
Commonality of Information and Commonality of

Beliefs∗

Yu Awaya† and Vijay Krishna‡

January 22, 2025

Abstract

A group of agents with a common prior receive informative signals about

an unknown state repeatedly over time. If these signals were public, agents’

beliefs would be identical and commonly known. This suggests that if signals

were private, then the more correlated these are, the greater the commonality

of beliefs. We show that, in fact, the opposite may be true. In the long run,

conditionally independent signals may achieve greater commonality of beliefs

than correlated ones.
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1 Introduction

What kind of information increases the possibility of effi cient coordination? If a group

of agents with a common prior receive public signals about an unknown state, they will

have identical, commonly-known beliefs, thereby facilitating effi cient coordination.

This suggests that if agents’signals are private, then the more correlated these are,

the easier it will be for agents to coordinate on the right actions.
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In this paper, we argue that this intuition may be misguided. We identify cir-

cumstances in which it is easier for agents to coordinate with less correlated signals

than with those that are more correlated. In fact, it may be that coordination is

easier when signals are (conditionally) independent than when they are correlated.

We begin with a simple example that illustrates this phenomenon.

Example 1 Two players simultaneously choose whether to invest or not in the face

of uncertainty. Specifically, there are two equally-likely states of nature G ("good")

or B ("bad"). The cost of investment is c > 0 and a player’s investment is successful

and yields a gross return of 1 if and only if the state is G and the other player also

invests. If a player invests and the other does not, then the gross return is 0.

Prior to making choices players receive signals that are informative about the state

of nature. We will show that for some costs c, effi cient coordination can be achieved

when these signals are independently distributed but not when they are correlated.

First, suppose that the information available to players is generated as follows. Let

X = (X1, X2) be a pair of binary signals each of which takes on values 0 ("bad news")

or 1 ("good news"). The signal Xi ∈ {0, 1} is privately observed by player i. In state
G, X1 andX2 are symmetrically and independently distributed with Pr [Xi = 0 | G] =
1
5
. In state B, the joint distribution of the signals is degenerate– with probability 1,

both players receive a signal of 0. This means that a 1-signal is conclusive evidence

that the state is G.

Prior to making decisions, player i sees two serially independent realizations of

the signal Xi, say X1
i and X

2
i (the state of nature is realized once and remains fixed).

It is routine to verify that if c ≤ 24
25
, then there is an equilibrium in which player i

invests if he gets at least one positive signal, or equivalently, the sum of his private

signals, X1
i + X2

i ≥ 1. Moreover, if c > 24
25
the only equilibrium is one in which no

investment ever takes place.

Now consider an alternative situation in which players’signals are positively cor-

related. Specifically, suppose Y = (Y1, Y2) are signals that in state G, have the

distribution
Y2 = 0 Y2 = 1

Y1 = 0 3
25

2
25

Y1 = 1 2
25

18
25

Notice that while the marginal distributions of Yi and Xi are the same, in state G, the
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players’signals Y1 and Y2 are positively correlated. In state B, the joint distribution

of (Y1, Y2) is again degenerate, with Pr [(Y1, Y2) = (0, 0) | B] = 1.

Again, there are two serially independent realizations of (Y1, Y2) . Player i observes

Y 1
i and Y

2
i prior to making an investment decision. It is routine to verify that if c ≤ 47

50
,

then there is an equilibrium in which player i invests if he gets at least one positive

signal, or equivalently, the sum of his private signals, Y 1
i + Y 2

i ≥ 1.

On the other hand, if c > 47
50
, then the unique equilibrium is for neither player to

invest regardless of her information. This follows from a standard infection argument.

First, if Y 1
i +Y 2

i = 0, then it is dominant to not invest because Pr [G | Y 1
i + Y 2

i = 0] =
1
26

< c. Next, if Y 1
i + Y 2

i = 1, it is iteratively dominant to not invest for j 6= i,

Pr
[
Y 1
j + Y 2

j ≥ 1 | Y 1
i + Y 2

i = 1
]

= 47
50
< c as well. Finally, it is then optimal even for

a player with Y 1
i + Y 2

i = 2 to not invest because Pr
[
Y 1
j + Y 2

j = 2 | Y 1
i + Y 2

i = 2
]

=
81
100

< c.

So we obtain the following.

a. If c ≤ 47
50
, then with either conditionally independent signals X or correlated

ones Y , there is an equilibrium with effi cient coordination– a player invests if

she gets at least one positive signal and so knows that the state is G.

b. If 47
50
< c ≤ 48

50
, however, with conditionally independent signals X, there is

an equilibrium in which both players invest whenever they know G, while with

correlated signals Y , the unique equilibrium is that no player ever invests.

c. If c > 48
50
, the only equilibrium under either signals X or Y is to not invest.

Why is this? Compared to the case of (conditionally) independent signals, with

correlated signals a player that gets good news is more likely to believe that the

other player also received good news and so becomes optimistic about the prospects

of coordinating on the right outcome. But the opposite is true for a player that gets

bad news. With correlated signals, she is more likely to believe that the other player

also received bad news and so becomes pessimistic. The second effect dominates– a

player with one piece of good news and one piece of bad news is more pessimistic

with correlated signals than with independent signals, that is,

Pr
[
Y 1
j + Y 2

j ≥ 1 | Y 1
i + Y 2

i = 1
]
< Pr

[
X1
j +X2

j ≥ 1 | X1
i +X2

i = 1
]
.

This type’s increased pessimism then spreads to all types.
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In the rest of this paper, we explore these ideas in a special case of the common

learning setting of Cripps, Ely, Mailath and Samuelson (2008, henceforth CEMS)

where both fundamental states of nature and the agents’signals are binary.1 There

is an unknown fundamental state of nature θ ∈ {G,B} that is of concern to a group
of I ≥ 2 agents. The state of nature θ is realized in period 0 and remains fixed.

There are T additional periods and in each period t, agents receive private signals

X t
i ∈ {0, 1} that are informative about θ. The signals are independent and identically

distributed across time but may be correlated among agents. CEMS showed that

in the limit as T → ∞, the true state of nature becomes approximately commonly
known with probability approaching one.

We are interested in studying how the commonality of agents’beliefs– that is,

how close they are to achieving common knowledge of θ– is affected by the degree of

commonality of their information. As in CEMS, "commonality of beliefs" is formal-

ized using the notion of common p-belief introduced by Monderer and Samet (1989).

"Commonality of information" is formalized using a multivariate version of "more

positively correlated," defined in the next section.

Fix, as in the example, two signalsX or Y , such that Y exhibits greater positive

(but not perfect) correlation than X. We show that for any T large enough, there

is an interval of p’s such that the state of nature can be common p-believed with

the less correlated signals X but not with the more correlated signals Y . Thus,

under the identified conditions, "greater commonality of information is detrimental

to commonality of beliefs."2

We begin by considering the case when signals are conclusive, in the sense that

even one piece of "good news" reveals that the state is G (as in the example). This

special case is useful because first-order uncertainty– that is, concerning the state of

nature θ– is resolved once even a single piece of good news is received. This means

that the focus is then solely on higher-order uncertainty– that is, concerning others’

knowledge about G, their knowledge about others’knowledge, etc.

We first show that the event that G is common p-believed exhibits a bang-bang

property: if p is below a threshold, this event is as large as possible and if p is above,

it is empty (Proposition 3.1).

1A working paper version of this paper (Awaya and Krishna, 2024) studies a more general
environment in which the number of signals may exceed two.

2This is formalized in various settings as Theorems 1 and 2.
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The relevant threshold is the belief about the event "all agents know G" of the

second-most pessimistic type– who gets only one piece of good news and T −1 pieces

of bad news. Only the type that gets only bad news in every period is more pes-

simistic. We show that whether or not G can be common p-believed depends on

whether p ≤ q or p > q. If p ≤ q, then G is common p-believed whenever everyone

knows G. On the other hand, if p > q, then it is impossible for G to be common

p-believed. Why is this? By definition, the belief of the second-most pessimistic type

is too low and so this type cannot believe that all others know G. We show that the

pessimism of this type then "infects" all other types so that no one assigns probability

greater than p to the event that everyone knows G.

