are omitted.

Note that a trading cycle can be interpreted as an alternating cycle in the exchange
graph of a g-matroid intersection. This correspondence can be established by constructing
an instance of the g-matroid intersection problem whose common ground set is the set of
student-school pairs S̃. One g-matroid is the distributional constraint F̃ , and the other is
a partition matroid M that ensures each student appears at most once. In other words,
X ∈ M if |X ∩

{
(i, s) ∈ S̃ : s ∈ S ∪ {∅}

}
| ≤ 1 for all i ∈ I. For a feasible matching

µ, the exchange graph is a directed bipartite graph with bipartition µ and S̃ \ µ. A pair
(y, x) ∈ µ × (S̃ \ µ) is an arc if (µ \ {y}) ∪ {x} ∈ F̃ and (x, y) ∈ (S̃ \ µ) × µ is an arc if
(µ \ {y}) ∪ {x} ∈ M. To preserve the feasibility of matching after trading, it is sufficient
to select a cycle in the exchange graph that does not contain shortcuts (Murota, 1996).
A standard method for selecting such a cycle is to select a shortest cycle. However, such a
selection rule does not satisfy strategy-proofness (Imamura and Kawase, 2024). The TTC-M
mechanism instead selects cycles without shortcuts by utilizing the priority order.

Formally, our TTC mechanism is described in Algorithm 3. At the beginning of round
k, the set of remaining students is I(k−1), and each student i ∈ I(k−1) is matched with
µ(k−1)(i) = (i, ω(i)). Each student i ∈ I \I(k−1) exits the market matched with µ̃(k−1)(i). The
set of schools to which student i ∈ I(k−1) has a chance of being matched with is represented
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as S
(k)
i . Then, each student i ∈ I(k−1) points to (i, p

(k)
i ) where p

(k)
i is the most preferred

school in S
(k)
i . Each virtual school (i, s) points to the most prioritized student i′ whom (i, s)

can add by removing (i′, ω(i′)).

Algorithm 3: Generalized TTC

input : a market (I, S, (≻i)i∈I ,F , ω)
output: a matching µ̃

1 Let µ(0) ← {(i, ω(i)) : i ∈ I}, µ̃(0) ← ∅, and I(0) ← I;
2 for k ← 1, 2, . . . do
3 if I(k−1) = ∅ then return µ̃(k−1);

4 foreach i ∈ I(k−1) do

5 Let S
(k)
i ←{

s ∈ S ∪ {∅} :
(
µ(k−1) \ {(i′, ω(i′))}

)
∪ µ̃(k−1) ∪ {(i, s)} ∈ F (∃i′ ∈ I(k−1))

}
;

6 Let p
(k)
i be the most preferred school in S

(k)
i for i;

7 i points to (i, p
(k)
i );

8 foreach (i, s) ∈ {(i, p(k)i ) : i ∈ I(k−1)} do
9 if (i, s) ∈ µ(k−1) then (i, s) points to i;

10 else

11 Let I
(k)
(i,s) ←

{
i′ ∈ I(k−1) :

(
µ(k−1) \ {(i′, ω(i′))}

)
∪ µ̃(k−1) ∪ {(i, s)} ∈ F

}
;

12 (i, s) points to the most prioritized (smallest index) student in I
(k)
(i,s);

13 Identify a cycle (i1, (i1, p
(k)
i1
), i2, (i2, p

(k)
i2
), . . . , ir, (ir, p

(k)
ir
));

14 µ(k) ← µ(k−1) \ {(i1, ω(i1)), . . . , (ir, ω(ir))};
15 µ̃(k) ← µ̃(k−1) ∪ {(i1, p(k)i1

), . . . , (ir, p
(k)
ir
)};

16 I(k) ← I(k−1) \ {i1, . . . , ir};

We prove the following theorem.

Theorem 4. The generalized TTCmechanism (Algorithm 3) satisfies PE, IR, and GSP if the
distributional constraints form a g-matroid. Additionally, Algorithm 3 can be implemented
to run in time O(|I|2 · |S|) if we assume that the feasibility of a matching can be checked in
a constant time.

