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S1 Analysis in Section 6

S1.1 Equilibrium System

As in Section 5, we derive the equilibrium system in four steps.

Step 1. Derive the Wold representation for the signal system under Assumption

3. Given the AR(1) processes for at and ut, the signal representation follows

Xit = H(L)ηit ≡




1
1−ρaL

1 0

π1(L)(
1−π2(L)

)(
1−ρaL

) 0 1(
1−π2(L)

)(
1−ρuL

)






ǫat
ǫit
ǫut


 , (S1.1)

and so the spectral density for the signal is

Sx(z) = H(z)ΣηH(z−1)⊺ =




σ2
a

(1−ρaz)(1−ρaz
−1)

+ σ2
i

π1(z−1)
1−π2(z−1)

1
(1−ρaz)(1−ρaz

−1)
σ2
a

π1(z)
1−π2(z)

1
(1−ρaz)(1−ρaz

−1)
σ2
a

π1(z)π1(z
−1)

(1−ρaz)(1−ρaz−1)
σ2
a+

σ2
u

(1−ρuz)(1−ρuz−1)

(1−π2(z))(1−π2(z−1))


 .

Using the method presented in Appendix S3, we can first factorize the spectral density

in a lower triangular form

Γ̃(z) =




σw
z−λw

1−ρaz
0

σ2
a

σw

π1(z)z
(1−π2(z))(1−λwz)(1−ρaz)

1
σw

π̃1(z)
1−π2(z)

1−ρaz
1−λwz


 ,

where the constants λw ∈ (0, 1) and σw are determined by the univariate spectral

factorization of the first signal ait in the frequency domain,

σ2
w

(1− λwz)(1 − λwz
−1)

(1− ρaz)(1 − ρaz
−1)

=
σ2
a

(1− ρaz)(1 − ρaz
−1)

+ σ2
i .
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It follows that

σ2
w(1− λwz)(1− λwz

−1) = σ2
a + σ2

i (1− ρaz)(1 − ρaz
−1).

Matching coefficients on the two sides of the equality yields

λw =
1

2ρa

[(
1 + τ + ρ2a

)
−
√
τ 2 + 2τ + 2τρ2a + 1− 2ρ2a + ρ4a

]
,

and σ2
w =

ρaσ
2
i

λw
. Here τ ≡ σ2

a/σ
2
i ∈ (0,∞) denotes the relative volatility of the aggregate

shock to the idiosyncratic shock. It is easy to verify that 0 < λw < ρa < 1 and

limσi→∞ λw = ρa.

Define the function π̃1(z) by the following equation

π̃1(z)π̃1(z
−1) =

π1(z)π1(z
−1)σ2

aσ
2
i

(1− ρaz)(1 − ρaz
−1)

+
(1− λwz)(1− λwz

−1)σ2
uσ

2
w

(1− ρaz)(1 − ρaz
−1)(1− ρuz)(1− ρuz

−1)
.

(S1.2)

A stationary equilibrium requires that the endogenous function π1 ∈ H2 (D). It is

then clear that the right-hand side of equation (S1.2) is a well-defined spectral density

supported by a stationary process. Then by the Paley-Wiener Theorem (e.g. Lindquist

and Picci, 2015, Theorem 4.4.1), there exists a Wold spectral factor π̃1(z) ∈ H2 (D)

that satisfies the factorization (S1.2). Using a similar argument, we can show that the

function π̃1(z)
1−π2(z)

∈ H2 (D). Hence, the matrix Γ̃(z) is a valid spectral factor in H2 (D)

that satisfies Sx(z) = Γ̃(z) Γ̃⊺(z−1). The determinant of Γ̃(z) is given by

det Γ̃(z) =
π̃1(z)

1− π2(z)

z − λw
1− λwz

.

As in Section 5, we restrict our attention to the equilibrium such that π̃1(z)
1−π2(z)

has no

roots in the open unit disk. To derive the wold fundamental representation, we need

to remove the root at z = λw ∈ (0, 1). Using the Blaschke matrix B (z) in Step 2 of

Appendix S3, we set

Γ(z) = Γ̃(z)V −1B(z),

where

V =



√

h2

1+h2

√
1

1+h2√
1

1+h2 −
√

h2

1+h2


 =

[
V11 V12
V12 V22

]
, B(z) =

[
1 0
0 1−λwz

z−λw

]
.

Here the constant

h ≡
π1(λw)λwσ

2
a

π̃1(λw)(1− ρaλw)
2
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is endogenous and will be determined in equilibrium. The unitary matrix V is sym-

metric and satisfies V = V ⊺ = V −1, and det V = −1. We then obtain the Wold

fundamental matrix

Γ(z) =



σw

z−λw

1−ρaz
V11 σw

1−λwz
1−ρaz

V12

Γ
(1)
π (z) Γ

(2)
π (z)


 ,

where we define

Γ(1)
π (z) ≡

σ2
a

σw

π1(z)z

(1− π2(z))(1 − λwz)(1− ρaz)
V11 +

1

σw

π̃1(z)

1− π2(z)

1− ρaz

1− λwz
V12,

Γ(2)
π (z) ≡

σ2
a

σw

π1(z)z

(1− π2(z))(z − λw)(1− ρaz)
V12 +

1

σw

π̃1(z)

1− π2(z)

1− ρaz

z − λw
V22.

We compute that

Γ−1(z) =




G1(z)
σ2
a

σw

π1(z)
π̃1(z)

+G2(z)
1
σw

−1−π2(z)
π̃1(z)

σwG3(z)

−
[
G4(z)

σ2
a

σw

π1(z)
π̃1(z)

+G5(z)
1
σw

]
1−π2(z)
π̃1(z)

σwG6(z)


 ,

where we define

G1(z) = −V12
z

(z − λw)(1− ρaz)
, G2(z) = −V22

1− ρaz

z − λw
,

G3(z) = −V12
1− λwz

1− ρaz
, G4(z) = −V11

z

(1− λwz)(1 − ρaz)
,

G5(z) = −V12
1− ρaz

1− λwz
, G6(z) = −V11

z − λw
1− ρaz

.

Note that all G1(z), ..., G6 (z) are independent of the endogenous price signal except

for the constant in V . We also define the following functions that will be repeatedly

used later:

Γ
(1)
I (z) = G1(z)

σ2
a

σw

π1(z)

π̃1(z)
+G2(z)

1

σw
, Γ

(3)
I (z) ≡ σwG3(z)

π1(z)

π̃1(z)

Γ
(2)
I (z) = G4(z)

σ2
a

σw

π1(z)

π̃1(z)
+G5(z)

1

σw
, Γ

(4)
I (z) ≡ σwG6(z)

π1(z)

π̃1(z)
.

By the Paley-Wiener Theorem and the fact that π̃1(z) is analytic in the open unit disk

and Wold fundamental, these functions are analytic in the open unit disk.17

Step 2. Solve for the equilibrium quantities. We conjecture that yit = My(L)ηit,

where My(z) =
[
Ma

y (z),M
i
y(z),M

u
y (z)

]
and Ma

y (z), M
i
y (z) , and Mu

y (z) are all in

17Sayed and Kailath (2001) summarized the property of the Wold fundamental matrix implied by
the Paley-Wiener theorem.
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H2 (D) . Aggregation leads to aggregate output yt = My(z)Iyηit, where Iy is defined

earlier. Using the Wiener-Hopf prediction formula, we derive that

Eit [yt] =
[
ψ(1)

y (L) ψ(2)
y (L)

]
+
Γ−1(L)H(L)ηit,

in terms of innovations, where the z-transform of the operator ψy =
[
ψ(1)

y ψ(2)
y

]
is

given by

ψy (z) = z−1Syx(z)
(
Γ−1(z−1)

)⊺
. (S1.3)

The annihilation is given by
[
ψ(1)

y (z)
]
+
= ψ(1)

y (z)−P
(1)
y (z) and

[
ψ(2)

y (z)
]
+
= ψ(2)

y (z)−

P
(2)
y (z), where P

(1)
y (z) and P

(2)
y (z) denote the negative powers of z in the Laurent

series expansions of ψ(1)
y (z) and ψ(2)

y (z) , respectively. There are no explicit formulas

for P
(1)
y (z) and P

(2)
y (z) in general.

Using (S1.3), yt =My(z)Iyηit, and the cross-spectrum

Syx =My(z)IyΣηH
⊺(z−1) =

[
Ma

y , 0,M
u
y

]


σ2
a

σ2
u

σ2
u







1
1−ρaz

−1

π1(z−1)
(1−π2(z−1))(1−ρaz

−1)

1 0
0 1

(1−π2(z−1))(1−ρuz
−1)


 ,

we can derive

ψ(1)
y (z) =Ma

y (z)σ
2
aA

(1)
n (z)−Mu

y (z)σ
2
uA

(2)
n (z); ψ(2)

y (z) = −Ma
y (z)σ

2
aA

(3)
n (z) +Mu

y (z)σ
2
uA

(4)
n (z),

where we define

A(1)
n (z) =

1

1− ρaz
−1

[
Γ
(1)
I (z−1)− Γ

(3)
I (z−1)

]
; A(2)

n (z) =
1

1− ρuz
−1

1

π1 (z−1)
Γ
(3)
I (z−1),

A(3)
n (z) =

1

1− ρaz
−1

[
Γ
(2)
I (z−1)− Γ

(4)
I (z−1)

]
; A(4)

n (z) =
1

1− ρuz
−1

1

π1 (z−1)
Γ
(4)
I (z−1).

