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Abstract

A Bayesian game is said to have nested information if the players are or-

dered, and each player knows the types of all players that follow her in that

order. We prove that all multiplayer Bayesian games with finite actions spaces,

bounded payoffs, Polish type spaces, and nested information admit a Bayesian

equilibrium.
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1 Introduction

Although models of incomplete information are abundant in economic modeling, gen-

eral results on existence of equilibrium are hard to come by. In particular, while often
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it is natural to model the possible rewards and beliefs of agents using a continuum

of possibilities, there are relatively few general existence results at our disposal, and

they use fairly restrictive assumptions on the players’ information. In this paper, we

examine games under a naturally arising information structure, namely, nested in-

formation, where the players can be ordered according to the amount of information

they possess, from the most knowledgeable to the least knowledgeable.

Harsanyi [20] laid the foundation of games of incomplete information, also known

as Bayesian games, which have greatly influenced the development of game theory.

In that model, each agent has a type, which includes her belief about payoffs, others’

beliefs about the payoffs, others’ beliefs about others’ beliefs about the payoffs, and

so forth. There is a prior over the possible type profiles that may occur. Each agent is

informed of her own type, and must choose her policy as a function of it. Payoffs are

a function of types and actions, and agents try to maximize their expected payoffs,

given the strategies of the others, leading to the notion of Bayesian equilibrium, the

natural generalization of Nash equilibrium to the incomplete-information setup.

While games in which agents may have only finitely many types pose no difficulty

for equilibrium existence, when there is a continuum of types the situation becomes

much thornier. These are standards frameworks in economic modeling, as it is natural

and convenient to allow, e.g., prices, quantities, and profits, to assume any value

(within some range). However, the use of a continuum of types makes it extremely

difficult to show that Bayesian equilibrium must exist.

One of the very few general existence results is Milgrom and Weber [43], who

assumed that the prior belief of the agents is either independent across types, or at

least absolutely continuous with respect to some independent prior (i.e., absolutely

continuous with respect to the product of the marginals). It remained for some time

an open question as to whether, failing this condition, equilibria could fail to exist.

Simon [52] showed that this was indeed the case by constructing an example of a

Bayesian game with a continuum of types and no Bayesian equilibrium. Hellman

[21] provided an example of a two-player Bayesian game with finite action spaces and

no Bayesian ε-equilibrium for all ε > 0 sufficiently small; that is, for every strategy

profile, a positive probability of types of one of the players can profit more than ε by
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deviating. Simon and Tomkowicz [53, 54] provided examples of, respectively, three-

player and two-player Bayesian games that do not admit a Harsanyi ε-equilibrium

for ε > 0 sufficiently small; that is, for every strategy profile, at least one player can

profit more than ε by deviating at the ex-ante stage game.

The information structure we examine in this paper is that of nested information;

that is, the players can be ordered from most knowledgeable to least knowledgeable.

The most knowledgeable player (say, Player 1) knows everything Player 2 knows (and

possibly more), Player 2 knows everything Player 3 knows (and possibly more), etc.

Such structures have been modeled in hierarchical organization paradigms, financial

market games, persuasion models, and others; we recall some of these works and

more below. Such games generally do not satisfy the absolute continuity condition

of Milgrom and Weber [43]. For instance, if there are three agents, two of which are

informed of a value v in some range [v, v] which distributes continuously while the

third is not, the possible type profiles distribute continuously along a diagonal, and

do not satisfy the absolute continuity condition.

In this work, we study these games when players have finitely many actions at

their disposal. Our main result shows that in such games, Bayesian equilibria do exist,

thereby exhibiting an additional class of incomplete information games possessing

equilibria. (A discussion on models with a continuum of actions appear in Section 7.1.)

Our proof introduces two new tools to the study of Bayesian games, which may prove

useful also for other classes of games as well as other questions on Bayesian games.

The first tool, used for establishing existence of Bayesian ε-equilibrium, is a finite

approximation of the belief hierarchy. As is well known, the players’ belief about the

payoffs, the others’ beliefs, the others’ beliefs about the others beliefs, and so forth,

form an infinite hierarchy. When information is nested, as we will elaborate below,

this infinite hierarchy is determined by the first n orders of the ladder, where n is

the number of players. This finiteness of the relevant levels will allow us to construct

a finite approximation of the space of infinite hierarchies that is sufficient for our

purpose: We will define an approximating Bayesian game whose finite type spaces

are induced by this finite approximation, and show that a Bayesian equilibrium of

this game, which exists by [20], yields a Bayesian ε-equilibrium of the original game.
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The second tool, used for establishing existence of Bayesian equilibrium, is the

Measurable “Measurable Choice” Theorem by Mertens [40], a tool which had previ-

ously been used in the study of stochastic games but is novel in its application to

Bayesian games.1 To construct a Bayesian equilibrium we would like to take a limit

of Bayesian ε-equilibria as ε goes to 0. However, it is well known that in the limit,

correlation may be introduced; see Stinchcombe [56]. Conceptually, we construct the

equilibrium among the accumulation points of a sequence of Bayesian 1
n
-equilibria,

step-by-step, starting from the least knowledgeable player, and for each player we

need to use a purification result to guarantee appropriate consistency with the selec-

tions already chosen. Not only is the purification done repeatedly, but it needs to

be done a continuum-many times at each stage, all in a measurable fashion; this is

precisely where the Measurable “Measurable Choice” Theorem comes into play.

Structure of the paper. The paper is organized as follows. Section 2 discusses

related literature on Bayesian games and on nested information structures. Section 3

presents the model and the main result. Section 4 gives heuristic overviews of the

proofs. Discussion and open problems appear in Section 5. The proof of the main

result appears in Section 6. Section 7 presents two extensions of the main result.

2 Literature on Bayesian Equilibrium and on Nested

Information

Bayesian Equilibria Since Bayesian (and even Harsanyi) ε-equilibria need not ex-

ist in Bayesian games, it is important to find sufficient conditions on the parameters of

the game that ensure they exist. A large literature expanded the sufficient conditions

identified by Harsanyi [20] and Milgrom and Weber [43].

Stinchcombe and White [55] proved that when all players share the same infor-

mation, or when there are two players and information is nested, a Harsanyi equilib-

rium exists. Ui [58] proved the existence and uniqueness of Bayesian equilibrium in

Bayesian games where the payoff function is continuously differentiable on the action

1An application of the Measurable “Measurable Choice” Theorem to a one sender - many receivers
game can be found in Zeng [64].
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space for each vector of types, and its gradient satisfies certain conditions. Hellman

and Levy [22, 23] studied Bayesian games with purely atomic types; they showed

that a Bayesian equilibrium exists when the common knowledge relation is smooth,

namely, the common knowledge classes are level sets of a Borel function. Moreover,

for any common knowledge relation that is not smooth, there exists a type space that

yields this common knowledge relation and payoff functions such that the resulting

Bayesian game does not have a Bayesian ε-equilibrium, provided ε is sufficiently small.

Carbonell-Nicolau and McLean [9] extended the result of Milgrom and Weber [43] to

Bayesian games with general action sets, by requiring that the payoff functions are

upper semi-continuous and satisfy a condition related to Reny’s uniform payoff secu-

rity (Reny [49]). Olszewski and Siegel [46] simplified the application of Reny’s [49]

better-reply security to Bayesian games where players’ types are independent, and

used this condition to prove the existence of Harsanyi equilibria for classes of games

in which payoff discontinuities arise only at “ties.”

Several papers provided sufficient conditions that guarantee the existence of a

pure Bayesian equilibrium, see, e.g., Radner and Rosenthal [48], Vives [61], Khan

and Sun [30], Reny [50], and Barelli and Duggan [8]. While [48] assumed the players’

types are independent, and [8] made the more general assumption of [43] regarding

the absolute continuity of the joint distribution of types, the other works do not make

these assumptions. Existence of equilibria in Bayesian games with infinitely many

players was studied by, e.g., Kim and Yannelis [32], Balbus et al. [7], and Yang [63].

It is interesting to note that Bayesian games with nested information can be recast

as regular projective games (see Myerson and Reny [44], Section 9). It follows from

Theorem 9.3 in Myerson and Reny [44] that for every ε > 0, Bayesian games with

nested information admit a Bayesian ε-equilibrium under proper technical conditions,

which include the continuity of the payoff function over the type space and the fact

that the type distribution has a continuous density function. Our paper strengthens

[44] by (i) proving the result for ε = 0, and (ii) weakening the conditions required

to derive the existence result (while requiring that the set of actions is finite rather

than general) by dropping the requirement that the prior has a density with respect

to a product distribution on types, which, would not be satisfied in many nested
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information structures of interest.

Nested Information Nested information arises naturally in strictly hierarchical

organizations, where higher-level managers have more information than lower-level

managers and workers. For example, Mathevet and Taneva [39] considered a game

where these information structures arise endogenously. In their case, before the agents

simultaneously take their payoff-relevant action, there is cheap-talk communication

between the players following the strict order prescribed by the hierarchy; that is,

each agent sends messages to the agent immediately below her. It can be shown that

regardless of the exact information transmitted, the information structure endoge-

nously generated in the cheap-talk stage will be nested.

Nested information also arises naturally in situations where players obtain or are

exposed to different levels of information. For example, managers of firms are more

informed about the firm’s financial situation than large investors, who in turn are

more informed than small investors. Experiments on financial market games where

investors can predict future dividends or future value of a certain stock for different

spans of time have been reported by, e.g., Toth [57] and Huber [26].

Another model with nested information is when players are divided into two sub-

sets: those who obtain symmetric information about the state of the world, and those

who are completely ignorant about it. For example, Debo et al. [14] and Kremer and

Debo [33] study service system that can provide service in various qualities. Cus-

tomers have two possible types: some know the service quality, while the others are

not exposed to this information. Additional literature on service systems with similar

features can be found in Hassin [19].

A more general information structure is considered in Wu et al. [62], who study a

routing model where the players are divided into groups, and the players in each group

obtain the same information on the state of nature. When the number of groups is 2

and the players in one of the groups obtain no information, or when the signals that

the groups share are nested, this model exhibits nested information as well.

Finally, nested information arises in two-player models, where one player is more

informed than the other, like dynamic games with asymmetric information (e.g.,
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Aumann and Maschler [5, 6], Cardaliaguet and Rainer [10], Grün [18], De Angelis

et al. [12], and Jacobovic [27]), and Bayesian persuasion models (e.g., Kamenica and

Gentzkow [29] and Kamenica [28]).

3 The Model and Main result

Notations. Let N = {1, 2, . . . , n}, with n finite. Whenever (Xi)i∈N is a collection

of sets, we denote their Cartesian product by X ≡
∏

i∈N Xi; for j ∈ N we denote

X−j ≡
∏

i∈N\{j}Xi. For any 1 ≤ j1 ≤ j2 ≤ n denote [j1 : j2] ≡ {j1, j1 + 1, j1 +

2, . . . , j2} and Xj1:j2 ≡
∏j2

i=j1
Xi. A product of measurable spaces will always be

considered a measurable space with the product σ-field. Whenever x = (xi)i∈N is a

vector and j ∈ N , we set x−j ≡ (xi)i∈N\{j}, and for any 1 ≤ j1 ≤ j2 ≤ n we set

xj1:j2 ≡ (xj1 , xj1+1, . . . , xj2). When (Ui)
n
i=1 are real-valued functions, we denote by

Uj1:j2 the vector-valued function (Uj1 , Uj1+1, . . . , Uj2).