The second step is to show that higher correlation decreases the threshold belief q

when T is large (Proposition 3.2). As argued above, the second-most pessimistic type

is one who receives only one piece of good news. Since this type gets a preponderance

of bad news, higher correlation makes her believe that other agents also received

a preponderance of bad news, thereby increasing her pessimism. These facts then

lead to one of main results (Theorem 1). Consider two kinds of signals, one more

correlated than the other. For large enough T, there is an interval of p’s (depending

on T ) such that for all p in that interval, with the more correlated signals, G cannot

be common p-believed, but with the less correlated signals, it can be.

In Section 4 we relax the assumption that signals are conclusive. In this more

general environment, first-order uncertainty also plays a role. With non-conclusive

signals, the "bang-bang" property requires the assumption that this first-order un-

certainty is not too large (Proposition 4.1). Because of this, when signals are non-

conclusive, the main result, Theorem 2, also requires stronger conditions than Theo-

rem 1.

Finally, for the case of two agents and general signals, we show that our results

can be recast in the language of Blackwell informativeness. Say that Q is more

informative than P, if agent i’s signal Yi from Q is more informative about agent j’s

signal Yj than Xi from P is about Xj (see Section 5 for a precise definition). In the

same vein as above, it can be shown that in fact, more informative signals can be

detrimental to common learning.

5



Related literature The importance of higher-order uncertainty in game theory

was brought to the fore by Rubinstein’s (1989) E-Mail game.3 The literature on

common learning asks whether such uncertainty can be made to disappear over time.

Cripps, Ely, Mailath and Samuelson (2008) show that if the set of signals is finite and

these are independent over time, then common learning occurs in the limit.4

In a subsequent paper, Cripps et al. (2013) show that common learning may fail if

signals are not serially independent and find some more general suffi cient conditions

for common learning. Steiner and Stewart (2011) consider a version of the common

learning model in which signals– which are binary and conclusive– arrive at random

times. They ask how communication between agents affects common learning and

show that under certain conditions it prevents common learning. In our model,

common learning always occurs in the limit. We are interested in examining agents’

beliefs away from the limit and how these are affected by correlation.

Frick, Iijima and Ishii (2023) study how common learning is affected by the un-

derlying signal process. Consider joint distributions over states of nature and signals,

P and Q, such that P is more informative about the state θ than is Q. Frick et al.

(2023) show that when T is large enough, P results in greater commonality of beliefs

than does Q. In particular, how correlated agents’signals are does not matter in the

long run. In our work we compare distributions P and Q that are equally informative

about θ but Q is more correlated than P. We show that when T is large enough,

greater correlation may, in fact, be detrimental to commonality of beliefs.

There is, of course, a close connection between common beliefs and equilibria

of games. This connection has been explored in various manners by Monderer and

Samet (1989), Kajii and Morris (1997) and more recently by Oyama and Takahashi

(2020). Oyama and Takahashi (2020) study binary-action supermodular games, and

as in Example 1, our results on the effects of correlation on common learning have

natural counterparts when applied to this class of games.

A paper by Basak, Deb and Kuvalekar (2024) also studies how "commonality

of information" can decrease the prospects of coordinated action in regime change

games. Unlike our work, the channel by which this results relies on the particular

payoff structure of the game.

3The signals in Rubinstein’s E-Mail game are also binary and conclusive.
4They also show that if the set of signals is infinite then common learning may fail if agents’

signals are correlated.
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There is also work on global games which studies how greater "commonality"–

measured by a decrease in the variance of private information relative to that of

public information– can, in some circumstances, lead to decreased coordination in

equilibrium (see for instance, Iachan and Nenov, 2015). Unlike in our work, in the

global games framework, agents’signals are independent conditional on the state of

nature θ. The increase in "commonality" of the sort mentioned above affects agents’

beliefs about each other only via the change in their beliefs about θ. In our paper, the

increase in commonality increases the correlation among agents’signals while keeping

their beliefs about the fundamental state θ fixed.

2 Model

A group of agents i ∈ I = {1, 2, ..., I} face an uncertain fundamental state of nature
θ ∈ Θ that can take on two possible values, G and B, with commonly known prior

probabilities ρ ∈ (0, 1) and 1 − ρ, respectively. We will suppose that G and B take

on numerical values such that G > B, say G = 1 and B = 0.

Time is discrete and there is a finite number of periods, denoted by t = 0, 1, 2, ..., T.

At time t = 0, nature chooses θ ∈ Θ = {G,B} and this choice remains fixed for all
remaining periods. At each time t ≥ 1, each agent i receives a private signal that is

informative about the state of nature θ.

We assume throughout that signals are binary so that X = {0, 1} .
The signals are generated as follows.

Let P ∈ ∆
(
Θ×X I

)
be a joint probability distribution over the set of states and

signals, one for each agent. We will write a typical element of Θ × X I as (θ,x) =

(θ, x1, x2, ..., xI) where xi is the signal of agent i. Of course, the marginal probability

of θ = G is ρ. To save on notation, we will write P θ ∈ ∆
(
X I
)
as the distribution

over signal vectors conditional on the state of nature θ. Thus, P θ (x) = P (x | θ) .
We will assume that

1. PG 6= PB so that the signals carry information about θ.

2. Conditional on θ, the signals are symmetrically distributed– that is, P θ (x) =

P θ (xπ) for any permutation xπ of x.
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3. P is affi liated, that is, for all (θ,x) and (θ′,x′) ,

P (θ,x)× P (θ′,x′) ≤ P ((θ,x) ∨ (θ′,x′))× P ((θ,x) ∧ (θ′,x′)) ,

where (θ,x)∨ (θ′,x′) is the component-wise maximum of (θ,x) and (θ′,x′) and

(θ,x) ∧ (θ′,x′) is the component-wise minimum.

Let xt ∈ X I be the vector of signals, one for each agent, in period t. Conditional

on θ, in any period t, the signal vectors xt ∈ X I are independent draws from the

distribution P θ (·) = P (· | θ). Thus, in each state of nature θ, the signal vectors are
independently and identically distributed over time.

It will be convenient to consider the I+1 dimensional random vector (θ̃,X) which

takes values in Θ × X I and satisfies Pr[(θ̃,X) = (θ,x)] = P (θ,x) .5 Similarly, for

each θ, define the I dimensional random vector Xθ which takes values in X I and

satisfies Pr
[
Xθ = x

]
= P θ (x) ≡ Pr [X = x | θ] .6

Now let Q ∈ ∆(Θ×X I) be another distribution such that the marginal probability

of G is ρ. Analogously, let (θ̃,Y ) be the random vector such that Pr[(θ̃,Y ) = (θ,y)] =

Q (θ,y) . And like Xθ, the random vector Y θ also takes values in X I and satisfies

Pr
[
Y θ = y

]
= Qθ (y) ≡ Pr [Y = y | θ] .

Throughout the paper we will assume that X is defined as above from P and Y

is defined as above from Q.

We will compare two distributions P and Q such that Q is "more correlated" than

P ; or equivalently, the signals Y are "more correlated" than signals X.

Multivariate correlation When there are more than two variables, there are many

ways to measure an increase in correlation (or positive dependence). In what follows,

we will use the following notion7:

Definition 1 Y is more correlated than X in the positive quadrant dependence

(PQD) order, written Y <PQD X, if for any z ∈ X I ,

Pr [X ≤ z] ≤ Pr [Y ≤ z] (1)

5Formally, if S = X I , then
(
Θ× S, 2Θ×S , P

)
is a finite probability space and (θ̃,X) is the identity

map from Θ× S to Θ× S.
6Again,

(
S, 2S , P θ

)
is a probability space and Xθ is the identity map from S to S.

7This order was first defined by Yanagimoto and Okamoto (1969). It was then developed for
I > 2 by Joe (1990), who called it the "concordance order".
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and

Pr [X ≥ z] ≤ Pr [Y ≥ z] . (2)

If Y <PQD X, then for any fixed vector z, Y is more likely to take on higher

values than z than is X and also more likely to take on lower values than z. In

the bivariate case, this means that a change from P to Q shifts probability weight

from the "northwest" and "southeast" quadrants to the "northeast" and "southwest"

quadrants. Thus, the values that the variables take are more likely to be closer to each

other than before. The PQD order is discussed in detail in Shaked and Shanthikumar

(2008) andMeyer and Strulovici (2012).8 It satisfies the following desirable properties.

