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Abstract

We study dynamic partnerships where the output evolves stochastically, each player can exit at

any time, and players who have exited continue to accrue some benefits if the remaining players

keep contributing to the partnership. Players can strategically exit to free-ride on their partners’

contributions, knowing that it may trigger subsequent exits of their partners. We characterize the

unique Pareto-optimal equilibrium. When players have sufficiently large free-riding incentives and

a medium level of mutual reliance, this equilibrium exhibits a curse of profitability: An increase

in the partnership’s output may strictly harm all the players. Another main finding is that Pareto-

improvement can be achieved if any player commits not to exit first.
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1 Introduction

In some partnerships, partners who have exited continue to accrue some benefits as long as the

remaining partners keep contributing to the partnership. In a startup firm, for instance, co-founders

who have ceased investment can still benefit from the startup’s later success, including monetary

returns (if they still retain some shares of the startup) and reputation gains. In a cartel, firms that

have departed can still benefit from the low quantities or high prices maintained by those that

remain in the cartel. In a financial institution facing liquidity strains, investors who cease injecting

liquidity will suffer less loss if the other investors fulfill the liquidity demands. In an environmental

agreement, nations that have withdrawn still benefit from the reduction of greenhouse gases by the

remaining participants.

These partnerships face the common problem of strategic exiting — partners may exit to save

their private contribution costs while relying on the continued contributions of others. Notice that

a partner’s exit makes it more difficult for the remaining partners to operate the partnership and

thus may trigger them to exit as well. Such a ripple effect, in turn, determines whether a partner

would like to strategically exit in the first place.

This paper builds a framework to investigate the dynamics of cooperation in partnerships where

exited partners continue to benefit from the partnership’s output. In particular, we focus on stochas-

tic partnerships — the partnership’s flow output, which we refer to as its level of profitability,

changes stochastically over time. This captures the fact that a partnership’s output is usually af-

fected by some evolving external factors.1

The main finding of this paper is that the partnership may be subject to a curse of profitability —

under some conditions that we specify later, a more profitable partnership leaves all the partners

strictly worse off. Intuitively, higher profitability is a double-edged sword. On the one hand, it

means the partnership generates more output. On the other hand, if some partners exit, higher

profitability makes the remaining partners more willing to keep operating the partnership, which

stimulates strategic exiting in the first place. Moreover, partners have incentives to pre-empt each

other since they prefer to be the free-riders (those who exit while others remain), and because of

1For instance, a startup faces evolving market competition and financing environment; a cartel faces fluctuating
market demand and is subject to technology shocks; a financial institution faces changing market sentiment and regu-
latory environment; an environmental agreement faces changing public political attitudes.
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that, the free-riders exit “too early” in equilibrium. As a consequence, all the players — including

the free-riders — may suffer from high profitability.

Our baseline model features two players running a joint project whose profitability level evolves

according to a Brownian motion. Each player can exit at any time to save his contribution cost.2

We refer to the player who exits first as the first mover and his partner as the second mover.3 The

ripple effect is that the second mover, finding it more difficult to run the project after the first mover

exits, may choose to exit as well and thus terminate the project.

Section 3 analyzes the pure-strategy Markov perfect equilibria (MPE), where each player de-

cides when to exit based on the project’s current profitability level and whether his partner has

already exited. Theorem 1 shows that in the unique Pareto-optimal equilibrium, increasing the

partnership’s profitability level may strictly decrease both players’ continuation value. This find-

ing formalizes this paper’s core insight regarding the curse of profitability in partnerships. More-

over, we find that the curse of profitability occurs if and only if the players have sufficiently large

free-riding incentives and a medium level of mutual reliance (Corollary 1).

Section 4 studies whether and how the issue of strategic exiting can be mitigated when one

player commits not to exit first. Departing from the baseline model, we analyze an alternative

setting where one player, referred to as Susan, commits not to exit first and becomes the desig-

nated second mover, while the other player, Frank, is designated as the first mover. This section

presents two main findings. First, Theorem 2 shows that Frank may strategically exit only when

the partnership’s profitability exceeds a certain level, which explains some exit patterns observed

in practice. For example, serial entrepreneurs often play a pivotal role during a startup’s early

stages but strategically exit as the startup gains traction, shifting their focus to the next startup in

their pipelines.4 Second, Theorem 3 shows that Susan’s no-first-exit commitment can lead to a

Pareto-improvement over the baseline model, as her benefit from avoiding pre-emption outweighs

her cost of forgoing the option to exit first.

Section 5 examines the robustness of the paper’s main result. The curse of profitability is shown

2In the baseline model, exits are assumed irreversible (i.e., exited partners cannot re-enter the partnership), captur-
ing the idea that re-entry is either impossible or costly in many real-world partnerships. Online Appendix B.3 of Xu
(2025) shows that this paper’s main result remains true under some conditions when re-entry is possible but costly.

3The identities of the first and second movers are endogenously determined by the players’ strategies.
4One prominent example is Peter Thiel, who left PayPal after its successful acquisition by eBay and soon transi-

tioned his investment into other ventures, including Facebook.
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to persist across various generalizations, including settings with more than two players, asymmetric

payoff structure among players, the possibility for exited players to re-enter the partnership, and

the relaxation of several innocuous modeling assumptions.

Related Literature

Broadly speaking, this paper contributes to the study of dynamic incentives in cooperation. The

most distinctive feature of this paper is that players can irreversibly exit and continue to free-ride

on others’ contributions. Hence, this paper is related to the following strands of literature.

First, it is related to the literature on dynamic games where players have exit options. Many

papers in this literature feature rippling exits in equilibrium, driven by either payoff externalities

(i.e., a player’s exit alters others’ payoffs) or information externalities (i.e., a player’s exit conveys

information to others).5 Our paper builds on payoff externalities but introduces a key novelty: we

consider two-way externalities — players who exit early harm the remaining players but are also

harmed if the remaining players later exit. Hence, players in our paper are concerned about the

ripple effect triggered by their own exits, while such a concern is absent in the existing literature.

Because of that, our paper gives rise to new economic forces like the curse of profitability.

Second, this paper is related to the literature on dynamic contribution games, where players

exert effort over time to build a common stock of public goods (Admati & Perry, 1991; Fershtman

& Nitzan, 1991; Marx & Matthews, 2000; Georgiadis, 2015). In that literature, a player’s con-

tribution can encourage others to contribute more in the future; in our paper, similarly, a player’s

decision to stay in the partnership can encourage others to stay.6 Some papers in that literature

also highlight economic forces under which stronger fundamentals of a partnership paradoxically

lead to worse outcomes. For example, Curello (2023) studies a dynamic contribution game where

a player’s effort stochastically increases the stock of public goods, while the opportunity cost of

effort rises with the stock. Due to the opportunity cost, a high stock of public goods may result

in low effort and, consequently, low continuation values for the players. Similarly, Ramos and

5For models with payoff externalities, see Jovanovic and MacDonald (1994) in industry shakeouts, Cetemen,
Urgun, and Yariv (2023) in collective search, etc. For models with information externalities, see Chamley and Gale
(1994), Rosenberg, Solan, and Vieille (2007), Moscarini and Squintani (2010), Murto and Välimäki (2011), Guo and
Roesler (2018), Margaria (2020), Awaya and Krishna (2021), Kirpalani and Madsen (2023), etc.

6Model-wise, papers in that literature can be viewed as dynamic games with an endogenous state variable — the
stock of public goods. In our paper, the endogenous state variable is the number of remaining players.
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Sadzik (2023) study a dynamic contribution game where players accumulate relational capital. In

that paper, a high level of relational capital may weaken players’ relational incentives because of

a cap on how much relational capital they can accumulate. Our paper contributes to this line of

inquiry by introducing a novel economic force under which strong fundamentals of a partnership

can have adverse effects — high profitability of a partnership may incentivize strategic exits, as

players anticipate that the remaining players will be motivated to continue operating the project.

Third, this paper is related to voluntary partnership games, where players repeatedly face the

prisoner’s dilemma and have the option to opt out (Ghosh & Ray, 1996; Fujiwara-Greve & Okuno-

Fujiwara, 2009; McAdams, 2011). Despite the similarity, the purpose of exiting is opposite —

players in our paper strategically exit to free-ride on others’ efforts, while in those papers, the

intention of an exit is to punish a free-rider.

Finally, this paper adds to the applications of continuous-time stopping games (also referred to

as real options games), especially those concerning pre-emption in different contexts (Fudenberg

& Tirole, 1985; Dutta & Rustichini, 1993; Grenadier, 1996; Weeds, 2002; Bobtcheff, Bolte, &

Mariotti, 2017; Riedel & Steg, 2017; Thomas, 2021).

2 Baseline Model

2.1 Payoff

Stay Exit
Stay Xt − c , Xt − c βXt − κc , αXt

Exit αXt , βXt − κc 0 , 0

Table 1: Flow payoff at time t in the baseline model

Time is continuous with an infinite horizon, indexed by t ∈ [0,∞). Two players (i = 1, 2) form

a partnership to run a joint project. Player i’s realized lifetime utility is Πi =
∫∞
0

e−rtπitdt, where

r > 0 is the common discount rate of the players and πit is his flow payoff at time t. Players’

flow payoffs are given in Table 1. If both players stay in the partnership, they each pay a flow

contribution cost of c > 0 and receive a flow revenue of Xt > 0. We interpret Xt ∈ X = R+ as

the project’s level of profitability. It changes over time, following a geometric Brownian motion,
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dXt/Xt = µdt + σdZt, where µ < r, σ > 0, and Zt is a standard Wiener process.7 If Player i

(“he”) exits while Player j (“she”) operates the project alone, two changes in payoff happen. On

the one hand, Player i saves his contribution cost while continuing to enjoy a flow revenue of αXt

with α > 0. We refer to α as the free-riding parameter as it measures a player’s benefit from

free-riding. On the other hand, Player j’s flow cost increases to κc with κ ≥ 1, as she now has to

take on the additional responsibilities that Player i would have carried out. Her flow revenue is also

changed to βXt with β > 0.8 The change in her revenue can be attributed to two potential factors:

the loss of synergy resulting from the other player’s exit, which tends to reduce β, or the increase

in her control over the project, which typically raises β. To streamline later analysis, we introduce

a parameter λ := κ/β, allowing Player j’s flow payoff to be equivalently expressed as β(Xt−λc).

We refer to λ as the reliance parameter, as a higher value of λ indicates greater difficulty for a

single player to operate the project, or equivalently, a higher degree of mutual reliance between the

players in operating the project. Finally, if both players exit, their payoffs are normalized to zero.

We place two assumptions on the parameters.

Assumption 1. α + β ≤ 2 and κ ≥ 2.

Assumption 2. α < β.

Assumption 1 says that the partnership with a solo contributor generates (weakly) less revenue

and incurs (weakly) more cost than that with two contributors, capturing the idea that the players

create synergy when contributing to the partnership together. Because of this assumption, strategic

exiting is socially inefficient since players’ total flow payoff with two contributors, 2(Xt − c), is

always higher than that with only one contributor, (α+ β)Xt − κc. Assumption 2 says that a free-

rider receives less revenue than a contributor, which is realistic for many real-world partnerships.

We relegate the discussion of the less realistic situation where α ≥ β to Online Appendix B.5

of Xu (2025), where we show that the main insights of this paper remain intact except that some

additional discussion of the parameters is needed.

It is also worth noticing that these two assumptions, when put together, determine the domains

for the parameters (α, β, λ). The domain of α is (0, 1). Given the value of α, the domain of β is

7Online Appendix B.4 of Xu (2025) shows that this paper’s main result continues to hold if Xt follows a more
general diffusion process.

8This encompasses the special case β = 1, where Player j’s flow revenue remains unchanged after Player i exited.

5



(α, 2− α], and the domain of λ is [λ,∞) where λ := 2/(2− α) > 1.