Proof. Recall that the TTC-M mechanism satisfies PE, IR, and GSP when the distributional
constraint is represented by an M-convex set on the vector of the number of students assigned
to each school (Suzuki et al., 2023). Therefore, to demonstrate that Algorithm 3 satisfies
PE, IR, and GSP, it is sufficient to prove that F̃ is an M-convex set if F is a g-matroid.
Suppose that F is a g-matroid. Then, F ′ =

{
ν ⊆ S̃ : ν ∩ (I × S) ∈ F

}
is also a g-matroid

by definition. Further, F̃ can be obtained from F ′ by truncating it with cardinality |I| (i.e.,
F̃ = {ν ∈ F ′ : |ν| = |I|}), and such a truncation induces a matroid base family (Tardos,
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1985). As the class of matroid base families is a subclass of M-convex sets (Murota, 2016),
F is an M-convex set.

Next, we discuss the computational complexity of Algorithm 3. As at least one student
is fixed in each iteration, the number of iterations is at most O(|I|). The running time of
each iteration is O(|I| · |S|). Therefore, the total running time is at most O(|I|2 · |S|).

4.3 Impossibility for non-g-matroid constraints

Next, we demonstrate that the g-matroid structure is necessary for the existence of a mech-
anism that satisfies PE, IR, and SP.

Theorem 5. Fix a set of students I, a set of schools S with |S| ≥ 3, and a school s∗ with
the constraint Fs∗ . Suppose that Fs∗ is not a g-matroid. Then, there must exist a market
(I, S, (Fs)s∈S, ω) with s

∗ ∈ S and Fs = {X ⊆ I : |X| ≤ 1} for all s ∈ S \ {s∗} such that no
mechanism simultaneously satisfies PE, IR, and SP.

Proof. As Fs∗ is not a g-matroid, there exist subsets X and Y in Fs∗ and a student e in
X \ Y , such that,

(i) X \ {e} ̸∈ Fs∗ and (X \ {e}) ∪ {e′} ̸∈ Fs∗ for any e′ ∈ Y \X, or

(ii) Y ∪ {e} ̸∈ Fs∗ and (Y ∪ {e}) \ {e′} ̸∈ Fs∗ for any e′ ∈ Y \X.

Here, we provide the proof for the case in which (i) holds. We defer the proof for the case
when (ii) holds to Appendix A, as it can be demonstrated in a similar manner.

Suppose that there exist X, Y ∈ Fs∗ and e ∈ X \ Y such that X \ {e} ̸∈ Fs∗ and
(X \ {e}) ∪ {f} ̸∈ Fs∗ for any f ∈ Y \ X. Let Z ∈ Fs∗ be a set of students such that
(X ∩ Y ) ⊆ Z ⊆ (X ∪ Y ) \ {e}. Such a set Z must exist because Y satisfies the condition.
Among all sets Z that satisfy this condition, we select a set that maximizes |X ∩ Z|.

We consider the following two cases separately: (a) |X \ Z| = 1 and (b) |X \ Z| ≥ 2.

e x

y

X Y
Z

Figure 3: Case a

e

e′

X Y
Z

Figure 4: Case b

Case a: |X \ Z| = 1. In this case, we have X ∩ Z = X \ {e}. In addition, we have
|Z \X| ≥ 2 because (X \ {e}) ∪ J = Z ∈ Fs∗ by setting J = Z \X. We select two students
x, y ∈ Z \ X arbitrarily (see Figure 3). We consider a market in which the set of schools
is S = {s∗, t, u} and Ft = Fu = {I ′ ⊆ I : |I ′| ≤ 1}. Additionally, let the endowments be
ω(e) = t, ω(i) = s∗ for each i ∈ Z, and ω(i) = ∅ for each i ̸∈ Z ∪ {e}. The endowment
matching µ0 for this market is feasible because µ0(s

∗) = Z, |µ0(t)| = 1, and |µ0(u)| = 0 ≤ 1.
Suppose that the students’ preferences of the students are given as follows:
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• ≻e = (s∗ t · · · ),
• ≻x = (t u s∗ · · · ),
• ≻y = (t u s∗ · · · ),

• ≻i = (s∗ · · · ) for each i ∈ X \ {e},
• ≻i = (∅ s∗ · · · ) for each i ∈ Z \ (X ∪ {x, y}),
• ≻i = (∅ · · · ) for each i ̸∈ X ∪ Z.

Let µx be the matching such that x matches to u and every other student matches to
her most favorite school (or her outside option). Similarly, let µy be the matching such
that y matches to u and every other student matches to her most favorite school. Then,
µx and µy are feasible since µx(s

∗) = µy(s
∗) = X. Furthermore, we can observe that only

µx and µy are PE and IR. By symmetry, we can assume, without loss of generality, that a
mechanism outputs µx. Suppose that x misreports her preference as t ≻′

x s
∗ ≻′

x · · · . With
this misreporting, the unique PE and IR matching is µy. Hence, any PE and IR mechanism
cannot satisfy SP.