Substituting the preceding expression for Eit [yt] into (25) and matching coefficients

for ηit, we obtain

Ma
y (z) =

1

ξ

1

1− ρaz
+

1

1− ρaz

[
G(1)

y (z)− A(1)
y (z) +G(2)

y (z)− A(2)
y (z)

]
θ, (S1.4)

M i
y(z) =

1

ξ
+
[
G(1)

y (z)− A(1)
y (z)

]
θ, (S1.5)

Mu
y (z) =

1

1− ρuz

θ

π1(z)

[
G(2)

y (z)− A(2)
y (z)

]
, (S1.6)

where we define

G(1)
y (z) = ψ(1)

y (z)Γ
(1)
I (z)− ψ(2)

y Γ
(2)
I (z); A(1)

y (z) = P (1)
y (z)Γ

(1)
I (z)− P (2)

y Γ
(2)
I (z),

G(2)
y (z) = ψ(2)

y (z)Γ
(4)
I (z)− ψ(1)

y (z)Γ
(3)
I (z); A(2)

y (z) = P (2)
y (z)Γ

(4)
I (z)− P (1)

y Γ
(3)
I (z).
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Here Γ
(1)
I (z), ...,Γ

(4)
I (z) are defined earlier.

Using equations (S1.4) and (S1.6) and the definition of G
(1)
y (z) and G

(2)
y (z) , we

can derive that


Q1(z) Q2(z)

Q3(z) Q4(z)





Ma

y (z)

Mu
y (z)


 =




1
ξ
− A

(1)
y (z)θ − A

(2)
y (z)θ

−A
(2)
y (z)θ


 , (S1.7)

where we define

Q1(z) = (1− ρaz)− θσ2
aHa(z); Q2(z) = θσ2

uHu(z),

Q3(z) = θσ2
aHd(z); Q4(z) = (1− ρuz)π1(z)− θσ2

uHc(z),

and

Ha(z) = A(1)
n (z)

(
Γ
(1)
I (z)− Γ

(3)
I (z)

)
+ A(3)

n (z)
(
Γ
(2)
I (z)− Γ

(4)
I (z)

)
,

Hu(z) = A(2)
n (z)

(
Γ
(1)
I (z)− Γ

(3)
I (z)

)
+ A(4)

n (z)
(
Γ
(2)
I (z)− Γ

(4)
I (z)

)
,

Hc(z) = A(4)
n (z)Γ

(4)
I (z) + A(2)

n Γ
(3)
I (z),

Hd(z) = A(3)
n (z)Γ

(4)
I (z) + A(1)

n Γ
(3)
I (z).

Once π1 (z) and π2 (z) are known, we can use the system (S1.7) to determine Ma
y (z)

and Mu
y (z) . Equation (S1.5) then determines M i

y (z) .

As in the proof of Theorem 2, we deduce that dt =Md (L) ηit, nit =Mn (L) ηit, and

bit =Mb (L) ηit, where

Md (z) =

[
1

α6

(
1−

α7

α

)
Ma

y (z) +
α7

αα6

1

1− ρaz
, 0,

1

α6
(1−

α7

α
)Mu

y (z)

]
,(S1.8)

Mn (z) =
1

α

[
Ma

y (z)−
1

1− ρaz
, M i

y(z)− 1, Mu
y (z)

]
, (S1.9)

Mb (z) = α4Md(z) + α5Mn(z). (S1.10)

Each component of these vectors is in H2 (D).

Step 3. We proceed to the financial side of the model. We need to compute

several conditional expectations for χit in (39). First, we use the Wiener-Hopf formula

to derive

α3Eit

[
shit+2

]
= α3 [ψs (L)]+ Γ−1(L)Xit,

where the z-transform of the operator ψs is given by ψs (z) = z−1Ssx(z) (Γ
−1(z−1))

⊺
,

and

α3

[
ψ(1)

s (z)
]
+
= α3ψ

(1)
s (z)− P (1)

s (z); α3

[
ψ(2)

s (z)
]
+
= α3ψ

(2)
s (z)− P (2)

s (z).
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Here P
(1)
s (z) and P

(2)
s (z) denote the negative powers of z in the Laurent series expan-

sions of α3ψ
(1)
s (z) and α3ψ

(2)
s (z), respectively. It follows that

α3

[
ψ(1)

s (z), ψ(2)
s (z)

]
+
Γ−1(z) =

[
G(1)

s (z)− A(1)
s (z),

1− π2(z)

π1(z)

(
G(2)

s (z)− A(2)
s (z)

)]
,

where

G(1)
s (z) = σ2

i z
−1α3M

i
s(z)

[
Γ
(1)
I (z)Γ

(1)
I (z−1) + Γ

(2)
I (z)Γ

(2)
I (z−1)

]
,

G(2)
s (z) = σ2

i z
−1α3M

i
s(z)

[
−Γ

(3)
I (z)Γ

(1)
I (z−1)− Γ

(4)
I (z)Γ

(2)
I (z−1)

]
,

and

A(1)
s (z) = P (1)

s (z)Γ
(1)
I (z)− P (2)

s (z)Γ
(2)
I (z); A(2)

s (z) = P (2)
s (z)Γ

(4)
I (z)− P (1)

s (z)Γ
(3)
I (z).

It is easy to verify that Lemma 3 continues to hold, which implies

G(1)
s (z) = σ2

i

1− λs
z(1− λsz)

π1(z)
[
Γ
(1)
I (z)Γ

(1)
I (z−1) + Γ

(2)
I (z)Γ

(2)
I (z−1)

]
,

G(2)
s (z) = σ2

i

1− λs
z(1− λsz)

π1(z)
[
−Γ

(3)
I (z)Γ

(1)
I (z−1)− Γ

(4)
I (z)Γ

(2)
I (z−1)

]
.

Second, the Wiener-Hopf formula gives

Eit [qt+1] =
[
ψq (L)

]
+
Γ−1(L)Xit,

where the z-transform of the operator ψq is given by

ψq (z) =
1

z

[
0, 1

]
Sx(z)

(
Γ−1

(
z−1
))⊺

=
1

z

[
0, 1

]
Γ(z) = z−1

[
Γ
(1)
π (z) Γ

(2)
π (z)

]
,

where Γ
(1)
π (z) and Γ

(2)
π (z) are defined earlier. Since z = 0 is the only inside pole of

ψq (z), it follows from the lemma in Appendix A of Hansen and Sargent (1980) that

[
ψq (L)

]
+
Γ−1(z) = z−1 [0 1]− Pq (z) Γ

−1(z),

where

Pq (z) = z−1
[

1
σw

π̃1(0)
1−π2(0)

V12,
1
σw

π̃1(0)
1−π2(0)

(
− 1

λw

)
V22

]
.

Thus

Eit [qt+1] = −z−1 1

σw

π̃1(0)

1− π2(0)

[
V12Γ

(1)
I (z) +

1

λw
V22Γ

(2)
I (z)

]
ait

+z−1 1

σw

π̃1(0)

1− π2(0)

[
V12Γ

(3)
I (z) +

1

λw
V22Γ

(4)
I (z)

]
1− π2(z)

π1(z)
qt.
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Third, the Wiener-Hopf formula gives

Eit [dt+1] = [ψd (L)]+ Γ−1(L)Xit,

where the z-transform of the operator ψd is given by

ψd (z) =
[
ψ

(1)
d (z), ψ

(2)
d (z)

]
= z−1Sdx(z)

(
Γ−1(z−1)

)⊺
,

and
[
ψ

(1)
d (z)

]
+
= ψ

(1)
d (z) − P

(1)
d (z),

[
ψ

(2)
d (z)

]
+
= ψ(2)

s (z) − P
(2)
d (z). Here P

(1)
d (z) and

P
(2)
d (z) denote the negative powers of z in the Laurent series expansions of ψ

(1)
d (z) and

ψ
(2)
d (z), respectively. As in Step 2 we can compute that

ψ
(1)
d (z) = z−1

[
Ma

d (z)A
(1)
n (z)σ2

a −Mu
d (z)A

(2)
n (z)σ2

u

]
,

ψ
(2)
d (z) = z−1

[
−Ma

d (z)A
(3)
n (z)σ2

a +Mu
d (z)A

(4)
n (z)σ2

u

]
.

It follows that

Eit [dt+1] =

[
G

(1)
d (L)− A

(1)
d (L),

1− π2(z)

π1(z)

(
G

(2)
d (L)−A

(2)
d (L)

)]
Xit,

where

G
(1)
d (z) = ψ

(1)
d (z)Γ

(1)
I (z)− ψ

(2)
d Γ

(2)
I (z); G

(2)
d (z) = ψ

(2)
d (z)Γ

(4)
I (z)− ψ

(1)
d (z)Γ

(3)
I (z),

and

A
(1)
d (z) = P

(1)
d (z)Γ

(1)
I (z)− P

(2)
d (z)Γ

(2)
I (z); A

(2)
d (z) = P

(2)
d (z)Γ

(4)
I (z)− P

(1)
d (z)Γ

(3)
I (z).

Finally, the Wiener-Hopf formula gives

Eit [∆bit+1] = [ψb (L)]+ Γ−1(L)Xit,

where the z-transform of the operator ψb is given by

ψb (z) =
[
ψ

(1)
b (z), ψ

(2)
b (z)

]
= z−1(z − 1)Sbx(z)

(
Γ−1(z−1)

)⊺
,

and
[
ψ

(1)
b (z)

]
+
= ψ

(1)
b (z) − P

(1)
b (z),

[
ψ

(2)
b (z)

]
+
= ψ

(2)
b (z) − P

(2)
b (z). Here P

(1)
b (z) and

P
(2)
b (z) denote the negative powers of z in the Laurent series expansions of ψ

(1)
b (z) and

ψ
(2)
b (z), respectively. It follows that

[
ψ

(1)
b (z), ψ

(2)
b (z)

]
+
Γ−1(z) =

[
G

(1)
b (z)− A

(1)
b (z),

1− π2(z)

π1(z)

(
G

(2)
b (z)−A

(2)
b (z)

)]
,
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where

G
(1)
b (z) = ψ

(1)
b (z)Γ

(1)
I (z)− ψ

(2)
b Γ

(2)
I (z); G

(2)
b (z) = ψ

(2)
b (z)Γ

(4)
I (z)− ψ

(1)
b (z)Γ

(3)
I (z),

and

A
(1)
b (z) = P

(1)
b (z)Γ

(1)
I (z)− P

(2)
b (z)Γ

(2)
I (z); A

(2)
b (z) = P

(2)
b (z)Γ

(4)
I (z)− P

(1)
b (z)Γ

(3)
I (z).