2.2 Timeline

Players choose when to exit the partnership, and their past actions are perfectly observed. To allow

players to instantaneously react to their partners’ actions, we formulate the model as a two-stage

dynamic game à la Murto and Välimäki (2013).9

Stage 1. In Stage 1, each player chooses when to exit, given that neither has exited yet. Player

i’s strategy in this stage is an Ht-adapted stopping time τ i, where Ht contains all the information

about the public history, including the history of the state variable during [0, t] and the history of

players’ actions during [0, t). Stage 1 ends at τ := min{τ 1, τ 2}. It is possible, however, that both

players attempt to exit at the same time (i.e., τ 1 = τ 2) in Stage 1. In case that happens, we make the

following tie-breaking assumption: Only one player (selected at random by a coin flip or other fair

randomization device) can successfully exit.10 Given this assumption, whether or not tie-breaking

is necessary, there is only one player exiting in Stage 1. We call this player the first mover (“he”).

Stage 2. After the first mover exits, the game immediately proceeds to Stage 2, where the

remaining player, whom we refer to as the second mover (“she”), chooses when to exit. Her

strategy in Stage 2 is an Ht-adapted stopping time τ s ≥ τ . The second mover may choose to exit

immediately after the first mover, i.e., τ s = τ . If that happens, we refer to it as a de facto joint exit.

Hence, the loser of the coin flip (if any) in Stage 1 is effectively given an opportunity to take back

her initial decision to exit. If she still opts to exit, her exit is formally treated as happening in Stage

2 to maintain consistency.

3 Equilibrium

This section contains the paper’s main results and is organized as follows. Section 3.1 specifies the

equilibrium concept, pure-strategy Markov perfect equilibrium (MPE). Unless otherwise specified,

an “equilibrium” in this paper refers to a pure-strategy MPE. Sections 3.2 and 3.3 use backward

9It is a common practice in the literature to transform a continuous-time game with irreversible actions into a game
with discrete stages. See also Bulow and Klemperer (1994), Akcigit and Liu (2016), etc.

10This tie-breaking assumption is common in stopping games (Dutta & Rustichini, 1993; Grenadier, 1996; Abreu
& Gul, 2000; Weeds, 2002; Murto, 2004). See Online Appendix B.6 of Xu (2025) for more discussion.
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induction to characterize the unique Pareto-optimal equilibrium. Following the characterization,

Section 3.4 studies the properties of this equilibrium, especially the curse of profitability. Sec-

tion 3.5 discusses non-Pareto-optimal equilibria. Finally, Section 3.6 establishes that the unique

Pareto-optimal pure-strategy MPE is also the unique Pareto-optimal subgame-perfect Nash equi-

librium (SPNE), suggesting that the main results of this paper can be applied more broadly to the

equilibrium concept of SPNE.11

3.1 Equilibrium Concept

We focus on pure-strategy Markov perfect equilibrium (MPE), where a player’s exit decision is

based on (i) the current state Xt and (ii) whether the other player has already exited. Since we

formulate the model as a two-stage dynamic game, the players’ strategy profile in a pure-strategy

MPE can be represented by a tuple (X 1,X 2,X s). In Stage 1, Player i chooses an exit region

X i ⊆ X , meaning that he intends to exit at time t if and only if Xt ∈ X i. In Stage 2, the second

mover, whether it is Player 1 or Player 2, faces the same single-player decision problem. As we

will show later, the solution to this decision problem is unique, and therefore, there is no need to

distinguish the two players’ strategies in Stage 2. We describe the second mover’s strategy in Stage

2 as an exit region X s ⊆ X , meaning that she exits at time t if and only if Xt ∈ X s.

3.2 Stage 2

In Stage 2, the second mover faces the following optimal stopping problem: She gets a flow payoff

of β(Xt − λc) until she exits, at which point she collects a zero lump-sum payoff. As is standard

for a time-homogeneous stopping problem of this sort, the second mover’s optimal strategy is a

(stationary) Markovian decision rule, which can be represented by an exit region X s ⊆ X , as

introduced in Section 3.1. This optimal decision rule induces her a value function that we denote

by S(x), reflecting her continuation value at time t if Xt = x. The value function must satisfy the

following Hamilton-Jacobi-Bellman equation,

S(x) = max

{
0, β(x− λc) + (1− r)S(x) + S ′(x)µx+

σ2

2
S ′′(x)x2

}
, (1)

11Although the results can be applied more broadly, we still focus on pure-strategy MPE in Section 3, as it drastically
simplifies the analysis.
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where 0 is the continuation value of exiting and β(x−λc)+(1−r)S(x)+S ′(x)µx+[σ2S ′′(x)x2]/2

is the continuation value of staying. The following claim describes the solution to this problem.

Claim 1. The second mover’s optimal exit region is X s = (0, x∗] with the exit threshold being

x∗ := [(r − µ)γ]/[r(γ − 1)] · λc, and her value function is

S(x) =


β

r−µ
· x− βλc

r
+ βλc

r(1−γ)(x∗)γ
· xγ if x > x∗,

0 if x ≤ x∗,

where γ :=
(
σ2 − 2µ−

√
(σ2 − 2µ)2 + 8rσ2

)
/(2σ2) < 0.

Proof. See Appendix A.1.

Claim 1 suggests that the second mover’s optimal exit region takes a threshold form — she exits

when the partnership’s profitability level Xt falls below x∗. Notably, this threshold is proportional

to λ, indicating that the second mover is more inclined to exit under a higher level of mutual

reliance. Moreover, when x > x∗, the second mover’s value function S(x) can be decomposed

into two parts: the first two terms represent her expected future payoff if she never exits, whereas

the third term reflects her option value of exiting. In addition, the value of γ is determined to make

S(x) satisfy the ODE, S(x) = β(x − λc) + (1 − r)S(x) + S ′(x)µx + [σ2S ′′(x)x2]/2 for any

x > x∗.12

Knowing the second mover’s response in Stage 2, we can derive the first mover’s continuation

value upon exit. After exiting, he continues to receive a flow payoff of αXt until the second mover

terminates the project, i.e., the next moment that Xt falls below x∗. Let F (x) denote the first

mover’s continuation value upon exit at time t if Xt = x. When x ≤ x∗, we have F (x) = 0

because the first mover’s exit will immediately trigger the second mover to exit and terminate the

project. When x > x∗, the value function F (x) must satisfy the following Feynman-Kac formula,

F (x) = αx+ (1− r)F (x) + F ′(x)µx+
σ2

2
F ′′(x)x2.

The following claim provides the closed-form solution of F (x).
12As the proof will show, the general solution to this ODE is S(x) = β [x/(r − µ)− λc/r] + k1x

γ + k2x
η where

γ < 0 and η > 0 are the two roots of Γ(y) := µy + [σ2y(y − 1)]/2 − r. Determining the values of k1 and k2 yields
the closed-form solution of S(x) presented in Claim 1.

8



Claim 2. The first mover’s continuation value upon exit is

F (x) =


α

r−µ
· x− α

(r−µ)(x∗)γ−1 · xγ if x > x∗,

0 if x ≤ x∗.

(2)

Proof. See Appendix A.2.

Like what we did, we can interpret F (x) by decomposing it into two parts when x > x∗.

The first term represents the first mover’s expected future payoff if the project is never terminated,

whereas the second term reflects the loss from possible termination of the project.

Xt = x0
x∗

F (x)

S(x)

x̃

Figure 1: Illustration of F (x) and S(x). The value x̃ is the only intersection of F (x) and S(x) in the interval (x∗,∞).

Figure 1 depicts the two value functions in the same place to highlight their properties and

comparison. The function F (x) has a “kink” at x = x∗, where it has a zero left derivative and

a strictly positive right derivative. This kink does not violate the principle of optimal stopping

because the threshold x∗ is not chosen by the first mover, and therefore, smooth pasting does not

apply. Crucially, this kink suggests the occurrence of first-mover advantage for an interval of x, as

formally shown in Lemma 1.

Lemma 1. There exists a unique x̃ ∈ (x∗,∞) such that

F (x) = S(x) for x ∈ (0, x∗],

F (x) > S(x) for x ∈ (x∗, x̃),

F (x) = S(x) for x = x̃,

F (x) < S(x) for x ∈ (x̃,∞).
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Proof. See Appendix A.3.

Lemma 1 indicates that a first-mover advantage arises in the interval (x∗, x̃), as also illustrated

by Figure 1. Intuitively, when x > x∗, the first mover’s payoff differs from the second mover’s in

two aspects — he saves the contribution cost, but also receives less revenue than the second mover

due to Assumption 2. The partnership’s profitability level does not affect the first aspect but is

proportional to the second aspect. Hence, the first-mover advantage arises when Xt ∈ (x∗, x̃) as

the first aspect dominates, but not when Xt > x̃ as the second aspect becomes dominant.

3.3 Stage 1

Since the second mover’s optimal strategy in Stage 2 is unique (up to the indeterminacy at the

threshold x∗), we can induce backward to Stage 1, where the players face the following stopping

game. As long as no one has exited, each player receives a flow payoff of Xt − c. If one player

chooses to exit at time t, he collects a continuation value of F (Xt) as the first mover, while the

remaining player receives a continuation value of S(Xt) as the second mover.

In principle, an equilibrium should specify players’ strategies in both Stage 1 (i.e., X 1 and X 2)

and Stage 2 (i.e., X s). However, to save notation, we omit X s when specifying an equilibrium in

Section 3.3. This is because X s is identical for every equilibrium and does not play an important

role in analyzing the players’ interaction in Stage 1.

Lemma 2. In Stage 1 of any pure-strategy MPE, both players either always exit or always con-

tribute for all the values of x in the interval (x∗, x̃). That is, the entire interval (x∗, x̃) is either

included in or excluded from both players’ exit regions in Stage 1.

Proof. See Appendix A.4.

Lemma 2 is due to the effect of pre-emption. Notice that (x∗, x̃) is a connected set of values of x

that features first-mover advantage. In the presence of first-mover advantage, once a player intends

to exit, his partner will react by choosing to exit slightly earlier than he does; unraveling thus

occurs as the pre-emption exercise diffuses to the entire connected set where first-mover advantage

exists. With this lemma, any equilibrium must belong to one of the following two types.
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Definition 1. Two types of pure-strategy MPE:

(a) A cooperative equilibrium is a pure-strategy MPE where (x∗, x̃) ∩ X i = ∅ for i = 1, 2;

(b) A pre-emptive equilibrium is a pure-strategy MPE where (x∗, x̃) ⊆ X i for i = 1, 2.13

3.3.1 Cooperative Equilibria

To begin with, we characterize the socially optimal outcome, which will play an important role

in analyzing cooperative equilibria. Think about a social planner who wants to maximize the

players’ total welfare by choosing when each player irreversibly exits. Because strategic exiting is

socially inefficient due to Assumption 1, the socially optimal outcome is one where both players

jointly terminate the project when the state Xt falls below some threshold. By solving the optimal

stopping problem with the flow payoff being Xt − c and the lump-sum exit payoff being zero, the

optimal exit threshold is x∗∗ := [(r−µ)γ]/[r(γ− 1)] · c. This induces each player a value function

Vc(x), representing his continuation value at time t if Xt = x.

Vc(x) =


1

r−µ
· x− c

r
+ c

r(1−γ)(x∗∗)γ
· xγ when x > x∗∗,

0 when x ≤ x∗∗.

(3)

The derivation of x∗∗ and Vc(x) is almost identical to that for Claim 1 and is thus omitted. Like

before, when x > x∗∗, the first two terms in Vc(x) correspond to each player’s expected future

payoff if the project is never terminated, whereas the third term reflects the option value from

terminating the project. Notably, the threshold x∗∗ differs from x∗ derived in Claim 1 because x∗∗

is the optimal exit threshold with two contributors, whereas x∗ is the optimal threshold with only

one contributor. Indeed, these two thresholds satisfy x∗ = λx∗∗ — as players become more reliant

on each other, the gap between the two thresholds gets larger.

Having specified the socially optimal outcome, the next lemma establishes its connection with

cooperative equilibria.

Lemma 3. If a cooperative equilibrium exists, there must be a cooperative equilibrium character-

ized by X 1 = X 2 = (0, x∗∗]. This equilibrium implements the socially optimal outcome.
13In a pre-emptive equilibrium, both players intend to exit in Stage 1 when Xt ∈ (x∗, x̃). However, under the

tie-breaking assumption, the one who (fails the coin-flip and) proceeds to Stage 2 will continue to contribute until the
next time that the process Xt reaches x∗.
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Proof. See Appendix A.5.