First, if Y <PQD X, then they have identical univariate marginals, that is, for all

k ∈ X ,
Pr [Xi = k] = Pr [Yi = k] .

Second, the PQD order is preserved by monotone transformations of the variables.

In other words, if the variables (Y1, Y2, ..., YI) are more correlated in the PQD order

than (X1, X2, ..., XI) , then it should be that (φ1 (Y1) , φ2 (Y2) , ..., φI (YI)) are also

more correlated than (φ1 (X1) , φ2 (X2) , ..., φI (XI)) where each φi is an increasing

function.9 This is desirable since signals have no inherent cardinal meaning– they

only serve to update beliefs.

Third, the PQD order is preserved for marginals over subsets of variables, that

is, if the variables Y are more correlated than X then for any non-empty J ⊆ I, it

should be that the variables Y J = (Yi)i∈J are more correlated thanXJ = (Xi)i∈J . If

Y <PQD X, then for all i and j 6= i, the pairwise covariances satisfy Cov (Yi, Yj) ≥
Cov (Xi, Xj) .

Finally, and perhaps most important, the PQD order is weaker than all other

orders of positive dependence discussed in the references above– for instance, it is

weaker than the supermodular order <SMwhich requires that Y <SM X if EY [φ] ≥
EX [φ] for all supermodular functions φ (see Shaked and Shanthikumar, 2008).

In what follows, we will use the following strict version of the PQD order. We

will say that Y is strictly more correlated than X in the PQD order, and write

Y �PQD X, if Y <PQD X and (i) the inequality (1) is strict for any z such that for

8See Anderson and Smith (2024) for an application of the PQD order in matching problems.
9Note that the common (bivariate) notion of greater covariance fails this requirement. It may

be that Cov (Y1, Y2) > Cov (X1, X2) but Cov (φ1 (Y1) , φ2 (Y2)) < Cov (φ1 (X1) , φ2 (X2)). As an
example, let φ1 (z) = φ2 (z) = z2.
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at least two indices i, zi = 0; and (ii) the inequality (2) is strict for any z such that

for at least two indices i, zi = 1.10

Since the the PQD order<PQD is implied by other orders, its strict version, �PQD,
will be implied by analogous strict versions of other orders.11

Common beliefs A state of the world

ω =
(
θ,x1,x2, ...,xT

)
determines the state of nature θ as well as agents’signal realizations xt ∈ X I (slanted

bold x) in each period. Alternatively, we can write ω = (θ,x1,x2, ...,xI) where

xi ∈ X T (upright bold x) is a list of the T signals received by i. We will refer to a

vector xi ∈ X T as the type of agent i. The set of states of the world is

Ω = Θ×X I × ...×X I .

Following Monderer and Samet (1989), given any event E ⊆ Ω and probability

p, the event Bp
i (E) consists of states ω ∈ Ω in which E is p-believed by i, that is, i

assigns probability exceeding p to the event E given her information xi. Next, write

Bp (E) = ∩iBp
i (E) as the set of states in which E is p-believed by everyone.

Now for ` = 1, 2, ... define the operator Bp,` recursively by

Bp,` (E) = Bp
(
Bp,`−1 (E)

)
,

where Bp,0 (E) = E and finally,

Cp (E) = ∩`≥1B
p,` (E) .

Thus, Cp (E) is the set of states of the world in which E is common p-believed. In

other words, (i) everyone assigns probability exceeding p to the event E, and also

10If, for instance, z = (0, 1, 1, ..., 1) then Pr [X ≤ z] = Pr [Y ≤ z] since both equal the marginal
probability that X1 = 0.
11To see this for the supermodular order, first let S− (z) = {x : x ≤ z} be the quadrant below

z and S+ (z) be the quadrant above z. The indicator functions, IS−(z) and IS+(z), are both
supermodular. Now say that Y �SM X, if Y <SM X and (i) EY

[
IS−(z)

]
> EX

[
IS−(z)

]
for any

z such that for at least two i, zi = 0; and (ii) EY
[
IS+(z)

]
> EX

[
IS+(z)

]
for any z such that for at

least two i, zi = 1. It is now clear that Y �SM X implies Y �PQD X.
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(ii) assigns probability exceeding p to the event that everyone assigns probability

exceeding p to the event E, and also (iii) assigns probability exceeding p to the

event that everyone assigns probability exceeding p to the event that everyone assigns

probability exceeding p to the event E, and so on.

We are interested in the set Cp
(
ΩG
)
after T periods, where ΩG = {ω : θ = G} . In

other words, we are interested in the set of states of the world in which G is common

p-believed.

The common learning result of CEMS (2008) implies that for any p < 1,

lim
T→∞

Pr
[
Cp
(
ΩG
)
| θ = G

]
= 1.

3 Conclusive Signals

We begin by considering a special case of the model in which

1. a signal Xi = 1 is conclusive about G– that is, Pr [Xi = 1 | B] = 0; and

2. signals have full support in state G, for all x, PG (x) > 0.

Note that signals are perfectly correlated in state B.

Since signals are binary, the fact that they are independently and identically

distributed over time implies that an agent’s type can effectively be represented simply

by the total number of 1-signals received. Thus, a type xi can be represented simply

as ni =
∑

t x
t
i and so types can be linearly ordered. Let Ni =

∑
tX

t
i denote the

random variable which equals the sum of i’s signals.

The assumption of conclusive signals allows us to focus solely on higher-order

uncertainty– an agent who gets even one signal xti = 1 knows for sure that the state

of nature is G but remains unsure about whether others know G, whether others

know that she knows G, etc. This higher-order uncertainty is captured via agents’

beliefs about the set

Ω+ = {ω : ∀j, nj ≥ 1} ,

that is, the set of states of the world in which every agent j received a signal xtj = 1

at some time t. Since even one positive signal is conclusive about G, at any ω ∈ Ω+

it must be that θ = G. Formally, Ω+ ⊆ ΩG = {ω : θ = G} . Define

q = Pr
[
Ω+ | Ni = 1

]
(3)
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to be the belief of type Ni = 1 about the event that everyone else saw at least one

positive signal– and so also knows G. Note that Ω+ and q depend on T although we

have suppressed this dependence to reduce the notational burden.

Since signals are affi liated, for all n ≥ 1,

Pr
[
Ω+ | Ni = n

]
≥ Pr

[
Ω+ | Ni = 1

]
= q, (4)

as established in Lemma A.2 in the Appendix. In other words, among all those that

know G, type Ni = 1 is most pessimistic about the event that everyone also knows

G. Put another way, type Ni = 1 is the second-most pessimistic type– type Ni = 0

is the most pessimistic, of course.

3.1 First result

Consider two signal distributions P and Q with identical univariate marginals. Let

qX = PrX [Ω+ |
∑

tX
t
i = 1] as in (3) and let qY = PrY [Ω+ |

∑
t Y

t
i = 1] be the

analogous belief derived from signals Y .12

Define

ρ0 = Pr
[
ΩG | Ni = 0

]
(5)

to be the belief about G of an agent who receives only 0-signals in each of the T

periods. Note that ρ0 is the same for P and Q as they have the same marginals. As

T increases, ρ0 goes to zero. Note also that Ω, qX , qY , as well as ρ0 all depend on T

although we have suppressed this dependence, again to avoid notational clutter.

The main result of this section is13:

Theorem 1 Suppose signals X and Y are conclusive.

(i) For any T, if ρ0 < qY < qX , then for p ∈ (qY , qX),

Cp
Y

(
ΩG
)

= ∅ and Cp
X

(
ΩG
)

= Ω+,

that is, G cannot be common p-believed with Y whereas G is common p-believed with

12The symbol PrX indicates that the probability is calculated using P and similarly, PrY is
calculated using Q.
13CpX

(
ΩG
)
is the set of states of the world in which ΩG is common p-believed when all the

probabilities are calculated using P and CpY
(
ΩG
)
is the same set when they are calculated using Q.

Note also that these depend on T as well.
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X whenever everyone knows G.

(ii) If Y G �PQD XG, then for T large enough, ρ0 < qY < qX .