Case b: |X \ Z| ≥ 2. Let e′ be an arbitrary student in X \ (Z ∪ {e}) (see Figure 4). We
consider a market in which the set of schools is S = {s∗, t, u} and Ft = Fu = {I ′ ⊆ I :
|I ′| ≤ 1}. In addition, let the endowments be ω(e) = t, ω(e′) = u, ω(i) = s∗ for each i ∈ Z,
ω(i) = ∅ for each i ∈ I \(Z∪{e, e′}). The endowment matching µ0 for this market is feasible
because µ0(s

∗) = Z and |µ0(t)| = |µ0(u)| = 1.
Suppose that students’ preferences of the students are defined as follows:

• ≻e = (u s∗ t · · · ),
• ≻e′ = (s∗ t u · · · ),
• ≻i = (s∗ · · · ) for each i ∈ X ∩ Z,
• ≻i = (∅ s∗ · · · ) for each i ∈ Z \X,

• ≻i = (s∗∅ · · · ) for each i ∈ X \ (Z ∪ {e, e′}),
• ≻i = (∅ · · · ) for each i ̸∈ X ∪ Z.

Let µ be the matching produced by a PE, IR, and SP mechanism. By IR, we have X ∩Z ⊆
µ(s∗) ⊆ X ∪ Z. If e ̸∈ µ(s∗), then we must have µ(s∗) ⊆ Z by the maximality of |X ∩ Z|.
Hence, µ(e) ̸= s∗ implies µ(e′) ̸= s∗. Let us consider three subcases depending on µ(e): (b1)
µ(e) = t, (b2) µ(e) = s∗, and (b3) µ(e) = u.

Case b1: µ(e) = t. In this case, µ(e′) ̸= s∗ and µ(e′) = u. This means that µ is not PE
because e and e′ can be better off by swapping their allocated schools, which is a
contradiction.

Case b2: µ(e) = s∗. Suppose that e misreports s∗ as being unacceptable (i.e., submitting
≻′

e = (u t · · · )). Then, e must be matched with u in any PE and IR matching, which
contradicts SP.

Case b3: µ(e) = u. In this case, µ(e′) ̸= s∗ and µ(e′) = t. Suppose that e′ misreports that
t as being unacceptable (i.e., submitting ≻′

e = (s∗ u · · · )). Then, e′ must be matched
with s∗ because there exists a unique PE and IR matching {(i, s∗) : i ∈ X}, which
contradicts SP.
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5 Discussion and Conclusion

5.1 Relation between the two settings

We discuss the relationship between the settings, which can be summarized as shown in
Table 2. Recall that the endowments are assumed to be feasible in both settings. In the
setting with endowments, any feasible matching in F can be set as the initial matching µ0.
In contrast, in the setting without endowments, the initial matching µ0 is restricted to the
empty matching, but it implies that the empty matching must be feasible in this setting.
Thus, the necessary or sufficient conditions of one setting cannot be simply applied to the
other setting.

To make this difference more clear, let us assume that the empty matching is feasible
in the setting with endowments as well. Then, the necessary and sufficient condition for
the existence of a desired mechanism in this setting becomes matroid. Since any matroid
constraint is σ-accessible for every σ, this is a sufficient condition for the existence of a
desired mechanism in the setting without endowments.

Setting Assumption Initial Endowment Condition

Without Endowments ∅ ∈ F µ0 = ∅ (σ-)accessible
With Endowments F ̸= ∅ µ0 ∈ F g-matroid
Including Both ∅ ∈ F µ0 ∈ F matroid

Table 2: Relation between settings for the condition to exist a desired mechanism

5.2 Two out of PE, IR, and GSP

In both settings, with and without endowments, any two of the three properties PE, IR,
and GSP can be achieved under general constraints. It is evident that the mechanism which
always outputs the endowment matching satisfies both IR and GSP. To satisfy PE and GSP,
we can utilize a generalized SD mechanism that sequentially assigns each student to her
best school in a predetermined order, ensuring that the remaining students can be feasibly
assigned. To observe that the outcome µ of the mechanism is PE, suppose, to the contrary,
that there exists a feasible matching µ′ that is a Pareto improvement of µ. Let i∗ be the
first student assigned to a school other than µ(i∗) in the mechanism. Then, µ′(i∗) ≻i∗ µ(i