The intuition of Lemma 3 is as follows. Since the strategy profile X 1 = X 2 = (0, x∗∗] im-

plements the socially optimal outcome, the value function that it generates to each player must

be point-wise higher than any other strategy profile that satisfies the necessary condition of a co-

operative equilibrium as in Definition 1. Hence, among all the strategy profiles that are potential

cooperative equilibria, the one with X 1 = X 2 = (0, x∗∗] is least vulnerable to strategic exiting. In

other words, players who are deterred from strategic exiting in any cooperative equilibrium must

also be deterred from doing so under X 1 = X 2 = (0, x∗∗]. Therefore, Lemma 3 suggests that the

existence of a cooperative equilibrium boils down to whether X 1 = X 2 = (0, x∗∗] is an equilib-

rium. That is, we only need to check whether Vc(x), the value function generated by this strategy

profile to each player, satisfies Vc(x) ≥ F (x) for all x ∈ (x∗∗,∞) so that strategic exiting is never

a profitable deviation for each player. This paves the way for the next lemma, which establishes

the key properties of cooperative equilibria.

Lemma 4. (1) There exists a cooperative equilibrium if and only if λ ≥ λ∗ := [(1− (1− α)γ)/(αγ)]
1

1−γ .

(2) If λ = λ∗, then X 1 = X 2 = (0, x∗∗] is the unique cooperative equilibrium (up to outcome

equivalence and a zero-measured set).

(3) If λ > λ∗, then there are multiple cooperative equilibria. Among all cooperative equilibria, the

unique one that Pareto-dominates any other cooperative equilibrium (up to outcome equivalence

and a zero-measured set) is X 1 = X 2 = (0, x∗∗].14

Proof. See Appendix A.6.

Henceforth, we refer to X 1 = X 2 = (0, x∗∗] as the Pareto-optimal cooperative equilibrium

(if existing). Lemma 4 shows that a cooperative equilibrium (in particular, the Pareto-optimal

cooperative equilibrium) exists when the reliance parameter λ is sufficiently large. Intuitively,

when it is more difficult for the second mover to run the project alone, players will be deterred

from strategic exiting in the first place. This finding is also illustrated by Figure 2. Notice that

as the reliance parameter λ increases, the threshold x∗ gets farther away from x∗∗, and therefore,
14The uniqueness in this lemma is up to outcome equivalence because any asymmetric strategy profile satisfying

X 1 ∪ X 2 = (0, x∗∗] generates the same outcome as X 1 = X 2 = (0, x∗∗], as the players de facto jointly exit in the
interval (0, x∗∗]. The uniqueness is also up to a zero-measured set because the players are indifferent between whether
or not to exit at the threshold x∗∗.
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the continuation value from strategic exiting, F (x), becomes point-wise smaller. When λ is large,

as in Panels (a) and (b), F (x) is point-wise (weakly) smaller than Vc(x), indicating that strategic

exiting is never a profitable deviation. When λ is small, as in Panel (c), F (x) intersects with Vc(x),

so there exist some values of x where players strictly benefit from strategic exiting.

Xt = x
0 x∗

F (x)

x∗∗

Vc(x)

(a) λ > λ∗

Xt = x
0 x∗

F (x)

x̄x∗∗

Vc(x)

(b) λ = λ∗

Xt = x

F (x)

0 x∗

Vc(x)

x∗∗

(c) λ < λ∗

Figure 2: Illustration of how the value of λ affects the existence of a cooperative equilibrium. A cooperative equilib-
rium exists if Vc(x) ≥ F (x), ∀x. In Panel (b), x̄ is the tangent point of Vc(x) and F (x).

As a side comment, one may wonder how to derive the closed-form solution of the threshold

λ∗. As depicted in Panel (b), λ∗ makes the corresponding F (x) tangentially intersect with Vc(x) at

some x̄ > x∗, owing to the strict concavity of F (x) and the strict convexity of Vc(x) when x > x∗.

In the proof, we exploit this geometric property to derive the closed-form solution of λ∗ (and also

x̄) from solving two simultaneous equations, F (x̄;λ∗) = Vc(x̄) and F ′(x̄;λ∗) = V ′
c (x̄).

3.3.2 Pre-emptive Equilibria

Next, we turn to pre-emptive equilibria, in which both players intend to exit in Stage 1 when Xt ∈

(x∗, x̃). Unlike cooperative equilibria, whose existence depends on the values of parameters, a pre-

emptive equilibrium always exists — in particular, X 1 = X 2 = (0, x̃) is always an equilibrium.

To see why this is true, notice that if Xt ∈ (0, x∗], given that the other player always exits in Stage

1, a de facto joint exit is unavoidable no matter a player exits or not in Stage 1; if Xt ∈ (x∗, x̃),

a player finds it optimal to exit in Stage 1 because of the first-mover advantage; if Xt ∈ [x̃,∞),

staying in the partnership is each player’s dominant strategy in Stage 1. However, this equilibrium

may be Pareto-dominated by another pre-emptive equilibrium, as the next lemma suggests.
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Lemma 5. (1) A pre-emptive equilibrium always exists.

(2) If λ ≤ λ∗∗ := [r(γ − 1)]/[(r − µ)γ], then X 1 = X 2 = (0, x̃) is the unique pre-emptive

equilibrium (up to outcome equivalence and a zero-measured set).

(3) If λ > λ∗∗, then there are multiple pre-emptive equilibria. Among all pre-emptive equilibria, the

unique one that Pareto-dominates any other pre-emptive equilibrium (up to outcome equivalence

and a zero-measured set) takes the form of X 1 = X 2 = (0, x0] ∪ (x∗, x̃) with x0 ∈ (0, x∗).15

Proof. See Appendix A.7.

Xt = x0
x∗x0 c x̃

F (x)
S(x)
Vp(x)

Exit Stay Exit Stay

(a) λ > λ∗∗

Xt = x0
x∗

F (x)

S(x)

Vp(x)

x̃c

Exit Stay

(b) λ ≤ λ∗∗

Figure 3: Illustration of the Pareto-optimal pre-emptive equilibrium. In each panel, the players’ Stage-1 exit regions
in this equilibrium are labeled below the horizontal axis — in Panel (a), for instance, both players intend to exit in
Stage 1 if and only if Xt ∈ (0, x0] ∪ (x∗, x̃). Also depicted are Vp(x), each player’s expected continuation value in
Stage 1 under this equilibrium, and F (x) and S(x), their respective continuation values once entering Stage 2.

Lemma 5 characterizes the unique Pareto-optimal pre-emptive equilibrium, which we depict in

Figure 3. The next two paragraphs are dedicated to explaining why it is uniquely Pareto-optimal

among all pre-emptive equilibria.

As will be shown in the proof, it is dominant for both players to stay in the partnership when

Xt ≥ x̃ in Stage 1. Meanwhile, both players exit in Stage 1 when Xt ∈ (x∗, x̃) by the definition

of a pre-emptive equilibrium. Hence, what remains undetermined in a pre-emptive equilibrium is

the players’ Stage-1 strategies when Xt ∈ (0, x∗]. Notice that when Xt ∈ (0, x∗], any player’s

exit always triggers a de facto joint exit. As a consequence, finding the Pareto-optimal pre-emptive

15The uniqueness is up to outcome equivalence and a zero-measured set for the same reason as in Footnote 14.
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equilibrium boils down to solving the following single-player stopping problem within the interval

(0, x∗]: the flow payoff is Xt − c, the exit payoff is zero, and there is an additional constraint that

the continuation value is fixed at zero when Xt = x∗. This constraint stems from the fact that

in any pre-emptive equilibrium, both players intend to exit when Xt is epsilon-above x∗, yielding

each of them an expected continuation value arbitrarily close to [F (x∗) + S(x∗)]/2 = 0.

The solution to this single-player stopping problem depends on the value of λ. If λ > λ∗∗, as in

Panel (a), it is optimal to run the project when Xt belongs to the interval (x0, x∗]. This is because

the condition λ > λ∗∗ is equivalent to x∗ > c, which indicates that when c < Xt < x∗, the project

still generates a positive flow payoff. It is valuable to exploit such a payoff until Xt falls below the

threshold x0, which is, again, determined by the value matching and smooth pasting conditions, as

in standard single-player stopping problems. By contrast, if λ ≤ λ∗∗, as in Panel (b), it is optimal

to terminate the project when Xt ≤ x∗ because the flow payoff is non-positive.

To intuitively understand this equilibrium in the case of λ > λ∗∗, we divide X into four sections

according to players’ Stage-1 strategies. When Xt is very low (Xt ∈ (0, x0]), the players jointly

exit, as it is no longer worthwhile to run the project. When Xt is moderately low (Xt ∈ (x0, x∗]),

both players stay in the partnership to exploit the project’s payoff, knowing that anyone’s exit

will immediately trigger the other player’s exit and thus the project’s termination. When Xt is

moderately high (Xt ∈ (x∗, x̃)), both players intend to exit, but only the one who wins the coin

flip succeeds in exiting while the other one will stay in the partnership until x∗ is reached again —

in other words, this is the region of pre-emptive strategic exiting. Finally, when Xt is very high

(Xt ∈ [x̃,∞)), both players find it dominant to stay in the partnership. This equilibrium pattern is

notable in that players’ exit regions do not admit a threshold form, indicating that their incentives to

exit are non-monotonic in the partnership’s profitability. In particular, they both intend to exit when

Xt is moderately high but prefer to stay when Xt is moderately low. As a result, their equilibrium

continuation value, denoted by Vp(x), is non-monotonic in x when λ > λ∗∗. We will revisit this

finding in Section 3.4 when discussing the curse of profitability.

3.3.3 Pareto-Optimal Equilibrium

Lemma 2 suggests that an equilibrium must be either a cooperative equilibrium or a pre-emptive

equilibrium. Lemmas 4 and 5 identify the unique Pareto-optimal cooperative equilibrium (if exist-
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ing) and the unique Pareto-optimal pre-emptive equilibrium (always existing), respectively. More-

over, it is not difficult to see that the Pareto-optimal cooperative equilibrium, if it exists, Pareto-

dominates the Pareto-optimal pre-emptive equilibrium because it implements the socially optimal

outcome. The above arguments combined point to a unique equilibrium that Pareto-dominates any

other equilibrium (up to outcome equivalence and a zero-measured set). Depending on the value

of λ, this Pareto-optimal equilibrium falls into one of the following three scenarios.

(1) If λ ≥ λ∗, it is the Pareto-optimal cooperative equilibrium. Players’ exit regions in Stage 1

are X 1 = X 2 = (0, x∗∗].

(2) If λ∗∗ < λ < λ∗, it is the Pareto-optimal pre-emptive equilibrium. Players’ exit regions in

Stage 1 are in the form of X 1 = X 2 = (0, x0] ∪ (x∗, x̃).

(3) If λ < λ∗ and λ ≤ λ∗∗, it is the Pareto-optimal pre-emptive equilibrium. Players’ exit

regions in Stage 1 are X 1 = X 2 = (0, x̃).

Notice that Scenario (2) occurs if and only if λ∗∗ < λ∗. However, neither λ∗ nor λ∗∗ are prim-

itive parameters. Recall that α, which measures the players’ free-riding incentives, is a primitive

parameter that determines the value of λ∗. We use the value of α to determine which of the afore-

mentioned scenarios arise in the equilibrium characterization. As shown in Appendix A.8, there

exists a unique α := {α|λ∗ = λ∗∗} such that λ∗∗ < λ∗ holds if and only if α > α. This allows us

to characterize the unique Pareto-optimal equilibrium as described in the following theorem.

Theorem 1. A pure-strategy MPE always exists. Moreover, there uniquely exists a Pareto-optimal

pure-strategy MPE (up to outcome equivalence and a zero-measured set), which is characterized

as follows.16

(1) In Stage 1, the players’ exit regions (X 1,X 2) are

X 1 = X 2 =


(0, x∗∗] if λ ≥ λ∗,

(0, x0] ∪ (x∗, x̃) if α > α and λ ∈ (λ∗∗, λ∗),

(0, x̃) if (i) α > α and λ ≤ λ∗∗ or (ii) α ≤ α and λ < λ∗.

(2) In Stage 2, whoever becomes the second mover adopts the exit region X s = (0, x∗].

