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1. Limits to Indirect Appropriability in Large Random Networks

We present a set of results suggesting that protection of intellectual property is necessary

for providing sellers with incentives to create the good in many markets. We show that

in sufficiently “dense” networks, the effects of competition between sellers of the original

good and buyers of copies are extreme and eliminate indirect appropriability. If creating the

prototype requires large investments, sellers do not have incentives to produce it even when

production enhances welfare. Then, prohibiting reproduction of the good is socially optimal.

Theorem 1 implies that buyer b receives the good for free from seller s in state S if and

only if b 6∼G(S) s. Since b 6∼G(S) s whenever b 6∼G s, seller s obtains zero profit from trading

with buyer b if b 6∼G s. The latter condition is equivalent to the fact that removing the link

bs from network G does not disconnect the network. If b is linked to any other neighbor of

s in G, then the network obtained by removing the link bs from G is connected, so seller s

must trade with buyer b at zero price. Hence, if G is sufficiently “clustered,” in the sense

that neighbors of s tend to be neighbors with each other,1 then s is unable to extract any

profits from his neighbors. Furthermore, if seller s has at least two links in G and the

network obtained by removing node s (and its links) from G is connected, then the network

obtained by removing any link of s from G is also connected, so s obtains zero total profit

in state S. Another immediate observation is that if there exists a cycle in G that contains

all nodes—conventionally called a Hamiltonian cycle—then for any S ∈ S, all equivalence

classes of ∼G(S) are singletons, and Theorem 1 implies that no seller makes profits in state

S. Intuitively, the previous two statements suggest that sellers are unable to generate any

profits if G is “sufficiently connected.” We established the following result.

Proposition A.1. Fix a seller configuration S ∈ S in the network G.

(1) If every neighbor of seller s ∈ S in G is linked in G to at least one other neighbor of

s, then s makes no profit in state S.

(2) If seller s ∈ S has at least two links in G and the network obtained by removing node

s from G is connected, then s makes no profit in state S.
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1This principle, known as triadic closure, has been popularized by the work of Granovetter (1973).
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(3) If G contains a Hamiltonian cycle, then no seller earns any profit in state S.

One can asymptotically estimate probabilities related to connectivity in the context of

large random networks. We focus on the well-known random graph model of Erdos and

Renyi (1959),2 for which the relevant asymptotic results are readily available. Our exposition

of theorems here relies on the monograph of Bollobas (2001). A (Erdos-Renyi) random graph

with parameters (n, q) is defined by the probability distribution over networks with a fixed

set of n nodes in which each link is present independently with probability q or alternatively

by the random variable Gn,q that has this distribution. In what follows, let ω be any function

of n such that ω(n)→∞ as n→∞.

Define qC(n) = (log n+ω(n))/n. Theorem 7.3 in Bollobas (2001) implies that if qn ≥ qC(n)

for all n, then the probability that the random graph Gn,qn is connected converges to 1 as

n → ∞.3 A rough interpretation of this result is that random networks with n nodes and

an average degree slightly greater than log n are asymptotically connected for large n. Fix

a seller s who belongs to Gn,qn with qn ≥ qC(n) for all n. Given the link independence

assumption embedded in the definition of random graphs, the network G′n−1,qn obtained by

removing node s from Gn,qn is a random graph with parameters (n − 1, qn). Applying the

result above for the sequence (G′n−1,qn)n≥2 (with a simple adjustment in the corresponding

function ω), we conclude that G′n−1,qn is connected with limit probability 1 as n→∞. Since

qn ≥ qC(n) for all n, the probability that s has at least two links in Gn,qn converges to 1 as

n → ∞. The second part of Proposition A.1 then implies that seller s gets zero profit in

Gn,qn with limit probability 1 as n→∞.

Similarly, Theorem 8.9 from Bollobas (2001) states that if qn ≥ qH(n) =: (log n+log log n+

ω(n))/n for all n, then the probability that the random graph Gn,qn contains a Hamiltonian

cycle converges to 1 as n → ∞.4 Thus, a relatively small increase in the average degree of

Gn,qn by the amount log log n over the threshold log n needed for Gn,qn to be asymptotically

connected generates a clear instance of connectedness—the existence of a Hamiltonian cycle.