For every measurable setX, we denote by ∆(X) the set of probability distributions

on X. We consider ∆(X) as a topological space, e.g., by endowing it with some

metric like the total variation metric or the Prokhorov metric. When X and Y are

two random variables, we say that Y is determined by X if there exists a measurable

function κ(·) such that κ(X) = Y with probability one.

Definition 1 (Bayesian game) A Bayesian game Γ is given by

• A finite set of players N ≡ {1, 2, . . . , n}, for some n ≥ 2.

• For each i ∈ N , a Polish2 space Ti.

• A common prior distribution P on T ≡
∏

i∈N Ti.

• For each i ∈ N , a finite set Ai of actions. Recall that A =
∏

i∈N Ai.

• For each i ∈ N , a bounded and measurable payoff function Ri : T × A → R.
For each i ∈ N , we denote by Ri(a) : T → R the a-section of Ri, for each

2Recall that a Polish space is a separable completely metrizable topological space; that is, a space
homeomorphic to a complete metric space that has a countable dense subset.
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a ∈ A; and by Ri(t) : A → R the t-section of Ri, for each t ∈ T . We also set

R ≡ (Ri)i∈N .

We will denote by t = (t1, t2, . . . , tn) a random type profile, so that ti is the random

type of Player i.

For every i ∈ N , denote by Xi ≡ ∆(Ai) the set of mixed actions of Player i. A

(behavior) strategy of Player i is a measurable function si : Ti → Xi. This definition

indicates the interpretation of the type spaces: each player i ∈ N knows her own

type, and is not told the types of the other players. Denote by Si the set of strategies

of Player i, so that S ≡
∏

i∈N Si is the set of all strategy profiles.

Every strategy profile s ∈ S induces a probability distribution over T ×A, denoted

Ps, which satisfies

Ps(T ×B1 × · · · ×Bn) =

∫
T

∏
i∈N

si(ti)(Bi)dP(t), (1)

for every Borel set T ⊆ T and every measurable sets Bi ⊆ Ai for i ∈ N . Denote by Es

the corresponding expectation operator. For every s ∈ S, whenever the expectation

of Ri with respect to Ps is well defined, Player i’s expected payoff under the strategy

profile s is the real number

Ui(s) ≡ Es[Ri],

and her conditional payoff given her information is the random variable (determined

by ti)
3

Ui(s | ti) ≡ Es[Ri | ti].

The solution concept we will concentrate on in this paper is Bayesian ε-equilibrium.

Definition 2 (Bayesian ε-equilibrium) Given ε ≥ 0, a strategy profile s∗ ∈ S is

a Bayesian ε-equilibrium if for every player i ∈ N and every strategy si ∈ Si,

Ui(si, s
∗
−i | ti) ≤ Ui(s

∗ | ti) + ε, P-a.s. (2)

3Here for simplicity we abuse notation. Formally, Ui(s | ti) is the conditional expectation of Ri

given the sigma-field B(Ti)×
∏

j ̸=i{Tj , ∅}.
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Remark 1 (The relation between Bayesian and Harsanyi equilibria) Given ε ≥
0, a strategy profile s∗ ∈ S is a Harsanyi ε-equilibrium if for every player i ∈ N and

every strategy si ∈ Si,

Ui

(
si, s

∗
−i

)
≤ Ui (s∗) + ε. (3)

Standard conditioning implies that every Bayesian ε-equilibrium is a Harsanyi ε-

equilibrium. When (T ,B (T ) ,P) is complete, a Harsanyi 0-equilibrium is also a

Bayesian 0-equilibrium. When ε > 0, a Harsanyi ε-equilibrium is not necessarily a

Bayesian ε-equilibrium. Indeed, modifying a Bayesian 0-equilibrium on a set of types

of sufficiently small measure arbitrarily will generically yield such an example. In fact,

the example provided by Hellman [21] shows that when ε > 0 is sufficiently small,

Harsanyi ε-equilibria may exist while Bayesian ε-equilibria do not. See Hellman and

Levy [24] for further discussion on this issue.

Harsanyi [20] first presented the model of Bayesian games, and proved that when

all sets that define the game are finite, a Bayesian equilibrium exists. Milgrom and

Weber [43] studied Bayesian games with general type spaces, and proved that a

Harsanyi equilibrium exists in distributional strategies when P is absolutely contin-

uous w.r.t. the product of its marginals, that is, w.r.t. P1 ⊗ P2 ⊗ · · · ⊗ Pn, where Pi

is defined by Pi(Bi) ≡ P
((∏

j ̸=i Tj

)
×Bi

)
for every i ∈ N and every Bi ∈ B(Ti).

4

As mentioned in the introduction, Simon [52] and Hellman [21] (resp., Simon and

Tomkowicz [53, 54]) provided examples of Bayesian games with finite action spaces

and no Bayesian ε-equilibria (resp., no Harsanyi ε-equilibria), for ε > 0 sufficiently

small. Additional sufficient conditions on the parameters of the game that ensure the

existence of a 0-equilibrium have already been reviewed in the introduction.

4 Milgrom and Weber [43] include an assumption, denoted there (R1), which requires that for
each Player i and each ε > 0, there is a subset E ⊆ T such that the collection {Ri(t, ·)}t∈E is
equicontinuous. When actions sets are finite, like in our model, (R1) holds vacuously; indeed, any
collection of functions on a finite set is equicontinuous. In fact, that assumption holds vacuously
under the more general model of [43] – a model we discuss later in Section 7.1 – allowing for compact
action sets and payoffs that are Borel, bounded, and continuous in actions for each fixed type profile.
This observation follows from Scorza-Dragoni type theorems (see, e.g., [34, Theorem 1]), of which
the following classical version is a particular case: Let T,X, Y be Polish spaces, µ a Borel measure
on T , and f : T ×X → Y a Borel function such that for each fixed t ∈ T , f(t, ·) is continuous. Then
there is a compact set E ⊆ T such that f |E×X is (jointly) continuous.
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In this paper we concentrate on Bayesian games where the information of the

players is nested.

Definition 3 (Nested information) We say that the information of the players in

a Bayesian game is nested if ti+1 is determined by ti, for every i = 1, 2, . . . , n − 1;

that is, if for each i < n there is a mapping κi : Ti → Ti+1 such that5

P
(
ti+1 = κi(ti), for every 1 ≤ i < n

)
= 1. (4)

Remark 2 (Players possessing the same information) Note that the definition

allows for two or more players to possess the same information. Indeed, players i and

i+ 1 have the same information if the function κi in Eq. (4) is a bijection.

Remark 3 (P-a.s. versus everywhere in Eq. (4)) Nested information requires that

ti+1 = κi(ti), P-a.s. and not everywhere. This distinction is irrelevant for our purposes.

Indeed, let Q be the measure on
∏

i∈I Ti whose marginal on T1 coincides with that

under P, and that is determined by its marginal on T1 and the functions κ1, . . . , κi−1.

We then have P = Q.

Remark 4 (Nested information and absolute continuity of information) We

here show that a Bayesian game with nested information may not satisfy the require-

ment of absolute continuity of information structure, as studied by Milgrom and

Weber [43]. Indeed, suppose that Ti = [0, 1] for each i ∈ N , and P is the uniform

distribution on the diagonal {t1 = t2 = · · · = tn}. The resulting measure
⊗n

i=1 Pi is

the Lebesgue measure on [0, 1]n, and hence P is concentrated on a set of (
⊗n

i=1 Pi)-

measure zero. Therefore, this information structure does not satisfy the absolute

continuity condition of [43], yet the players have nested information.

Since Bayesian games that satisfy absolute continuity of information structures

do not necessarily have nested information (see, e.g., Example 2 in [43]), it follows

that nested information is unrelated to absolute continuity of information structure.

The main result of the present work is the following.

5More generally, we could say that the information of the players is nested if the condition in
Definition 3 holds after a permutation of the players.
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Theorem 1 (Existence of 0-equilibrium) Every Bayesian game with nested in-

formation admits a Bayesian 0-equilibrium.

Remark 5 (Extensions of Theorem 1) Below we will discuss three extensions of

Theorem 1, to games with inconsistent beliefs (Section 5), compact action sets (Sec-

tion 7.1), and tree-like information structure (Section 7.2).

Remark 6 (Games with two players and nested information) Example 3.3 in

Stinchcombe and White [55] implies that in the presence of two players who have

nested information (and concave payoffs in their actions) a Harsanyi 0-equilibrium

exists. As mentioned in Remark 1, when (T ,B(T ),P) is complete, this implies the

existence of a Bayesian 0-equilibrium. Thus, Theorem 1 extends the result of Stinch-

combe and White [55] to any number of players.

Remark 7 (Comparison with Levy [38]) Levy [38] examines Bayesian games in

which the type space can be partitioned into a collection, generally a continuum, of

components, such that each component is a common knowledge and the game on each

component possesses an equilibrium. That paper introduces conditions under which

an equilibrium can be selected on each component in a measurable manner to induce

an equilibrium in the entire game. (That work generalizes Hellman and Levy [22],

which establishes a similar result under the additional assumption that each common

knowledge component is countable.) In the framework of nested information, for

every t′n ∈ Tn the set {t ∈ T : tn = t′n} is a common knowledge component, yet

there is no result that guarantees the existence of a Bayesian 0-equilibrium on each

connected component.

4 The Driving Force Behind our Proofs

This section gives a heuristic explanation of our methodology. The proof is divided

into two main parts: The first establishes the existence of ε-equilibria, while the sec-

ond uses the Measurable “Measurable Choice” Theorem to construct an appropriate
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limit of approximate equilibria which constitute an exact equilibrium. As remarked

earlier, we point out that it is a well-known problem that in games with a continuum

of states, limits of approximate equilibria do not, in general, naturally induce exact

equilibria, as the limiting process can induce correlation; for an elaboration on this

point, see Stinchcombe [56].

Belief Hierarchies In Bayesian games, to determine her action, on top of her own

information on the players’ types, a player needs to take into account also:

- her information on the information the other players have on the players’ types,

- her information on the information each Player i has on the information each

Player j ̸= i has on the players’ types,

- her information on the information each Player i has on the information each

Player j ̸= i has on the information each Player k ̸= j has on the players’ types,

- etc.

In general, the information encapsulated in higher levels cannot be deduced from the

information encapsulated in lower levels. This gives rise to an infinite belief hierarchy,

which typically depends on the players’ types.

The belief hierarchy of a player identifies the set of type profiles that should be

taken into account when determining the player’s action. In fact, the belief hierarchies

of the players divide the set of type profiles into disjoint subsets, called minimal belief

subspaces, such that the type profiles in each subspace are closed, in the sense that

when the actual type profile is in a given subspace, only type profiles in that subspace

need to be considered to determine the players’ actions in equilibrium. As showed by

Simon [52], even if the game restricted to each of the minimal belief subspaces has

an equilibrium, the amalgamation of these equilibria need not be measurable.

When information is nested, the infinite belief hierarchy can be deduced from its

first n levels, where n is the number of players. Indeed, if, say, there are two players

and Player 1 is more informed than Player 2, then Player 2’s infinite belief hierarchy

can be deduced from her own information on the players’ types and her information on
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Player 1’s information on the players’ types; and Player 1’s infinite belief hierarchy can

be deduced from her own information on the players’ types, and Player 2’s information

on the players’ types and on Player 1’s information on the players’ types. For example,

the next level in the belief hierarchy of Player 2 corresponds to Player 2’s information

on Player 1’s information on Player 2’s information on the players’ types, which

coincide with Player 2’s information on the players’ types. Similarly, the next level

in the belief hierarchy of Player 1 corresponds to Player 1’s information on Player 2’s

information on Player 1’s information on the players’ types, which coincide with

Player 2’s information on Player 1’s information on the players’ types. Thus, when

information is nested, there is no need to consider infinite belief hierarchies, and the

game has a finite structure.