Theorem 1 says that when T is large enough, there is a non-empty open interval

of p’s, depending on T, such that for any p in that interval, it is impossible for G to

be common p-believed with the more correlated signals Y while it is possible with

the less correlated signals X.

A few remarks on the theorem are in order.

First, the theorem automatically implies that in the identified circumstances,

PrY [Cp
Y

(
ΩG
)
] < PrX [Cp

X

(
ΩG
)
] since the left-hand probability is zero and the right-

hand probability is positive. In this sense, when T is large, greater commonality of

information reduces the commonality of beliefs.

Second, since we have assumed that QG has full support, the signals Y are not

public– that is, they are not perfectly correlated. If the signals Y were public,

then we would have that for all p, Cp
Y

(
ΩG
)

= Ω+, which would run counter to

(1). But what if Y is "almost" public– that is, for some small ε, for all k ∈ X ,
Pr [∀j, Yj = k | Yi = k] > 1− ε? Is there a discontinuity at ε = 0? Here the order of

quantifiers in the theorem is important. For a fixed T, it may be that if Y is almost

public, it leads to greater commonality of beliefs than X. What the theorem says is

that this cannot persist once T is large enough. Figure 1 depicts the beliefs qX and qY
as functions of T for the two signal distributions in Example 1– the (conditionally)

independent signals X and the correlated signals Y . For the example, qX > qY , for

all T ≥ 2. Of course, qX and qY converge to 1 as T increases without bound.

Third, the theorem does not conflict with the CEMS (2008) result that common

learning occurs in the limit regardless of the commonality of signals. Theorem 1

requires T to be large enough but not infinite.

Fourth, note also that in Theorem 1 part (1), T must be at least 2– the conclusion

cannot hold for T = 1. This is because if Y G �PQD XG, then with conclusive signals,

qX = Pr [∀j,Xj = 1 | Xi = 1]

< Pr [∀j, Yj = 1 | Yi = 1]

= qY

and so when T = 1, for all p, Cp
X

(
ΩG
)
⊆ Cp

Y

(
ΩG
)
.
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Figure 1: Threshold Beliefs for the Two Signals in Example 1

Finally, if we define T0 as the smallest T for which qY < qX , then T0 is "relatively

small". This is most easily seen when I = 2 as the condition that qY < qX is then

equivalent to

L ≡ PG (1, 0)

QG (1, 0)
<

(
QG (0, 0)

PG (0, 0)

)T−1

≡ RT−1.

Now Y G �PQD XG implies that both L and R are greater than one. If 1 < L < R,

then, of course, T0 = 2. And if 1 < R < L, then since the right-hand side of the

inequality above grows exponentially, it will overtake the left-hand side very quickly,

that is, for a relatively small T0. Precisely, when L > R, T0 = 1 + dlnL− lnRe where
dze denotes the smallest integer that exceeds z.

3.2 Proof of Theorem 1

The proof of Theorem 1 has two components. We first show that with conclusive

signals, for any T, the set Cp
(
ΩG
)
has a "bang-bang" property– it is either quite

large or empty. Precisely, if p ≤ q, then Cp
(
ΩG
)
is as large as possible– any state of

the world in which everyone knows that θ = G is included. But if p > q, Cp
(
ΩG
)
is

empty. Thus, Cp
(
ΩG
)
suddenly goes from being large to being empty as p crosses

the threshold q. This is Proposition 3.1 below.

The second step in the proof of Theorem 1 then shows that when T is large

14



enough, an increase in the correlation among agents’signals leads to an increase in the

pessimism of the pivotal type who gets only one positive signal. This is Proposition

3.2 below.

3.2.1 Bang-bang property

The important "bang-bang" property of Cp
(
ΩG
)
, which may be of independent in-

terest, is derived in the following proposition.

Proposition 3.1 Suppose signals are conclusive. For any T,

(i) if ρ0 < p ≤ q, then

Cp
(
ΩG
)

= Ω+,

(ii) and if ρ0 < q < p, then

Cp
(
ΩG
)

= ∅.

A formal proof of the proposition is below but the underlying arguments run as

follows.

Part (i) is rather intuitive. Consider the type ni = 1 that gets exactly one positive

signal. Since signals are conclusive, this type knows G. Moreover, this type assigns

probability q ≥ p to the event that all others also know G. Because signals are

affi liated, all types nj ≥ 1 also assign probability of at least q to the same event. The

fact that G is common p-believed now follows.

Part (ii) says that, in a strong sense, the converse is true as well. Again, consider

the type ni = 1 that gets exactly one positive signal. As above, since signals are

conclusive, this type knows that G has occurred but assigns only probability q < p

to the event that all others also know G. So this type cannot be in Cp
(
ΩG
)
. Now an

infection argument takes over. Consider type ni = 2 with two positive signals. This

type is only concerned with the event that all other agents are of type nj ≥ 2 since

all those with nj = 1 have already been ruled out. We show that type ni = 2 assigns

a lower probability to the event that all others are of type nj ≥ 2, than type ni = 1

assigns to the event that all others are of type nj ≥ 1. Why is this? There are two

forces at work here. First, the event that all nj ≥ 2 is a subset of the event that all

nj ≥ 1 and, all else being equal, the former has a lower probability than the latter.

But on the other hand, affi liation implies that type ni = 2 assigns a higher probability

15



to any event of the sort nj ≥ n than does ni = 1. We show that when signals are

serially independent, the first effect is always stronger and so the probability of the

event that all nj ≥ n assigned by type ni = n decreases with n. This now means that

the type ni = 2 is also excluded from Cp
(
ΩG
)
. Once those with ni = 2 are excluded,

this argument now carries over to ni = 3 and so on.

Two assumptions are crucial for the argument above. First, since signals Xi are

binary, the typesNi can be linearly ordered by the number of positive signals. Second,

the types Ni are the result of T identical and independent draws of Xi.

Proof of Proposition 3.1 (i) If ρ0 < p ≤ q, then the fact that signals are con-

clusive implies that all types with ni ≥ 1 assign probability 1 to the event ΩG and

hence, of course, assign at least probability q to ΩG. On the other hand, type ni = 0

assigns a probability ρ0 < q to the event ΩG. Thus, Bq
i

(
ΩG
)

= {ω : ni ≥ 1} and so

Bq
(
ΩG
)

= {ω : ∀j, nj ≥ 1} = Ω+. (6)

Moreover, (4) implies that all types with ni ≥ 1 assign at least probability q to

the event Ω+ that everyone got at least one positive signal. Formally, {ω : ni ≥ 1} ⊆
Bq
i (Ω+) and since Ω+ = {ω : ∀j, nj ≥ 1} ⊂ {ω : ni ≥ 1} , we have

Ω+ ⊆ Bq
(
Ω+
)
. (7)

We will argue by induction that for all ` ≥ 1, that Ω+ ⊆ Bq,`
(
ΩG
)
.

Now (6) implies that the statement is true for ` = 1. So suppose that for some

` > 1, Ω+ ⊆ Bq,`−1
(
ΩG
)
. Operating on both sides by the monotone operator Bq, we

have Bq (Ω+) ⊆ Bq,`
(
ΩG
)
. But from (7), Ω+ ⊆ Bq,`

(
ΩG
)
.

Thus, for all `, Ω+ ⊆ Bq,`
(
ΩG
)
and hence Ω+ ⊆ Cq

(
ΩG
)
. Finally, since p ≤ q,

Cq
(
ΩG
)
⊆ Cp

(
ΩG
)
.

Proof of Proposition 3.1 (ii) Now suppose ρ0 < q < p.

For n = 0, 1, ..., T + 1, define

Γ(n) = {ω : ∀j, nj ≥ n}

as the set of states of the world ω in which every agent gets at least n signals X t
i = 1.
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Clearly, for any n, Γ(n+1) ⊂ Γ(n) and ∩T+1
n=0 Γ(n) = ∅ since Γ(T+1) = ∅.

We will argue by induction that for all n ≤ T + 1,

Cp
(
ΩG
)
⊆ Γ(n). (8)

First, since Γ(0) = {ω : ∀j, nj ≥ 0} = Ω, (8) holds for n = 0.