Proof. See Appendix A.8.
16The uniqueness is up to outcome equivalence and a zero-measured set for the same reason as in Footnote 14.
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Based on this equilibrium, let W (x) denote each player’s Stage-1 continuation value at time

t when Xt = x. It equals Vc(x) if the Pareto-optimal cooperative equilibrium exists and Vp(x) if

not. Figure 4 depicts this equilibrium when α > α.

Xt = x0
x∗

F (x)

S(x)

W (x) = Vc(x)

x∗∗

Exit Stay

(a) λ ≥ λ∗

Xt = x0
x∗x0 x∆c x̃

F (x)

S(x)

W (x) = Vp(x)

Exit Stay Exit Stay

(b) λ∗∗ < λ < λ∗

Xt = x0
x∗

F (x)

S(x)

W (x) = Vp(x)

x̃c

Exit Stay

(c) λ ≤ λ∗∗

Figure 4: Illustration of the Pareto-optimal equilibrium when α > α. In each panel, the players’ equilibrium exit
regions in Stage 1 are labeled below the horizontal axis. Also depicted are W (x), each player’s expected continuation
value in Stage 1 under this equilibrium, and F (x) and S(x), their respective continuation values once entering Stage
2. In Panel (b), x∆ corresponds to the maximum of W (x) in the interval [x0, x∗]. Notably, when α ≤ α, this figure
can still illustrate the Pareto-optimal equilibrium, except that Panel (b) will disappear.

3.4 Properties of the Unique Pareto-Optimal Equilibrium

3.4.1 Curse of Profitability

The most noteworthy property of the unique Pareto-optimal equilibrium is the possibility of a curse

of profitability — increasing the project’s level of profitability may render both players strictly
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worse off. As depicted in Figure 4(b), each player’s Stage-1 continuation value W (x) strictly

decreases in x when x ∈ [x∆, x∗], where x∆ := arg max
x∈[x0,x∗]

W (x).17 This property of W (x) is

driven by the fact that for the equilibrium depicted in Figure 4(b), players intend to exit when

Xt is moderately high (i.e., Xt ∈ (x∗, x̃)) but prefer to stay when Xt is moderately low (i.e.,

Xt ∈ (x0, x∗]), as explained after Lemma 5.

What is the intuition behind the curse of profitability? A larger Xt is a double-edged sword.

While it means the project generates higher revenue, it also makes it less challenging for the second

mover to run the project alone, which stimulates strategic exiting in the first place. Furthermore,

the harm of strategic exiting is amplified by players’ pre-emptive incentives. As a consequence,

players can still cooperate when Xt ∈ (x0, x∗], but as Xt increases to approach x∗, they suddenly

become enemies and pre-empt each other, letting go of the benefits from cooperation.

Corollary 1. The curse of profitability occurs in the unique Pareto-optimal equilibrium if and only

if players have sufficiently large free-riding incentives (i.e., α > α) and a medium level of mutual

reliance (i.e., λ∗∗ < λ < λ∗).

Corollary 1 indicates two necessary and sufficient conditions for the curse of profitability to

occur. First, players’ free-riding incentives should be sufficiently large. Otherwise (i.e., α ≤ α),

strategic exiting is likely not a concern of the players, who will find it easy to cooperate as in

Figure 4(a); when it does become a concern, their mutual reliance must be so low such that there is

already no scope for two players to cooperate given that one player cannot run the project alone, as

in Figure 4(c). Second, players should have a medium level of mutual reliance. Under high mutual

reliance (λ ≥ λ∗), as in Figure 4(a), strategic exiting can be avoided because running the project

alone is too difficult. Under low mutual reliance (λ ≤ λ∗∗), as in Figure 4(c), running the project

alone is relatively easy, so if a single player does not want to do it, there must also be no value of

cooperation for two players — specifically, when Xt < x∗, it must follow that Xt < c.

3.4.2 Comparative Statics on Existence of Cooperative Equilibrium

Corollary 2. Taking other parameters as given, there exists α∗ (or β∗, κ∗, r∗, µ∗, σ∗) such that a

cooperative equilibrium exists if and only if α ≤ α∗ (or β ≤ β∗, κ ≥ κ∗, r ≤ r∗, µ ≤ µ∗, σ ≥ σ∗).
17Indeed, even the ex-post first mover suffers from the curse of profitability. The ex-post first mover’s realized

continuation value is W (x)1(x /∈ (x∗, x̃)) + F (x)1(x ∈ (x∗, x̃)), which also decreases in x when x ∈ [x∆, x∗].
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Proof. See Appendix A.9.

We can interpret Corollary 2 as follows: The partnership’s ability to sustain cooperation ben-

efits from smaller α (free-riding incentive), smaller β (second mover’s revenue), larger κ (second

mover’s cost), smaller r (discount rate), smaller µ (drift in the project’s profitability), and larger σ

(volatility in the project’s profitability). As a side note, it does not depend on c (contribution cost).

The comparative statics related to α, β, and κ are intuitive. A cooperative equilibrium is easier

to sustain if the second mover is less motivated to run the project alone (i.e., smaller β, larger κ),

which, in turn, may deter strategic exiting from happening in the first place. Also, lower free-riding

incentives (i.e., smaller α) make cooperation easier. The comparative statics related to r, µ, and σ

involve the following trade-off. Increasing µ, increasing σ, and decreasing r all have two opposite

effects. On the one hand, they increase a player’s continuation value upon cooperation;18 on the

other hand, they also increase a player’s temptation to deviate as they make the second mover more

motivated to run the project alone. It turns out that the second effect dominates for µ, whereas the

first effect dominates for σ and r. Therefore, a larger µ makes cooperation harder, while a larger σ

and a smaller r facilitate cooperation.

3.4.3 Comparative Statics on Players’ Welfare

To measure the players’ welfare, we use W (x), their Stage-1 expected continuation value in the

unique Pareto-optimal equilibrium. One feature of this equilibrium is its discontinuity in the value

of λ — the equilibrium switches from cooperative to pre-emptive when λ crosses the threshold λ∗.

Indeed, as suggested by Corollary 2, this feature also applies to the other parameters. Because of

such discontinuity, the change of a parameter has two effects on players’ welfare. The first-order

effect is to change the type of equilibrium (i.e., cooperative or pre-emptive), which works in a

discontinuous manner when the parameter crosses a certain threshold, as suggested by Corollary 2.

The second-order effect is that each parameter plays a role in the players’ value function within a

specific type of equilibrium.

As reported in Figure 5, we use numerical examples to elaborate on the above point. Take

α as an example. The first-order effect is that players’ welfare faces a discontinuous drop at

18For σ, in particular, a decision maker in a stopping problem benefits from the high variance of the stochastic state
if his flow payoff is weakly convex and non-decreasing in the stochastic state (Villeneuve, 2007).
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α = α∗ ≈ 0.697, as the Pareto-optimal equilibrium switches from cooperative to pre-emptive. The

second-order effect is that, when α > α∗, players benefit from a larger α; this does not happen

when α ≤ α∗, as the parameter α does not enter the value function of a cooperative equilibrium.

Combining these two effects, we can infer that, under some parametric values, players’ welfare is

non-monotonic in the value of α. We also perform similar analyses for the other five parameters,

as shown in the other panels of Figure 5. Under some parametric values, players’ welfare is non-

monotonic in β, κ, and µ, strictly increasing in σ, and strictly decreasing in r. As a side note, the

parameter c (flow cost) does not have a first-order effect, and its second-order impact is always

negative. Hence, increasing c always decreases W (x) in a continuous manner.

(a) α (b) β (c) κ

(d) µ (e) σ (f) r

Figure 5: Numerical examples of players’ welfare as a function of six parameters. Welfare is measured by W (x).
The parametric values are as follows. Panel (a): β = 1, κ = 2, µ = 0, σ = 1, r = 5, c = 1, and x = 2. Panel (b):
α = 0.5, κ = 2, µ = 0, σ = 1, r = 5, c = 1, and x = 2. Panel (c): α = 0.5, β = 1.5, µ = 0, σ = 1, r = 5, c = 1,
and x = 2. Panel (d): α = 0.5, β = 1.5, κ = 2.2, σ = 1, r = 5, c = 1, and x = 2. Panel (e): α = 0.5, β = 1.5, κ =
2.2, µ = 0.2, r = 5, c = 1, and x = 2. Panel (f): α = 0.5, β = 1.5, κ = 2.2, µ = 0, σ = 1, c = 1, and x = 2.
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3.5 Non-Pareto-Optimal Equilibria

Our previous analysis focused on the Pareto-optimal equilibrium. This subsection serves dual pur-

poses. First, we provide a more complete characterization of equilibria, including those that are not

Pareto-optimal. Second, we use the characterization to demonstrate that the curse of profitability

does not depend on the equilibrium selection of Pareto-optimality.

For ease of exposition, we disregard two sources of equilibrium multiplicity in this subsec-

tion.19 First, we regard two equilibria as identical if they are outcome-equivalent in the sense of

generating the same exit process on the equilibrium path. This simplification aims to avoid dis-

cussing asymmetric equilibria because every asymmetric equilibrium is outcome-equivalent to a

symmetric equilibrium.20 Second, if the Stage-1 exit regions of two symmetric equilibria differ

only in a zero-measured set, we also regard them as being essentially identical.

Non-Pareto-optimal cooperative equilibria. Lemma 4 suggests multiple cooperative equilibria

when λ > λ∗. Notice that the Pareto-optimal cooperative equilibrium X 1 = X 2 = (0, x∗∗] takes

a threshold form, i.e., both players intend to exit in Stage 1 if and only if Xt is below a certain

threshold. The following proposition characterizes all cooperative equilibria (including the non-

Pareto-optimal ones) that take a threshold form.21

Proposition 1. When λ > λ∗, the set of cooperative equilibria that take a threshold form is

{X 1 = X 2 = (0, xc] | xc ∈ [x∗∗, k(λ) · x∗∗]}, where k(λ) is determined by γ · (k(λ))1−γ + (1 −

γ) · (k(λ))−γ = (1− α)γ + αγλ1−γ . Moreover, k(λ) strictly increases in λ, and k(λ) < λ.

Proof. See Appendix A.10.

Proposition 1 identifies a continuum of cooperative equilibria in the threshold form, with the

threshold xc ranging from x∗∗ to k(λ) · x∗∗. When the threshold xc > x∗∗, the corresponding
19Indeed, the uniqueness of Pareto-optimal equilibrium in Theorem 1 also hinges on disregarding these two sources

of equilibrium multiplicity, as we detailed in Footnote 14.
20To see this point, given any asymmetric cooperative equilibrium, the players only exit in the interval (0, x∗],

i.e., X 1 ̸= X 2 and X 1 ∪ X 2 ⊆ (0, x∗]. Since (0, x∗] is the interval where a de facto joint exit is triggered, this
asymmetric equilibrium must be outcome-equivalent to a symmetric equilibrium where both players’ exit regions in
Stage 1 are X 1 ∪ X 2. The same logic applies to any asymmetric pre-emptive equilibrium (X 1,X 2), which must be
outcome-equivalent to a symmetric equilibrium where both players’ Stage-1 exit regions are X 1 ∪ X 2.

21There are cooperative equilibria that do not take the threshold form. One such example is X 1 = X 2 = (0, xc] ∪
[x̄c, xc] with xc > x̄c > xc > c. The reason why players cooperate in Stage 1 in the interval (xc, x̄c) is the same as
the Pareto-optimal pre-emptive equilibrium. Although such construction is possible, it does not provide new insight
to this paper. Therefore, we do not attempt to fully characterize the cooperative equilibria with a non-threshold form.
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equilibrium is Pareto-dominated because the players exit “too early” due to miscoordination. As

the threshold xc increases from x∗∗ to k(λ) ·x∗∗, the corresponding Stage-1 value function for each

player becomes point-wise lower — intuitively, the players become worse off if their threshold to

terminate the project gets farther away from the optimal threshold x∗∗. When xc = k(λ) · x∗∗, the

value function generated by X 1 = X 2 = (0, k(λ) · x∗∗] tangentially intersects with F (x), which

explains why the threshold xc cannot go beyond k(λ) · x∗∗.