ε-Equilibrium: Approximating Belief Hierchies The observation made in the

previous paragraph leads us to define a finite approximation of the belief hierarchy

when information is nested, which is useful in proving the existence of a Bayesian

ε-equilibrium. Let us explain this approximation.

Assume that the action spaces are finite, and suppose again that there are two

players, where Player 1 is more informed than Player 2. When Player 1 observes the

type profile realization t = (t1, t2), Player 1 has a belief over the matrix game that

is being played. As at present the payoffs are bounded and we are interested in an

ε-equilibrium, we can assume that the collection R of all possible matrix games is

finite. Fixing δ > 0, we can choose a δ-dense subset D1 of the set ∆(R) of probability

distributions over R, and approximate Player 1’s belief at t by the closest point in D1,

denoted φ1(t). We can then consider the mapping ψ2 that assigns to each t the pair

(φ1(t), R(t)), namely, Player 1’s approximated belief at t and the payoff matrix at t,

and consider the distribution of this vector given t2 which is Player 2’s information at

t. Since the mapping φ1 takes only finitely many values, and the number of possible

payoff matrices is finite, the range of ψ2 is finite dimensional, and hence can be in

turn δ-approximated by a mapping φ2 with finitely many values; the range of φ2 is

a δ-dense subset D2 of ∆(D1 × R). The mapping φ2 represents the approximated

information Player 2 has at t, on both the payoff matrix and on Player 1’s information
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on the payoff matrix. Finally, we say that Player 1’s approximated belief is composed

by the pair (φ1, φ2), and Player 2’s approximated belief is composed solely of φ2.

Since the approximating information divides the state space into finitely many

sets, the resulting game admits a Bayesian 0-equilibrium. The properties of the ap-

proximation then imply that this Bayesian 0-equilibrium is a Bayesian ε-equilibrium,

provided δ is sufficiently small.

Correlation of Limits. To construct a Bayesian 0-equilibrium, we would like to

consider an accumulation point of a sequence of Bayesian 1
n
-equilibria as n → ∞.

Unfortunately, as mentioned above and discussed in [43] (see also [56]), when the

type space is general, a limit of strategy profiles may be a correlated strategy profile.

We will illustrate this issue using a variation of Example 2 of [43].

There are three players, and the incomplete information concerns the value of

a state variable that is uniformly distributed in [0, 1]: Players 1 and 2 know the

state, while Player 3 does not obtain any information on the state. Thus, the game

exhibits nested information. Formally, T1 = T2 = [0, 1], T3 is the singleton ∅, and

P(t1 = t2) = 1. Each player has two actions, L and R, and the payoff function, which

is independent of the state, is given in Figure 1.

R

L

L R

0, 0, 0

1, 1, 1

1, 1, 1

0, 0, 0

R

L

L R

0, 0, 2

1, 1, 0

1, 1, 0

0, 0, 2

RL

Figure 1: A three-player game: Player 1 (resp., 2, 3) selects a row (resp, column, matrix).

For every k ∈ N, the following strategy profile sk is a Bayesian 0-equilibrium:

Player 1 (resp., Player 2) selects L for every t1 (resp., t2) such that the integer part

of kt1 (resp., kt2) is odd, and R otherwise (i.e., the two players alternate their action

according to the k’th Rademacher function); Player 3 selects L.

The limit of the strategies (sk1)k∈N, (sk2)k∈N, and (sk3)k∈N in the weak-* topology on

L∞([0, 1],∆({L,R})) are the strategies in which at every t1 (resp., t2), Player 1 (resp.,

Player 2) selects [1
2
(L), 1

2
(R)], and Player 3 selects L. However, this limit strategy
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profile is not a Bayesian 0-equilibrium, since Player 3 can profit by deviating to R.

The only reasonable limit of the profiles (sk)k∈N is the correlated strategy which

always mixes between (L,L, L) and (R,R,L) with equal probabilities, which is their

limit in the weak-* topology on L∞([0, 1],∆({L,R}3)). This resulting correlation

hints at the need for purification tools.

We note that this difficulty is not helped by working with distribution strategies, as

in [43]; the weak-∗ convergence on L∞([0, 1],∆({L,R})) (resp., L∞([0, 1],∆({L,R}3)))
is equivalent to the weak convergence of the measures induced by the Lebesgue mea-

sure and these strategies (resp., profiles of strategies) on [0, 1] × ∆({L,R}) (resp.,

[0, 1] × ∆({L,R}3)). The difficulty runs much deeper, and requires the use of prop-

erties of the information structure – in this case, the nested information. Indeed, in

[52], ε-equilibria exist for each ε > 0, but no exact equilibria exist.6

Exact Equilibrium: Using the Measurable “Measurable Choice” Theorem.

To overcome the difficulty of correlations in the limit, we use iteratively an extension

of Mertens’ [40] Measurable “Measurable Choice” Theorem.

To illustrate the construction, consider first a three-player Bayesian game where,

as above, T1 = T2, T3 = {∅}, the prior P is concentrated on the set {t1 = t2}, each

player has two actions, L and R, and the payoff function is bounded and measurable.

In this framework, equilibrium existence had been previously an open question.

Fix a sequence of approximate equilibria (sk)k∈N, where sk is a Bayesian 1
k
-

equilibrium for every k ∈ N. As described above, an accumulation point s∗ of (sk)k∈N

may fail to be a Bayesian 0-equilibrium, because, e.g., the payoff U3(s
∗
1:2, L | ∅)

may differ from liml→∞ U3(s
kl
1:2, L | ∅), where (kl)l∈N is some sequence such that

s∗ = liml→∞ skl .

To avoid this problem, we need (kl)l∈N to be such that not only does (skl3 (∅))l∈N

converge, but so do the sequences
(
U3(s

kl
1:2, L | ∅)

)
l∈N and

(
U3(s

kl
1:2, R | ∅)

)
l∈N. Denote

the corresponding limits by ρ3[L] and ρ3[R]. The selection of s∗1:2(t1) over t1 ∈ T1

is done among the accumulation points of (skl1:2(t1))l∈N so that, in the aggregate,

U3(s
∗
1:2, a3 | ∅) = ρ3[a3] for a3 ∈ {L,R}. The resulting selections together with s∗3 can

6See [24] for a thorough discussion on this issue.
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be shown to be an equilibrium.

To be more precise, and of particular relevance as the examples become more

complex and we look towards a general technique, is that we do not actually fix a

specific subsequence of indices (kl)l∈N; what we do is stipulate that in the latter stage,

when we select among accumulation points of (sk1:2(t1))k∈N, we only select among limits

of subsequences whose indices (kl)l∈N ensure not only the convergence skl3 (∅) → s∗3(∅),

but also the convergence U3(s
kl
1:2, L | ∅) → ρ3[L] and U3(s

kl
1:2, R | ∅) → ρ3[R]. There

may be many such subsequences (kl)l∈N, and we do not select a particular one. Rather,

we select the limits we desire, and make sure that future selections are consistent with

these limits.

In the example above on Page 14, for every t ∈ [0, 1], the set of accumulation

points of (sk(t))k∈N is {(L,L, L), (R,R,L)}, and any strategy profile s∗ in which on a

set T ⊆ [0, 1] of Lebesgue measure 1
2

both Players 1 and 2 select L, on T c they both

select R, and Player 3 selects L, is a selection that satisfies our requirements.

Now, let us spice up the example. Suppose there are four players: Player 4 knows

nothing, Player 3 knows something, and Players 1 and 2 know everything. Formally,

T1 = T2 and a.s. t1 = t2 (that is, κ1(t1) = t1), T3 is non-trivial (there is some

κ2 : T2 → T3), while T4 is a singleton ∅ (κ3(t3) = ∅). Again, assume players have

two actions L and R. We fix a sequence of strategy profiles (sk)k∈N where sk is a

Bayesian 1
k
-equilibrium. Once again, starting with the least knowledgeable player, we

select some accumulation point of the triplet
(
sk4(∅), U4(s

k
1:3, L | ∅), U4(s

k
1:3, R | ∅)

)
k∈N

to
(
s∗4(∅), ρ4[L], ρ4[R]

)
.

Move on to the second-least informed player, Player 3, who has partial knowledge.

We need to take care that the construction of s∗3 would leave open the door for

construction of s∗1:2 with ρ4[L] = U4(s
∗
1:3, L | ∅) and ρ4[R] = U4(s

∗
1:3, R | ∅). To this

end, for each t3 ∈ T3, we choose an accumulation point that is consistent with the

convergence we have already established of the 9-tuple of sk3(t3) and Uj(s
k
1:2, a3, a4 | t3)

for each j = 3, 4 and each a3, a4 ∈ {L,R}, where U4(· | t3) means U4(· | κ3(t3)). That

is, we keep track not only of Player 3’s strategy, but also of the expected payoffs

to Player 3 and Player 4 for each action profile of these players. Denote a chosen

accumulation point of this 9-tuple as s∗3(t3) and ρ3[j, a3, a4](t3) for j = 3, 4 and a3, a4 ∈
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{L,R}. Like in the previous example, it is not sufficient to choose any accumulation

points across different t3 ∈ T3; we must take care that these accumulation points are

chosen so that if Player 4 imagines the setup in which it is only her and Player 3, and

payoffs are given by ρ3, then her expected payoff for an action a4 ∈ {L,R} when Player

3 uses s∗3 is precisely ρ4[a4], i.e., for a4 ∈ {L,R}, ρ4[a4] =
∫
T3 ρ3[4, s

∗
3(t3), a4]P(dt3).

This establishes a certain consistency between ρ4, ρ3, and s∗3.

In the next step, consider Player 1 and 2, who have full knowledge because

t3 = κ2(t1) and κ3(t3) = ∅. We need to choose for each t1 an accumulation point

of (sk1:2(t1))k∈N that is consistent with previous selections for this particular κ2(t1),

i.e., along subsequences of indices which give the chosen accumulation points s∗4(∅),

s∗3(κ2(t1)), and ρ3[j, a3, a4] of sk4(∅), sk3(κ2(t1)), and Uj(s
k
1:2(t1), a3, a4 | κ2(t1)) for

j = 3, 4 and a3, a4 ∈ {L,R}, respectively. Furthermore, we need that the selection

is done across all t1 ∈ T1 = T2, so that, for each t3 ∈ T , the expected payoffs to

Player j = 3, 4 under s∗1:2 for any pair of actions a3, a4 ∈ {L,R} they may play,

Uj(s
∗
1:2, a3, a4 | t3), agrees with ρ3[j, a3, a4](t3). To do it for all t3 ∈ T3 in parallel in a

measurable fashion, we appeal to the Measurable “Measurable Choice” Theorem of

[40].

The proof in general is a formalization of the ideas above, although we note

that we go player-by-player, without ‘bunching together’ players who have identical

information.

5 Discussion

Our study raises several extensions and open problems, which we present in this

section.

Inconsistent beliefs. We assumed that all players share the same belief P on T .