Now suppose that Cp
(
ΩG
)
⊆ Γ(n). Let ω′ ∈ Γ(n) \ Γ(n+1). At any such ω′, there is

an i with ni = n, that is, i gets exactly n positive signals and since Cp
(
ΩG
)
⊆ Γ(n),

Pr
[
Cp
(
ΩG
)
| Ni = n

]
≤ Pr

[
Γ(n) | Ni = n

]
.

Lemma B.1 now implies that

Pr
[
Cp
(
ΩG
)
| Ni = n

]
≤ Pr

[
Γ(1) | Ni = 1

]
= q

and since p > q, ω′ /∈ Bp
i

(
Cp
(
ΩG
))
and hence ω′ /∈ Cp

(
ΩG
)
. Thus, we have argued

that Cp
(
ΩG
)
⊆ Γ(n+1) and hence established (8).

Now since Cp
(
ΩG
)
⊆ Γ(n) for all n and ∩T+1

n=0 Γ(n) = ∅, we have that Cp
(
ΩG
)

= ∅.
This completes the proof of Proposition 3.1. �

3.2.2 Correlation increases pessimism

Proposition 3.1 establishes that with conclusive signals, the maximum commonality

of beliefs– that is, the highest p for which ΩG can be common p-believed– is exactly

q, the belief of the second-most pessimistic agent. In this section, we compare two

signal distributions such that Y G �PQD XG.14 We show that a change from XG to

Y G increases the pessimism of type ni = 1.

Proposition 3.2 Suppose signals are conclusive. If Y G �PQD XG, then for T large

enough,

qY < qX

Proof. Follows from Lemma A.3 and Lemma C.1 in the Appendix.

14Recall that Xθ is a random vector such that Pr[Xθ = x] = Pr [X =x | θ] . Y θ is similarly
defined.

17



The result is rather intuitive. Consider a type ni = 1 who gets one 1-signal in

period 1 and in every subsequent period t > 1 gets signal 0. What happens if signals

become more correlated? At the end of period 1, with more correlated signals, this

type ismore optimistic about the event that other agents also knowG. However, when

T is large this initial optimism is overwhelmed by the increased pessimism resulting

from a string of T − 1 zeros. Formally, if signals Y are more correlated thanX, then

Pr [Xj = 1 | Xi = 1] < Pr [Yj = 1 | Yi = 1] ,

while at the same time

Pr [Xj = 1 | Xi = 0] > Pr [Yj = 1 | Yi = 0] .

For large enough T, the second inequality dictates the effect of greater "correlation"

on the beliefs of type ni = 1.

Propositions 3.1 and 3.2 together prove Theorem 1 since part 1 holds if p ∈
(qY , qX) and when T is large enough, ρ0 = Pr

[
ΩG | Ni = 0

]
< qY < qX .

4 Non-conclusive signals

The sharp result in Theorem 1 was derived for the case of conclusive signals. The

sharp result obtains because with conclusive signals, one may focus solely on higher-

order uncertainty– that is, agents’beliefs about the beliefs of other agents etc. When

signals are not conclusive, first-order uncertainty– that is, agents’beliefs about the

state of nature θ– also plays a role.

In this section, we assume that conditional on θ ∈ {G,B} , the distribution P has
full support. This means that a signal Xi = 1 does not provide conclusive evidence

that the state is G. Recall that since P is affi liated, it is still the case that a signal

Xi = 1 is more indicative that θ = G than a signal Xi = 0.

Let

e1 = (1, 0, ..., 0) ∈ X T
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denote the type that receives a signal of 1 in period 1 and 0’s thereafter.15 Define

qX = PrX
[
Ω+ | Xi = e1

]
,

where, as before, Ω+ = {ω : ∀j,xj 6= 0} is the set of states of the world in which
everyone gets a signal Xi = 1 at least once. Note that because of affi liation, type

e1 is the second-most pessimistic type about both ΩG and Ω+. Only type 0 is more

pessimistic.

Let qY be defined in a manner analogous to qX .

As in (5), let

ρ0 = Pr
[
ΩG | Xi = 0

]
to be the belief of type 0 about G and define

ρ1 ≡ Pr
[
ΩG | Xi = e1

]
to be the belief of type e1 about G. Note that if a 1-signal is conclusive, as in last

section, then ρ1 = 1. Note that if X and Y are such that conditional on θ, they have

the same univariate marginal distribution µθ, then both ρ0 and ρ1 are the same for

X and Y . Moreover, the prior probability ρ of G is the same.

4.1 Second result

Let X and Y be such that conditional on θ, they have the same univariate marginal

distribution µθ. Then we have,

Theorem 2

Suppose signals X and Y are non-conclusive.

(i) For any T, if ρ0 < qY < qX < ρ1, then for p ∈ (qY , qX),

Cp
Y

(
ΩG
)

= ∅ and Cp
X

(
ΩG
)

= Ω+,

that is, G cannot be common p-believed with Y whereas G is common p-believed with

X whenever everyone gets at least one signal Xi = 1.
15Since conditional on the state of nature, G or B, signals are serially independent, the beliefs of

type e1 are the same as that of type e2 = (0, 1, 0...0) etc. So it enough to consider e1 as representing
all types that got one 1-signal and T − 1 signals of 0.
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(ii) If Y θ �PQD Xθ for θ = G,B, then for T large enough, ρ0 < qY < qX .

Again, Theorem 2 automatically implies that when p ∈ (qY , qX), PrY [Cp
Y

(
ΩG
)
] <

PrX [Cp
X

(
ΩG
)
] since the left-hand probability is zero and the right-hand probability

is positive. Like Theorem 1, Theorem 2 says that, under the identified circumstances,

greater commonality of information reduces the commonality of beliefs.

With non-conclusive signals, it is possible that even when qY < qX , it is the case

that ρ1 ≤ qY . This, of course, is impossible in the conclusive-signal model of Section

3 where ρ1 = 1.

4.2 Proof of Theorem 2

Like Theorem 1, the proof of Theorem 2 is in two steps.

We first prove, for non-conclusive signals, an analog of Proposition 3.1.

The second step again shows that when T is large enough, an increase in the

correlation among agents’signals again increases the pessimism of the second-most

pessimistic type e1. This is Proposition 4.2 below.

4.2.1 Threshold beliefs

Recall that ρ0 = Pr
[
ΩG | Xi = 0

]
and ρ1 = Pr

[
ΩG | Xi = e1

]
. The following propo-

sition derives the "bang-bang" property when signals are not conclusive. Because

now first-order uncertainty also plays a role, an additional condition that ρ1 is not

too small is needed.

Proposition 4.1 Suppose signals are non-conclusive. For any T ,

(i) if ρ0 < p ≤ q ≤ ρ1 then

Cp
(
ΩG
)

= Ω+,

(ii) and if ρ0 < q < p, then

Cp
(
ΩG
)

= ∅.

Proof. First, in both (i) and (ii), ρ0 < p and we claim that

Cp
(
ΩG
)
⊆ Ω+. (9)
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To see this, note that if ω /∈ Ω+, then there exists an agent, say i, such that xi = 0

and since Pr
[
ΩG | Xi = 0

]
= ρ0 < p,

ω /∈ Bp
i

(
ΩG
)

and so

ω /∈ Cp
(
ΩG
)
.

Part (i) We now argue that if p ≤ q, Ω+ ⊆ Cp
(
ΩG
)
and together with (9), this

will imply (i),

By assumption, p ≤ q < ρ1 = Pr
[
ΩG | Xi = e1

]
. SinceX1,X2, ...,XI are affi liated

(Lemma A.1), this implies that for any xi 6= 0, Pr
[
ΩG | Xi = e1

]
≤ Pr

[
ΩG | Xi = xi

]
and so for any xi 6= 0, p ≤ Pr

[
ΩG | Xi = xi

]
as well. Thus, for all i,

{ω : xi 6= 0} ⊆ Bp
i

(
ΩG
)
.

Taking the intersection over i, we have

Ω+ ⊆ Bp
(
ΩG
)
.

In a similar manner, affi liation implies that for any xi 6= 0, it is also the case that

Pr [Ω+ | Xi = e1] ≤ Pr [Ω+ | Xi = xi] and so p ≤ Pr [Ω+ | Xi = xi] as well. Thus,

{ω : xi 6= 0} ⊆ Bp
i

(
Ω+
)
.