Two features of the set of cooperative equilibria are worth mentioning. First, k(λ) < λ indi-

cates that the threshold xc is always strictly smaller than x∗ (which equals λx∗∗) — hence, both

players always exit at de facto the same time, even for the Pareto-dominated cooperative equilibria.

Second, the fact that k(λ) is strictly increasing suggests the following: As λ increases, the set of

cooperative equilibria switches from being empty to non-empty at λ∗ and then keeps expanding.

Non-Pareto-optimal pre-emptive equilibria. Lemma 5 suggests multiple pre-emptive equilibria

when λ > λ∗∗. The following proposition characterizes all pre-emptive equilibria that take a

threshold form in the interval (0, x∗], i.e., given that Xt ∈ (0, x∗], both players intend to exit in

Stage 1 if and only if Xt is below a threshold.22

Proposition 2. When λ > λ∗∗, the set of pre-emptive equilibria that take a threshold form in the

interval (0, x∗] is {X 1 = X 2 = (0, xp] ∪ (x∗, x̃) | xp ∈ [x0, x∗]}.

Proof. See Appendix A.11.

Proposition 2 identifies a continuum of pre-emptive equilibria in the threshold form in (0, x∗],

with the threshold xp ranging from x0 to x∗. When the threshold xp > x0, the equilibrium is Pareto-

dominated because the players, again, terminate the project too early due to miscoordination.

We highlight two features of these equilibria. First, all these equilibria exhibit two disjoint

intervals in both players’ exit regions in Stage 1 — when Xt is in the interval (0, xp], players

jointly abandon the project as they exit at de facto the same time; when Xt is in the interval (x∗, x̃),

players intend to exit out of pre-emptive motive, so the coin flip loser, after entering Stage 2,

will still run the project until Xt falls below x∗. Second, given that λ > λ∗∗, increasing λ also

22There are pre-emptive equilibria that do not take the threshold form in the interval (0, x∗]. One such example is
X 1 = X 2 = (0, xp] ∪ (x̄p, x̃) with c ≤ xp < x̄p < x∗. For the same reason as stated in Footnote 21, we do not
attempt to fully characterize all pre-emptive equilibria without the aforementioned threshold form.
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enlarges the set of pre-emptive equilibria with the aforementioned threshold form. As λ increases,

x∗ increases since it equals λx∗∗, and therefore, x0 also decreases because of the larger option value

for the players to wait when Xt < c. This further indicates that the possible range of the threshold

xp (i.e., [x0, x∗]) is enlarged as λ increases.

Curse of profitability for non-Pareto-optimal equilibria. All pre-emptive equilibria character-

ized in Proposition 2, except for the degenerate one with xp = x∗ (i.e., the one characterized by

X1 = X2 = (0, x̃)), are subject to the curse of profitability — in any of these equilibria, each

player’s Stage-1 continuation value is zero at x = x∗ but strictly positive in (xp, x∗). Moreover, if

α > α and λ∗∗ < λ < λ∗, no cooperative equilibrium exists, so it suffices to only consider these

pre-emptive equilibria. These arguments give rise to the following corollary, suggesting that the

equilibrium selection of Pareto-optimality is not essential to the paper’s main insight.

Corollary 3. (1) If λ > λ∗∗, the curse of profitability occurs in a continuum of equilibria.

(2) If α > α and λ∗∗ < λ < λ∗, the curse of profitability occurs in all the equilibria characterized

in this subsection, except for the degenerate pre-emptive equilibrium X1 = X2 = (0, x̃).

Comments on Pareto-optimality criterion. Having seen the equilibrium multiplicity, one may

wonder about the rationale for the Pareto-optimality criterion, besides its advantage in selecting a

unique equilibrium. Here is another justification. In our setting, Pareto-optimality is equivalent to

(strong) renegotiation-proofness à la Farrell and Maskin (1989), where the players can renegotiate

the continuation play at any moment in Stage 1. This argument is backed up by Safronov and

Strulovici (2018), which shows that when there exists a unique Pareto-optimal continuation value

profile, players can always renegotiate their continuation play to achieve it. Intuitively, regardless

of the currently prescribed continuation play, one player can propose a switch to the continuation

play that achieves the Pareto-optimal continuation value profile, and the other player will approve

this proposal. Therefore, Pareto-optimality is a reasonable selection criterion when players can

communicate and renegotiate, which is very common for real-world partnerships.
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3.6 Comments on the Equilibrium Concept

The following proposition shows that the equilibrium characterized in Theorem 1 is also the unique

Pareto-optimal SPNE (up to outcome equivalence and a zero-measured set). Hence, the main

results of this paper can be applied more broadly if we use SPNE as the equilibrium concept.

Proposition 3. The equilibrium characterized in Theorem 1 Pareto-dominates any other SPNE.

Proof. See Appendix A.12

As the proof will show, Proposition 3 is built on two arguments. First, there does not exist a

non-Markovian SPNE that makes players better off compared to the equilibrium characterized in

Theorem 1. Why? In Stage 2, the second mover faces a single-player time-homogeneous stopping

problem, whose optimal decision rule must be Markovian. In Stage 1, no one has ever exited, and

because of that, there is no variance in players’ past actions that we can condition on to use non-

Markovian strategies. This stands in contrast to canonical repeated games, where it is valuable

to punish a player for his past defections. Second, the proof also shows that introducing mixed

strategies brings new MPEs but cannot improve players’ continuation values in equilibrium.

4 Fixed Exit Order

In some partnerships, certain partners refrain from exiting the partnership unless others have al-

ready left. Such a no-first-exit commitment could arise from these partners’ reputation concerns,

the partnership’s rules about exit priority, or some other factors. Making such a commitment im-

poses a direct (negative) effect on this partner, as she forgoes the option to exit first. However, it

may also generate an indirect (positive) effect — the commitment may mitigate the pre-emptive

tension within the partnership, making other partners exit less aggressively.

This section studies such a commitment in two steps. First, Theorem 2 delineates the indirect

effect by analyzing how others react to a partner’s no-first-exit commitment. Second, Theorem 3

identifies the situations where the indirect effect outweighs the direct effect, thereby demonstrating

the possibility of a Pareto-improvement resulting from such a commitment.
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4.1 Setup

Consider an alternative setting where players’ exit order is fixed — one player is designated as the

second mover and never exits first, while the other is designated as the first mover. To distinguish

from the baseline model, in Section 4, we refer to the players as Frank, the designated first mover,

and Susan, the designated second mover. The game proceeds in a Stackelberg manner. In Stage

1, Frank chooses an H̃t-adapted stopping time τ̃ f , where H̃t contains information about the public

history up to time t. After Frank exits, Stage 2 immediately starts, and Susan chooses an H̃t-

adapted stopping time τ̃ s ≥ τ̃ f .23 The equilibrium concept is SPNE.

4.2 Equilibrium

Susan’s decision problem is identical to the second mover’s in the baseline model. She exits if

and only if Xt ∈ X s = (0, x∗]. We then induce backward to Frank’s stopping problem in Stage

1: He receives a flow payoff of Xt − c until he exits, upon which he receives a lump-sum payoff

of F (Xt). Since this problem is time-homogeneous, it is optimal for Frank to adopt a (stationary)

Markovian strategy, which can be represented by an exit region X f ⊆ X . Let Uf (x) and Us(x)

denote Frank’s and Susan’s continuation values in Stage 1, respectively, from Frank’s optimal exit

region X f . The following Hamilton-Jacobi-Bellman equation must hold.

Uf (x) = max{F (x), x− c+ (1− r)Uf (x) + U ′
f (x)µx+

σ2

2
U ′′
f (x)x

2},

where F (x) is his continuation value of exiting and x−c+(1−r)Uf (x)+U ′
f (x)µx+[σ2U ′′

f (x)x
2]/2

is his continuation value of staying. The solution to Frank’s stopping problem is embedded in the

following theorem.

Theorem 2. There is a unique SPNE (up to a zero-measured set), as characterized below.

(1) In Stage 1, Frank’s exit region is

X f =

(0, x∗∗] if λ ≥ λ∗,

(0, x′] ∪ [x′′, x′′′] if λ < λ∗,

23Notably, this setting can be cast as the baseline model with the addition that one player commits to X i = ∅.
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where the three thresholds x′ < x′′ < x′′′ are well defined.

(2) In Stage 2, Susan’s exit region is X s = (0, x∗].

Proof. See Appendix A.13.

Figure 6 illustrates Frank’s optimal exit strategy. If λ ≥ λ∗, he finds it optimal to implement

the socially optimal outcome. On the equilibrium path, both players exit at de facto the same

time when Xt falls below x∗∗. Strategic exiting is never profitable for Frank in this case because

Vc(x) ≥ F (x) for any x. If λ < λ∗, Frank benefits from strategic exiting because F (x) > Vc(x) for

some x. Like other stopping problems, his optimal exit thresholds (x′, x′′, and x′′′) are determined

by value matching and smooth pasting conditions of Uf (x) and F (x) at the three thresholds, as

explained in more detail in Appendix A.13.

Xt = x0
x∗

F (x)

x∗∗

Uf (x) = Vc(x)

Exit Stay

(a) λ ≥ λ∗

Xt = x

F (x)

0
x∗

Vc(x)

Uf (x)

x′ x′′ x′′′

Exit Stay Exit Stay

(b) λ < λ∗

Figure 6: Illustration of Frank’s exit strategy in the unique SPNE. In each panel, Frank’s equilibrium exit region is
labeled below the horizontal axis.

To intuitively understand Frank’s optimal strategy in the case of λ < λ∗, we divide X into

four sections.24 When Xt is very low (Xt ∈ (0, x′]), Frank initiates a de facto joint exit, as it

is no longer worthwhile to run the project. When Xt is moderately low (Xt ∈ (x′, x′′)), Frank

finds it worthwhile to let the project operate, and he is also deterred from strategic exiting because

Susan would have found it challenging to run the project alone. When Xt is moderately high

(Xt ∈ [x′′, x′′′]), Frank finds it optimal to strategically exit, knowing that Susan will be motivated to

24Recall that we also divided X into four sections in the baseline model when analyzing the Pareto-optimal pre-
emptive equilibrium in the case of λ ≥ λ∗∗ (see Section 3.3.2). Despite the similarity, the two division exercises differ
in both the interpretations of the four sections and the thresholds to determine the four sections.
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run the project alone. Finally, when Xt is very high (Xt ∈ (x′′′,∞)), Frank stays in the partnership

so as to avoid the discount in revenue due to Assumption 2. Notably, Frank’s optimal exit strategy

does not admit a threshold form, which is uncommon in the literature on optimal stopping. It

occurs in our setting because of the non-standard exit payoff F (x), which is kinked at x∗ (see

Figure 1).

The key takeaway from the above finding is that strategic exiting occurs only when the part-

nership’s profitability exceeds the threshold x′′.25 Specifically, Frank strategically exits when Xt

is moderately high, but not when it is moderately low. This finding explains some exit patterns

observed in practice, particularly among serial entrepreneurs. Many startups have “partners” con-

sisting of founders and early-stage investors — typically, founders do not leave a startup before

investors. Some investors, known as serial entrepreneurs, may strategically exit a startup and

switch gears to the next startup in their pipelines. In a startup’s early development stages, se-

rial entrepreneurs often play a pivotal role in guiding the startup towards viability. However, as the

startup gains traction and becomes more profitable, serial entrepreneurs may choose to strategically

exit to save resources for new ventures. One prominent example is Peter Thiel, who left PayPal

after its acquisition by eBay and soon transitioned his investment into other ventures, including

Facebook.

Having established Frank’s response to Susan’s no-first-exit commitment, we next examine

whether such a commitment can lead to a Pareto-improvement. Compared to the baseline model,

Frank is better off by being the designated first mover. How about Susan? Intuitively, Susan’s

no-first-exit commitment has two opposite effects on her welfare. The direct (negative) effect

is a consequence of her forgoing the option to exit first. The indirect (positive) effect is that her

commitment prevents pre-emption and makes Frank exit less aggressively than the baseline model,

as formalized by the following lemma.

Lemma 6. If λ < λ∗, Frank’s strategic exit region, [x′′, x′′′], is a strict subset of (x∗, x̃), a player’s

Stage-1 pre-emptive exit region in the baseline model. In other words, x′′ > x∗ and x′′′ < x̃.