Based on the third part of Proposition A.1, we conclude that if qn ≥ qH(n) for all n, then

all sellers make zero profits in Gn,qn with limit probability 1 as n → ∞. The next result

summarizes our findings related to random graphs.

Proposition A.2. Consider a sequence of random networks (Gn,qn)n≥1 and a function ω

such that limn→∞ ω(n) =∞.

2This first article of Erdos and Renyi on the topic considered a variation of the model presented here, but
follow-up work developed parallel results for the two versions of the model.
3It is remarkable that, as Bollobas explains, the threshold function qC is sharp in the following sense: if
alternatively qn ≤ (log n − ω(n))/n for all n, then Gn,qn has an isolated node, and is thus not connected,
with limit probability 1 as n→∞.
4By analogy with the remark from footnote 3, Bollobas argues the threshold function qH is sharp: if qn ≤
(log n+ log log n− ω(n))/n for all n instead, then the probability that at least one node has fewer than two
neighbors in Gn,qn , and hence Gn,qn does not contain any Hamiltonian cycle, converges to 1 as n→∞.
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(1) If qn ≥ (log n + ω(n))/n for all n ≥ 1, then any particular seller who belongs to all

networks in the sequence earns 0 profit in Gn,qn with limit probability 1 as n→∞.

(2) If qn ≥ (log n + log log n + ω(n))/n for all n ≥ 1, then all sellers in Gn,qn obtain 0

profits with limit probability 1 as n→∞.

Both parts of Proposition A.2 apply when the number of sellers changes arbitrarily with

the size of the network. Versions of this result in which only the network of buyers is random

and sellers are linked to several buyers can be derived using the same ideas.

The negative effects of competition on seller profits may be more pronounced in large

networks observed in applications than the Erdos-Renyi model suggests. Empirical research

provides extensive evidence that social and economic networks are highly clustered.5 For such

networks, the first part of Proposition A.1 implies that it is difficult for sellers to earn high

profits when reproduction and resale are allowed. While the refinement of the bargaining

solution favors trade and generates extreme competition, clustering represents an obstacle to

indirect appropriability even for solutions that do not survive the refinement. Indeed, under

all solutions, the existence of a link between a pair of a seller’s neighbors implies that the

seller cannot extract any profits from one of the two neighbors, a point echoed by Ali et al.

(2020).

2. The cases of pure intermediation and no intermediation: comparison

with Manea (2018)

The competitive and monopolistic forces driving market outcomes in the present model

are similar to those arising in the non-cooperative intermediation game of Manea (2018), in

which a single unit of a non-replicable indivisible good is sequentially traded between linked

intermediaries in a network until a player consumes it. Mirroring the assumption from the

information selling game that the division of gains from trade between sellers and buyers is

determined by Nash bargaining with weights (p, 1 − p), when the player holding the good

selects a buyer for bargaining in the intermediation game, the holder makes an offer with

probability p and the buyer makes an offer with probability 1−p. Pricing in the information

selling game hinges on competition among sellers, whereas pricing in the intermediation

game is determined by competition among buyers.

When the good is not replicable, there is one initial seller and only one of the traders can

consume it. Thus, in order to understand the strategic differences between the two models,

it is natural to consider a network G with an initial seller s and a buyer b in which all traders

except b have zero intrinsic value for the good. In this setting, all traders different from b

5See Jackson (2008) and Easley and Kleinberg (2010) for references. In social networks, clustering captures
the idea that individuals who have common friends are more likely to be friends with each other. Another
expression of this phenomenon, highlighted by the random graph model of Jackson and Rogers (2007), is
that individuals are typically friends with the friends of their friends.
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Figure 1. Diverging price dynamics in the two models.

and s serve pure intermediation roles. Nevertheless, we will argue that the bargaining power

of intermediaries depends significantly on the replicability of the good.

In both models, if there is a unique path from s to b in the network G, and this path

has length k, then the good is resold along the path at prices (pkvb, p
k−1vb, . . . , pvb); in the

absence of any competition among traders, either model boils down to a sequence of bilateral

bargaining problems. However, the two models generate different price dynamics in the more

interesting case in which there are competing intermediation paths between s and b. In that

case, since b 6∼G s and thus b 6∼G({s}) s, buyer b can receive the good only following a sequence

of trades in which the dealer d of his equivalence class under ∼G({s}) acquires it, and trade

subsequently proceeds along the unique intermediation chain between d and b. Again, due to

lack of competition in transactions within d’s equivalence class, either model predicts prices

(pkvb, p
k−1vb, . . . , pvb) for the k intermediaries transmitting the good from d to b.