Taking intersections over i, we have that

Ω+ ⊆ Bp
(
Ω+
)
.

In the language of Monderer and Samet (1989) this says that Ω+ is evident p-belief

(or is p-evident, for short). Proposition 3 in Monderer and Samet (1989) now implies

that Ω+ is common p-believed at any ω ∈ Ω+. Formally,

Ω+ ⊆ Cp
(
Ω+
)
.
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Since Ω+ ⊆ Bp
(
ΩG
)
we have that Cp (Ω+) ⊆ Cp

(
Bp
(
ΩG
))

= Cp
(
ΩG
)
and so

Ω+ ⊆ Cp
(
ΩG
)
.

Part (ii) The proof here is identical to that of part (ii) of Proposition 3.1 since the
fact that signals were conclusive was not used in proving this. In particular, Lemma

B.1 requires only that signals are binary.

4.2.2 Correlation increases pessimism

Theorem 1 showed that with conclusive signals, an increase in correlation (as mea-

sured by the PQD order) made the second-most pessimistic type even more pes-

simistic. The same is true with non-conclusive signals, that is, when both P and Q

have full-support.

Lemmas A.3 and C.2 in the Appendix imply the following result.

Proposition 4.2 Suppose signals are non-conclusive. If for θ = G,B, Y θ �PQD Xθ,

then for T large enough,

qY < qX .

The proof of Theorem 2 is completed by noting that as T increases, ρ0 goes to

zero. Now for large enough T, ρ0 < qY and part (i) of Proposition 4.1 applies to

Cp
X

(
ΩG
)
and part (ii) to Cp

Y

(
ΩG
)
.

One may rightly wonder whether condition ρ0 < p ≤ ρ1, required in Theorem 2,

holds only when signals are "nearly" conclusive. This is not the case as the following

example shows.

Example 2 Suppose that the set of signals X = {0, 1} . There are two agents and
the prior probability ρ = 3

4
.

Consider signals Y with the following joint distributions conditional on θ :

QG =

Y2 = 0 Y2 = 1

Y1 = 0 0.12 0.08

Y1 = 1 0.08 0.72

and QB =

Y2 = 0 Y2 = 1

Y1 = 0 0.84 0.075

Y1 = 1 0.075 0.01

.

The two marginal distributions µG = (0.2, 0.8) and µB = (0.915, 0.085) .
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Let signalsX be generated from P such that for each θ, P θ (x1, x2) = µθ (x1)µθ (x2),

that is, P θ is the product of the marginal distributions in each state.

Note that QB (0, 0) = 0.84 < 1 and so (θ,Y ) is not conclusive (perhaps even

"far" from conclusive). It is routine to verify that when T = 2, this example satisfies

ρ0 < qY < qX < ρ1 and so for p ∈ (qY , qX) , Cp
Y

(
ΩG
)

= ∅ while Cp
X

(
ΩG
)

= Ω+.

5 Blackwell Informativeness

When there are only two agents (I = 2), our main result can be reinterpreted in the

language of Blackwell’s (1951) informativeness notion. Blackwell’s setting, of course,

is that of a single agent facing a decision whose payoff is influenced by an unknown

state of nature. In what follows, signals need not be conclusive.

In the two-agent case, we first adopt the perspective of agent 1, say. As above,

suppose P is a joint distribution over states of nature and signals and let P θ be the

joint distribution of signals conditional on θ. For fixed θ, from agent 1’s perspective,

the signal X2 of agent 2 can be interpreted as a "state of nature" and X1 as agent

1’s informative signal about X2. The conditional distribution P θ (X1 | X2) is then a

Blackwell experiment. The same is true if we adopt the perspective of agent 2 and

treat X1 as a "state of nature" and X2 as agent 2’s signal about X1.16

Now consider another distribution Q of states of nature and signals and again

let Qθ be the joint distribution of signals conditional on θ. As above, for fixed θ,

Qθ (Y1 | Y2) is also a Blackwell experiment. When I = 2, we will say that

Definition 2 The signals Y are mutually more informative than X if for all θ and

j 6= i, Qθ (Yj | Yi) is Blackwell more informative than P θ (Xj | Xi).

Note that this definition focuses on how informative one agent’s signals are about

the other agent’s signals. Also, this guarantees that conditional on θ, X and Y have

the same univariate marginal distributions.

16This reinterpretation cannot work when there are more than two agents. For instance, suppose
signals are binary and I = 3. Now from agent 1’s perspective the state of nature is (X2, X3) .
Blackwell’s informativeness criterion would require that if Y is another signal structure, then for all
i, the distribution of the state of nature (X2, X3) be the same as the distribution of state of nature
(Y2, Y3) . Together with symmetry, this can hold only if the distribution of Y is the same as the
distribution of X.
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Lemma 5.1 Suppose that P and Q are both affi liated. If the signals Y are mutually

more informative than X, then

Pr [X1 = 0, X2 = 0 | θ] ≤ Pr [Y1 = 0, Y2 = 0 | θ] . (10)

Proof. Fix θ. From Blackwell (1951), we know that if Qθ (Y1 | Y2) is more informative

than P θ (X1 | X2) , then the posteriors from Y are a mean-preserving spread of those

from X.

Formally, define for every k and l in X ,

pkl = P θ (X2 = l | X1 = k) ,

and define

pk =
(
pk0, p

k
1

)
∈ ∆ (X )

to be the vector of posterior beliefs of agent 1 with signal X1 = k about the signals

X2 of agent 2. Similarly, define

qk ∈ ∆ (X )

to be the vector of posterior beliefs of agent 1 with signal Y1 = k about the signals

Y2 of agent 2.

Now Blackwell’s Theorem implies that for all k,

pk ∈ co{q0, q1},

the convex hull of the set of posterior vectors qm from Y .

Moreover, since (X1, X2) are affi liated, for any k > 0, the distribution p1 ∈
∆ (X ) (first-order) stochastically dominates the distribution p0 ∈ ∆ (X ) . Similarly,

the distribution q1 ∈ ∆ (X ) stochastically dominates q0 ∈ ∆ (X ) .

Since p0 ∈ co{q0, q1} we can write

p0 = α0q
0 + (1− α0) q1,

where α0 ∈ [0, 1] .
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Now note that

p0
0 = α0q

0
0 + (1− α0) q1

0

≤ q0
0

because the distribution q1 stochastically dominates q0, that is, q1
0 ≤ q0

0.

By definition, the inequality p0
0 ≤ q0

0 is equivalent to

P θ (X2 = 0 | X1 = 0) ≤ Qθ (Y2 = 0 | Y1 = 0)

and since P θ (X1 = 0) = Qθ (Y1 = 0) , the result follows.

Lemma 5.1 implies that when there are two agents, in all of the results of the

earlier sections, the condition "Y �PQD X" can be replaced with "Y is mutually

more informative than X," provided that the inequality in (10) is strict. This is

because Lemmas C.1 and C.2 only require (the strict version) of the inequality.

A Appendix: Affi liation and the PQD Order

Recall that the probability distribution P ∈ ∆
(
X I
)
is said to be affi liated if for all x

and x′ in X I , P (x)×P (x′) ≤ P (x ∨ x′)×P (x ∧ x′). Also recall the notation that
if x = (xti)i∈I,t∈T is a realization of all I signals in all T periods, then x

t = (xti)i∈I
(slanted bold) is the I-vector of all I signal realizations in period t, while xi = (xti)t∈T
(upright bold) is the T -vector of i’s signals over the T periods.

Lemma A.1 Suppose that the I variables X = (X1, X2, ..., XI) are affi liated with

distribution P . If X1,X2, ...,XT are independently and identically distributed ac-

cording to P , then the I × T variables (X1,X2, ...,XI) also have an affi liated joint

distribution.

Proof. Suppose x = (x1,x2, ...,xI) and x′ = (x′1,x
′
2, ...,x

′
I) are both in

(
X I
)T
.