Proof. See Appendix A.14.

25Exceeding the threshold x′′ is necessary but not sufficient for strategic exiting, as it does not occur if the partner-
ship’s profitability exceeds not only x′′ but also an even higher threshold x′′′.
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The next theorem identifies the situations where the positive effect outweighs the negative one,

implying that Susan’s no-first-exit commitment can lead to a Pareto-improvement.26

Theorem 3. If λ < λ∗ and β ≤ 1, there exist xs such that Us(x) > W (x), ∀x ∈ (xs,∞). In other

words, Susan strictly benefits from the no-first-exit-commitment when Xt ∈ (xs,∞).

Proof. See Appendix A.15.

As suggested by Theorem 3, Susan benefits from the no-first-exit commitment when λ < λ∗,

which makes pre-emption occur in the baseline model, β ≤ 1, which ensures a substantial benefit

from avoiding pre-emption (because the social welfare loss from strategic exiting is large), and

Xt > xs, which makes the negative effect mild since the partnership’s current profitability is high.

5 Robustness of Main Result

To succinctly illustrate the insight regarding the curse of profitability, we develop a concise base-

line model. However, it is worth emphasizing that the core insight of this paper remains valid

across more general settings and alternative specifications. We compile the discussion in On-

line Appendix B of Xu (2025), with the key messages summarized below.

More than two players. Many real-world partnerships involve more than two partners. In such

cases, the ripple effect of an exit becomes more complex: an initial exit may trigger a second exit,

which may further trigger a third, and so on. Hence, when considering a strategic exit, a player

must correctly anticipate the potential ripple effect, which in turn depends on the strategic exit

decisions of others. In the appendix, we generalize the model to more than two players. Although

the equilibrium characterization becomes less tractable in this generalized setting, we introduce an

algorithm to find stage-wise Pareto-optimal equilibria — a modified solution concept tailored to

this generalization. We also establish sufficient conditions under which the curse of profitability

arises in any stage-wise Pareto-optimal equilibrium.

Asymmetric payoffs. In reality, it is common for partners to derive different payoffs from a

partnership. This asymmetry can lead to players’ divergent incentives in strategic exits. In the
26This finding is similar to earlier studies on how sequentiality of moves, compared with simultaneity, promotes

cooperation in games with strategic complementarities (Zhou & Chen, 2015).
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appendix, we generalize the model to an asymmetric payoff structure and show that the unique

Pareto-optimal equilibrium remains subject to the curse of profitability.

Re-entry. In some situations, partners who have exited a partnership may have the option to

return, typically by incurring an additional cost. The appendix investigates a generalized setting

where re-entry is allowed upon payment of a lump-sum cost. In equilibrium, re-entry occurs when

the partnership’s profitability reaches a high level. We demonstrate that the curse of profitability

persists when the re-entry cost is sufficiently large.

Relaxation of innocuous assumptions. Our baseline model made several innocuous assumptions

to facilitate the analysis. In the appendix, the curse of profitability is shown to persist under a range

of extensions: when the partnership’s profitability follows a more general diffusion process than

the Brownian motion used in the baseline model, when a free-rider earns higher revenue than a

contributor, and when alternative tie-breaking rules are adopted in Stage 1 of the game.

6 Conclusion

In this paper, we study dynamic partnerships where partners can strategically exit to free-ride

on others’ efforts. We highlight a curse of profitability — when players have sufficiently large

free-riding incentives and a medium level of mutual reliance, an increase in the partnership’s prof-

itability may leave all partners strictly worse off. Additionally, we show that if any player commits

not to exit first, it can lead to a Pareto-improvement.

Our framework is tractable and can offer insights into other questions concerning partnerships

of this nature. For instance, a companion paper, Xu (2023), studies a deterministic partnership

where partners can choose their effort levels over time. We investigate the optimal way for the

partners to monitor each other’s efforts and show that imperfect monitoring can, counterintuitively,

facilitate cooperation.
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A Proofs

A.1 Proof of Claim 1

Since (1) the second mover’s flow payoff, βXt − κc, is weakly convex and non-decreasing in Xt,

and (2) her lump-sum exit payoff is a constant, her optimal exit strategy must take a threshold form

according to Villeneuve (2007). Let x∗ denote her exit threshold. The value function S(x) must

take the following form,

S(x) =

β
(

x
r−µ

− λc
r

)
+ k1x

γ + k2x
η if x > x∗,

0 if x ≤ x∗,

(A1)

where S(x) = β [x/(r − µ)− λc/r] + k1x
γ + k2x

η is the general solution to the ODE, S(x) =

β(x − λc) + (1 − r)S(x) + S ′(x)µx + [σ2S ′′(x)x2]/2. In this general solution, η = (σ2 − 2µ +√
(σ2 − 2µ)2 + 8rσ2)/(2σ2) > 0 and γ = (σ2 − 2µ −

√
(σ2 − 2µ)2 + 8rσ2)/(2σ2) < 0 are the

two roots of Γ(y) = µy + [σ2y(y − 1)]/2− r. We know that Γ(y) has two roots of different signs

because it is a convex parabola with Γ(0) = −r < 0.

We need to determine three parameters in (A1), x∗, k1, and k2. First, the boundary con-

dition, lim
x→∞

{S(x)− β [x/(r − µ)− λc/r]} = 0, pins down k2 = 0. This is because when

Xt → ∞, the option value of exit approaches zero, and thus S(Xt) should be arbitrarily close

to β [Xt/(r − µ)− λc/r], the second mover’s continuation value if she never exercises the exit

option. Second, the values of x∗ and k1 are jointly pinned down by the value matching condition,

S(x∗) = 0, and the smooth pasting condition, S ′(x∗) = 0, as expanded below.

β

(
x∗

r − µ
− λc

r

)
+ k1(x

∗)γ = 0 (A2)

β
1

r − µ
+ γk1(x

∗)γ−1 = 0. (A3)

From (A2)×γ− (A3)×x∗, we get x∗ = [(r−µ)γ]/[r(γ− 1)] ·λc. Substituting this expression into

(A2) pins down the value of k1 and thus the closed-form solution of S(x) in Claim 1.
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A.2 Proof of Claim 2

When x ≤ x∗, the first mover’s exit immediately triggers the second mover to terminate the project,

and thus F (x) = 0. When x > x∗, the general solution to the Feynman-Kac formula is F (x) =

αx/(r − µ) + k3x
γ + k4x

η. The boundary condition lim
x→∞

[F (x)− αx/(r − µ)] = 0 pins down

k4 = 0 for the same reason as Appendix A.1. The value of k3 is pinned down by F (x∗) = 0.

A.3 Proof of Lemma 1

Claim 3. (a) The function F (x) is kinked at x = x∗ and strictly concave when x ∈ (x∗,∞);

(b) The function S(x) is differentiable at x = x∗ and strictly convex when x ∈ (x∗,∞).

Proof. The left derivative of F (x) at x∗ is 0, while the right derivative is

F ′
+(x

∗) =
α

r − µ
− αγ

(r − µ)(x∗)γ−1
(x∗)γ−1 =

α(1− γ)

r − µ
> 0,

so F (x) has a kink at x∗. Also, when x > x∗, we have

F ′′(x) = − αγ(γ − 1)

(r − µ)(x∗)γ−1
xγ−2 < 0,

justifying the strict concavity argument. Differentiability of S(x) at x∗ comes directly from the

smooth pasting condition, S ′(x∗) = 0. Strict convexity of S(x) when x > x∗ comes from

S ′′(x) = − βλcγ

r(x∗)γ
xγ−2 > 0.

Denote ∆(x) = F (x)− S(x). It is bounded by the two asymptotic lines:

∆(x) <
α

r − µ
x− β

r − µ
x+

βλc

r
=

α− β

r − µ
x+

βλc

r
. (A4)

Therefore, when x is sufficiently large (i.e., x > [βλc(r − µ)]/[r(β − α)]), the RHS of (A4)

is negative and thus ∆(x) < 0. Meanwhile, Claim 3 indicates that the right derivative of ∆(x)

is positive at x = x∗, which implies that ∆(x∗ + ϵ) > 0 with ϵ > 0 arbitrarily small. By the
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continuity of ∆(x), the function ∆(x) must admit at least one root in the interval (x∗,∞). Indeed,

∆(x) has only one root in the interval (x∗,∞). This is because ∆(x) is strictly concave due to the

convexity of S(x) and the concavity of F (x) as shown in Claim 3. A strictly concave function can

admit at most two roots, which are x∗ and x̃ in our case. Strict concavity of ∆(x) also indicates

that ∆(x) > 0 for x ∈ (x∗, x̃) and ∆(x) < 0 for x ∈ (x̃,∞).

A.4 Proof of Lemma 2

First of all, players’ exit regions must be identical in the interval with the first-mover advantage.

Suppose, by contradiction, x ∈ (x∗, x̃) while x falls in X i but not X j . Then Player j will be

better off by deviating to exit when Xt = x, as [F (x) + S(x)]/2 > S(x). Hence, if Lemma 2

does not hold, for any ϵ > 0, there must be x+ and x− in the interval (x∗, x̃) such that: (1)

both players exit when Xt = x− and stay when Xt = x+; (2) x+ and x− are very close so that

|F (x+)−F (x−)| < ϵ, |S(x+)−S(x−)| < ϵ, and |V (x+)−V (x−)| < ϵ where V (·) is each player’s

value function in the equilibrium. Notice that V (·) is continuous since the stochastic state variable

Xt has a continuous path and can evolve in both directions. Since V (x−) = [F (x−)+S(x−)]/2, we

infer that V (x+) < V (x−)+ϵ = [F (x−)+S(x−)]/2+ϵ < [F (x+)+S(x+)]/2+2ϵ. Together with

the fact that F (x+) is strictly larger than S(x+) due to first-mover advantage, the above inequality

indicates that V (x+) < F (x+) when ϵ is sufficiently small. This contradicts the presumption that

both players choose to stay when Xt = x+.

A.5 Proof of Lemma 3

It suffices to show that any cooperative equilibrium (if existing) must be weakly Pareto-dominated

by X 1 = X 2 = (0, x∗∗], which implements the socially optimal outcome. Since the socially

optimal outcome maximizes the total welfare of the two players, if a cooperative equilibrium vio-

lates the above statement, it must satisfy the following condition: there exists some x# such that

F (x#) > Vc(x
#). Suppose by contradiction, such an x# exists. It cannot be true that x# ≤ x∗

because such an x# gives F (x#) = 0. By definition of a cooperative equilibrium, such an x# also

cannot fall in the interval of (x∗, x̃). Finally, x# ≥ x̃ cannot hold as well. If it holds, we have

S(x#) ≥ F (x#) > Vc(x
#), where the first inequality comes from Lemma 1. An immediate con-
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sequence is that S(x#) + F (x#) > 2Vc(x
#), which cannot be true because Vc(x

#) is the highest

possible social welfare.

A.6 Proof of Lemma 4

Step 1. As is stated in the paragraph before Lemma 4, the existence of a cooperative equilibrium

boils down to whether X 1 = X 2 = (0, x∗∗] is an equilibrium. Hence, we want to show that

Vc(x) ≥ F (x) holds for all x ∈ (x∗∗,∞) if and only if λ ≥ λ∗.

Equation (2) indicates that F (x) is point-wise (weakly) decreasing as λ increases. Meanwhile,

F (x) is strictly concave and Vc(x) is strictly convex for x > x∗ according to Claim 3. These

properties imply the existence of a threshold λ∗ under which Vc(x) tangentially intersects with

F (x) at some x̄ > x∗. Hence, F (x̄;λ∗) = Vc(x̄) and F ′(x̄;λ∗) = V ′
c (x̄), which are equivalent to

−c

r
+

1− α

r − µ
· x̄+K · (x̄)γ = 0 (A5)

1− α

r − µ
· x̄+ γK · (x̄)γ = 0, (A6)

where

K :=
c

r(1− γ)(x∗∗)γ
+

α

(r − µ)(x∗)γ−1
=

(
1− αγ(λ∗)1−γ) c
r(1− γ)(x∗∗)γ

.