Our result holds also when beliefs are inconsistent, namely, each player i ∈ N holds

a different belief Pi on T . In this case, each player’s payoff is defined relative to Pi

(rather than relative to P). The condition of nested information, in this case, is as
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follows: for each i < n there is a mapping κi : Ti → Ti+1 such that

Pj

(
ti+1 = κi(ti), for every 1 ≤ i < n

)
= 1, ∀j = 1, . . . , n. (5)

Equivalently, defining P = 1
n

∑n
i=1 Pi, it is the requirement that for each i < n there

is a mapping κi : Ti → Ti+1 such that

P
(
ti+1 = κi(ti), for every 1 ≤ i < n

)
= 1. (6)

To see why this extension holds, define an auxiliary Bayesian game Γ′ with type space

T , common prior P, and payoffs (R′
i)i∈N given by R′

i(t, a) = dPi

dP (t)Ri(t, a), where dPi

dP

is a fixed Borel version of the Radon-Nikodym derivative. Given a profile of strategies

s, the expected payoff to Player i in Γ′ is the same as the expected payoff of Player

i in Γ. Since the Radon-Nikodym derivative is bounded (by n), (R′
i)i∈I are bounded.

Theorem 1 guarantees the existence of a Bayesian 0-equilibrium in Γ′, which is a

Bayesian 0-equilibrium in Γ.

On the continuity of the payoff function in type. One could ask whether the

proof of our result simplifies if we assume that payoffs depend continuously on types.

We are not aware of any method achieving such a simplification, and doubt that such

an assumption would simplify matters much at all. Indeed, consider the three-player

example presented in Section 4, in which two players know everything while the third

knows nothing. Even for this relatively simple case, existence of equilibrium had

been an open question. However, it is known (e.g., [31, 13.11]) that given a Borel

function on a Polish space, the topology on the Polish space can be refined so that it

remains Polish but the function is now continuous. Hence, in this example, since the

payoff functions depend on a single type (and not a product) we could have assumed

w.l.o.g. that payoffs are continuous in the type.

Multi-stage Bayesian games. We showed that nested information is a sufficient

condition for the existence of a Bayesian 0-equilibrium in a general class of single-stage

Bayesian games. A natural question regards the existence of a Bayesian 0-equilibrium

in multi-stage Bayesian games with nested information.
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Specifically, a multi-stage Bayesian game with m ≥ 2 stages is similar to a

Bayesian game as in Definition 1, except that the players play for m stages and

Player i’s type is stage dependent. That is, Player i’s type is a vector ti = (t1i , t
2
i , . . . , t

m
i ),

the collection of types of the players are drawn at the outset, and at each stage

1 ≤ k ≤ m, each player learns her own stage type tki . Player i’s payoff at each stage

k depends on the players’ stage-types (tki )i∈N , and the players stage actions.

Repeating the arguments of the current paper implies existence of 0-Bayesian

equilibrium in the multi-stage game whenever the nested information assumption is

replaced by the following two conditions:

A1 Information is nested: For each k ∈ {1, 2, . . . ,m} and each i ∈ {1, 2, . . . , n−1},

tki+1 is a determined by tki .

A2 Information is revealed with delay of one stage: For every k ∈ {1, 2, . . . ,m−1},

tk1 is determined by tk+1
n ; i.e., the information of Player 1 is available to Player

n with delay of one stage.

Models of multi-stage Bayesian games that satisfy these two assumptions have been

studied in the literature on control under the name information structure with one-

step-delay, see, e.g., Aicardi et al. [1], Nayyar et al. [45], and Varaiya and Walrand

[60]. We conjecture that Condition A1 (without A2) is not sufficient to guarantee

the existence of a Bayesian 0-equilibrium in multi-stage Bayesian games.

Stopping games with asymmetric information. One class of multi-stage Bayesian

games is the class of stopping games with asymmetric information. In stopping games,

players choose in each round to stop or continue; the game ends when at least one

player chooses to stop, and the payoff profile is given by an Rn-valued stochastic

process that depends on the set of players who chose to stop. There is also some

designated payoff in case the game never terminates. Incomplete and asymmetric

information can be introduced by adding uncertainty on the payoff process.

Such games have been studied both in the framework of discrete time and that of

continuous time, see, e.g., Grün [18], Lempa and Matomäki [37], Gensbittel and Grün

[17], Esmaeeli, Imkeller, and Nzengang [15], Gapeev and Rodosthenous [16], Pérez et
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al. [47], Jacobovic [27], and De Angelis et al. [11, 12]. The open problem we raised

for multi-stage Bayesian games translates to the following: Does every stopping game

(in discrete or continuous time) with finite horizon and information structure that

satisfies A1 (or a continuous-time analog) admit a Bayesian 0-equilibrium?

Nested information and the value of information. Various aspects of the value

of information in two-player zero-sum Bayesian games have been studied, e.g., by De

Meyer et al. [13], Lehrer and Rosenberg [36], and Ui [59]. As we now argue, nested

information is related to the study of the value of information in multiplayer Bayesian

games with symmetric information. Indeed, define the value of the information of

Player i as the difference between Player i’s highest expected equilibrium payoff in

a multiplayer Bayesian game with symmetric information, and her highest expected

equilibrium payoff in the same game, when she does not obtain any information (while

the other players obtain the symmetric information).7 As the latter game has nested

information, our result ensures that it admits at least one Bayesian 0-equilibrium,

and hence the measure suggested above (and other natural variants) are well-defined.

The universal belief space. The universal belief space is the space that contains

all infinite belief hierarchies, see Mertens and Zamir [42]. As we have seen, when

information is nested, the players’ belief hierarchies are determined by the first n levels

in the belief hierarchy. It will be interesting to know whether there is a canonical

form to the universal belief space in this case.

In Aumann’s model of incomplete information, the information of a player is given

by a partition of the state space, and the information structure is nested if under some

ordering of the players, Player i’s partition refines Player j’s partition whenever i < j.

Call an information structure finite if each belief hierarchy is determined by its first k

levels, for some k ∈ N. Nested information structures are finite. An example of a finite

information structure that is not nested is that of a “piecewise” nested information

structure: the state space is divided into several common knowledge components,

7In case the highest expected payoff is not attained by a Bayesian 0-equilibrium, consider the
supremum of Player i’s expected equilibrium payoffs.
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and in each component, the information is nested, possibly with a different order-

ing between the players. Are the piecewise nested information structures all finite

information structures?

6 Proof of Theorem 1

The proof of Theorem 1 consists of two steps. In Section 6.1, we prove the existence

of a Bayesian ε-equilibrium,8 for every ε > 0. In Section 6.2 we use this result to

prove the existence of a Bayesian 0-equilibrium.

6.1 Existence of a Bayesian ε-equilibrium

In this section we prove the existence of a Bayesian ε-equilibrium, for every ε > 0.

To this end, we approximate the information structure in a way that is related to the

approximation used by Shmaya and Solan [51]. In Section 6.1.1 we review the notion

of δ-approximation defined over a compact set in a metric space. This notion is applied

in Section 6.1.2 to approximate the information structure of the players in Γ (under

the nested information assumption). We then define a new game, which is identical

to Γ except that the information of the players is replaced by its approximation. In

Section 6.1.3, we show that this approximated game has a Bayesian 0-equilibrium,

and that this Bayesian 0-equilibrium is a Bayesian ϵ-equilibrium of the original game

Γ.

6.1.1 δ-approximations

We begin by recalling definitions related to dense subsets.

Definition 4 (δ-dense subset) Let U be a set in a metric space (M, d), and fix

δ > 0. A set V ⊆ U is δ-dense in U if for every u ∈ U there is v ∈ V such that

d(u, v) < δ.

When U is contained in a compact set, the δ-dense set V that we will consider will

be implicitly assumed to be finite. In this case, there exists a measurable mapping

8This part of the proof does not require that the type spaces are Polish.
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vδ : U → V such that d (u, vδ(u)) < δ for every u ∈ U . For every u ∈ U , the

image vδ(u) is called a δ-approximation of u (by V ). When Ω is a measurable space

and y : Ω → U is measurable, the mapping vδ(y(·)) : Ω → V will be a measurable

δ-approximation of y.

For every random vector Z : T → Rd with finite range Z, and every i ∈ N , denote

the conditional distribution of Z given ti by

P (Z | ti) ≡ (P(Z = z | ti))z∈Z .

Thus, P (Z | ti) is a vector determined by ti and contained in the (|Z| − 1)-dimensional

simplex. Since the (|Z| − 1)-dimensional simplex is compact, there exists a δ-approximation

φ(·)(ti) of P (Z | ti) which belongs to the (|Z| − 1)-simplex and satisfies∑
z∈Z

∣∣P (Z = z | ti) − φ(z)(ti)
∣∣ < δ , P-a.s.

6.1.2 A finite approximation of the information structure

In this section we present a finite approximation of the information structure, which

is suited to games where information is nested.

Fix a Bayesian game with nested information Γ, and denote by M a bound on the

payoff function. Since in this section we are interested in proving the existence of a

Bayesian ε-equilibrium, we can assume w.l.o.g. that the range of the payoff function

R is finite. Namely, there is a finite collection R of functions from A to [−M,M ]n

such that for every t ∈ T , the function R(t) = (Ri(t))i∈N is an element of R.

For every i ∈ N , every strategy si ∈ Si, and every action ai ∈ Ai, denote by

si(ai)(ti) the probability that Player i selects the action ai under si when her type is

ti. For every strategy profile s ∈ S and every action profile a ∈ A, the probability

under s that a is selected by the players is the random variable ps(a) defined by

ps(a)(t) ≡
n∏

i=1

si(ai)(ti), ∀t ∈ T .

Define

ps−i
(a−i)(t−i) ≡

∏
j ̸=i

sj(aj)(tj), ∀i ∈ N , s ∈ S, a ∈ A, t ∈ T .
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We are now going to recursively define approximations of the information that the

players have. Fix δ > 0. Let ψ1 : T → R be the random vector defined by

ψ1(t) ≡ R(t), ∀t ∈ T .

Denote r ≡ |R|, so that P(ψ1 | t1) is in the (r − 1)-dimensional standard simplex, P-

a.s. Equip Rr with the L1-norm. Let φ1 ≡ φ1(·)(t1) be a measurable δ-approximation

of P(ψ1 | t1), so that φ1 has a finite range and∑
z∈R

∣∣P (ψ1 = z | t1) − φ1(z)(t1)
∣∣ < δ, P-a.s.

For i ∈ N\{1}, suppose we have already defined random vectors ψ1, φ1, . . . , ψi−1, φi−1,

all with finite ranges, where ψj : T →
∏j−1

k=1 Dk×R and φj : Tj → ∆(
∏j−1

k=1Dk×R) ⊆
R

∏i−1
j=1 |Dj |×r, where for each 1 ≤ j ≤ i− 1, Dj ⊆ ∆(

∏j−1
k=1Dk ×R) is the range of φj.

Define

ψi(t) ≡
(
φ1(t1), φ2(t2), . . . , φi−1(ti−1), R(t)

)
∈

i−1∏
j=1

Dj ×R, P-a.s., (7)

which is a random vector with a discrete distribution. The range of ψi is finite and

contains at most
∏i−1

j=1 |Dj| × r elements. Equip R
∏i−1

j=1 |Dj |×r with the L1-norm, so

the
(∏i−1

j=1 |Dj| × r − 1
)

-dimensional simplex is compact. Let φi be a measurable

δ-approximation of P (ψi | ti), and hence∑
z∈

∏i−1
j=1 Dj×R

∣∣P (ψi = z | ti) − φi(z)(ti)
∣∣ < δ, P-a.s. (8)

Thus, the range of φi is contained in a finite δ-dense subset of the
(∏i−1

j=1 |Dj| × r − 1
)

-

dimensional simplex.

The random vectors φ1, φ2, . . . , φn have an intuitive interpretation.

- φ1(t1) is an approximation of the information that Player 1 has on the payoffs

when her type is t1.