Because the X t’s are independently distributed over time,

Pr [x] =
∏T

t=1 P
(
xt
)
and Pr [x′] =

∏T
t=1 P

(
x′t
)
.
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Thus,

Pr [x] Pr [x′] =
∏T

t=1 P
(
xt
)∏T

t=1 P
(
x′t
)

=
∏T

t=1 P
(
xt
)
P
(
x′t
)

≤
∏T

t=1 P
(
xt ∨ x′t

)
P
(
xt ∧ x′t

)
=

∏T
t=1 P

(
xt ∨ x′t

)∏T
t=1 P

(
xt ∧ x′t

)
= Pr [x ∨ x′] Pr [x ∧ x′] .

Lemma A.2 Let e1 = (1, 0, ..., 0) ∈ X T . Suppose that the variables X are affi liated.

For any xi 6= 0,

Pr
[
Ω+| Xi = xi

]
≥ Pr

[
Ω+| Xi = e1

]
Proof. Clearly, the indicator function IΩ+ :

(
X T
)I → {0, 1} of the set Ω+ =

{ω : ∀j,xj 6= 0} is non-decreasing. For any xi 6= 0 there is a permutation xπi of

xi such that xπi ≥ e1. Since the set Ω+ is permutation invariant,

Pr
[
Ω+| Xi = xi

]
= Pr

[
Ω+| Xi = xπi

]
= E [IΩ+ (X) | Xi = xπi ]

≥ E
[
IΩ+ (X) | Xi = e1

]
= Pr

[
Ω+| Xi = e1

]
.

The inequality in the third line is the result of the following argument. First,

since the variables X = (X t
i ) are affi liated (Lemma A.1), the probability distribution

of X−i conditional on Xi = xπi dominates the distribution of X−i conditional on

Xi = e1 in the multivariate likelihood order, as defined in Section 6.E of Shaked and

Shanthikumar (2008). Their Theorem 6.E.8 now implies that the two distributions

are also ranked by the usual stochastic order.

Lemma A.3 Suppose that Y θ �PQD Xθ. Then

Pr [Xi = 0, Xj = 0 | θ] < Pr [Yi = 0, Yj = 0 | θ] .
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Proof. Recall that Y θ �PQD Xθ implies that for any z such that for at least two

indices l, zl = 0, then

Pr [X ≤ z | θ] < Pr [Y ≤ z | θ] .

If z such that zi = zj = 0 and zl = 1, for all l 6= i, j, then the conclusion follows.

B Appendix: Posterior Monotonicity

Consider an agent with n signals Xi = 1. His belief that all other agents also received

at least n signals Xj = 1 decreases with n.

Lemma B.1 For any n ≥ 1,

Pr [∀j,Nj ≥ n+ 1 | Ni = n+ 1] ≤ Pr [∀j,Nj ≥ n | Ni = n] .

Proof. Without loss of generality, suppose that the conditioning events are such that∑T−1
t=1 X

t
i = n and then on the left-hand side XT

i = 1 whereas on the right-hand side

XT
i = 0. In other words, the additional 1-signal received by i occurs in period T. This

is without loss of generality because the signals X t
i are serially independent.

For j = 1, 2, ..., I, define Mj =
∑T−1

t=1 X
t
j to be the sum of the first T − 1 signals

received by j and let M−i = (Mj)j 6=i denote the vector of sums of the first T − 1

signals received by agents other than i. Then Nj = Mj +XT
j .

We will argue that for all m−i,

Pr
[
∀Nj ≥ n+ 1,M−i = m−i |Mi = n,XT

i = 1
]

(11)

≤ Pr
[
∀Nj ≥ n,M−i = m−i |Mi = n,XT

i = 0
]
.

This is because if the left-hand side of (11) is positive, then it must be that after

T − 1 periods everyone has already received at least n positive signals, that is, for all

j, mj ≥ n. But then the right-hand side of (11) is 1.

Thus, for all m−i, the probability that Nj ≥ n+ 1 occurs conditional on Mi = n

and XT
i = 1 is no greater than the probability that Nj ≥ n occurs conditional on

Mi = n and XT
i = 0.
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Finally, since, conditional on θ, the random variable M−i =
∑T−1

t=1 X
t
−i is inde-

pendent of XT
i , summing both sides of the inequality over all the m−i, we have

Pr
[
∀j,Mj +XT

j ≥ n+ 1 |Mi = n,XT
i = 1

]
≤ Pr

[
∀j,Mj +XT

j ≥ n |Mi = n,XT
i = 0

]
,

which establishes the result.

C Appendix: Effect of Correlation

How does correlation affect the probability Pr [Ω+ | X1 = e1] that type e1 = (1, 0, ..., 0) ∈
X T assigns to the event that all j get at least one Xj = 1?

We begin by developing a formula for the joint probability:

Pr
[
X1 = e1,Ω+

]
= Pr

[
X1 = e1,∀j,Xj 6= 0

]
= Pr

[
X1 = e1

]
− Pr

[
X1 = e1,∃j,Xj = 0

]
.

If we define Aj = {ω : x1 = e1,xj = 0} as the set of states of the world in which 1’s

type is e1 and j’s type is 0, then

Pr
[
X1 = e1,∃j,Xj = 0

]
= P (∪j 6=1Aj) ,

where P ∈ ∆
(
Θ×X I

)
is the joint distribution of states of nature and signals.

By the inclusion-exclusion principle,

P (∪j 6=1Aj) =
∑
1<j

P (Aj)−
∑

1<j<k

P (Aj ∩ Ak) +
∑

1<j<k<l

P (Aj ∩ Ak ∩ Al)− ...

But since agents are symmetric, we have

P [∪j 6=1Aj] =
(
I−1

1

)
P (A2)−

(
I−1

2

)
P (A2 ∩ A3) +

(
I−1

3

)
P (A2 ∩ A3 ∩ A4)− ...

=

I∑
l=2

(−1)l
(
I−1
l−1

)
P (A2 ∩ A3 ∩ ... ∩ Al) . (12)
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Now, since conditional on θ, the signals are independent over time,

P (A2) = Pr
[
X1 = e1,X2 = 0

]
= ρPG ((X1, X2) = (1, 0))×

(
PG ((X1, X2) = (0, 0))

)T−1

+ (1− ρ)
(
PB ((X1, X2) = (1, 0))× (P (X1, X2) = (0, 0))T−1

)
.

In general, for all l = 2, 3, ..., I,

P [A2 ∩ A3 ∩ ... ∩ Al] = Pr
[
X1 = e1,X2 = X3 = ... = Xl = 0

]
= ρ (P [(X1, X2, ..., Xl) = (1, 0, ..., 0) | G]

× (P [(X1, X2, ..., Xl) = (0, 0, ..., 0) | G])T−1
)

+ (1− ρ) (P [(X1, X2, ..., Xl) = (1, 0, ..., 0) | B]

× (P [(X1, X2, ..., Xl) = (0, 0, ..., 0) | B])T−1
)
.

It will be convenient to define, for l = 2, 3, ..., I and θ = G,B,

αθl = P [(X1, X2, ..., Xl) = (1, 0, ..., 0) | θ]

and

βθl = P [(X1, X2, ..., Xl) = (0, 0, ..., 0) | θ] .

So we can rewrite (12) more compactly as

P [∪j 6=1Aj] =
I∑
l=2

(−1)l
(
I−1
l−1

) (
ραGl

(
βGl
)T−1

+ (1− ρ)αBl
(
βBl
)T−1

)
. (13)

Note that for θ = G,B, both αθl and β
θ
l are non-increasing sequences since the

event that X2 = X2 = ... = Xl = 0 includes the event that X2 = X2 = ... = Xl =

Xl+1 = 0. Moreover, if conditional on θ, signals have full support, then αθl and β
θ
l are

strictly decreasing.

Analogously, if (θ,Y ) are distributed according to Q, then we have

Q [∪j 6=1Aj] =

I∑
l=2

(−1)l
(
I−1
l−1

) (
ραGl (β

G

l )T−1 + (1− ρ)αBl (β
B

l )T−1
)
, (14)
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where αθl and β
θ

l are defined in the same manner as α
θ
l and β

θ
l but for the probability

distribution Q of Y . As above, both αθl and β
θ

l are non-increasing sequences.

Lemma C.1 Suppose that both signals X and Y are conclusive. If

Pr [Yi = 0, Yj = 0 | G] > Pr [Xi = 0, Xj = 0 | G] , (15)

then there exists a T0 such that for all T > T0,

qY = PrY
[
Ω+ | Yi = e1

]
< PrX

[
Ω+ | Xi = e1

]
= qX .