We subtract (A6) from (A5)∗γ and get

x̄ =
1

1− α

r − µ

r

γ

γ − 1
c =

1

1− α
x∗∗. (A7)

Plugging (A7) into (A6), we get 1−αγ(λ∗)1−γ = (1−α)γ , which yields λ∗ = {[1− (1− α)γ]/(αγ)}
1

1−γ .

Step 2. To complete the analysis, we need to verify that λ∗ > λ, where λ is the lower bound of

λ’s domain as defined in Section 2. Indeed, showing this inequality is not trivial. We start with the

following claim.

Claim 4. λ∗ is strictly decreasing in γ.

Proof. We first replace 1/(1 − α) by z and let λ∗ = f(γ) := {(z1−γ − z)/[−(z − 1)γ]}
1

1−γ . We
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would like to show that f ′(γ) < 0. Let g(γ) = [f(γ)]1−γ and h(γ) = ln(g(γ)). Since

f ′(γ) =
1

1− γ
g(γ)

1
1−γ

−1g′(γ) + g(γ)
1

1−γ ln(g(γ))
1

(1− γ)2

=
g(γ)

1
1−γ

1− γ

[
g′(γ)

g(γ)
+

ln(g(γ))

1− γ

]
=

f(γ)

1− γ

[
h′(γ)− h(1)− h(γ)

1− γ

]
,

it suffices to show that

h′(γ)− h(1)− h(γ)

1− γ
< 0. (A8)

Notice that [h(1) − h(γ)]/(1 − γ) is the slope of the secant line between γ and 1 on the curve of

h(·), one sufficient condition for (A8) to hold is that h(γ) is convex; i.e., g(γ) is log-convex. To

prove the log-convexity of g(γ), we only need to show that zγyg(γ) is convex for any y ∈ R.27 We

adopt Taylor Expansion w.r.t. γ on zγyg(γ) as below

zγyg(γ) =
z

(z − 1)γ

(
zγy − zγy−γ

)
=

z

(z − 1)γ

[
∞∑
n=0

(yln(z))nγn −
∞∑
n=0

((y − 1)ln(z))nγn

]

=
z

(z − 1)

∞∑
n=1

(ln(z))n [yn − (y − 1)n] γn−1.

Since z > 1, and yn − (y − 1)n > 0 for all n ≥ 1 and y ∈ R, we conclude that zγyg(γ) is

convex.

With the above claim, it suffices to show λ ≤ lim
γ→0

λ∗. Applying L’Hospital Rule gives lim
γ→0

λ∗ =

[−ln(1− α)]/α. Hence, it remains to show that for any α ∈ (0, 1), 2/(2− α) ≤ [−ln(1− α)]/α,

or equivalently, 2α/(2 − α) ≤ −ln(1 − α). Denote LHS(α) := 2α/(2 − α) and RHS(α) :=

−ln(1 − α). We can show that: (1) LHS(0) = RHS(0) = 0; (2) LHS′(0) = RHS′(0) = 1; and

(3) LHS(·) is strictly concave while RHS(·) is strictly convex. These three conditions combined

conclude the proof of λ∗ > λ.

27See Page 70 of Niculescu and Persson (2006) for reference.
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The above two steps prove Statement (1) of the lemma. The remaining two statements imme-

diately follow because X 1 = X 2 = (0, x∗∗] implements the socially optimal outcome (Lemma 3),

and thus generates a value function to each player that is point-wise higher than any other cooper-

ative equilibrium. Besides, the multiplicity in Statement (3) is explicitly explained in Section 3.5.

A.7 Proof of Lemma 5

Statement (1) holds because X 1 = X 2 = (0, x̃) is always a pre-emptive equilibrium, as we explain

in the paragraph before the lemma. The proof of Statements (2) and (3) is mainly completed in the

explanatory paragraphs following the lemma, except for the two missing pieces below.

First, for the same reason as Appendix A.5, it is dominant for each player to stay in the part-

nership when Xt ≥ x̃. Intuitively, any player cannot benefit from exiting the partnership when

Xt = x# ≥ x̃. By contradiction, if that were true, the second mover would benefit even more

since S(x#) ≥ F (x#) — such a situation where both players benefit from one’s exit is impossible

because strategic exiting is socially inefficient due to Assumption 1.

Second, if λ > λ∗∗, Section 3.5 explicitly explains the multiplicity of pre-emptive equilibria.

A.8 Proof of Theorem 1

The paragraphs preceding Theorem 1 already prove the theorem, except for the following discus-

sion on how the value of α affects λ∗, λ∗∗, and their relative magnitude. Notice that λ can be any

number in [λ,∞). In Step 3 of Appendix A.6, we already show that λ < λ∗ always holds. Besides,

we have the following claim.

Claim 5. (1) The value of λ∗ strictly increases in α; also, lim
α→0

λ∗ = 1 and lim
α→1

λ∗ = +∞.

(2) The value of λ strictly increases in α; also, lim
α→0

λ = 1 and lim
α→1

λ = 2.

(3) The value of λ∗∗ does not depend on α; also, we have λ∗∗ > 1.

Proof. (1) From the expression of λ∗, we want to show that [1− (1− α)γ]/(αγ) strictly increases

in α. This is true because
∂
[
1−(1−α)γ

αγ

]
∂α

= {(1− α)γ−1[α(1 + γ)− 1]− 1}/(γα2) > 0. By applying

L’Hospital rule, we also get lim
α→0

λ∗ = 1 and lim
α→1

λ∗ = +∞.

(2) This is straightforward from the expression λ = 2/(2− α).
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(3) The value of λ∗∗ does not depend on α because α does not show up in its expression. The

fact that λ∗∗ > 1 comes from a classic result in optimal stopping problems that a decision maker

will stop when the myopic return is negative. Specifically, from Appendix A.1, x∗ must satisfy the

homogenous ODE, β(x∗ − λc) = rS(x∗) − S ′(x∗)µx∗ − [σ2S ′′(x∗)(x∗)2]/2. Because of value

matching and smooth pasting, we know that S(x∗) = S ′(x∗) = 0; meanwhile, S ′′(x∗) > 0 because

S(·) is strictly convex. Plugging these terms into the homogenous ODE, we have x∗ − λc < 0,

which is equivalent to [(r − µ)γ]/[r(γ − 1)] < 1 according to the closed-form of x∗. Since λ∗∗ is

the inverse of [(r − µ)γ]/[r(γ − 1)], we conclude that λ∗∗ > 1.

From Claim 5, we can infer that there exists a unique α ∈ (0, 1) such that the values of λ∗ and

λ∗∗ are identical. Therefore, we discuss the equilibrium characterization as follows.

Case 1: α ∈ (0, α]. In this case, it follows that λ∗∗ ≥ λ∗. Therefore, the value of λ should fall

in either Scenario (1) (i.e., λ ≥ λ∗) or Scenario (3) (i.e., λ < λ∗).

Case 2: α ∈ (α, 1). In this case, it follows that λ∗∗ < λ∗. The characterization now depends

on the relative magnitude of λ and λ∗∗. We further consider two sub-cases.

Case 2.1: λ∗∗ ≥ 2. In this sub-case, it follows that λ < λ∗∗ always holds. Hence, the value of

λ covers all three different scenarios.

Case 2.2: λ∗∗ < 2. In this sub-case, there exists ᾱ such that λ = λ∗∗. When α ∈ (α, ᾱ), it

follows that λ < λ∗∗ < λ∗, so the value of λ still covers all three different scenarios as Case 2.1.

When α ∈ [ᾱ, 1), it follows that λ∗∗ ≤ λ < λ∗, so Scenario (3) disappears — the value of λ should

fall in either Scenario (1) (i.e., λ ≥ λ∗) or Scenario (2) (i.e., λ < λ∗).

The characterization in Theorem 1 encompasses all the above cases.

A.9 Proof of Corollary 2

A cooperative equilibrium can be sustained if and only if λ ≥ λ∗. Notice that λ is determined by

β and κ; λ∗ is determined by α and γ, while γ is determined by r, µ, and σ.

For α: Claim 5 in Appendix A.8 already proves that λ∗ strictly increases in α.

For β and κ: It is straightforward from the expression λ = κ/β.

For r, µ, and σ: Since Claim 4 in Appendix A.6 already proves that λ∗ strictly decreases in γ,

it suffices to show that γ strictly decreases in r and µ and strictly increases in σ. Notice that γ is
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the negative root of Γ(y;µ, σ) = µy + [σ2y(y − 1)]/2− r. The above results can be shown by the

implicit function theorem since ∂Γ
∂y
|y=γ < 0, ∂Γ

∂r
|y=γ < 0, ∂Γ

∂µ
|y=γ < 0, and ∂Γ

∂σ
|y=γ > 0.

For c: Neither λ nor λ∗ depends on c.

A.10 Proof of Proposition 1

First, the threshold xc cannot be smaller than x∗∗. Otherwise, any player will be better off by

exiting when Xt ∈ (xc, x∗∗).

Second, we want to derive the function k(λ) such that the threshold xc cannot be larger than

k(λ) · x∗∗. Notice that each cooperative equilibrium X 1 = X 2 = (0, xc] generates a continuation

value

V̂c(x;x
c) = −c

r

[
1−

( x

xc

)γ]
+

x

r − µ

[
1−

( x

xc

)γ−1
]
.

It suffices to jointly solve x̄ and xc from the simultaneous equations F (x̄) = V̂c(x̄;x
c) and F ′(x̄) =

V̂ ′
c (x̄;x

c). Using similar derivation as in Lemma 4, we can get x̄ = x∗∗/(1 − α). Plug this into

F ′(x̄) = V̂ ′
c (x̄;x

c), which can be written as

γc

r
·
( x̄

xc

)γ

+
(1− α)x̄

r − µ
=

γx̄

r − µ
·
( x̄

xc

)γ−1

− αγx̄

r − µ
·
( x̄

x∗

)γ−1

,

we have

(γ − 1)(1− α) ·
( x̄

xc

)γ

+ (1− α) = γ ·
( x̄

xc

)γ−1

− αγ[λ(1− α)]1−γ.

This equation is satisfied if we let xc = k(λ)x∗∗ while the function k(λ) satisfies

γ · (k(λ))1−γ + (1− γ) · (k(λ))−γ = (1− α)γ + αγλ1−γ. (A9)

Since the LHS of (A9) strictly decreases in k(λ) and the RHS strictly decreases in λ, we further

infer that (i) the function k(λ) is well-defined, and (ii) by the implicit function theorem, k(λ)

strictly increases in λ. Also, to see why k(λ) < λ, notice that the LHS is strictly smaller than the

RHS if k(λ) = λ. Finally, when λ = λ∗, we have k(λ∗) = 1 by the definition of λ∗ in Lemma 4.
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A.11 Proof of Proposition 2

The threshold xp cannot be smaller than x0 because otherwise, any player prefers to exit when

Xt ∈ (xp, x0). Also, by construction, xp cannot exceed x∗. Besides these two requirements, there

are no restrictions on the value of xp, because as long as xp ∈ [x0, x∗], each player’s value function

in the interval [xp, x∗] is non-negative. When xp ≥ c, this argument holds trivially. When xp < c,

this argument still holds for the following reason. Since each player’s flow payoff in the interval

[x0, xp) is always negative, we can infer that the value function Ṽp(x;x
p), which is generated by

X 1 = X 2 = (0, xp] ∪ (x∗, x̃) will have a kink at xp with strictly positive right derivative, which

implies that Ṽp(x;x
p) ≥ 0 for x ∈ [xp, x∗].

A.12 Proof of Proposition 3

The proof includes two parts corresponding to two gaps between pure-strategy MPEs and SPNEs.

Part 1: Non-Markovian SPNE. The proof is mostly contained in the paragraph following Propo-

sition 3. For Stage 1, in particular, we provide a more formal proof. Since the only relevant history

in Stage 1 is the trajectory of the process, a non-Markovian SPNE indicates that players’ continu-

ation play at some time t must depend on (X
′
s)s∈[0,t). However, conditional on the value of Xt, the

process (X ′
s)s∈[0,t) is payoff-irrelevant for the continuation game. Hence, conditional on Xt, the set

of achievable continuation value profiles should not depend on (X
′
s)s∈[0,t). Therefore, introducing

non-Markovian SPNEs cannot enlarge the set of achievable continuation value profiles at t = 0.