- φ2(t2) is an approximation of the information that Player 2 has when her type

is t2 on the payoffs and on the approximated information that Player 1 has on

the payoffs.
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- φ3(t3) is an approximation of the information that Player 3 has when her type

is t3 on (i) the payoffs, (ii) the approximated information that Player 1 has on

the payoffs, and (iii) the approximated information that Player 2 has on the

payoffs and on the approximated information that Player 1 has on the payoffs.

- Etc.

For every i ∈ N and every Borel function f :
∏i−1

j=1Dj ×R → R, let Eφi
[f ] be the

random variable given by

Eφi
[f ] (ti) ≡

∑
z∈

∏i−1
j=1 Dj×R

f(z) · φi(z)(ti), P-a.s.

The next lemma relates Eφi
[f ] to the conditional expectation of f given ti.

Lemma 1 Fix i ∈ N and let f :
∏i−1

j=1Dj ×R → R be a real-valued Borel function

which is bounded by M > 0. Then,∣∣E [f(ψi) | ti] − Eφi
[f ] (ti)

∣∣ < Mδ, P-a.s.

Proof: The claim holds since P-a.s. we have∣∣E [f(ψi) | ti] − Eφi
[f ] (ti)

∣∣ ≤ ∑
z∈

∏i−1
j=1 Dj×R

|f(z)| ·
∣∣P (ψi = z | ti) − φi(z)(ti)

∣∣
≤M

∑
z∈

∏i−1
j=1 Dj×R

∣∣P (ψi = z | ti) − φi(z)(ti)
∣∣ < Mδ,

where the second inequality holds by (8) and the assumption that f is bounded by

M .

For each i ∈ N , let

τi ≡ τi(ti:n) ≡ φi:n (ti:n) = (φi(ti), φi+1(ti+1), . . . , φn(tn)) .

Intuitively, τi represents the approximated information of Player i: Player i knows

φi, and since information is nested, she also knows φi+1, . . . , φn. The following result,

which follows by the construction of (τi)i∈N , details basic properties of this approxi-

mated information structure.
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Lemma 2

P1. For each i ∈ N , τi has a finite image.

P2. For every 1 ≤ i ≤ j ≤ n, τj is determined by τi.

P3. For each i ∈ N , τi(ti:n) is determined by ti.

P4. For each i ∈ N , φi(ti) is determined by τi(t1:n), P-a.s.

Proof: P1, P2, and P4 follow from the construction. We show that P3 holds as

well. Fix then i ∈ N , and recall that since the information is nested, ti:n is determined

by ti. Thus, τi(t1:n) is determined by ti and hence P3 follows.

Remark 8 Due to P3, from now on, for each i ∈ N , we shall write τi ≡ τi(ti) ≡
τi(ti:n).

6.1.3 Proof: existence of Bayesian ε-equilibrium

We now define a Bayesian game Γ̃, which is similar to Γ, except that the information

available to each player i ∈ N is τi rather than ti. Specifically, Γ̃ is given by

• A finite set of players Ñ ≡ N = {1, 2, . . . , n}.

• For every i ∈ N , the set of types of Player i is the range of τi = φi:n, i.e.,

Ti ≡
∏n

j=i Dj and hence T̃ ≡
∏

i∈N T̃i.

• A common prior distribution P̃ on T̃ , which is the push-forward probability

measure induced by τ1:n with respect to the probability measure P:

P̃(t̃) ≡ P(τ1:n = t̃), ∀t̃ ∈ T̃ .

Denote by Ẽ[·] the expectation operator that corresponds to P̃.

• For each i ∈ N , the set of actions available to Player i is Ãi ≡ Ai, so that

Ã = A.
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• For each i ∈ N , a measurable payoff function R̃i : T̃ × A → R given by

R̃i

(
t̃, a

)
≡ E

[
Ri(a) | τ1:n = t̃

]
,

for every a ∈ A and t̃ ∈ T̃ for which P̃(T̃ = t̃) > 0. When P̃(T̃ = t̃) = 0, the

definition of R̃i(t̃, a) is irrelevant. For each i ∈ N , denote by R̃i(a) : T → R
the a-section of R̃i, for each a ∈ A; and by R̃i(t̃) : A → R the t̃-section of R̃i,

for each t̃ ∈ T . We also set R̃ ≡ (R̃i)i∈N .

The tower rule implies that for every a ∈ A and i ∈ N ,

Ẽ[R̃i(t̃, a)] = E[Ri(t, a)].

For each i ∈ N , τi:n is determined by τi, and hence for every i ∈ N , a ∈ A, and

t̃ = (t̃i)i∈I ∈ T̃ for which P̃(t̃) > 0, the tower rule also implies that

Ẽ
[
R̃i(a) | t̃i

]
= E

[
Ri(a) | τi = t̃i

]
. (9)

This means that the expected payoff of Player i in Γ̃ given her type t̃i is the same as

her expected payoff in Γ given the event {τi = t̃}.

A strategy of Player i in Γ̃ is a function s̃i : T̃i → ∆(Ai). Such a function can be

interpreted as a strategy in Γ that is determined by τi (which, in turn, is determined

by ti). Together with (9), this implies that a strategy profile s̃ = (s̃i)i∈N is a Bayesian

0-equilibrium in Γ̃ if and only if for every i ∈ N and every strategy si ∈ Si determined

by τi,

Ui(s̃)(ti) = E [Ri(s̃) | τi] ≥ E [Ri(si, s̃−i) | τi] = Ui(si, s̃−i)(ti), P-a.s. (10)

Since the sets of types in Γ̃ are finite, this game admits a Bayesian 0-equilibrium.

The next lemma concerns the original game Γ, and states that if each Player

j ∈ N \ {i} adopts a strategy sj which is determined by τj (i.e., a strategy which

is also feasible to her in Γ̃), then Player i has a (δM |A|)-best response which is

determined by τi (i.e., a δM |A|)-best response in Γ which is also feasible to her in

Γ̃). In view of (10), this implies that every Bayesian 0-equilibrium in Γ̃ is a Bayesian

(δM |A|)-equilibrium in Γ.
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Lemma 3 Let i ∈ N be a player, and let s−i ≡ (sj)j∈N−i
∈ S−i be a strategy profile

such that sj is determined by τj for every j ∈ N \ {i}. Then supsi∈Si
Ui(si, s−i | ti) is

a random variable, and there exists s∗i ∈ Si which is determined by τi such that

Ui(s
∗
i , s−i | ti) ≥ sup

si∈Si

Ui(si, s−i | ti) − δM |A| , P-a.s.

Proof: Player i’s (random) expected payoff given her information, when she selects

action ai ∈ Ai and the other players follow the strategy profile s−i, is the random

variable mi(ai) determined by ti and defined as

mi(ai)(ti) ≡
∑

a−i∈A−i

E
[
Ri(ai, a−i)ps−i

(a−i) | ti
]
, P-a.s. (11)

Since Ai is a finite set, the best payoff that Player i can achieve is the random variable

m̃i determined by ti and defined by

m̃i(ti) ≡ max {mi(ai)(ti) : ai ∈ Ai} , ∀ti ∈ Ti.

In particular, supsi∈Si
Ui(si, s−i | ti) = m̃i is a random variable.

Let us show that for each ai ∈ Ai, there exists a random variable m̂i(ai) which is

determined by τi and such that∣∣m̂i(ai) −mi(ai)
∣∣ < δM |A| , P-a.s. (12)

Before proving the existence of such random variables (m̂i(ai))ai∈Ai
, we will show how

the lemma follows from their existence. First, denote

m̂i ≡ max {m̂i(ai) : ai ∈ Ai} , (13)

which is a random variable determined by τi, and notice that by (12), |mi − m̂i| <
δM |A|, P-a.s. Each of the random variables (m̂i(ai))ai∈Ai

is determined by τi, and

hence the set of maximizers arg max {m̂i(ai); ai ∈ Ai} is finite and also determined

by τi. Therefore, there is a Borel selector9 Ai of arg max {m̂i(ai); ai ∈ Ai}, that is,

Ai ∈ arg max {m̂i(ai) : ai ∈ Ai} , P-a.s.,

9Let X,Y be topological spaces and Φ : X ⇒ Y a correspondence (a set-valued mapping). A
Borel selector of Φ is a Borel mapping f : X → Y such that f(x) ∈ Φ(x) for all x ∈ X.
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which is determined by τi; hence Ai satisfies the requirements of the lemma.

We turn to prove the existence of m̂i(ai). Recall that ψi = (φ1, φ2, . . . , φi−1, R).

The strategy sj is determined by τj for every j ∈ N \ {i}, and by P2 it is also

determined by τ1. Therefore, ps−i
(a−i) is also determined by τ1 = φ1:n, for every

a−i ∈ A−i. By (11), there exists a measurable function fa−i
: Supp (ψi, φi:n) →

[−M,M ] such that

mi(ai)(ti) =
∑

a−i∈A−i

E
[
fa−i

(ψi, φi:n) | ti
]
, P-a.s. (14)

By definition, τi = φi:n. Hence, by P3, φi:n is also determined by ti. Therefore,

mi(ai)(ti) =
∑

a−i∈A−i

∫
E
[
fa−i

(ψi, x) | ti
]
χφi:n(ti) (dx), P-a.s., (15)

where χφi:n(ti) is the Dirac measure concentrated at {φi:n(ti)}. Define

m̂i(ai)(ti) ≡
∑

a−i∈A−i

∫
Eφi

[
fa−i

( · , x)
]

(ti)χφi:n(ti) dx (16)

=
∑

a−i∈A−i

Eφi

{
fa−i

[ · , φi:n(ti)i:n(ti)]
}

(ti), P-a.s.,

and notice that m̂i(ai)(ti) is determined by φi(ti) and φi:n(ti), for every realization

of types profile t ∈ T . Since both φi and φi:n(ti) are determined by τi, m̂i(ai) is also

determined by τi. Finally, by (15), (16), and Lemma 1,∣∣m̂i(ai)(ti) −mi(ai)(ti)
∣∣

<
∑

a−i∈A−i

∫ ∣∣∣E [
fa−i

(ψi, x) | ti
]
− Eφi

[
fa−i

( · , x)
]

(ti)
∣∣∣χφi:n(ti)(dx)

< δM |A−i|, P-a.s.,

and (12) follows.

6.2 Existence of a Bayesian 0-equilibrium

In this section we derive Theorem 1 from the existence of Bayesian ε-equilibria for

ε > 0, which exist by the results in Section 6.1. We will fix a sequence (sk)k∈N of
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Bayesian 1
k
-equilibria, and show that this sequence has a measurable accumulation

point which is a Bayesian 0-equilibrium. In Section 6.2.1 we present tools related

to the existence of measurable selections and their integration. In Section 6.2.2, we

represent the conditional expected payoff in a useful way. In Section 6.2.3, we define

the correspondences (Ψi)i∈N of the accumulation points of (sk)k∈N and study some

of their properties, In Section 6.2.4, we characterize Bayesian 0-equilibria in terms of

(Ψi)i∈N . In Sections 6.2.5 and 6.2.6 we show that there exist measurable selections

of (Ψi)i∈N satisfying the characterization of the 0-equilibrium presented in Section

6.2.4.

6.2.1 Selectors and Integration

Let X, Y be standard Borel spaces,10 and Φ : X ⇒ Y a correspondence (a set-

valued mapping). We say that Φ has nonempty compact values if Φ(x) is nonempty

and compact for every x ∈ X. The following classical result provides topological

conditions that guarantee the existence of a Borel selector.11

Theorem 2 (Kuratowski and Ryll-Nardzewski [35]) Suppose the correspondence

Φ : X ⇒ Y has a Borel graph and nonempty compact values. Then, Φ has a Borel

selector.

