Equilibrium Contracts and Boundedly Rational Expectations: Supplementary Appendix

Heiner Schumacher* Heidi Christina Thysen†

Version: May 7, 2021

*Department of Economics, KU Leuven. E-mail: heiner.schumacher@kuleuven.be.
†Department of Economics, London School of Economics. E-mail: h.c.thysen@lse.ac.uk.
A A Brief Introduction to d-separation

We briefly introduce the concept of d-separation, a result from the Bayesian network literature that allows us to check, for any given model \(\mathcal{R} \), whether two variables (or two sets of variables) are independent when conditioning on a third variable (or set of variables). For simple models \(\mathcal{R} \) it can be used as visual inspection tool; for complex models, there exists an algorithm for checking d-separation (Geiger et al. 1990). Define a path \(\tau \) in \(\mathcal{R} \) as a sequence of nodes so that any adjacent nodes are linked in \(\mathcal{R} \); \(\tau \) is a directed path if the links between any two adjacent nodes in \(\tau \) point in the same direction (from the former to the latter or vice versa). A node \(j \) is a descendant of node \(i \) if there exists a directed path from \(i \) to \(j \). For convenience, we use the notation \(i \rightarrow j \) instead of \(iRj \) in this section. The following definitions and result are adopted from Pearl (2009).

Definition 8. A path \(\tau \) is blocked in \(\mathcal{R} = (R, N) \) by a set of variables \(M \subseteq N \) if and only if one of the following condition holds:

(a) \(\tau \) contains variables \(i, m, j \) with \(m \in M \) so that \(i \rightarrow m \rightarrow j \) or \(i \leftarrow m \rightarrow j \), or

(b) \(\tau \) contains variables \(i, m, j \) so that \(i \rightarrow m \leftarrow j \), \(m \notin M \), and no descendant of \(m \) is in \(M \).

Figure A1: Objective model \(\mathcal{R}^* \) from Figure 1 (left) and objective model \(\mathcal{R}^* \) from Figure 3 (right).

To illustrate, consider the DAG \(\mathcal{R}^* \) from Figure 1 in the paper, reproduced here on the left of Figure A1. The path \(\tau = 0 \rightarrow 2 \leftarrow 1 \rightarrow 3 \rightarrow 4 \) between the nodes 0 and 4 is blocked by node 1 and node 3, but not by node 2. To see this, note that conditions (a) and (b) are both satisfied if we define \(M = \{1\} \), or \(M = \{3\} \); however, none of the conditions is satisfied if we define \(M = \{2\} \).

Definition 9. Let \(\mathcal{R} = (R, N) \) be a DAG and \(M', M'' \), \(M \) disjoint subsets of \(N \). \(M' \) and \(M'' \) are d-separated by \(M \) in \(\mathcal{R} \), if \(M \) blocks every path between any node in \(M' \) and any node in \(M'' \).
Consider the DAG R^* from Figure 3 in the paper, reproduced here on the right of Figure A1. We check whether the nodes 0 and 4 are d-separated in R^* by $M = \{2\}$. For this, we have to consider three paths, $\tau = 0 \to 2 \to 4$, $\tau' = 0 \to 2 \leftarrow 1 \to 3 \to 4$, and $\tau'' = 0 \to 2 \to 3 \to 4$. By condition (a) in Definition 8, the paths τ and τ'' are blocked by $M = \{2\}$. In contrast, the path τ' is not blocked by $M = \{2\}$. Hence, the nodes 0 and 4 are not d-separated in R^* by $M = \{2\}$. However, they are d-separated in R^* by $M = \{1, 2\}$, $M = \{2, 3\}$, or $M = \{1, 2, 3\}$. Suppose, for example, that $M = \{1, 2\}$. Now not only the paths τ and τ'' are blocked according to condition (a) in Definition 1, but also path τ' (we see this from the segment $2 \leftarrow 1 \to 3$). The implication of d-separation is given in the following result.

Proposition 10 (Implications of d-separation). If the variables 0 and n are d-separated by variable i in R, then $p_R(x_n \mid x_0, x_i; q) = p_R(x_n \mid x_i; q)$ for all $q \in \Delta(A)$ and all triples x_0, x_i, x_n. If the variables 0 and n are not d-separated by variable i in R, then x_0 and x_n are dependent conditional on x_i for at least one distribution compatible with R.
References