Part 2: Mixed-Strategy MPE. By contradiction, suppose there exists a mixed-strategy MPE that

generates a continuation value profile (W̃ 1(x), W̃ 2(x)) such that W̃ 1(x) > W (x) for some x.

Case 1: λ ≥ λ∗. Notice that W (x) ≥ F (x) for any x, while S(x) > W (x) is possible for some

high value of x. It must be the case that Player 2 exits for some large x# where S(x#) > W (x#) to

make Player 1’s continuation value larger than W (x#). However, this violates Player 2’s rationality

because it is dominant for Player 2 to stay under such a high x#.

Case 2: λ < λ∗. First, both players find it dominant to stay when Xt ∈ [x̃,∞). Second, we

want to show that both players exit with probability one when Xt ∈ (x∗, x̃), even when they are

allowed to use mixed strategies. Notice that there must exist an interval (x1, x2) such that F (x) >

Vc(x) when x ∈ (x1, x2). These two thresholds are the intersections of F (x) and Vc(x) as shown in
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Figure 2(b). Suppose, by contradiction, Player 2 uses a mixed strategy for some Xt ∈ (x1, x2). It

must follow that W̃ 2(Xt) ≥ F (Xt). However, this further indicates that W̃ 1(Xt) < F (Xt) because

W̃ 1(Xt) + W̃ 2(Xt) ≤ 2Vc(Xt) < 2F (Xt), where the last inequality comes from Xt ∈ (x1, x2).

Therefore, Player 1 must exit with probability one instead, which, in turn, disproves Player 2’s

using mixed strategy for Xt. Moreover, players’ incentives to pre-empt each other still exist even

when mixed strategies are allowed. Hence, the logic of Lemma 2 continues to work — triggered

by the fact that both players exit with probability one in the interval (x1, x2), they will do the same

for the entire interval (x∗, x̃) in any (possibly mixed-strategy) MPE. Finally, when Xt ∈ (0, x∗],

players always exit at de facto the same time, attaining identical continuation value. For that reason,

mixed strategies may introduce new MPEs, but cannot improve players’ continuation value beyond

the Pareto-optimal equilibrium.

A.13 Proof of Theorem 2

We want to show that Uf (x) generated by X f satisfies the HJB equation. According to Strulovici

and Szydlowski (2015), it suffices to check three conditions: (1) Uf (x) ≥ F (x), ∀x; (2) Uf (x)

is everywhere continuous and first-order differentiable; (3) Uf (x) ≥ (1 − r)Uf (x) + x − c +

U
′

f (x)µx + [σ2U
′′

f (x)x
2]/2 whenever Uf (x) = F (x). When λ ≥ λ∗, we have Uf (x) = Vc(x),

and it is not difficult to check that all three conditions are satisfied. When λ < λ∗, we want

to construct three thresholds (x′, x′′, x′′′) that satisfy the corresponding smooth pasting and value

matching conditions. For x′′′, its closed-form is exactly pinned down by Equations (A5) and (A6).

Hence, x′′′ = x∗∗/(1−α) as in (A7). For x′ and x′′, the construction takes the following two steps.

Step 1: Existence. Let the general solution of Uf (x) for x ∈ [x′, x′′] be Uf (x) = −c/r + x/(r −

µ) + k5x
γ + k6x

η. Notice that k6 is not necessarily zero as the boundary condition when x → ∞

no longer holds. The value matching and smooth pasting conditions for these two thresholds are
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−c

r
+

x′

r − µ
+ k5 · (x′)γ + k6 · (x′)η = 0 (A10)

x′

r − µ
+ γk5 · (x′)γ + ηk6 · (x′)η = 0 (A11)

−c

r
+

(1− α)x′′

r − µ
+ (k5 − k3) · (x′′)γ + k6 · (x′′)η = 0 (A12)

(1− α)x′′

r − µ
+ γ(k5 − k3) · (x′′)γ + ηk6 · (x′′)η = 0. (A13)

Claim 6. k6 > 0 and k5 > k3.

Proof. Let (A13) − (A12)∗γ and (A13) − (A12)∗η , we have

cγ

r
+ (1− γ)

(1− α)x′′

r − µ
+ k6 · (η − γ)(x′′)η = 0 (A14)

cη

r
+ (1− η)

(1− α)x′′

r − µ
+ (k5 − k3) · (γ − η)(x′′)γ = 0 (A15)

By construction, we require that x′′ < x′′′ = x∗∗/(1 − α). Plugging it into (A14) yields k6 > 0.

Plugging it into (A15), we get

cη

r
+ (1− η)

(1− α)x′′

r − µ
>

c(η − γ)

r(1− γ)
> 0,

which indicates that k5 > k3.

From (A11) − (A10)∗γ and (A11) − (A10)∗η, we have

cγ

r
+ (1− γ)

x′

r − µ
+ k6 · (η − γ)(x′)η = 0

cη

r
+ (1− η)

x′

r − µ
+ k5 · (γ − η)(x′)γ = 0.

We can thus express k5 and k6 as functions of x′:

k6(x
′) =

cγ

r(γ − η)
(x′)−η +

1− γ

(r − µ)(γ − η)
(x′)1−η (A16)

k5(x
′) =

cη

r(η − γ)
(x′)−γ +

1− η

(r − µ)(η − γ)
(x′)1−γ. (A17)
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We then construct the following function that takes z as a parameter,

Ũ(x; z) = −c

r
+

x

r − µ
+ k5(z)x

γ + k6(z)x
η. (A18)

It suffices to find a value of z such that Ũ(x; z) tangentially intersects with F (x) in the interval

(x∗,∞) — after doing so, Equations (A10) to (A13) are satisfied by letting x′ = z and x′′ be the

tangent point. Denote ∆̃(x; z) = Ũ(x; z)− F (x).

Claim 7. For any z > 0, ∆̃(x; z) is strictly convex in x.

Proof. ∆̃′′(x; z) = γ(γ−1)(k5−k3)x
γ−2+η(η−1)k6x

η−2 > 0, as we already know from Claim 6

that k6 > 0 and k5 > k3, together with γ < 0 and η > 1.

On one hand, ∆̃(x;x∗∗) = Vc(x). Since λ < λ∗, we infer that inf
x∈(x∗,∞)

∆̃(x;x∗∗) < 0 as

Vc(x) (non-tangentially) intersects with F (x). On the other hand, for ϵ > 0 sufficiently small,

it is not difficult to see that inf
x∈[x∗,∞)

∆̃(x; ϵ) > 0. By continuity of ∆̃(x; z) w.r.t. z, there must

exist x′ ∈ (0, x∗∗) such that inf
x∈[x∗,∞)

∆̃(x;x′) = 0. According to the strict convexity of ∆̃(·;x′)

(Claim 7), ∆̃(x∗;x′) > 0, and ∆̃(∞;x′) = ∞, we know the infimum is uniquely attainable. Let

this point of infimum be x′′. We can verify that ∆̃(x′′;x′) = 0, ∆̃′(x′′;x′) = 0, and ∆̃(x;x′) > 0

for x ∈ [x∗,∞)/{x′′}. In other words, Ũ(x;x′) smoothly pastes with F (x) at x′ and x′′, while

satisfying Ũ(x;x′) > F (x) for x ∈ (x′, x′′).

To conclude on the existence, we finally verify that the constructed x′′ is consistent with the

presumption that x′′ < x′′′. Combining (A14) and (A16), we get

cγ

r
[(x′′)η − (x′)η] +

(1− γ)

r − µ
[x′(x′′)η − (1− α)x′′(x′)η] = 0,

which gives us x′′ < x′/(1− α) < x∗∗/(1− α) = x′′′.

Step 2: Uniqueness. To prove the uniqueness of z satisfying inf
x∈[x∗,∞)

∆̃(x; z) = 0, it suffices to

show that inf
x∈[x∗,∞)

∆̃(x; z) is single-crossing w.r.t. z (i.e., crosses the horizontal axis only once)

when inf
x∈[x∗,∞)

∆̃(x; z) = 0. By the Envelope Theorem, we only need to show that ∂∆̃
∂z
(x′′, x′) is

either always positive or always negative.
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∂∆̃

∂z
(x′′, x′) · x′ = k

′

5(x
′)x′ (x′′)

γ
+ k

′

6(x
′)x′ (x′′)

η

= (1− γ)k5 · (x′′)
γ
+ (1− η)k6 · (x′′)

η
+

c

r(η − γ)

[
γ

(
x′′

x′

)η

− η

(
x′′

x′

)γ]
=

c

r
+ k3 · (1− γ) (x′′)

γ
+

c

r(η − γ)

[
γ

(
x′′

x′

)η

− η

(
x′′

x′

)γ]
= k3 · (1− γ) (x′′)

γ
+

c

r(η − γ)

[
η − γ + γ

(
x′′

x′

)η

− η

(
x′′

x′

)γ]
< k3 · (1− γ) (x′′)

γ
+

c

r(η − γ)
[η − γ + γ − η]

= k3 · (1− γ) (x′′)
γ
< 0.

The first equality results from (A18). The second equality is obtained by plugging in the derivatives

of k5(x) and k6(x) according to (A16) and (A17). The third equality makes use of (A12) and

(A13). The fourth equality combines like terms. The first inequality holds because the function

Φ(y) = γyη − ηyγ , when y ≥ 1, strictly decreases in y, while x′′ > x′. The last inequality comes

from k3 < 0. We eventually conclude that the single-crossing condition holds, so there exists a

unique pair of (x′, x′′) satisfying Equations (A10) to (A13).

A.14 Proof of Lemma 6

For x′′′ < x̃. By the construction of x′′′, we have F (x′′′) > S(x′′′) — otherwise Frank will not

benefit from strategic exiting at x′′′. This directly implies x′′′ < x̃ because F (x) ≥ S(x), ∀x ≥ x̃.

For x′′ > x∗. By the construction of x′′, we have F (x′′) > 0 = F (x∗). The argument x′′ > x∗

immediately follows.

A.15 Proof of Theorem 3

Step 1: x′′′ < x̃. This is because x′′′ is smaller than the largest intersection of Vc(x) and F (x)

according to Theorem 2, while x̃ must be larger than that intersection since Vc(x̃) > S(x̃) =

F (x̃) due to the fact that Vc(x) maximizes social welfare. The intuition is that Frank exits less

aggressively than in the baseline model due to pre-emption being avoided.

Step 2: Us(x̃) > W (x̃). When λ < λ∗, the Pareto-optimal equilibrium in the baseline model is
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pre-emptive so W (x̃) = Vp(x̃) = F (x̃) = S(x̃). Hence, it suffices to show that Us(x̃) > S(x̃). To

compare Us(x̃) and S(x̃), notice that: (1) S(x̃) is equivalent to the continuation value of a player

(when Xt = x̃) who keeps receiving a flow payoff of βXt − κc until exogenously exiting at x′′′

with a lump-sum payoff of S(x′′′); (2) Us(x̃) is equivalent to the continuation value of a player

(when Xt = x̃) who keeps receiving a flow payoff of Xt− c until exogenously exiting at x′′′ with a

lump-sum payoff of S(x′′′). These two scenarios have the same lump-sum payoff when exogenous

exiting happens at x′′′, but the flow payoff in the first scenario is lower than the second one, as we

assume β ≤ 1. Hence, we conclude that Us(x̃) > S(x̃).

Step 3: Us(x) > W (x) for x > x̃. For x > x̃, W (x) equals the continuation value of a player

(when Xt = x) who keeps receiving a flow payoff of Xt − c until exogenously exiting at x̃ with

a lump-sum payoff of W (x̃). Meanwhile, Us(x) equals the continuation value of a player (when

Xt = x) who keeps receiving a flow payoff of Xt − c until exogenously exiting at x̃ with a lump-

sum payoff of Us(x̃). These two arguments, together with Us(x̃) > W (x̃) that we show in Step 2,

indicate that Us(x) > W (x) for x > x̃.

Step 4: Existence of xs. Steps 2 and 3 show that Us(x) > W (x) when x ≥ x̃. According to the

continuity of Us(x) and W (x), there must exist xs < x̃ such that Us(x) ≥ W (x) when x ≥ xs.
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