As in Step 2 we can also derive that

ψ
(1)
b (z) = z−1(z − 1)

[
Ma

b (z)A
(1)
n (z)σ2

a −Mu
b (z)A

(2)
n (z)σ2

u + Γ
(1)
I (z−1)M i

b(z)σ
2
i

]
,

ψ
(2)
b (z) = z−1(z − 1)

[
−Ma

b (z)A
(3)
n (z)σ2

a +Mu
b (z)A

(4)
n (z)σ2

u − Γ
(2)
I (z−1)M i

b(z)σ
2
i

]
.

Step 4. Derive the equilibrium system for π1 (z) and π2 (z) . By Step 3 we obtain

an expression for χit. Matching coefficients of Xit = [ait, qt]
⊺ with those in (40), we

obtain the following equilibrium conditions for π1 (z) and π2 (z) :

π1(z) =
(1− λs)

z(1 − λsz)

[
Γ
(1)
I (z)Γ

(1)
I (z−1) + Γ

(2)
I (z)Γ

(2)
I (z−1)

]
σ2
iπ1(z)−A

(1)
s (z)+

R(1)(z)

z(1 − λsz)
,

(S1.11)

and

π2(z) =
1− π2(z)

z(1− λsz)π1(z)

{
(λs − 1)

[
Γ
(1)
I (z−1)Γ

(3)
I (z) + Γ

(2)
I (z−1)Γ

(4)
I (z)

]
σ2
iπ1(z)

−z(1 − λsz)A
(2)
s (z) +R(2)(z)

}
+ z−1β, (S1.12)

where R(1)(z) and R(2)(z) are defined as

R(1)(z) =

{
− β

1

σw

π̃1(0)

1− π2(0)
z−1

(
V12Γ

(1)
I (z) +

1

λw
V22Γ

(2)
I (z)

)

+ (1− β)
[
G

(1)
d (z)− A

(1)
d (z)

]
+
[
G

(1)
b (z)− A

(1)
b (z)

]}
z(1− λsz)

and

R(2)(z) =

{
β

1

σw

π̃1(0)

1− π2(0)
z−1

(
V12Γ

(3)
I (z) +

1

λw
V22Γ

(4)
I (z)

)

+ (1− β)
[
G

(1)
d (z)−A

(1)
d (z)

]
+
[
G

(2)
b (z)−A

(2)
b (z)

]}
z(1 − λsz).
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Define an operator T that maps the vector of functions [π1 (z) , π2 (z)] to the vector

of functions that are equal to the expressions on the right-hand sides of equations

(S1.11) and (S1.12). Since the signal system contains endogenous prices, many variables

in these expressions depend on [π1 (z) , π2 (z)] in a complicated way. Thus the operator

T is nonlinear in general. The equilibrium functions π1 (z) and π2 (z) correspond to

the fixed point of T in H2 (D) . Moreover, we use (S1.12) to derive that

π1(z)

1− π2(z)
=

1

(1− λsz)(z − β)

{
−z(1 − λsz)A

(2)
s (z) +R(2)(z) (S1.13)

+
[
z(1− λsz)− (1− λs)

(
Γ
(1)
I (z−1)Γ

(3)
I (z) + Γ

(2)
I (z−1)Γ

(4)
I (z)

)
σ2
i

]
π1(z)

}
.

We also have to ensure that π1(z)
1−π2(z)

∈ H2 (D) in equilibrium. Note that our triangular

spectral factorization method also sheds light on the rationale behind the non-linearity

and the non-rational representation of the equilibrium. Specifically, the non–linearity

arises from the first–step of the spectral factorization in which a new function π̃1(z)

is created and the integrity of the original function π1(L)(
1−π2(L)

) cannot be preserved.

By comparison, Assumption 2 in Section 5 leads to a spectral factorization with no

additional endogenous function. It also preserves the integrity of the original functions
π1(L)(

1−π2(L)
) as a whole. Similar argument also applies to Kasa, Walker, and Whiteman

(2014), as their signal system is square so that factorization does not need the first

step, avoiding the complication.

S1.2 Numerical Methods

The equilibrium is characterized by the fixed point of the operator T . Due to the

endogeneity of the price signal, this operator is nonlinear and thus the model does not

admit a solution in the form of rational functions. We now approximate the true model

solution, which is in the form of MA(∞), by finite-order ARMA(p,q) processes in the

time domain or by rational functions in the frequency domain. Rational functions also

allow us to evaluate the annihilation operator tractably using the lemma in Appendix

A of Hansen and Sargent (1980). The numerical method involves the following steps.

Step 1. We begin by an initial guess for π1(z) in the form of an irreducible rational

function:

π1(z) = σπ

∏q
i=1 (1 + θiz)∏p
j=1

(
1− ρjz

) , (S1.14)

where p and q are the orders of the ARMA representation and σπ, θi, and
∣∣ρj
∣∣ < 1

are constants. Given the initial guess, we solve for the canonical factorization equation

9



(S1.2) to obtain

π̃1(z) = σπ̃

∏m+1
i=1

(
1 + θ̂iz

)

(1− ρaz)(1 − ρuz)
∏p

j=1

(
1− ρjz

) , (S1.15)

where m = max(p, q) and σπ̃ and θ̂i are determined by the factorization:

σ2
π̃

m+1∏

i=1

(
1 + θ̂iz

)(
1 + θ̂iz

−1
)
=σ2

aσ
2
iσ

2
π

q∏

i=1

(1 + θiz)
(
1 + θiz

−1
)
(1− ρuz)(1− ρuz

−1)

+ σ2
uσ

2
w(1− λwz)(1 − λwz

−1)

p∏

j=1

(
1− ρjz

) (
1− ρjz

−1
)
.

(S1.16)

In particular, set
∣∣∣θ̂i
∣∣∣ < 1, ∀i = 1, 2, ...m+ 1.

In addition, we take an initial guess for the constant π̃1(0)
1−π2(0)

.

Step 2. Solve for the decision rules for quantities on the real side of the economy.

We use (S1.7) to derive Ma
y (z) andM

u
y (z). We need to compute P

(1)
y (z) and P

(2)
y (z) by

using the lemma in Hansen and Sargent (1980). Given the guess for π1(z) in (S1.14),

(S1.15), and the expressions for ψ(1)
y (z) and ψ(2)

y (z) derived in Step 2 of Section S1.1,

we deduce that −θ̂1, ..., and −θ̂m+1 are the poles of ψ
(1)
y (z) and ψ(2)

y (z) that are inside

the unit disk. Thus we have

P (1)
y (z) =

m+1∑

k=1

ψk,y

z + θ̂k
, P (2)

y (z) =

m+1∑

k=1

fk
ψk,y

z + θ̂k
,

fk ≡
V11
V12

1 + λwθ̂k

θ̂k + λw
, k = 1, 2, ...m+ 1,

where each ψk,y is a constant defined as

ψk,y = lim
z→−θ̂k

(z + θ̂k)
[
Ma

y (z)σ
2
aA

(1)
n (z)−Mu

y (z)σ
2
uA

(2)
n (z)

]
,

provided that all poles
{
−θ̂k

}m+1

k=1
inside the unit disk are distinct. No constant ψk,y

can be solved numerically using the preceding formula because Ma
y (z) and M

u
y (z) are

unknown functions to be determined. We will use the method below to determine all

ψk,y.

Plugging the guess for π1(z) and the expressions above for P
(1)
y (z) and P

(2)
y (z)

(taking all unknown constant ψk,y as given) into (S1.7), we obtain the following linear

10



system:



Q1(z) Q2(z)

Q̃3(z) Q̃4(z)





Ma

y (z)

Mu
y (z)


 =




1
ξ
− A

(1)
y (z)θ − A

(2)
y (z)θ

−
∏p

j=1

(
1− ρjz

)
A

(2)
y (z)θ


 ≡



C

(1)
y (z)

C
(2)
y (z)


 , (S1.17)

where

Q̃3(z) = θσ2
a

p∏

j=1

(
1− ρjz

)
Hd(z),

Q̃4(z) =

q∏

i=1

(1 + θiz) (1− ρuz)σπ − θσ2
u

p∏

j=1

(
1− ρjz

)
Hc(z).

Solving this linear system yields



Ma

y (z)

Mu
y (z)


 =

1

D2
1(z)

[
Q̃4(z)Q1(z)−Q2(z)Q̃3(z)

]



D1(z)Q̃4(z)C

(1)
y (z)−D1(z)Q2(z)C

(2)
y (z)

−D1(z)Q̃3(z)C
(1)
y (z) +D1(z)Q1(z)C

(2)
y (z)


 ,

where we define

D1(z) =
m+1∏

i=1

(
1 + θ̂iz

)(
z + θ̂i

)
.

We can verify that the above solutions for Ma
y (z) and M

u
y (z) are irreducible rational

functions. That is, the numerator and denominator are pure polynomial functions.