Proof. First, since the signals X and Y are conclusive, then for all l,

αBl = Pr [(X1, X2, ..., Xl) = (1, 0, ..., 0) | B] = 0

and αBl = 0 as well. Then from (13) and (14) we have that the ratio

P (∪j 6=1Aj)

Q (∪j 6=1Aj)
=

∑I
l=2 (−1)l

(
I−1
l−1

)
αGl
(
βGl
)T−1∑I

l=2 (−1)l
(
I−1
l−1

)
αGl (β

G

l )T−1
.

Dividing the numerator and denominator by
(
β
G

2

)T−1

> 0, we obtain

P (∪j 6=1Aj)

Q (∪j 6=1Aj)
=

(I − 1)αG2

(
βG2

β
G
2

)T−1

+
∑I

l=3 (−1)l
(
I−1
l−1

)
αGl

(
βGl

β
G
2

)T−1

(I − 1)αG2 +
∑I

l=3 (−1)l
(
I−1
l−1

)
αGl (β

G
l

β
G
2

)T−1
.

Now note that since β
G

l is a strictly decreasing sequence, each of the terms of the

form
(
β
G

l /β
G

2

)
is less than one. Moreover, (15) is the same as βG2 < β

G

2 ,

βGl

β
G

2

<
βG2

β
G

2

< 1

and so we have that when T is large enough,

Pr [X1 = e1,∃j,Xj = 0]

Pr [Y1 = e1,∃j,Yj = 0]
=
P (∪j 6=1Aj)

Q (∪j 6=1Aj)
< 1. (16)

30



Now sinceX and Y have the same univariate marginals, Pr [X1 = e1] = Pr [Y1 = e1]

and so from (16)

Pr
[
∀j,Yj 6= 0 | Y1 = e1

]
< Pr

[
∀j,Xj 6= 0 | X1 = e1

]
.

Lemma C.2 Suppose X and Y have full-support distributions. If for θ = G,B, and

i 6= j,

Pr [Yi = 0, Yj = 0 | θ] > Pr [Xi = 0, Xj = 0 | θ] , (17)

then there exists a T0 such that for all T > T0,

qY = PrY
[
Ω+ | Yi = e1

]
< PrX

[
Ω+ | Xi = e1

]
= qX .

Proof. From (13) and (14) we have that the ratio

P (∪j 6=1Aj)

Q (∪j 6=1Aj)
=

∑I
l=2 (−1)l

(
I−1
l−1

) (
ραGl

(
βGl
)T−1

+ (1− ρ)αBl
(
βBl
)T−1

)
∑I

l=2 (−1)l
(
I−1
l−1

)(
ραGl

(
β
G

l

)T−1

+ (1− ρ)αBl

(
β
B

l

)T−1
) .

Dividing the numerator and denominator by
(
β
B

2

)T−1

> 0, we obtain

P (∪j 6=1Aj)

Q (∪j 6=1Aj)
=

∑I
l=2 (−1)l

(
I−1
l−1

)(
ραGl

(
βGl

β
B
2

)T−1

+ (1− ρ)αBl

(
βBl

β
B
2

)T−1
)

∑I
l=2 (−1)l

(
I−1
l−1

) (
ραGl (β

G
l

β
B
2

)T−1 + (1− ρ)αBl (β
B
l

β
B
2

)T−1
) . (18)

Observe that since both (θ,X) and (θ,Y ) are affi liated,

βG2 = PG ((X1, X2) = (0, 0)) ≤ PB ((X1, X2) = (0, 0)) = βB2 ,

β
G

2 = PG ((Y1, Y2) = (0, 0)) ≤ PB ((Y1, Y2) = (0, 0)) = β
B

2 .

Moreover, (17) implies that

βB2 = PB ((X1, X2) = (0, 0)) < PB ((Y1, Y2) = (0, 0)) = β
B

2 ,

βG2 = PG ((X1, X2) = (0, 0)) < PG ((Y1, Y2) = (0, 0)) = β
G

2 .
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Thus, for all l,

βGl ≤ βG2 < β
G

2 ≤ β
B

2 ,

and since βBl is a strictly decreasing sequence, for l > 2,

βBl < βB2 < β
B

2 .

These inequalities in turn imply that in the numerator of (18), for all l

βGl

β
B

2

< 1 and
βBl

β
B

2

< 1,

and so as T →∞, the numerator goes to zero.
Moreover, for all l > 2

β
G

l

β
B

2

<
β
G

2

β
B

2

≤ 1 and
β
B

l

β
B

2

< 1,

and so as T →∞, all the terms with l > 2 in the denominator of the right-hand side

of (18) go to zero. The l = 2 term in the denominator, however, stays positive (it is

at least (1− ρ)αBl > 0).

So we have that when T is large enough,

Pr [X1 = e1,∃j,Xj = 0]

Pr [Y1 = e1,∃j,Yj = 0]
=
P (∪j 6=1Aj)

Q (∪j 6=1Aj)
< 1.

Now sinceX and Y have the same univariate marginals, Pr [X1 = e1] = Pr [Y1 = e1]

and so from (16),

Pr
[
∀j,Yj 6= 0 | Y1 = e1

]
< Pr

[
∀j,Xj 6= 0 | X1 = e1

]
.

References

[1] Anderson, Axel and Lones Smith (2024): "The Comparative Statics of Sorting,"
American Economic Review, 114, 709—751.

32



[2] Awaya, Yu and Vijay Krishna (2024): "Commonality of Information and Com-
monality of Beliefs: General Signals," SSRN Working Paper Series 4114760.

[3] Basak, Deepal, Joyee Deb and Aditya Kuvalekar (2024): "Similarity of Informa-
tion and Collective Action," Working paper.

[4] Blackwell, David (1951): "Comparison of Experiments," in Proceedings of the
Second Berkeley Symposium on Mathematical Statistics and Probability, Volume
1, University of California Press, 93—102.

[5] Cripps, Martin W., Jeffrey C. Ely, George J. Mailath and Larry Samuelson
(2008): "Common Learning," Econometrica, 76, 909—933.

[6] Cripps, Martin W., Jeffrey C. Ely, George J. Mailath and Larry Samuelson
(2013): "Common Learning with Intertemporal Dependence," International
Journal of Game Theory, 42, 55—98.

[7] Frick, Mira, Ryota Iijima and Yuhta Ishii (2023): "Learning Effi ciency of Multi-
agent Information Structures," Journal of Political Economy, 131, 3377—3414.

[8] Iachan, Felipe S., and Plamen T. Nenov (2015): "Information Quality and Crises
in Regime-Change Games," Journal of Economic Theory, 158, 739—768.

[9] Joe, Harry (1990): "Multivariate Concordance," Journal of Multivariate Analy-
sis, 35, 12—30.

[10] Kajii, Atsushi and Stephen Morris (1997): "The Robustness of Equilibria to
Incomplete Information," Econometrica, 65, 1283—1309.

[11] Meyer, Margaret and Bruno Strulovici (2012): "Increasing Interdependence of
Multivariate Distributions," Journal of Economic Theory, 147, 1460—1489.

[12] Monderer, Dov and Dov Samet (1989): "Approximating Common Knowledge
with Common Beliefs," Games and Economic Behavior, 1, 170—190.

[13] Oyama, Daisuke and Satoru Takahashi (2020): "Generalized Belief Operator and
Robustness in Binary-Action Supermodular Games," Econometrica, 88, 693—726.

[14] Rubinstein, Ariel (1989): "The Electronic Mail Game: Strategic Behavior under
Almost Common Knowledge," American Economic Review, 79, 385—391.

[15] Shaked, Moshe and J. George Shanthikumar (2008): Stochastic Orders, Springer,
2008.

[16] Steiner, Jakub and Colin Stewart (2011): "Communication, Timing and Com-
mon Learning," Journal of Economic Theory, 146, 230—247.

33



[17] Yanagimoto, Takemi and Masashi Okamoto (1969): "Partial Orderings of Per-
mutations and Monotonicity of a Rank Correlation Statistic, Annals of the In-
stitute of Statistical Mathematics, 21, 489—506.

34