Let SΦ denote the collection of all Borel selectors of Φ. Suppose Y is a subset of

a Euclidean space, and let P be a finite Borel measure on X. The Aumann integral

of Φ (with respect to P) is∫
X

Φ(x)P(dx) ≡
{∫

X

f(x)P(dx) : f ∈ SΦ

}
.

The following result appears in [3] and the references therein when X = [0, 1] and

P is the Lebesgue measure; the general case follows by minor modifications, or from

more general results, like Theorem 4 below.

10A standard Borel space is a topological space homeomorphic to a Borel subset of a Polish space.
11[35] states the measurability assumption on Φ in a way that, for nonempty compact valued

correspondences, is equivalent to the one we provided here; see, e.g., [25].
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Theorem 3 Suppose the correspondence Φ : X ⇒ Rn is bounded12 and has a Borel

graph and nonempty compact values. Then
∫
X

Φ(x)P(dx) is nonempty and compact.

We need the following slight generalization of Theorem 3.

Proposition 1 Let X be a standard Borel space, and let Y be a compact metric

space. Suppose the correspondence Φ: X ⇒ Y has a Borel graph and nonempty

compact values. Let ζ : Y → Rn be continuous. Then the set{∫
X

ζ ◦ f(x)P(dx) : f ∈ SΦ

}
⊂ Rn (17)

is nonempty and compact.

Proof: Define Ψ : X → Rn by Ψ = ζ ◦ Φ, i.e., Ψ(·) = ζ(Φ(·)). Since Y is compact, ζ

is continuous, and Φ has nonempty compact values, it follows that Ψ is bounded and

has nonempty compact values. We contend that

{ζ ◦ f : f ∈ SΦ} = SΨ,

from which the proposition will follow due to Theorem 3. Clearly, {ζ ◦ f : f ∈ SΦ} ⊆
SΨ, as ζ ◦ f ∈ SΨ for each f ∈ SΦ. Conversely, suppose g ∈ SΨ. Since Y , the

domain of ζ, is a nonempty compact set and ζ is continuous, the correspondence

ζ−1(·) : Ψ(X) → Y has a Borel graph and nonempty compact values. Thus, Theorem

2, applied to the correspondence ζ−1(·), yields a Borel mapping ζ ′ : Image(ζ) → Y

such that ζ ◦ ζ ′ = id. Hence, f := ζ ′ ◦ g satisfies g = ζ ◦ f and f ∈ SΦ.

When (fk)∞k=1 is a sequence of mappings between two topological spaces X and

Y , we denote by Lim((fk)k) : X ⇒ Y the correspondence such that Lim((fk)k)(x) is

the set of all accumulation points of (fk(x))∞k=1, for every x ∈ X. When X and Y are

standard Borel spaces with Y compact, this correspondence has a Borel graph with

nonempty compact values, see [40, Prop. 10.1].

12That is, there is a bounded W ⊆ Rn such that Φ(x) ⊆ W for every x ∈ X.
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Lemma 4 Let (X,P) be a standard Borel measure space, let Y be a compact metriz-

able space, and for each k ∈ N, let fk : X → Y be measurable. Let ζ : Y → Rn be

continuous, and suppose that∫
X

ζ(fk(x))P(dx) −−−→
k→∞

z∗.

Then there is a Borel selector f ∗ : X → Y of Lim((fk)k) such that

z∗ =

∫
X

ζ(f ∗(x))P(dx).

When Y ⊆ Rn and ζ = id, Lemma 4 was proven in, e.g., [25, p. 69], or [4].13

Proof: Denote for simplicity L = Lim((fk)k) and L̂ = Lim((ζ ◦ fk)k). Applying the

result in the restricted case Y ⊆ Rn and ζ = id to the series (ζ ◦fk)k shows that there

is Borel selector g∗ of L̂ such that

z∗ =

∫
X

g∗(x)P(dx).

We claim that14

L̂(x) ⊆ ζ(L(x)), ∀x ∈ X. (18)

Indeed, if y ∈ L̂(x), then there are indices (kl)l∈N such that liml→∞ ζ(fkl(x)) = y.

Letting z be an accumulation point of (fkl(x))l∈N, which exists by compactness and

metrizability of Y , we deduce by the continuity of ζ that z ∈ L(x) and y = ζ(z).

As in the proof of Proposition 1, the correspondence ζ−1 has a Borel graph and

nonempty compact values, and hence so does ζ−1(g∗(·)). Thus, Eq. (18) implies that

for every x ∈ X, ζ−1(g∗(x)) is a nonempty compact subset of L(x). It remains to

apply Theorem 2 to the correspondence ζ−1(g∗(·)).

The following result is a slight generalization of the Measurable “Measurable

Choice” Theorem from [40], adapted to a bounded Borel setting;15 [40] deals with

the case W ⊆ Rn, ζ = id, and B = Y × Z.

13[4] addresses the case where P is non-atomic; the case where P may have atoms follows by passing
to a sequence (fk)

∞
k=1 which converges on atoms, using a diagonalization construction.

14In fact, there is equality in (18). However, we only need this inclusion.
15A similar but weaker result is proven in [2], which only gives an “almost everywhere” type of

selection.
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Theorem 4 Let Y and Z be Borel spaces, and let F be a correspondence from a Borel

set B ⊆ Y × Z to a compact metric space W , with nonempty compact values and a

Borel graph. Let ζ : W → Rn be continuous, and let q be a Borel transition kernel from

Y to Z,16 such that q(By | y) = 1 for each y ∈ Y , where By ≡ {z ∈ Z : (y, z) ∈ B} is

the y-section of B. Define a correspondence F ⋄ : Y ⇒ Rn by

F ⋄(y) ≡

{∫
By

ζ ◦ f(y, z)q(dz | y) : f ∈ SF (y,·)

}
. (19)

Then:

• F ⋄ is bounded, and has nonempty compact values and a Borel graph Gr(F ⋄).

• There is a Borel mapping g : Gr(F ⋄) × Z → Rn such that for each (y, u) ∈
Gr(F ⋄) and each z ∈ By, we have g(y, u, z) ∈ ζ ◦ F (y, z) and

u =

∫
Z

ζ ◦ g(y, u, s)q(ds | y).

Proof: As mentioned, [40] proved the case B = Y × Z (in which case By = Z for

each y ∈ Y ), W ⊆ Rn, and ζ = id. To prove the general case, fix x0 ∈ Rn, and define

F̃ : Y ×Z ⇒ Rn by F̃ = ζ ◦F on B, and F̃ ≡ {x0} outside of B. The argument from

the proof of Proposition 1, together with the fact that q(By | y) = 1 for each y ∈ Y ,

shows that

F ⋄(y) =

{∫
Z

f̃(y, z)q(dz | y) : f̃ ∈ SF̃ (y,·)

}
.

Since W is compact, F ⋄ is bounded, and by Proposition 1, it has nonempty compact

values. By [40], F ⋄ is measurable, and hence the first bullet holds.

By [40] once again, F ⋄ has a Borel selector, i.e., a Borel mapping g̃ : Gr(F ⋄)×Z →
Rn such that g(y, u, z) ∈ F̃ (y, z) for each (y, u) ∈ Gr(F ⋄) and z ∈ Z (and hence

g(y, u, z) ∈ ζ ◦ F (y, z) for z ∈ By), and

u =

∫
Z

g̃(y, u, s)q(ds | y).

By applying the same arguments as in the proof of Lemma 4, there is Borel mapping

ζ ′ : Image(ζ) → W such that ζ ◦ ζ ′ = id. Setting g = ζ ′ ◦ g̃ yields the mapping

indicated in the second bullet.
16A transition kernel is a map from Y to ∆(Z), the space of Borel probability distributions on Z,

such that for each Borel B ⊆ Y , the mapping z → q(B | z) is Borel.
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6.2.2 Conditional Expected Payoffs

Recall that M is a bound on the payoffs in the game. For each i ∈ N , set Pi:n ≡
[−M,M ](n−i+1)×|Ai:n|, so that R(t) ∈ P1:n for every t ∈ T . Each vector ρi:n ∈ Pi:n

corresponds to a vector of payoff functions for the set of players [i : n], where the

players’ actions are (Aj)
n
j=i. For such a vector, we denote by ρj(ai:n) the coordinate

that corresponds to Player j and to the action profile ai:n. The multilinear extension

of ρj is still denoted by ρj, so that

ρj(xi:n) ≡
∑

ai:n∈Ai:n

ρj(ai:n)
n∏

k=i

xk(ak), ∀xi:n ∈ Xi:n.

Denote by Uj(s1:i, ai+1:n | tk) the expected payoff of Player j when players [1 : i]

follow the strategies s1:i and players [i + 1 : n] select the actions ai+1:n, given that

Player k’s type is tk. It will be convenient to denote by

Ui+1:n(s1:i, · | ti+1) ≡
(
Ui+1:n(s1:i, ai+1:n | ti+1)

)
ai+1:n∈Ai+1:n

∈ Pi+1:n

the payoff function of players [i + 1 : n] that is induced by the strategy profile s1:i

and the type ti+1. The multilinear extension of Ui+1:n(s1:i, · | ti+1) is still denoted by

Ui+1:n(s1:i, · | ti+1), and it is a mapping from Xi+1:n to Rn−i.

6.2.3 The Limit of 1
k
-Equilibria: The Operator Ψi

Since information is nested, ti determines ti+1, ti+2, . . . , tn. For convenience, when

j > i and sj is a strategy of Player j, we will sometimes write sj(ti) instead of

sj(κj−1 ◦ κj−2 ◦ · · · ◦ κi(ti)).
Fix a sequence (sk)∞k=1 of strategy profiles such that sk ≡ (sk1, . . . , s

k
n) is a 1

k
-

Bayesian equilibrium, for each k ∈ N, which in turn is guaranteed by the result

obtained in Section 6.1. We would like to prove that an appropriate limit of (sk)∞k=1 is a

Bayesian 0-equilibrium. To this end, we will consider for each i ∈ N the accumulation

points of the sequence
(
ski:n(ti)), Ui:n(sk, · | ti), Ui+1:n(sk, · | κi(ti))

)∞

k=1
, and show that

proper Borel selectors of these correspondences (indexed by i) induce a Bayesian

0-equilibrium.
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Define a correspondence Ψn : Tn ⇒ Xn × Pn by

Ψn(tn) ≡
{

(xn, ρn) ∈ Xn × Pn : (xn, ρn) ∈ Lim
((
skn(tn), Un(sk | tn)

)
k

)}
, (20)

and, for every i < n, define the correspondence Ψi : Ti ×Xi+1:n ×Pi+1:n ⇒ Xi:n ×Pi:n

by

Ψi(ti, xi+1:n, ρi+1:n) ≡ (21){
((xi, xi+1:n), ρ̂i:n) ∈ Xi:n × Pi:n

: ((xi, xi+1:n), ρ̂i:n, ρi+1:n) ∈ Lim
((
ski:n(ti), Ui:n(sk1:i−1, · | ti), Ui+1:n(sk1:i, · | κi(ti))

)
k

)}
.

Note that Ψi may have empty values. This happens, for example, when xi+1:n is not

an accumulation point of (ski+1:n(ti))
∞
k=1. The definition implies that if (x̂i:n, ρ̂i:n) ∈

Ψi(ti, xi+1:n, ρi+1:n), then x̂i+1:n = xi+1:n. The relation between ρ̂i:n and ρi+1:n is more

complex and we will not need it.