The denominator function Dy(z) ≡ D2
1(z)

[
Q̃4(z)Q1(z)−Q2(z)Q̃3(z)

]
determines

the existence and uniqueness of a stationary equilibrium. The necessary condition

for the existence requires that Dy(z) has precisely m + 1 roots inside the open unit

disk. We verify this condition in every iteration in our numerical computations. Let

{zj}
m+1
j=1 denote all the inside roots of Dy(z). To pin down the vector of constants

ψy =
[
ψ1,y, ..., ψm+1,y

]⊺
, we use the following system of m+ 1 equations:

D1(zj)Q̃4(zj)C
(1)
y (zj)−D1(zj)Q2(zj)C

(2)
y (zj) = 0, j = 1, 2, ...m+ 1,

which gives a linear system for ψy :

Acψy = Cc,

where Ac is an (m+1)×(m+1) matrix of constants, and Cc is an (m+ 1) dimensional

vector of constants. We derive this system by substituting P
(1)
y (z) and P

(2)
y (z) (which

depend on ψy) into A
(i)
y (z) and C

(i)
y (z) , i = 1, 2. For simplicity, we omit the detailed
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algebra here. The idea is that the solution for ψy must remove the poles of Dy(z) inside

the open unit disk so that the solutions for Ma
y (z) and M

u
y (z) are analytic inside the

open unit disk. If the matrix Ac is invertible, the solution is unique. We verify this

condition in every iteration of our numerical computations. Given the solutions for

Ma
y (z) and Mu

y (z), we solve for M i
y(z) using (S1.5). We can also solve for Mb (z) ,

Mn (z) , and Md (z) using the formulas derived in Step 2 of Section S1.1.

Step 3. We compute all annihilated functions of negative powers of z on the finan-

cial side of the model using the Hansen-Sargent lemma. Let {zk}
m+2
k=1 =

{
0,−θ̂1, ...,−θ̂m+1

}

denote the set of poles inside the unit disk. Provided that all poles are distinct, we

have

P (1)
s (z) =

m+2∑

k=1

ψ
(1)
k,s

z − zk
, P (2)

s (z) = −
m+2∑

k=1

ψ
(2)
k,s

z − zk
,

P
(1)
d (z) =

m+2∑

k=1

ψ
(1)
k,d

z − zk
, P

(2)
d (z) =

m+2∑

k=1

ψ
(2)
k,d

z − zk
,

P
(1)
b (z) =

m+2∑

k=1

ψ
(1)
k,b

z − zk
, P

(2)
b (z) =

m+2∑

k=1

ψ
(2)
k,b

z − zk
,

where the constants are given by

ψ
(1)
k,s = lim

z→zk
(z − zk)

[
z−1α3M

i
s(z)Γ

(1)
I (z−1)

]
σ2
i ; ψ

(2)
k,s = lim

z→zk
(z − zk)

[
z−1α3M

i
s(z)Γ

(2)
I (z−1)

]
σ2
i .

and

ψ
(1)
k,d = lim

z→zk
(z − zk)z

−1
[
Ma

d (z)A
(1)
n (z)σ2

a −Mu
d (z)A

(2)
n (z)σ2

u

]
,

ψ
(2)
k,d = lim

z→zk
(z − zk)z

−1
[
Mu

d (z)A
(4)
n (z)σ2

u −Ma
d (z)A

(3)
n (z)σ2

a

]
.

and

ψ
(1)
k,b = lim

z→zk
(z − zk)(z − 1)z−1

[
Ma

b (z)A
(1)
n (z)σ2

a −Mu
b (z)A

(2)
n (z)σ2

u +M i
b(z)Γ

(1)
I (z−1)σ2

i

]
,

ψ
(2)
k,b = lim

z→zk
(z − zk)(z − 1)z−1

[
Mu

b (z)A
(4)
n (z)σ2

u −Ma
b (z)A

(3)
n (z)σ2

a −M i
b(z)Γ

(2)
I (z−1)σ2

i

]
.

Given the guess of π1(z) in (S1.14) and the solutions for My (z) ,Md (z) ,Mn (z) , and

Mb (z) in the previous step, we can compute the constants ψ
(1)
k,d, ψ

(2)
k,d, ψ

(1)
k,b, and ψ

(2)
k,b for

k = 1, 2, ..., m+2. The other constants ψ
(1)
k,s and ψ

(2)
k,s will be solved in the next step. We

cannot use the formulas above to determine ψ
(1)
k,s and ψ

(2)
k,s because M

i
s (z) is unknown
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function to be determined in equilibrium. We can verify that

ψ
(2)
k,s = hkψ

(1)
k,s,

hk =





V12

V22

1−λwzk
zk−λw

, if zk = 0,

V11

V12

1−λwzk
zk−λw

, else.

Thus we only need to solve for ψ
(1)
k,s, k = 1, ..., m+ 2.

Step 4. Solve for the update of π1 (z) and π2 (z) using equations (S1.11) and

(S1.12). Given the guess for π1 (z) in (S1.14), we can verify that R(1) (z) is an analytic

rational function. Let R
(1)
D (z) denote the denominator polynomial function of R(1)(z)

in its irreducible form. Since R(1)(z) is analytic, R
(1)
D (z) 6= 0 inside the open unit disk.

We can write

R
(1)
D (z) = R

(1)
D (0)

g∏

i=1

(1 + ziz) ,

where g denotes the degree of R
(1)
D (z) and −z−1

i , ...,−z−1
g are the g roots of R

(1)
D (z) that

are outside the open unit disk. Using the definition of the unitary matrix V , we can

show that the denominator of the rational function z(1−λsz)−(1−λs)σ
2
i

[
Γ
(1)
I (z)Γ

(1)
I (z−1)

+ Γ
(2)
I (z)Γ

(2)
I (z−1)

]
in the irreducible form is given by

D1(z) =

m+1∏

k=1

(
1 + θ̂kz

)(
z + θ̂k

)
.

Notice that some factors in D1 (z) and R
(1)
D (z) may be identical. We define D2(z) as

their least common multiple.

We now rewrite (S1.11) as

π1(z) =
D2(z)

[
R(1)(z)− z(1 − λsz)A

(1)
s (z)

]

D2(z)

[
z(1 − λsz)− (1− λs)σ2

i

[
Γ
(1)
I (z)Γ

(1)
I (z−1) + Γ

(2)
I (z)Γ

(2)
I (z−1)

] ] ,

(S1.18)

where both the numerator and the denominator are pure polynomial functions. Let

πD
1 (z) denote the denominator function. The existence and uniqueness of a stationary

equilibrium solution for π1 (z) is determined by the roots of πD
1 (z). More specifically, to

determine the m+2 dimensional vector of unknown constants ψs =
[
ψ

(1)
1,s, ..., ψ

(1)
m+2,s

]⊺
,

we need πD
1 (z) to have precisely m + 2 distinct roots inside the open unit disk. We
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verify this condition in every iteration of the numerical computation. Without risk of

confusion, let {ẑk}
m+2
k=1 denote the set of distinct roots of πD

1 (z) that are inside the open

unit disk.

We then pin down ψs by removing the poles {ẑk}
m+2
k=1 and evaluating the numerator

polynomial

D2(ẑk)
[
R(1)(ẑk)− ẑk(1− λsẑk)A

(1)
s (ẑk)

]
= 0, ∀k = 1, 2, ...m+ 2,

which leads to the linear system

Aπψs = Cπ,

where we have used the definition of A
(1)
s (z) and the expression of P

(1)
s (z) derived in

Step 2. We deduce that Aπ is an (m+ 2)× (m+ 2) matrix with elements given by

Aπ(k, i) =
Γ
(1)
I (ẑk)D2(ẑk)

ẑk − zi
+

Γ
(2)
I (ẑk)D2(ẑk)

ẑk − zi
hi,

for k = 1, 2, ...m + 2 and i = 1, 2, ...m + 2, and zi ∈
{
0,−θ̂1, ...,−θ̂m+1

}
. The kth

element of (m+ 2)× 1 vector Cπ is given by

Cπ(k) = R(1)(ẑk)D2(ẑk), ∀k = 1, 2, ..., m+ 2.

If Aπ is full rank, the solution is indeed unique. Again, we verify this condition in every

iteration.

Once determining ψs, we update the guess for π1 (z) using the solution in (S1.18).

Given this solution for π1 (z) , we use (S1.13) to solve for π1(z)
1−π2(z)

. Observe that the

numerator on the right-hand side of (S1.13) is analytic inside the open unit disk, but

we still need to remove the pole at z = β. We set the constant π̃1(0)
1−π2(0)

to remove this

pole. That is,

φ(β)π1(β)− β(1− λsβ)A
(2)
s (β) +R(2)(β) = 0,

where

φ(z) = z(1 − λsz)− (1− λs)
[
Γ
(1)
I (z−1)Γ

(3)
I (z) + Γ

(2)
I (z−1)Γ

(4)
I (z)

]
σ2
i .

This leads to the following solution for the constant

π̃1(0)

1− π2(0)
=

σw

β(1− λsβ)
[
V12Γ

(3)
I (β) + 1

λw
V22Γ

(4)
I (β)

]×

14



{
β(1−λsβ)

(
A(2)

s (β)−(1−β)
[
G

(1)
d (β)− A

(1)
d (β)

]
−
[
G

(2)
b (β)− A

(2)
b (β)

])
−φ(β)π1(β)

}
.

(S1.19)

We use this solution to update the initial guess for π̃1(0)
1−π2(0)

. Finally, we iterate until

convergence.

In summary, we employ the following iterative algorithm to solve the model.

Algorithm 1 Numerical Approximation of Equilibrium
Step 0. Begin with a guess for p, q, σπ , πc ≡

π̃1(0)
1−π2(0)

, {θi}
q
i=1, {ρj}

p
j=1 with |ρj | < 1, ∀j.

Step 1: Set m = max {p, q} and compute σπ̂ and {θ̂i}
m
i=1 using (S1.16).

Step 2: Solve for the functions My (z) , Md (z) , Mb (z) , and Mn (z) .