By contrast, prices along the multiple trading paths from seller s to dealer d diverge sub-

stantially in the two models. In the information selling game, all prices over any trading path

between s and d are 0, reflecting competition between seller s and buyers who sell replicas

of the good. In the intermediation game, prices along the equilibrium trading path take the

form (pl+kvb, . . . , p
l+kvb, p

l+k−1vb, . . . , p
l+k−1vb, . . . , p

k+1vb, . . . , p
k+1vb) for some l. Prices are

constant over segments of the path where multiple intermediaries with maximal resale values

compete for the good and decline by a factor of p at stages where competition is insufficient;

intermediaries acquiring the good in the latter scenario make positive profits. While seller

s is unable to indirectly appropriate part of buyer b’s value in the information selling game,

he obtains a share pl+k of b’s value in the intermediation game. For an illustration, in the

network from Figure 1, the path of prices is (0, 0, pvb) in the information selling game and

(p2vb, p
2vb, pvb) in the intermediation game.

Another “network” that highlights the role of replicability is one in which intermediation

is unnecessary. Suppose that seller s is linked directly to n ≥ 2 buyers (bi)
n
i=1 who do not

have other links as illustrated in Figure 2. Assume that vb1 ≥ vb2 ≥ . . . ≥ vbn > 0 and

vb2 ≥ pvb1 . Then, in the bargaining game of Manea (2018), seller s can trade with a single

buyer and exploits the competition between buyers b1 and b2 to extract a profit of vb2 from

buyer b1. In the information selling game, seller s supplies a copy of the good to each buyer bi
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Figure 2. No intermediation.

at price pvbi . Clearly, for p ≥ 1/2, we have that
∑n

i=1 pvbi ≥ vb2 , so the seller obtains higher

profits in the information selling game. However, for p close to 0, we have vb2 >
∑n

i=1 pvbi ,

and the seller is better off in the bargaining game with unit supply. Transitioning between

the two games in this network is equivalent to increasing the supply of the good from one to

n units. Increasing the supply eliminates competition among buyers and reduces the price

the seller can charge to buyer b1 from vb2 to pvb1 , but allows the seller to extract a surplus

of pvbi from every other buyer bi. This effect adds a bargaining theory dimension to the

trade-off between price and quantity in standard monopoly pricing.

3. Proof of Theorem 3

For a general network H, let H \ ij denote the network obtained by deleting the link ij

from H (which is identical to H if ij /∈ H). Fix a connected network G with ij ∈ G and

let G′ = G \ ij. When the network G′ is not connected, the proof relies on applications of

earlier results to the connected components of G′. For every seller configuration S ∈ S, let

G′(S) denote the network derived from G′ in the same fashion G(S) is derived from G. Note

that G′(S) = G(S) if i, j ∈ S and G′(S) = G(S) \ ij otherwise. We use the notation C ′k(S)

for the equivalence class of k under ∼G′(S), u
′
k(S) for the payoff of player k in network G′

in state S, and δ′(k, l) for the distance between nodes k and l in network G′. Fix a seller

configuration S ∈ S and assume that {i, j} 6⊆ S, so G′(S) = G(S) \ ij.
Suppose that ij is a bottleneck link. As argued in Section 8, the condition {i, j} 6⊆ S

implies that i ∼G(S) j. Then, the link ij represents the unique path between i and j in G(S),

which implies that it is also the unique path connecting i and j in G. Since G′ = G \ ij
and G′(S) = G(S) \ ij, both G′ and G′(S) are disconnected. Each of G′ and G′(S) must

have exactly two connected components, which separate i from j, because G and G(S) are

connected. Furthermore, the partition of (non-dummy) players into the two components is

identical for the two networks. Since G′(S) is disconnected and all sellers in S are linked

with one another in G′(S), information does not reach all players in G′.