∗);
however, this contradicts the behavior of the generalized SD mechanism. Additionally, the
mechanism is GSP because if a student does not select her preferred school in her turn,
she will not receive another chance to do so. This mechanism is equivalent to the GSDPC
proposed by Kamiyama (2013). Regarding PE and IR, they can be achieved by using the
CSD mechanism (Imamura and Kawase, 2024). The CSD mechanism sequentially assigns
each student to her best school in a predetermined order, while ensuring that the remaining
students can be assigned to produce a feasible IR matching. Clearly, this mechanism satisfies
IR. The property of PE follows from the fact that a matching is PE if it is PE under the IR
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constraint. Note that the CSD mechanism is not SP because each student is assigned to a
school depending on the preferences of the later students.

5.3 Conclusion

This study investigated the existence of efficient and strategy-proof mechanisms in indivisible
goods allocation problems under general constraints.

In the setting without endowments, we demonstrated that the SD mechanism satisfies
PE, IR, and GSP if the constraints are σ-accessible for a common σ. We also proved that
accessibility is a necessary condition to ensure the existence of PE, IR, and GSP mechanisms.
Identifying the most general class of constraints under which PE, IR, and SP mechanisms
exist remains open. In a setting with endowments, we revealed that the g-matroid is a
maximal domain under which we can guarantee the existence of a PE, IR, and SP mechanism.
The same statement holds true even if we replace SP with GSP.

In a setting without endowments, we formulate an integer linear program (ILP) to de-
termine the existence of PE, IR, and SP mechanisms for a given market. In the case where
I = {1, 2, 3}, S = {s1, s2}, Fs1 = {X ⊆ I : |X| ≠ 2}, and Fs2 = {X ⊆ I : |X| ≤ 1},
the Gurobi solver with the ILP revealed that no such mechanism exists. The irreducible
inconsistent subsystem obtained for the market contains relationships among 43 preferences,
making it challenging to discern its underlying structure. Whether accessibility is necessary
for the existence of PE, IR, and SP mechanisms remains for future research.

In a setting with endowments, Delacrétaz et al. (2023) presented stronger nonexistence
results under multidimensional knapsack constraints. For example, the desired mechanism
does not exist even when PE and IR are replaced by the property that a mechanism Pareto
improves upon every Pareto-inefficient endowment. We call this property Pareto-improving
(PI). Formally, a mechanism φ is PI if, for any preference profile ≻I at which the endowment
matching µ0 is Pareto inefficient, φ[≻I ](i) ⪰i µ0(i) for all i ∈ I and φ[≻I ](i) ≻i µ0(i) for
some i ∈ I. PI is a weaker requirement than the conjunction of PE and IR. Delacrétaz et al.
(2023) showed by example that no PI and SP mechanism exists under multidimensional
knapsack constraints. In contrast, a PI and SP mechanism exists in Example 4. Thus, we
are left with the following question: Which class of constraints is necessary and sufficient for
the existence of PI and SP mechanisms?

Finally, let us discuss the case in which the endowment matching µ0 is infeasible. In
this case, no IR matchings exist, especially when every student prefers her own endowment
the most. Therefore, we have no option but to abandon IR. Moreover, abandoning IR is a
natural choice when allocating chores in a setting without endowments. Nevertheless, even
without IR, we can still attain PE and GSP by employing the GSDPC mechanism under
any constraints, as long as at least one feasible matching exists.

A Ommited Part in the Proof of Theorem 5

Here, we provide proof of Theorem 5 for the case when (ii) holds.
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Suppose that there exist X, Y ∈ Fs∗ and e ∈ X \ Y such that Y ∪ {e} ̸∈ Fs∗ and
(Y ∪ {e}) \ {f} ̸∈ Fs∗ for any f ∈ Y \ X. Let Z ∈ Fs∗ be a set of students such that
(X ∩ Y ) ∪ {e} ⊆ Z ⊆ X ∪ Y . Such a set Z must exist because X satisfies the condition.
Among all sets Z that satisfy this condition, we select a set that minimizes |X ∩ Z|.