The following lemma holds from the definitions and since each Pi is compact.

Lemma 5 For i ∈ N , Ψi has a Borel graph and nonempty compact values.

If (x1:n, ρ̂1:n) ∈ Ψ1(t1, x2:n, ρ2:n), then ρ̂1:n is a vector of payoff functions for all players.

In particular, the j’s coordinate ρ̂j of ρ̂1:n satisfies17

ρ̂j(a) = Uj(a | t1) = Rj(t, a), (22)

for all a ∈ A1:n, where t = (t1, κ1(t1), . . . , κn−1 ◦ · · · ◦ κ2 ◦ κ1(t1)).

6.2.4 Equilibrium Characterization via Ψ1,Ψ2, . . . ,Ψn

In this section we will provide a characterization of Bayesian 0-equilibria in terms of

the mappings Ψ1,Ψ2, . . . ,Ψn.

Lemma 6 For each i ∈ N , P-a.e. ti ∈ Ti, xi+1:n ∈ Xi+1:n, and ρi+1:n ∈ Pi+1:n, if

(xi:n, ρ̂i:n) ∈ Ψi(ti, xi+1:n, ρi+1:n), then

xi ∈ argmax
yi∈Xi

ρ̂i(yi, xi+1:n). (23)

17Below, Uj(a | t1) = Uj(s | t1), where s = (si)i∈N , is the strategy profile in which each player
selects the action ai at all types.
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The expression under the argmax on the right-hand side of (23) is the expected

payoff of Player i under the payoff function ρ̂i when Players [i :n] use mixed actions

yi, xi+1, . . . , xn, respectively. Lemma 6, which follows by continuity arguments, is the

only place in the proof where the fact that sk is a 1
k
-equilibrium, for each k ∈ N, is

directly used.

Proof: Fix a player i < n, ti ∈ Ti, xi+1:n ∈ Xi+1:n, ρi+1:n ∈ Pi+1:n, and ρ̂i:n ∈ Pi:n such

that (xi, ρ̂i:n) ∈ Ψi(ti, xi+1:n, ρi+1:n). By assumption, there is a sequence of indices (kl)

such that

lim
l→∞

(
skli:n(ti), Ui:n(skl1:i−1, ·|ti)

)
= ((xi, xi+1:n), ρ̂i:n).

For each l = 1, 2, . . ., the expected payoff of Player i with type ti, playing mixed

action yi ∈ Xi while the others follow strategy profile skl is,

Ui(s
kl
−i, yi | ti) =

∑
ai∈Ai

∑
ai+1:n∈Ai+1:n

yi(ai) ·
( n∏

j=i+1

sklj (ti)(aj)
)
· Ui(s

kl
1:i−1, ai:n | ti).

Since skl is a 1
kl

-equilibrium, there is a set Ξl ⊆ Ti with P(Ξl) = 0 such that for every

ti /∈ Ξl,

Ui(s
kl
−i, yi | ti) ≤ Ui(s

kl | ti) +
1

kl
,

that is,∑
ai∈Ai

∑
ai+1:n∈Ai+1:n

yi(ai) ·
( n∏

j=i+1

sklj (ti)(aj)
)
· Ui(s

kl
1:i−1, ai:n | ti) (24)

≤ 1

kl
+

∑
ai∈Ai

∑
ai+1:n∈Ai+1:n

skli (ai) ·
( n∏

j=i

sklj (ti)(aj)
)
· Ui(s

kl
1:i−1, ai:n | ti).

Taking l → ∞ gives that for every ti ∈ Ti\
⋃

l∈N Ξl,∑
ai∈Ai

∑
ai+1:n∈Ai+1:n

yi(ai) ·
( n∏

j=i

xj(aj)
)
· ρ̂i(ai:n)

≤
∑
ai∈Ai

∑
ai+1:n∈Ai+1:n

xi(ai) ·
( n∏

j=i

xj(aj)
)
· ρ̂i(ai:n),

and the claim follows. The proof for i = n is similar yet simpler, since in (24) the

inner summations on the two sides are vacuous.
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Corollary 1 Let s ∈ S be a strategy profile. Suppose that for P-almost every tn ∈ Tn

(sn(tn), Un(sn | tn)) ∈ Ψn(tn),

and for each i < n and P-almost every ti ∈ Ti ,(
si:n(ti), Ui:n(s | ti)

)
∈ Ψi

(
ti, si+1:n(ti), Ui+1:n(s | ti+1)

)
. (25)

Then, s is a Bayesian 0-equilibrium.

6.2.5 Selections from (Ψi)i∈N

Recall that κi : Ti → Ti+1 is the mapping that indicates the type of Player i + 1 for

each type of Player i. In particular, κ−1
i (ti+1) ≡ {ti ∈ Ti | κi(ti) = ti+1} is the set of

all types of Player i that are consistent with the type of Player i+ 1.

An element (xi:n, ρi:n) ∈ Xi:n × Pi:n is a pair consisting of a mixed action vector

for players [i :n] and a payoff function for a game restricted to these players. It will

prove convenient to denote, for each j ∈ [i :n], Player j’s payoff in this game by

γj(xi:n, ρi:n) ≡ ρj(xi:n),

and set

γi:n(xi:n, ρi:n) ≡ (γj(xi:n, ρi:n))nj=i.

The next lemma intuitively states that every point (ti, xi:n, ρi+1:n, ρ̂i:n) in the graph

of Ψi can be extended to a point in the graph of Ψi−1.

Lemma 7 Fix i = 2, 3, . . . , n, ti ∈ Ti, xi+1:n ∈ Xi+1:n, and ρi+1:n ∈ Pi+1:n. If

(xi:n, ρ̂i:n) ∈ Ψi(ti, xi+1:n, ρi+1:n), then Ψi−1(ti−1, xi:n, ρ̂i:n) ̸= ∅, for each ti−1 ∈ κ−1
i−1(ti);

For i = n, the terms xi+1:n and ρi+1:n are vacuous. Moreover, there exists a Borel

mapping f : Ti−1 → Xi−1:n × Pi−1:n such that

f(ti−1) ∈ Ψi−1(ti−1, xi:n, ρ̂i:n), ∀ti−1 ∈ κ−1
i−1(ti), (26)

and

ρ̂i:n =

∫
Ti−1

γi:n(f(ti−1))P(dti−1 | ti). (27)
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Eq. (26) states that for any fixed (xi:n, ρ̂i:n), on κ−1
i−1(ti), f(·) is a selector of the

correspondence

ti−1 ⇒ Ψi−1(ti−1, xi:n, ρ̂i:n),

which, by Lemma 5, has a Borel graph and nonempty compact values.

Proof: Suppose that (xi:n, ρ̂i:n) ∈ Ψi(ti, xi+1:n, ρi+1:n). Then there is a sequence of

indices (kl)
∞
l=1 such that

xi:n = lim
l→∞

skli:n(ti) and ρ̂i:n = lim
l→∞

Ui:n(skl , · | ti). (28)

Applying Lemma 4 to X = Ti−1, P(dx) = P(dti−1 | ti), Y = Xi:n × Pi:n, fl(ti) =

(skli:n(ti), Ui:n(skli:n | ti) for each l ∈ N, ζ = γi:n, and z∗ = (xi:n, ρ̂i:n), we conclude that

there is a Borel selector f of the correspondence

ti−1 ⇒ Lim
((
skli−1:n(ti−1), Ui−1:n(skl1:i−1, · | ti−1)

)
l

)
such that (27) holds. Condition (28) implies that

∅ ≠ Lim
((
skli−1:n(ti−1), Ui−1:n(skl1:i−1, · | ti−1)

)
l

)
⊆ Ψi−1(ti−1, xi:n, ρ̂i:n),

which completes the proof.

The next result is a measurable version of Lemma 7.

Lemma 8 For each i = 2, . . . , n, there is a mapping fi−1 : Ti−1 ×Gr(Ψi) → Xi−1:n ×
Pi−1 such that for each (ti, xi+1:n, ρi+1:n, xi:n, ρ̂i:n) ∈ Gr(Ψi),

fi−1(ti−1, ti, xi:n, ρi+1:n, ρ̂i:n) ∈ Ψi−1(ti−1, xi:n, ρ̂i:n) , ∀ti−1 ∈ κ−1
i−1(ti), (29)

and

ρ̂i:n =

∫
Ti−1

γi:n
(
fi−1(ti−1, ti, xi:n, ρi+1:n, ρ̂i:n)

)
P(dti−1 | ti). (30)

For i = n, in both (29) and (30) the term ρi+1:n is vacuous.

Remark 9 (Dependence of f on ρi+1:n) The dependence of f on ρi+1:n seems

superfluous, but may be indispensable. This dependence parallels the dependence of

the equilibria in stochastic games on the previous state and on the current state, whose

existence was proved by [41] using the Measurable “Measurable Choice” Theorem of

[40].
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Remark 10 By the properties of Ψi−1, if

(x̃i−1:n, ρ̃i−1:n) = fi−1(ti−1, ti, xi:n, ρi+1:n, ρ̂i:n),

then x̃i:n = xi:n. Later we will make use of this observation.

Proof of Lemma 8: Fix i = 2, . . . , n, and apply Theorem 4 with the following

parameters:

• Y = Gr(Ψi).

• Z = Ti−1.

• B =
{

(ti−1, ti, xi+1:n, ρi+1:n, xi:n, ρ̂i:n) ∈ Z × Y | ti = κi−1(ti−1)
}

.

• q(ti−1 | ti, xi+1:n, ρi+1:n, xi:n, ρ̂i:n) = P(ti−1 | ti).

• W = Xi−1:n × Pi−1:n.

• ζ is the evaluation map γi:n on Xi−1:n × Pi−1:n.

• F is defined on B by F (ti−1, ti, xi+1:n, ρi+1:n, xi:n, ρ̂i:n) ≡ Ψi−1(ti−1, xi:n, ρ̂i:n).

• F ⋄ : Y → Pi:n as defined in (19).

By Theorem 4, there is a Borel mapping g : Gr(F ⋄) × Ti−1 → Xi−1:n × Pi−1:n such

that for every y = (ti, xi+1:n, ρi+1:n, xi:n, ρ̂i:n) ∈ Y = Gr(Ψi), every u ∈ F ⋄(y), and

every ti−1 ∈ κ−1
i−1(ti), we have

g(y, u, ti−1) ∈ F (ti−1, y) = Ψi−1(ti−1, xi:n, ρ̂i:n),

and

u =

∫
Ti−1

γi:n
(
g(y, u, ti−1)

)
P(dti−1 | ti).

It follows from Lemma 7 that for any y = (ti, xi+1:n, ρi+1:n, xi:n, ρ̂i:n) ∈ Y , noting

that By = κ−1
i−1(ti) and hence P(By | ti) = 1, there is f : Ti−1 → Pi−1:n such that f |By

is a Borel selector of ti−1 → F (ti−1, ti, xi+1:n, ρi+1:n, xi:n, ρ̂i:n) = Ψi−1(ti−1, xi:n, ρ̂i:n)

and such that (27) holds, which means that

ρ̂i:n ∈ F ⋄(ti−1, ti, xi+1:n, ρi+1:n, xi:n, ρ̂i:n).
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Defining fi−1 : Ti−1 × Gr(Ψi) → Xi−1:n × Pi−1:n by

fi−1

(
ti−1, ti, xi:n, ρi+1:n, ρ̂i:n

)
≡ g

(
(ti, xi+1:n, ρi+1:n, xi:n, ρ̂i:n), ρ̂i:n, ti−1

)
,

yields the desired result.