The relation i ∼G(S) j implies that there is no cycle in G(S) that contains link ij. Then,

every link that is part of a cycle in G(S) is also part of a cycle in G′(S). It follows that the

forests derived by eliminating cycles from G(S) and G′(S) satisfy F(G′(S)) = F(G(S)) \ ij.
The removal of link ij from the forest F(G(S)) breaks up the connected component of

F(G(S)) containing i and j into two components and does not affect other components.
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Therefore, Ci(S) = C ′i(S) ∪ C ′j(S) with C ′i(S) ∩ C ′j(S) = ∅ and C ′k(S) = Ck(S) for all

k 6∼G(S) i. Theorem 1 implies that sellers outside Ci(S) obtain the same profits in G and

G′. If d(S,Ci(S)) is a seller, Theorem 1, along with C ′d(S,Ci(S))(S) ⊂ Ci(S), implies that

d(S,Ci(S))’s profit is lower in G′ than in G (strictly lower if vb > 0 for all b ∈ N \ S).

To investigate the effects of ij’s removal from G on information diffusion and buyer payoffs,

suppose without loss of generality that d(S,Ci(S)) ∈ C ′i(S) (it is possible that d(S,Ci(S)) =

i). Then, i and d(S,Ci(S)) are in the same connected component of G′, which is different

from j’s component. There is a path in G from a seller in S to d(S,Ci(S)) that does not

contain any other node from Ci(S) and, in particular, does not contain the link ij. Hence,

d(S,Ci(S)) is in the same connected component as a seller in G′(S). Since sellers are linked

to one another in G′(S), all nodes in S must be in the same connected component of G′(S)

as i and d(S,Ci(S)). This implies that the good cannot reach the players in j’s connected

component in G′ (this component is a superset of C ′j(S); it can be a strict superset formed

by the union of C ′j(S) and some of the sets Ck(S) with k 6∼G(S) i). Hence, players in j’s

connected component in G′ obtain zero payoffs in G′.

Consider now a buyer b from i’s connected component in G′. As j /∈ S ∪ b, we have

G′(S ∪ b) = G(S ∪ b) \ ij. Since the links in G′(S ∪ b) \ G′(S) connect only nodes in the

set S ∪ {b, 0}, which is disjoint from j’s connected component in G′(S), it must be that

G′(S ∪ b) and G′(S) have identical connected components. Thus, i and j are in distinct

components of G′(S ∪ b), which means that the link ij constitutes the only path in G(S ∪ b)
between i and j and hence i ∼G(S∪b) j. Arguments analogous to those above then show

that F(G′(S ∪ b)) = F(G(S ∪ b)) \ ij. If b /∈ Ci(S), then b /∈ Ci(S ∪ b), which implies that

C ′b(S ∪ b) = Cb(S ∪ b). If b ∈ Ci(S), then we have that C ′b(S ∪ b) ⊆ Cb(S ∪ b), with strict

inclusion if b ∈ {i, d(S,Ci(S))}. Note that b is a dealer for C ′b(S) in state S if and only if

b is a dealer for Cb(S) in state S. Theorem 1 then implies that all buyers in i’s connected

component in G′ that do not belong to Ci(S) obtain the same payoffs in G and G′, while

buyers in C ′i(S) have weakly lower payoffs in G′ than in G (with i and d(S,Ci(S)) having

strictly lower payoffs in G′ if vb > 0 for all b ∈ N \ S).

Suppose next that ij is a redundant link, i.e., i 6∼G(S) j. Then, we also have that i 6∼G(S) j,

so there exists a path between i and j in G(S) that does not involve link ij. Since G′(S) =

G(S)\ ij and G(S) is connected, the path is contained in G′(S), and G′(S) is also connected.

This means that every buyer is connected to a seller by a path in G′, so information reaches

all buyers eventually. The removal of link ij leads to a weak expansion in each player’s

equivalence class in G(S). For a proof, fix a player k ∈ N . Since i 6∼G(S) j, it cannot be that

both i and j belong to Ck(S). By Lemma 1, every pair of nodes in Ck(S) is connected by

a unique path in G(S), which necessarily contains only nodes in Ck(S) and thus excludes

link ij. As G′(S) = G(S) \ ij, every pair of nodes in Ck(S) is connected by a unique path

in G′(S) as well. Hence, all nodes in Ck(S) are in the same equivalence class of ∼G′(S), i.e.,

Ck(S) ⊆ C ′k(S). Theorem 1 implies that every seller’s payoff is weakly higher in G′ than in
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G. Indeed, for all s ∈ S, Cs(S) ⊆ C ′s(S) implies that

us(S) =
∑

k∈Cs(S)\s

pδ(k,s)vk ≤
∑

k∈C′
s(S)\s

pδ
′(k,s)vk = u′s(S).