Step 3: Let πA
1 (z) and π+

c be the expressions on the right-hand sides of (S1.18) and (S1.19), respectively.

Step 4: Update the initial guess using

π
+
1 (z) = σ

+
π

∏q
i=1

(

1 + θ
+
i
z
)

∏p
j=1

(

1 − ρ
+
j
z
) ,

where σ+
π , θ

+
i
, ρ

+
j

are the solution to the problem

min
σπ,θi,ρj

N
∑

n=1

∣

∣

∣
π
+
1 (n) − π

A
1 (n)

∣

∣

∣

2
,

where π
+
1 (n) and πA

1 (n) are the coefficients of the moving average expansion of π
+
1 (z) and πA

1 (z), with N = 70.

Step 5: Iterate Steps 0–4 until max
{∣

∣

∣ρ
+
j

− ρj

∣

∣

∣ ,
∣

∣

∣θ
+
i

− θi

∣

∣

∣ ,
∣

∣

∣σ
+
π − σπ

∣

∣

∣

}

< 10−3; ∀i, j

Step 6: Compute ǫ = max
{∣

∣

∣

∣

∣

∣
π
+
1 (z) − πA

1 (z)
∣

∣

∣

∣

∣

∣

H2
,
∣

∣

∣
π+
c − πc

∣

∣

∣

}

; if ǫ < 10−5, stop; otherwise, set p := p+1, q := q+1 and repeat Steps 0-5.

S1.3 Macro-Financial Disconnection

In the extension of Section 6.2, information is segregated between groups as agents in

one group receive no signal about the other group’s shocks. Let Ip
it and In

t denote the

information set for agents in participating island i and any non-participating island,

respectively. Then conditional expectations of the other group’s shocks are equal to

their unconditional mean, i.e.,

Ej [̥(L)ǫpat | I
n
t ] = 0; Ej [̥(L)ǫit | I

n
t ] = 0; ∀i ∈ Ip, j ∈ In

Ei [̥(L)ǫnat | I
p
it] = 0; Ei [̥(L)ǫjt | I

p
it] = 0; ∀i ∈ Ip, j ∈ In (S1.20)
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for any square–summable lag polynomial ̥(L). Then we can use (32) to characterize

the equity market equilibrium18

qt =

∫

i∈Ip

Ei

[
α3s

h
it+2 +∆bit+1 | I

p
it

]
di+

∫

i∈Ip

Ei [βqt+1 + (1− β) dt+1 | I
p
it] di+ ut.

(S1.21)

Given property (S1.20) and our information structure, (S1.21) implies that we can

focus on the equilibrium in which the equity price are driven by

qt =Mp
q (L)ǫ

p
at +Mu

q (L)ǫut

which resembles (41). Intuitively, the stock price does not respond to fluctuations of

non-participants’ TFP shocks. Moreover, the information structure and the dynamic

interactions between shareholding choices shit and qt, (43) and (44), remain the same as

in the basic model. Therefore, the unit root result in the equity price volatility is still

valid, although the quantitative outcome depends on the participation measure κ and

the modified real equilibrium.

Next, we characterize the log-linearized equilibrium in the real economy,

yit =
1

ξ
(apt + ǫit) + θEi [κy

p
t + (1− κ)ynt | Ip

it] ; ∀i ∈ Ip (S1.22)

yjt =
1

ξ
(ant + ǫjt) + θEj [κy

p
t + (1− κ)ynt | In

t ] ; ∀j ∈ In (S1.23)

where yt = κypt +(1−κ)ynt , and y
p
t = 1

κ

∫
i∈Ip

yitdi, y
n
t = 1

1−κ

∫
j∈In

yjtdj are log-linearized

group aggregates. We conjecture the “segregated” equilibrium decision rules follow

yit =Mp
y (L)ǫ

p
at +M i,p

y (L)ǫit +Mu
y (L)ǫut; ∀i ∈ Ip

yjt =Mn
y (L)ǫ

n
at +M j,n

y (L)ǫjt; ∀j ∈ In

We then use (S1.20) and the fact that Ej [ǫut | I
n
t ] = 0 to get,

yit =
1

ξ
(apt + ǫit) + θκEi [y

p
t | Ip

it] ; ∀i ∈ Ip (S1.24)

yjt =
1

ξ
(ant + ǫjt) + θ(1− κ)ynt ; ∀j ∈ In (S1.25)

Note that (S1.24) resembles (25), which leads to the decision rule for total output on

participating islands,

ypt =
1

κ

∫

i∈Ip

yitdi =Mp
y (L)ǫ

p
at +Mu

y (L)ǫut

18The log-linearized coefficients determined by the steady state will be different from the basic
model. In particular, the production side remains the same, while a re-distriburion of consumption
occurs between participating and non-participating islands.
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Meanwhile, aggregating (S1.25) produces a simple solution for ynt ,

ynt =
1

1− κ

∫

j∈In

Mn
y (L)ǫ

n
atdj =

1

ξ
[
1− θ(1− κ)

]
(1− ρaL)

ǫnat

It is then more transparent to write the equilibrium aggregate output as

yt = κ

[
Mp

y (L)ǫ
p
at +Mu

y (L)ǫut

]
+ (1− κ)

1

ξ
[
1− θ(1− κ)

]
(1− ρaL)

ǫnat

Since Mp
y (L) and M

u
y (L) are determined by (S1.24), which is almost equivalent to the

equilibrium condition in the basic model except for the appearance of κ parameter, the

solution forMp
y (L) and M

u
y (L) is invariant up to the changes in κ and the steady-state

coefficients.

S2 Frequency Domain Methods

In this section we introduce some mathematical background for the frequency domain

methods. We study casual covariance stationary real-valued equilibrium processes

that have an MA(∞) representation. For example, the aggregate output process in the

model of Section 3 can be written as

yt =
∞∑

j=0

Mjεa,t−j , (S2.1)

where {Mj}
∞
j=0 is square summable, i.e.,

∑∞
j=0 |Mj|

2 < ∞. Solving for the infinite

sequence of {Mj}
∞
j=0 is a daunting task. The idea of the frequency domain method is to

transform this problem into an equivalent problem of solving for an analytical function

in the Hardy space. To define this space, we recall that C denotes the complex plan,

T denotes the unit circle, and D denotes the open unit disk.

Definition S1 The Hardy space H2 (D) is the class of analytical functions g in the

unit disk D satisfying

{
1

2π
sup
0≤r<1

∫ π

−π

∣∣g
(
reiω

)∣∣2 dω
}1/2

<∞.

It can be verified that the expression on the preceding inequality defines a norm

on H2 (D) , denoted as ‖g‖
H2 . The Hardy space can also be viewed as a certain closed

17



vector subspace of the complex L2 space for the unit circle T. This connection is

provided by the fact that the radial limit

g̃
(
eiω
)
= lim

r↑1
g
(
reiω

)

exists for almost all ω ∈ [−π, π] . The function g̃ belongs to the space L2 (T) of functions

f : T → C with the inner product

< f1, f2 >=
1

2π

∫ π

−π

f
(
eiω
)
f2 (eiω)dω, f1, f2 ∈ L2 (T) .

Then we have

‖g‖
H2 = ‖g̃‖L2 = lim

r↑1

{
1

2π

∫ π

−π

∣∣g
(
reiω

)∣∣2 dω
}1/2

<∞.

Denote by H2 (T) the vector subspace of L2 (T) consisting of all limit functions g̃,

when g varies in H2 (D).

Theorem S1 (Katznelson 1976) f ∈ H2 (T) if and only if f ∈ L2 (T) and f̂n = 0 for

all n < 0 , where f̂n is the Fourier coefficient of a function f integrable on the unit

circle,

f̂n =
1

2π

∫ π

−π

f
(
eiω
)
e−iωndω, n = 0,±1,±2, ....

Suppose that g̃ ∈ H2 (T) and g̃ has Fourier coefficients {an} with an = 0 for all

n < 0. We define

g (z) =

∞∑

n=0

anz
n, |z| < 1.

The following theorem ensures g ∈ H2 (D) . Thus we have a bijection between H2 (D)

and H2 (T) .

Theorem S2 If f (z) is an analytic function in D and its Laurent expansion is

f (z) =

∞∑

n=0

bnz
n,

then f ∈ H2 (D) if and only if {bn}
∞
n=0 is square summable, i.e.,

∑∞
n=0 |bn|

2 < ∞.

When this condition is satisfied

∞∑

n=0

|bn|
2 = ‖f‖

H2 .
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We call the map from the sequence {bn}
∞
n=0 to f (z) a z-transform. Theorem S2

also allows us to give an equivalent definition of the Hardy space H2 (D) as the class of

analytical functions f : D → C, which are the z-transforms of some square summable

sequences. Thus solving for {Mj}
∞
j=0 in (S2.1) is equivalent to solving for a function

M (z) in the hardy space H2 (D) . In particular, we can write yt = M (L) ǫat, where

M (z) ∈ H2 (D) is the object we will solve for. We can use Theorem S2 to compute

the variance of yt easily because

V ar (yt) = σ2
a

∞∑

j=0

M2
j = σ2

a ‖M (z)‖
H2 .

Finally, a rational function f(z) ∈ H2(D) if and only if f(z) is analytic in the closed

unit disk. In particular, poles are not allowed on the unit circle.

S3 Computing Expectations in the Frequency Do-

main

We present our approach in a general framework. Suppose that the signal is an ℓ-

dimensional variable Xt, defined in terms of infinite-order moving average processes.19

Let C denote the complex plane, T denote the unit circle {z ∈ C : |z| = 1} , and D

denote the open unit disk {z ∈ C : |z| < 1} .