6.2.6 Construction of a Bayesian 0-Equilibrium

In this section we define a strategy profile s∗ = (s1∗, . . . , s
n
∗ ), and prove that it is a

Bayesian 0-equilibrium.

For any set A, denote by πA the projection map to A. Let fn−1, . . . , f1 be the

mappings given by Lemma 8. Define mappings (gi)
n
i=1 recursively (backwards) as

follows.

• Let gn : Tn → Xn × Pn be a Borel selector of Ψn, which exists by Theorem 2

(recall that Ψn depends only on the type of Player n). Define

s∗n ≡ πXn ◦ gn. (31)

• For i = 2, . . . , n, assuming that we have already defined mappings (gj)
n
j=i, let

gi−1 : Ti−1 → Xi−1:n × Pi−1:n be defined by

gi−1(ti−1) ≡ fi−1

(
ti−1, κi−1(ti−1), s

∗
i:n(κi−1(ti−1)), πPi+1:n

◦gi+1(κi(κi−1(ti−1))), πPi:n
◦gi(κi−1(ti−1))

)
,

(32)

where the penultimate argument is vacuous when i = n− 1, and set

s∗i−1 ≡ πXi−1
◦ gi−1. (33)

For i = 1, . . . , n− 1, the mapping gi is well defined provided(
κi−1(ti−1), s

∗
i+1:n(κi−1(ti−1)), πPi+1:n

◦gi+1(κi(κi−1(ti−1))), s
∗
i:n(κi−1(ti−1)), πPi:n

◦gi(κi−1(ti−1))
)

always lies in Gr(Ψi). The next lemma states that this is indeed the case.

Lemma 9 The mappings (gi)
n−1
i=1 are well defined.
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Proof: Denote ti = κi−1(ti−1). We will prove that for each ti−1 ∈ Ti−1,(
ti, s

∗
i+1:n(ti), πPi+1:n

◦ gi+1(κi(ti)), s
∗
i:n(ti), πPi:n

◦ gi(ti)
)
∈ Gr(Ψi), (34)

and

s∗i:n(ti) = πXi:n
◦ gi(ti). (35)

Note the slight difference between (33) and (35): in the former we set s∗j(tj) to be

πXj
◦ gj(tj), while the latter claims that s∗j(tj) = πXj

◦ gi(ti) for each j ≥ i; by

construction, using Remark 10, these agree.

We prove (34) and (35) by induction, starting with i = n. In this case, (35) holds

by (31). Moreover, the left-hand side in (34) becomes(
tn, s

∗
n(tn), πPn ◦ gn(tn)

)
=

(
tn, πXn ◦ gn(tn), πPn ◦ gn(tn)

)
=

(
tn, gn(tn)

)
,

which lies in Gr(Ψi) since gn is a selector of Ψn.

Let now i ∈ [1 :n− 1], and assume by induction that (34) and (35) hold for i+ 1.

By (29), (32), and the induction hypothesis,

gi(ti) ∈ Ψi

(
ti, s

∗
i+1:n(ti+1), πPi+1:n

◦ gi+1(ti+1)
)
, (36)

where ti+1 = κi(t
i). It follows from the properties of Ψi — or from Remark 10

and the definition of gi in (32) — that πXi+1:n
(gi(ti)) = s∗i+1:n(ti+1). By definition,

s∗i (t
i) = πXi

(gi(t
i)). Putting these together shows that (35) holds for i. Once we

proved that (35) holds for i, we have

(s∗i:n, πPi:n
◦ gi(ti)) = (πXi:n

◦ gi(ti), πPi:n
◦ gi(ti)) = gi(ti).

Hence, the left-hand side in (34) becomes(
ti, s

∗
i+1:n(ti+1), πPi+1:n

◦ gi+1(κi(ti)), gi(ti)
)
.

By the induction hypothesis (36), this element is in Gr(Ψi), as required.

The next result relates Ui:n(s∗, · | ti) to gi(ti).

Lemma 10 For each i ∈ N and each ti ∈ Ti,

Ui:n(s∗, · | ti) = πPi:n
◦ gi(ti). (37)
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Proof: We prove the claim by induction on i. We start with i = 1. By (32) and

(29), for each t1 ∈ T1,

g1(t1) ∈ Ψ1

(
t1, s

∗
2:n(t1), πP2:n ◦ g2(κ1(t1))

)
,

which, by (22), implies the result for i = 1.

Fix now i > 1, and suppose the claim holds for i− 1. For each ti ∈ Ti,

Ui:n(s∗, · | ti) =

∫
Ti−1

γi:n
(
s∗i−1:n(ti−1), Ui−1:n(s∗1:i−1, · | ti−1)

)
P(dti−1 | ti) (38)

=

∫
Ti−1

γi:n
(
s∗i−1(ti−1), πPi−1:n

◦ gi−1(ti−1)
)
P(dti−1 | ti) (39)

=

∫
Ti−1

γi:n
(
gi−1(ti−1)

)
P(dti−1 | ti) (40)

=

∫
Ti−1

γi:n

(
fi−1

(
ti−1, ti, s

∗
i:n(ti), πPi:n

◦ gi(ti), πPi+1:n
◦ gi+1(κi(ti))

))
P(dti−1 | ti)

(41)

= πPi:n
◦ gi(ti), (42)

where (38) holds since information is nested, (39) holds by the induction hypothesis,

(40) holds by (35), (41) holds by (32), and (42) holds by (30).

We can now conclude the proof of Theorem 1.

Lemma 11 s∗ is a Bayesian 0-equilibrium.

Proof: Fix i ∈ N and ti ∈ Ti. Then(
s∗i (ti), Ui:n(s∗ | ti)

)
= gi(ti) ∈ Ψi

(
ti, s

∗
i+1:n(ti), πPi+1

◦ gi+1(κi(ti))
)

= Ψi

(
ti, s

∗
i+1:n(ti), Ui+1:n(s∗ | κi(ti))

)
,

where the first equality holds by (35) and Lemma 10, the inclusion holds by (32)

and (29), and the second equality holds by Lemma 10. Corollary 1 now implies that

s∗ is a Bayesian 0-equilibrium.
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7 Extensions

In Remark 5 we mentioned extensions of Theorem 1 to compact metric action spaces

and to tree-like information structure.

In this section, we elaborate on these extensions.

7.1 Compact metric action spaces

Consider Bayesian games where for each player i ∈ N , (a) the action space Ai

is compact metric, and (b) the payoff function is continuous over A for each type

and integrable, namely, E
[
maxa∈A

∣∣Ri(a)
∣∣] < ∞. In this model, the existence of a

Harsanyi ε-equilibrium can be established as follows. Since payoffs are integrable,

there are M > 0 and T ′ ⊆ T such that maxa∈A |Ri(t, a)| ≤ M for each t ∈ T ′, and

E
[
1T \T ′ maxa∈A

∣∣Ri(a)
∣∣] ≤ ε

2
. Define a revised game Γ′ with payoffs agreeing with

R in T ′ and 0 otherwise. Then for any δ > 0, a Harsanyi δ-equilibrium of Γ′ is a

Harsanyi (δ + ε)-equilibrium of Γ.

Once this reduction is made, a Scorza-Dragoni type theorem – see Footnote 4 –

shows that there is a set of types T ′′ ⊆ T ′ such that P(T ′′) ≥ 1− ε and the family of

functions (R(t, ·))t∈T ′′ is uniformly equicontinuous. We can thus let Γ′′ be the game

with type space T ′′ and with action spaces (A′
i)i∈N that are finite subsets of (Ai)i∈N ,

respectively, such that for each Player i and each t ∈ T ′′, the family of functions

(Ri(t, ai, ·))ai∈A′
i

on
∏

j ̸=i Ai is ε-uniformly dense in (Ri(t, ai, ·))ai∈Ai
. A Bayesian 0-

equilibrium of Γ′′ can then be shown to be a Harsanyi 2(M + 1)ε-equilibrium of Γ′,

which is a Harsanyi (2M +3)ε-equilibrium of Γ. Such a Bayesian 0-equilibrium exists

by virtue of Theorem 1.

In a subsequent paper we strengthen this result and establish the existence of an

ε-Bayesian equilibrium in this model.

7.2 Tree-like information

In our model, the players are ordered, and each player knows the types of all the

players who follow her in that order. In some set ups, like in hierarchical organi-

zations, the information structure is tree-like; that is, the players are vertices of a
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tree, and each player i knows the types of all her descendants, denoted D(i). That

is, for each i ∈ N there exists a measurable mapping κi : Ti 7→
∏

j∈D(i) Tj such that

P
((

(tj)j∈D(i)

)
= κi(ti)

)
= 1.

Denote by D(i) the lineage set of Player i, namely, the set that includes the ances-

tors of i, the descendants of i, and i herself. We here explain how to extend our result

to Bayesian games with tree-like information structure, provided the payoff of each

player is affected only by the types and actions of the players in D(i). Specifically, we

explain how to generalize the two steps of the proof: The existence of ε-equilibrium,

which was demonstrated in Section 6.1, and the existence of 0-equilibrium, which was

demonstrated in Section 6.2.

For the former, note that there is at least one i ∈ N such that D(i) = ∅, because

N is finite. In the notation of Section 6.1, for each i such that D(i) = ∅, define

ψi(t) ≡ (Rj(t))j∈D(i), and let φi(t) be a δ-approximation of P(ψi | ti). Recursively,

for each i ∈ N for which φj has already been defined for every j ∈ D(i), denote

ψi(ti) ≡
(

(φj)j∈D(i) , (Rj)j∈D(i)

)
, and let φi be a δ-approximation of P(ψi | ti).

The auxiliary game with a finite type space Γ′ is defined by setting Player i’s type

to τi ≡ (φi, (φj)j∈D(i)), and the probability measure in that game is the push-forward

measure of (τi)i∈N with respect to P.

The proof that Γ′ admits a Bayesian 0-equilibrium, that this Bayesian 0-equilibrium

induces a Bayesian ε-equilibrium in Γ, are analogous to those given in Section 6 for

Bayesian games with nested information.

The construction of a Bayesian 0-equilibrium from a sequence of Bayesian 1
k
-

equilibria also follows via a similar modification to the construction carried out in

Section 6.2: The construction of an equilibrium strategy profile, which had been car-

ried recursively from the least knowledgeable player towards the most knowledgeable

players in the nested-information model, is now carried out beginning with those

players i ∈ N for whom D(i) = ∅, and then recursively for those players i ∈ N for

whom the equilibrium strategy has already been defined for all j ∈ D(i). The rele-

vant construction remains well-defined by virtue of our assumption that each player’s

payoff depends only on action of players in their lineage.

We note that every Bayesian game Γ (without necessarily nested information) can
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be presented as a Bayesian game Γ′ with a tree-like information structure; however,

this representation cannot always be done in a way which guarantees that each players’

payoff depends only on players in their lineage. Indeed, denoting by N the set of

players in Γ, we can define Γ′ with set of players N ∪ {∗}, where player ∗ knows the

types of all players in N and has a single action (so she is a dummy player), and

each player in N knows only her own type. As mentioned above, there are examples

of Bayesian games without Bayesian 0-equilibria and Bayesian ε-equilibria. In these

examples, the payoff of each player depends on the actions of the other players in N .

Hence, without the requirement that the payoff of each player only depends on the

actions of the players in her lineage, games with tree-like information structure need

not admit Bayesian 0-equilibria and Bayesian ε-equilibria.
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