The inequality above relies on the fact that δ(k, s) = δ′(k, s) for all k ∈ Cs(S). This follows

from the observation that there is a single path in G between s and any node k ∈ Cs(S),

which does not include the link ij and hence constitutes the unique path between s and k in

G′. We have established that the payoffs of all sellers weakly increase when the redundant

link ij is removed from G.

Similarly, for every buyer b, we have i 6∼G(S∪b) j, so Cb(S ∪ b) ⊆ C ′b(S ∪ b). Suppose

that b is not the dealer for Cb(S) in state S. Then, b is not the dealer for C ′b(S) in state S

either. For a proof by contradiction, assume that there is a path in G′ from a seller in S to

b that does not contain any node from C ′b(S) except for b. The path also lies in G because

G′ = G \ ij. Since Cb(S) ⊆ C ′b(S), the path does not contain any node from Cb(S) other

than b. Then b should be the dealer for Cb(S) in state S, a contradiction. Theorem 1, along

with the condition Cb(S ∪ b) ⊆ C ′b(S ∪ b) and the equality δ(b, k) = δ′(b, k) for k ∈ Cb(S ∪ b),
implies that

ub(S) = (1− p)(vb +
∑

k∈Cb(S∪b)\b

pδ(b,k)vk) ≤ (1− p)(vb +
∑

k∈C′
b(S∪b)\b

pδ
′(b,k)vk) = u′b(S).

This proves that non-dealer buyers weakly benefit from the removal of the redundant link ij

from G.

We finally prove that if i is a dealer buyer in state S, then i is hurt by the deletion of the

redundant link ij if and only if ij is a pivotal link for i in state S.

Suppose first that i has exactly two potential suppliers, j and some other node k, in state

S in the network G. Then, in the network G \ ij, player i can receive the good only from

neighbor k. Theorem 2 implies that player i is not a dealer in state S in G \ ij. We next

prove that the set of players for whom i is an essential intermediary in state S cannot expand

when the link ij is removed from the network.

Assume that i is an essential intermediary for player k in state S in the network G \ ij.
The following statements must be true: (1) there is a unique path in G \ ij between i and

k, and (2) every path in G \ ij from a node in S to k passes through i. We will show that

i is also an essential intermediary for player k in state S in the network G. If this was not

the case, then either there exist multiple paths in G between i and k or there is a path in G

from a node in S to k that does not pass through i.

In the first case, (1) implies that one of the paths from i to k in G includes the link ij;

this path contains a subpath between j and k in G \ ij. As j is a potential supplier for i in

state S, there should be a path from S to j that does not contain the link ij and thus does

not pass through i. By pasting the two paths (and removing potential overlap), we obtain a

path in G \ ij from S to k that does not go through i, a contradiction with (2).
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In the second case, the path in G from a node in S to k that does not pass through i

necessarily excludes the link ij and thus must lie in G \ ij. This implies the existence of a

path in G \ ij from a node in S to k not containing i, a contradiction with (2).

We have established that if ij is a pivotal link for i in state S, then the removal of the link

ij from the network leads to the loss of dealer status for i and does not expand the set of

buyers for whom i provides essential intermediation in the network G \ ij. Theorem 1 and

Lemma 2 then imply that buyer i’s payoff is strictly lower in G \ ij than in G if vb > 0 for

all b ∈ N \ S.

We are left to consider the case in which ij is not a pivotal link for dealer i in state S.

In this case, Theorem 2 implies that i has at least two potential suppliers k and k′ different

from j in state S. By definition, there exist paths in G from nodes in S to k and k′ that do

not contain node i and thus exclude the link ij; these paths lie in G\ij. It follows that k and

k′ are potential suppliers for i in state S in the network G \ ij. From Theorem 2, we infer

that player i maintains his dealer role in state S in the network G \ ij. Since i’s equivalence

class in G(S ∪ i) can only expand when the redundant link ij is removed, Theorem 1 implies

that buyer i’s profit weakly increases after the removal of link ij. �
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