Definition S2 (signal representation) The ℓ−dimensional real-valued signal process

{Xt} is linearly regular and admits representation

Xt
ℓ×1

= H (L)
ℓ×k

ηt
k×1

, ℓ ≤ k,

where L denotes the lag operator, {ηt} represents structural Gaussian innovations with

mean zero and covariance matrix Ση, and H (z) is an ℓ × k matrix analytic function

defined on the open unit disk D in the matrix-valued Hardy space H2 (D).20

We call H (·) the signal matrix or the transfer function as in the mathematics

literature. To simplify the signal extraction problem, it is useful to assume a maximal

rank condition for the signal process so that no redundant information is contained in

Xt.

19We can extend the definition to contain information about future innovations (e.g. Bacchetta and
Wincoop, 2008).

20See the Appendix S2 for the definition of the Hardy space. This definition can be easily extended
to matrix cases, see Lindquist and Picci (2015), Appendix B.2
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Assumption 4 The ℓ−dimensional signal process Xt has maximal rank, i.e. the rank

of its associated spectral density fx (ω) equals its dimension:

rank (fx (ω)) = ℓ

for almost all ω ∈ [−π, π].

An methodological contribution of our paper is that we study a non-square signal

representation in that ℓ < k. The existing literature focuses on the case of square

signal representations with ℓ = k (e.g., Kasa, Walker, and Whiteman (2014), and

Rondina and Walker (2015)). To use the Wiener-Hopf prediction formula, we need the

Wold fundamental representation for the signal process. For the case of non-square

signal representation, finding the Wold representation is non-trivial. We use spectral

factorization techniques to solve this problem.

S3.1 A Two-Step Spectral Factorization Procedure

Our goal is to find a Wold representation for {Xt}. We are looking for an outer analytic

matrix function Γ (·) in the Hardy space H2 (D) such that21

Xt
ℓ×1

= Γ (L)
ℓ×ℓ

et
ℓ×1
, fx (ω) = Γ

(
e−iω

)
Γ∗
(
e−iω

)
, ω ∈ [−π, π] , (S3.1)

where asterisk denotes the conjugate transpose, {et} is some mutually uncorrelated

Wold (fundamental) innovation process with mean zero and an identity covariance

matrix, fx is the spectral density, and Γ (·) is an outer analytic function.22

For the square signal case with ℓ = k, we can directly apply the Beurling-Blaschke

factorization method to derive the Wold representation as in Kasa, Walker, and White-

man (2014) and Rondina and Walker (2015). However, this method does not apply to

the non-square case with ℓ < k. We propose a two-step spectral factorization proce-

dure. In step 1 we apply the convolution theorem to find the spectral density fx (ω)

of the signal process {Xt}. Then we use the Rozanov (1967) theorem to find a lower

21Γ(z) is also called “canonical” or “fundamental” spectral factor. We refer readers to Lindquist
and Picci (2015), Chapter 4 for characterizations of outer functions. One prominent feature of outer
functions is that they cannot have zeros inside the unit disk. Note that Lindquist and Picci (2015)
use the engineering definition of z = e

iω so that the analytic region is reversed comparing with this
paper, but all analytic results remain valid.

22Note that the Wold fundamental innovations can have non-diagonal, non-normalized covariance
matrices. Using the unitary eigen-decomposition of the covariance matrix, we can obtain the orthonor-
mal Wold representations with an identity covariance matrix.
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triangular decomposition of fx (ω) . In step 2 we apply the Beurling-Blaschke factor-

ization method to the lower triangular matrix. Due to the length constraints, we omit

the algebraic derivations in this section. These details are contained in the Appendix

S4.

Before describing the two-step procedure, we start with the following well-known

result in Time Series, whose proof is omitted for brevity.

Lemma S1 Suppose that Xt is the vector of signals defined in Definition S2 and As-

sumption 4 holds. Moreover, the transfer function H(z) is a non-square matrix func-

tion with dimension k > ℓ. Then the spectral density fx(ω) is an ℓ× ℓ matrix function

defined on [−π, π] and

fx (ω) = H
(
e−iω

)
ΣηH

∗
(
e−iω

)
= H (z) ΣηH

(
z−1
)⊺
, z = e−iω,

where the superscript ⊺ denotes the transpose of a matrix. Furthermore, fx (ω) is a

Hermitian normal matrix that is non-negative definite for almost all ω ∈ [−π, π]. If

we extend the definition of z to the entire complex plane C, then the autocovariance

generating function is given by Sx (z) = H (z) ΣηH (z−1)
⊺
, but without the Hermitian

non-negativeness property for general z ∈ C.

Lemma S1 allows us to transform the non-square signal transfer matrix function

into the square spectral density matrix fx (ω). Based on this lemma, the first step

of the spectral factorization procedure is to decompose fx (ω) into triangular matrix

functions using Rozanov’s (1967) analytical method.

Step 1. Given an ℓ× ℓ spectral density matrix fx (ω) with full rank almost every-

where, construct an ℓ× ℓ lower triangular matrix function Γ̃ (e−iω) such that

fx (ω) = Γ̃
(
e−iω

)
Γ̃∗
(
e−iω

)
,

where

Γ̃ (z) =




Γ̃11 (z) 0 ... 0

Γ̃21 (z) Γ̃22(z) ... 0
...

...
. . .

...

Γ̃ℓ1 (z) Γ̃ℓ2 (z) ... Γ̃ℓℓ (z)


 .

If fx (ω) is rational, then all elements of the matrix function are rational and analytic

in the closed unit disk T ∪ D and hence in the H2 (D) space. Moreover, Γ̃ (e−iω) has

full rank in D except for at most a finite number of points.
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If the determinant of the analytic matrix Γ̃ (z) vanishes at finitely many points

inside the unit disk, it is not a Wold spectral factor. Without loss of generality, let

{z1, z2, ....zn} be the finite set of distinct points such that det
(
Γ̃ (zj)

)
= 0, |zj | < 1,

j ∈ {1, 2, ...n}. Let zj denote the conjugate of zj .We assume that all zeros are of order

1 (this property is generic).

The second step of our spectral factorization method employs a multivariate version

of the Beurling-Blaschke factorization theorem to remove any zeros inside the unit disk.

Step 2. The Wold spectral factor Γ (z) can be obtained by the factorization for

Hardy space functions as

Γ (z) = Γ̃ (z)

n∏

j=1

V −1
j Bj (z) ,

where the ℓ × ℓ Blaschke matrices Bj (z) are (inverse) inner matrix functions of the

form

Bj (z) =




1 0 ... 0
0 1 ... 0
...

...
. . .

...

0 0 .....
1−z̄jz

z−zj


 ,

and the constant unitary matrix Vj is given by the singular value decomposition of

Γ̃ (z) evaluated at the zeros

Γ̃ (zj) = UjDVj,

where D is a diagonal matrix containing the singular values.

The constant unitary matrices Vj remove the unwelcome poles brought in by the

Blaschke factors. There are different ways of computing these matrices, and we use the

eigen-decomposition method. In particular, the orthonormal column vectors of Vj can

be directly picked from normalized linear independent eigenvectors of the Hermitian

matrix Gj (zj) = Γ̃∗ (zj) Γ̃ (zj), which are automatically pairwise-orthogonal for distinct

eigenvalues. For more complicated systems, the eigenvectors can be found easily using

symbolic toolboxes in Matlab or Mathematica.

S3.2 Wiener-Hopf Prediction Formula

Using the Wold representation for the signal process, we can compute the conditional

expectations given the history of signals. Since in our model agents need to perform op-

timal linear filtering to estimate unobserved shocks, we use the Wiener-Hopf prediction

formula, a generalization of the Wiener-Kolmogorov forecasting formula.
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Consider any random vector Θt satisfying Θt = G (L) ηt, where G (z) is a matrix

analytic function in some matrix-valued Hardy space, we wish to compute the condi-

tional expectation E [LmΘt| {Xt−n}
∞
n=0] given the history of signals {Xt−n}

∞
n=0 , where

m is any integer. The Wiener-Hopf prediction formula gives

E [LmΘt| {Xt−n}
∞
n=0] = Ξ (L)Xt, (S3.2)

where the analytic matrix function Ξ (z) is given by

Ξ (z) =
[
zmSΘx(z)

(
Γ−1

(
z−1
))⊺]

+
Γ−1 (z) . (S3.3)

Here Γ (z) is the Wold spectral factor derived in the previous subsection and SΘx(z) =

G (z) ΣηH (1/z)⊺ is the covariance generating function. The annihilation operator [·]+

is linear and is used to remove the principal part of the Laurent series expansion of the

analytic functions around a common region of convergence.23 This formula reduces to

the Wiener-Kolmogorov formula when Θt = Xt so that Ξ (z) = [zmΓ (z)]+ Γ−1 (z) . If

the forecast objects follow geometrically discounted processes, the formula reduces to

the Hansen-Sargent optimal prediction formula.

S4 Algebraic Derivation on Spectral Factorization

in Appendix S3

Derivations in Step 1: Since fx(ω) is rational, it has a constant, maximal rank of

ℓ except at a finite number of points on the unit circle T. To develop the triangular

factorization of the spectral density, we need the following lemma from Rozanov (1967)

on rational functions.

Lemma S2 Every non-negative (real) rational function f(ω) of e−iω can be represented

in the form

f(ω) =
|P (e−iω)|2

|Q(e−iω)|2
=
P (e−iω)P (e−iω)

Q(e−iω)Q(e−iω)
=
P (z)P (z)

Q(z)Q(z)

for z ∈ T. The polynomial functions P (z) and Q(z) have no zeros in the open unit

disk. If f satisfies

f(ω) = f(−ω)

Then the coefficients of P (z) and Q(z) can be chosen all real.
23See Kailath, Sayed, and Hassibi (2000) for a textbook proof of the Wiener-Hopf prediction formula.