We consider the following two cases separately: (c) |X ∩ Z| = |X ∩ Y | + 1 and (d)
|X ∩ Z| ≥ |X ∩ Y |+ 2.

e
x

y

X Y
Z

Figure 5: Case c

e

e′
X Y

Z

Figure 6: Case d

Case c: |X ∩Z| = |X ∩Y |+1. In this case, we have X ∩Z = (X ∩Y )∪{e}. In addition,
we have |Y \ Z| ≥ 2 because (Y ∪ {e}) \ J = Z ∈ Fs∗ by setting J = Y \ Z. We select two
students x, y ∈ Y \ Z arbitrarily (see Figure 5). We consider a market in which the set of
schools is S = {s∗, t, u} and Ft = Fu = {I ′ ⊆ I : |I ′| ≤ 1}. Additionally, let the endowments
be ω(e) = t, ω(i) = s∗ for each i ∈ Y , and ω(i) = ∅ for each i ̸∈ Y ∪ {e}. The endowment
matching µ0 for this market is feasible because µ0(s

∗) = Y , |µ0(t)| = 1, and |µ0(u)| = 0 ≤ 1.
Suppose that the students’ preferences of the students are given as follows:

• ≻e = (s∗t · · · ),
• ≻x = (t u s∗ · · · ),
• ≻y = (t u s∗ · · · ),

• ≻i = (s∗ · · · ) for each i ∈ Z \ {e},
• ≻i = (∅ s∗ · · · ) for each i ∈ Y \ (Z ∪ {x, y}),
• ≻i = (∅ · · · ) for each i ̸∈ Z ∪ Y .

Let µx be the matching such that x matches to u and every other student matches to
her most favorite school (or her outside option). Similarly, let µy be the matching such
that y matches to u and every other student matches to her most favorite school. Then, µx

and µy are feasible because µx(s
∗) = µy(s

∗) = Z. Furthermore, we can observe that only
µx and µy are PE and IR. By symmetry, we can assume, without loss of generality, that a
mechanism outputs µx. Suppose that x misreports her preference as t ≻′

x s
∗ ≻′

x · · · . With
this misreporting, the unique PE and IR matching is µy. Hence, any PE and IR mechanism
cannot satisfy SP.

Case d: |X ∩ Z| ≥ |X ∩ Y | + 2. Let e′ be an arbitrary student in Z \ (Y ∪ {e}) (see
Figure 6). We consider a market in which the set of schools is S = {s∗, t, u} and Ft = Fu =
{I ′ ⊆ I : |I ′| ≤ 1}. In addition, let the endowments be ω(e) = u, ω(e′) = t, ω(i) = s∗ for
each i ∈ Y , ω(i) = ∅ for each i ∈ I \ (Y ∪ {e, e′}). The endowment matching µ0 for this
market is feasible because µ0(s

∗) = Y and |µ0(t)| = |µ0(u)| = 1.
Suppose that students’ preferences of the students are defined as follows:
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• ≻e = (s∗ t u · · · ),
• ≻e′ = (u s∗ t · · · ),
• ≻i = (s∗ · · · ) for each i ∈ Z ∩ Y ,

• ≻i = (∅ s∗ · · · ) for each i ∈ Y \ Z,
• ≻i = (s∗∅ · · · ) for each i ∈ Z \ (Y ∪ {e, e′}),
• ≻i = (∅ · · · ) for each i ̸∈ Z ∪ Y .

Let µ be the matching produced by a PE, IR, and SP mechanism. By IR, we have
Z ∩ Y ⊆ µ(s∗) ⊆ Z ∪ Y . If e ∈ µ(s∗), then we must have X ∩ Z ⊆ µ(s∗) by the minimality
of |X ∩ Z|. Hence, µ(e′) ̸= s∗ implies µ(e) ̸= s∗. Let us consider three subcases depending
on µ(e′): (d1) µ(e′) = t, (d2) µ(e′) = s∗, and (d3) µ(e′) = u.

Case d1: µ(e′) = t. In this case, µ(e) ̸= s∗ and µ(e) = u. This means that µ is not PE
because e and e′ can be better off by swapping their allocated schools, which is a
contradiction.

Case d2: µ(e′) = s∗. Suppose that e′ misreports s∗ as being unacceptable (i.e., submitting
≻′

e′ = (u t · · · )). Then, e′ must be matched with u in any PE and IR matching, which
contradicts SP.

Case d3: µ(e′) = u. In this case, µ(e) ̸= s∗ and µ(e) = t. Suppose that e misreports t
as being unacceptable (i.e., submitting ≻′

e = (s∗ u · · · )). Then, e must be matched
with s∗ because there exists a unique PE and IR matching {(i, s∗) : i ∈ Z}, which
contradicts SP.
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