Hansen and Sargent (1980) provide a practical method of computing the annihilation operator using
elementary complex analysis.
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Proof: See Rozanov (1967), Lemma 10.1. �

If we extend f(z) to be a complex function in the entire complex plane, the preceding

lemma implies that it can be factorized in a “symmetric” way such that if λi is a root

for f(z), so is the conjugate inverse 1/λi.

Now consider the ℓ× ℓ spectral density matrix fx(ω), by definition it is Hermitian,

normal, and non-negative definite for almost all ω. For simplicity, we drop the x

subscript and write the f matrix as

f(ω) =




f11 f12 ... f1ℓ
f21 f22 ... f2ℓ
...

...
. . .

...
fℓ1 fℓ2 ... fℓℓ


 .

Using the Sylvester’s criterion for the non-negative definite matrix, define the family

of leading principal minors as Mj(ω), j = 1, 2, ...ℓ. By definition, Mj(ω) ≥ 0 a.e., and

M1(ω) = f11 ≥ 0 a.e.

Next we implement elementary row operations on the matrix. Adding to the rth

row (r = 2, 3, ...ℓ) the first row, multiplied by −fr1
f11

, yielding

f(ω) =




f11 f12 ... f1ℓ
0 f22 − f12

f21
f11

... f2ℓ − f1ℓ
f21
f11

...
...

. . .
...

0 fℓ2 − f12
fℓ1
f11

... fℓℓ − f1ℓ
fℓ1
f11


 .

Similarly, adding to the jth column (j = 2, 3, ...ℓ) from the first column multiplied by

−
f1j
f11

, we have

f (2)(ω) =




f11 0 ... 0

0 f22 − f12
f21
f11

... f2ℓ − f1ℓ
f21
f11

...
...

. . .
...

0 fℓ2 − f12
fℓ1
f11

... fℓℓ − f1ℓ
fℓ1
f11


 =



f11 0

0 g(2)


 ,

where the elements of matrix g(2) = [g
(2)
rj ] have the form g

(2)
rj = frj −

fr1f1j
f11

.

Notice that the diagonal element g
(2)
22 satisfies g

(2)
22 (ω) = M2(ω)

M1(ω)
a.e. If we denote

g(1) = f (1) = f , then f (2) is obtained by using the row-column transformations on f (1).

Now consider the matrix g(2),

g(2) =



f22 − f12

f21
f11

... f2ℓ − f1ℓ
f21
f11

...
. . .

...

fℓ2 − f12
fℓ1
f11

... fℓℓ − f1ℓ
fℓ1
f11


 .
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we apply the same transformation for g(2) to eliminate its first row and column except

the leading coefficient, yielding

g(2) =



f22 − f12

f21
f11

0

0 g(3)




it is easy to verify that g
(3)
33 (ω) =

M3(ω)
M2(ω)

. We then arrive at a new ℓ× ℓ matrix as

f (3)(ω) =




f11 0 0

0 f22 − f12
f21
f11

0

0 0 g(3)



.

Continue this process until we reach a diagonal matrix f (ℓ)(ω), admitting the following

form

f (ℓ)(ω) =




h11
h22

. . .

hℓℓ


 .

It is easy to see that the diagonal elements are

h11(ω) =M1(ω); hrr(ω) =
Mr(ω)

Mr−1(ω)
, r = 2, 3, ...ℓ.

It follows that f(ω) admits the following LDU -like decomposition.

The spectral density fx(ω) can be decomposed as fx = g f (ℓ) g∗, where the matrix

function g(ω) is lower triangular with diagonal elements equal to one,

g(ω) =




1 0 ... 0
g21 1 ... 0
...

...
. . .

...
gℓ1 gℓ2 ... 1


 .

The off-diagonal non-zero elements are defined as grj =
g
(j)
rj

hjj
, r > j; where g

(l)
rl is

determined by the recursion

g
(1)
rj = frj; g

(i)
rj = g

(i−1)
rj −

g
(i−1)
r,i−1 − g

(i−1)
i−1,j

g
(i−1)
i−1,i−1

, i = 2, 3, ...j.

Since the element of fx(ω) are rational functions, the matrix transformation implies

that elements of g and f (ℓ) are rational as well. Next we define grj(ω) =
Prj(z)

Qrj(z)
,
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where z = e−iω. We extend the definition of z to the entire complex plane, and fix a

column j ∈ {1, 2, ..., ℓ}. Let α
(j)
p , p = 1, 2, ..., denote the roots of the set of polynomials

{Qrj(z) : r = 1, ..., ℓ} that are located inside the unit circle, counting multiplicities.

Define

cj(z) =
∏

p

(z − α(j)
p ), Dj(z) =

hjj(z)

|cj(z)|2
.

Note that Dj(z) is non-negative by construction. We can use Lemma S2 to decompose

Dj(z) as

Dj(z) =

∣∣∣∣
Φj(z)

Ψj(z)

∣∣∣∣
2

=
Φj(z)Φj(

1
z
)

Ψj(z)Ψj(
1
z
)

on the unit circle, where we can choose Φj(z) and Ψj(z) such that they have no zeros

inside the unit disk (when extending the definition of z to the entire complex plane).

The second equality follows from the real-coefficients assumption. If the polynomials

have complex-valued coefficients, we need to conjugate the coefficients accordingly.

Now set

Γ̃rj(z) = grj(z)cj(z)
Φj(z)

Ψj(z)
, r = 1, ..., ℓ,

where z = e−iω. Continuing this construction for all columns of g , we obtain the

desired matrix Γ̃(z) such that fx(ω) = Γ̃ (e−iω) Γ̃∗ (e−iω), where all elements of the

matrix function

Γ̃ (z) =




Γ̃11(z) 0 ... 0

Γ̃21(z) Γ̃22(z) ... 0
...

...
. . .

...

Γ̃ℓ1(z) Γ̃ℓ2(z) ... Γ̃ℓℓ(z)




are analytic in the closed unit disk and hence in the H2 (D) space.

Derivations of Step 2: In step 1, we obtain

fx (ω) = Γ̃
(
e−iω

)
Γ̃∗
(
e−iω

)
.

The Beurling-Blaschke factorization theorem states that every Γ̃ (z) ∈ H2(D) can be

written in the form

Γ̃ (z) = Γ(z)Q(z), (S4.1)

where Q(z) is an ℓ× ℓ matrix inner function. The proof of this theorem can be found

in Rudin (1987), Theorem 17.17. The matrix generalization of this theorem can be

found in Lindquist and Picci (2015), Theorem 4.6.5-4.6.8. The factorization is unique
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up to constant unitary matrices.24 Since Γ̃ (z) is rational, the outer function Γ(z)

is also rational as well. A rational outer function is completely characterized by the

location of its zeros. That is, a rational function Γ(z) is an outer function if and only if

det(Γ(z)) 6= 0, ∀|z| < 1. Hence, the inner function Q(z) can be reduced to the Blaschke

matrices satisfying

Q(z) =

n∏

j=1

B̃j (z) Vj , (S4.2)

where B̃j satisfies

B̃j (z) =




1 0 ... 0
0 1 ... 0
...

...
. . .

...

0 0 .....
z−zj
1−z̄jz


 = B−1

j (z),

and zj are zeros of det (Q (z)) or det
(
Γ̃ (z)

)
satisfying |zj | < 1. Here Vj are constant

unitary matrices. In other words, the singular part of the rational inner function is

absent (see Rudin (1987), Theorem 17.9 and Lindquist and Picci (2015), Theorem

4.6.11). Compared with the general definition of the Blaschke factors, we implicitly

assume there are no zeros at z = 0 and omit the norm terms
z̄j
|zj |

since finite Blaschke

products have no convergence issues. Combining (S4.1) and (S4.2), we have

Γ(z) = Γ̃ (z)

n∏

j=1

V −1
j

[
B̃j (z)

]−1

= Γ̃ (z)

n∏

j=1

V −1
j Bj (z) .

Note that the Blacheke-inner function satisfies Q(z)Q∗(z) = I, ∀|z| = 1, on the unit

circle. The spectral density is preserved under the factorization

Γ(z)Γ∗(z) = Γ̃ (z)

n∏

j=1

V −1
j Bj (z)

n∏

j=1

B∗
j (z) (V

−1
j )∗Γ̃∗ (z) = fx(ω),

24The conditional uniqueness corresponds only to orthonormal Wold innovations. In fact, given a
Wold representation Xt = Γ(L)vt, the transformation Xt = Γ(L)ΣΣ−1

vt is also Wold fundamental
provided that the constant matrix Σ is invertible. In this case, the Wiener-Hopf formula will be
modified to contain Σ.

27



where z = e−iω. Moreover, all zeros inside the unit disk are removed because

det(Γ(z)) = det(Γ̃ (z))
n∏

j=1

det(V −1
j )

n∏

j=1

1− z̄jz

z − zj

= Υ(z)

n∏

j=1

(z − zj)

n∏

j=1

det(V −1
j )

n∏

j=1

1− z̄jz

z − zj

= Υ(z)
n∏

j=1

det(V −1
j )

n∏

j=1

(1− z̄jz)

6= 0 ∀|z| < 1

where Υ(z) = det(Γ̃(z))∏n
j=1(z−zj)

has no zeros inside the unit disk by construction. Unfortu-

nately, the right multiplication of the Blaschke matrices also brought poles (z = zj)

for the element in the Γ̃ (z) matrix that has no inside zeros. In order to maintain the

analyticity inside the unit disk so that Γ(z) ∈ H2
ℓ×ℓ(D), we need to get rid of these

by-product poles. We remove these poles inside the unit disk by setting appropriate

constant unitary matrices Vj .

In practice, Vj can be obtained by the singular value decomposition in a sequential

procedure. For j = 1, we have

Γ1(z) = Γ̃ (z) V −1
1 B1(z)

Without the constant unitary matrix V1, the matrix transformation

Γ̃ (z)B1(z) =




Γ̃11(z) 0 ... 0

Γ̃21(z) Γ̃22(z) ... 0
...

...
. . .

...

Γ̃ℓ1(z) Γ̃ℓ2(z) ... Γ̃ℓℓ(z)







1 0 ... 0
0 1 ... 0
...

...
. . .

...
0 0 ..... 1−z̄1z

z−z1


 .

It is clear the potential poles can only appear in the last column, if we assume that

Γ̃ℓℓ(z) has no zeros at z = z1. To remove this pole, we follows Rozanov (1967) by

employing the singular value decomposition (SVD) for Γ̃ (z) at z = z1

Γ̃ (z1) = U1D1V1 = U1




λ1 0 ... 0
0 λ2 ... 0
...

...
. . .

...
0 0 ..... 0


V1.

By definition, the unitary matrices U1 and V1 are given by the (unitary) eigen-decomposition,

G(z1) = Γ̃ (z1) Γ̃
∗ (z1) = U1D̄1U

∗
1 ; Ĝ(z1) = Γ̃∗ (z1) Γ̃ (z1) = V1D̂1V

∗
1 .

28



Such decomposition always exists as G(z1) and Ĝ(z1) are Hermitian and non-negative

definite by construction. The diagonal matrices D̄1 and D̂1 contains eigenvalues of

G(z1) and Ĝ(z1), which are not necessarily distinct. The diagonal matrix D1 in the

SVD contains the singular values of Γ̃ (z). The non-zero singular values {λ1, λ2, ...λp}

are the square root of the non-zero eigenvalues of G(z1) and Ĝ(z1), which are not

necessarily distinct. Since we know that det(Γ̃ (z1)) = 0,

det(G(z1)) = det
(
Γ̃ (z1)

)
det
(
Γ̃ (z1)

∗
)
= 0.

Therefore, there exists at least one singular value in D1 that is zero, i.e. p < d.25 Now

evaluate Γ1(z) at z = z1,

Γ1(z1) = Γ̃ (z1)V
−1
1 B1(z1) = U1D1V1V

−1
1 B1(z1)

= U1




λ1 0 ... 0
0 λ2 ... 0
...

...
. . .

...
0 0 ..... 0







1 0 ... 0
0 1 ... 0
...

...
. . .

...
0 0 ..... 1−z̄1z1

z1−z1


 .

Since the last column of D1 are identically zero, the pole at 1−z̄1z1
z1−z1

vanishes at z = z1.

In other words, Γ
(i,j)
1 (z1) < ∞ are all well-defined without poles. On the other hand,

condition (S4.3) ensures that zeros at z = z1 is removed as well.

Now consider the second step j = 2,

Γ2(z) = Γ1 (z) V
−1
2 B2(z).

Without the constant unitary matrix V2,

Γ1 (z)B2(z) = Γ1 (z)




1 0 ... 0
0 1 ... 0
...

...
. . .

...
0 0 ..... 1−z̄2z

z−z2




would have poles in the last column. Note that Γ1 (z) is no longer lower triangular

after the first step transformation. To remove these poles at z = z2, we employ the

SVD again,

Γ2(z2) = Γ1 (z2) V
−1
2 B1(z2) = U2D2V2V

−1
2 B2(z2)

= U2




λ̃1 0 ... 0

0 λ̃2 ... 0
...

...
. . .

...
0 0 ..... 0







1 0 ... 0
0 1 ... 0
...

...
. . .

...
0 0 ..... 1−z̄2z2

z2−z2


 ,

25The rank loss generally depends on the multiplicity of zeros in det(Γ̃ (z1)).
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where {λ̃1, λ̃2, ...λ̃p̃} are the non-zero singular values. Again, there exists at least one

zero in the diagonal of D2 matrix (p̃ < d), since det(Γ1 (z2)) = 0. Arranging the zeros

in the last positions of the diagonal, it follows immediately that Γ
(i,j)
2 (z1) < ∞ are all

well-defined without poles, since the last column of D2 are identically zero and the

poles introduced by 1−z̄2z2
z2−z2

vanishes.

Continue this sequential procedure for all zj , it follows that Γ(z) is analytic (com-

ponent wise) at z = {z1, z2, ...zn} inside the unit disk. By (S4.3), we conclude that Γ(z)

is indeed Wold (outer) spectral factor. The underlying construction can be trivially

extended to the case with higher-order zeros, see Rozanov (1967), p47. In particular,

the location of the Blaschke factor
1−z̄jz

z−zj
(along the diagonal) is inconsequential, as long

as we put the zero in the corresponding diagonal position of Dj.

A Working Example of 2×3 Signal System To illustrate the use of our method,

we consider an alternative specification of 2× 3 signal system. Let the signal represen-

tation be

Xit = H(L)ηit ≡




1
1−ρaL

1 0

F (L) 0 F (L)





ǫat
ǫit
ǫut


 ,

where F (z) is some an outer function in H2(D).

Step 1: The spectral density fx(ω) is given by

fx(ω) ≡




1
(1−ρaz)(1−ρaz

−1)
σ2
a + σ2

i
F (z−1)
(1−ρaz)

σ2
a

F (z)
(1−ρaz

−1)
σ2
a F (z)F (z−1)[σ2

a + σ2
u]


 ,

where z = e−iω. The leading principal minors are given by

M1(ω) = f11(ω) =
(1− λwz)(1− λwz

−1)

(1− ρaz)(1− ρaz
−1)

σ2
w;

M2(ω) = det(fx(ω)) =
F (z)F (z−1)

(1− ρaz)(1− ρaz
−1)

[
σ2
g(1− λw)(1− λwz

−1)− σ4
a

]
,

where we define σ2
p = σ2

a + σ2
u and σ2

g = σ2
wσ

2
p, λw ∈ (0, 1). Using Lemma S2,

σ2
g(1− λw)(1− λwz

−1)− σ4
a = σ2

h(1− λhz)(1− λhz
−1).

The new parameters σh and λh satisfy λh =
λwσ2

g

σ2
h

and σ2
h(1 + λ2h) = σ2

g(1 + λ2w) − σ4
a.

In particular, we can pick a real λh ∈ (0, 1). Then the spectral density admits the

following decomposition,

fx(ω) =

[
1 0

g21(ω) 1

] [
h11(ω) 0

0 h22(ω)

] [
1 g∗21(ω)
0 1

]
.
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The diagonal elements h11 and h22 are given by

h11(ω) =M1(ω); h22(ω) =
M2(ω)

M1(ω)
.

In addition, we use the recursion formula to get g21(ω) =
g
(1)
21

h11
= f21

h11
. Therefore,

g21(ω) =
σ2
a

σ2
w

F (z)(1 − ρaz)

(1− λwz)(1− λwz−1)
.

Now fix the first column j = 1, we know the only inside pole is at z = λw in g21. This

implies

C1(z) = (z − λw); D1(z) =
h11(z)

|C1(z)|2
=

∣∣∣∣
Φ1(z)

Ψ1(z)

∣∣∣∣
2

.

Hence Φ1(z)
Ψ1(z)

= σw

1−ρaz
. This in turn implies

Γ̃11(z) = g11C1(z)
Φ1(z)

Ψ1(z)
= σw

z − λw
1− ρaz

; Γ̃21(z) = g21C1(z)
Φ1(z)

Ψ1(z)
=
σ2
a

σw

F (z)z

(1− λwz)
.

We repeat this procedure for the second column. Notice that the second column of g

are constants, therefore, C2(z) = 1 and Φ2(z)
Ψ2(z)

= σh

σw

F (z)(1−λhz)
(1−λwz)

. In the end, we obtain

the lower-triangular matrix

Γ̃(z) =

[
σw

z−λw

1−ρaz
0

σ2
a

σw

F (z)z
(1−λwz)

σh

σw

F (z)(1−λhz)
(1−λwz)

]
.

clearly, Γ̃(z) ∈ H2
2×2(D).

Step 2: We remove the inside zeros at z = λw to achieve the Wold fundamen-

tal representation. Using the Blaschke factorization, we have Γ(z) = Γ̃(z)V −1
1 B(z),

where B(z) =

[
1 0
0 1−λwz

z−λw

]
and V1 satisfies the unitary eigen-decomposition of Ĝ(λw) =

Γ̃∗ (λw) Γ̃ (λw) = V1D̂1V
∗
1 . It is easy to check that eigenvalues of Hermitian matrix

Ĝ(λw) are distinct. Therefore, we can pick two eigenvectors from the two eigenval-

ues, which are necessarily orthogonal by the spectral theorem. Normalizing these two

eigenvectors yields the unitary matrix as desired,

V1 =



√

h2

1+h2

√
1

1+h2√
1

1+h2 −
√

h2

1+h2


 ,

where h = σ2
a

σh

λw

(1−λhλw)
. The resulting matrix Γ(z) is the Wold fundamental matrix

Γ(z) =



σw

z−λw

1−ρaz
V

(11)
1 σw

1−λwz
1−ρaz

V
(12)
1

F (z)
σhV

(12)
1

σw
F (z)

V
(12)
1 σ2

a

σw(1−λhλw)


 .
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Finally, we can transform Γ(z) into an upper triangular form by right multiplication

of another unitary matrix V2,

V2 =



√

1
1+x2

√
x2

1+x2

−
√

x2

1+x2

√
1

1+x2


 ,

where x = σh(1−λhλw)
σ2
a

. After some algebraic simplifications, we obtain

Γ(z) =




σh

σp

1−λhz
1−λwz

σ2
a

σp

1
1−ρaz

0 F (z)σp


 .

Since we assume F (z) is outer, i.e. has no roots in the open unit disk, Γ(z) is the Wold

representation.
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