Online Appendix to "Collusion Enforcement in Repeated First-Price Auctions"

In this online appendix, we provide the proofs for Claims 2-4, which are needed to complete the proof of Theorem 3. We first present two properties of the revenue function S in Claims 5 and 6 below.

Claim 5. On the interval $[1-\sqrt{3} d, 1-d]$, the revenue function

$$
S(r)=\frac{1}{3}(1-r)^{3}-\frac{3 d^{2}(1-r)-d^{2} \sqrt{12 d^{2}-3(1-r)^{2}}}{2}+r\left(1-r^{2}\right)
$$

has the following derivatives

$$
\begin{align*}
S^{\prime}(r) & =2 r(1-2 r)+\frac{3 d^{2}}{2}+\frac{3 d^{2}(1-r)}{2 \sqrt{12 d^{2}-3(1-r)^{2}}} \tag{1}\\
S^{\prime \prime}(r) & =2-8 r-\frac{18 d^{4}}{\left(12 d^{2}-3(1-r)^{2}\right)^{3 / 2}} \tag{2}\\
S^{\prime \prime \prime}(r) & =-8+\frac{162(1-r) d^{4}}{\left(12 d^{2}-3(1-r)^{2}\right)^{5 / 2}} \tag{3}\\
S^{(4)}(r) & =-\frac{1944 d^{4}\left(d^{2}+(1-r)^{2}\right)}{\left(12 d^{2}-3(1-r)^{2}\right)^{7 / 2}} . \tag{4}
\end{align*}
$$

Claim 6. On the interval $[1-\sqrt{3} d, 1-d]$, the first-order derivative S^{\prime} is strictly decreasing.

We prove Claims 2-6 in Sections A-E, respectively.

A Proof of Claim 2

We proceed by showing that S is increasing if $r<\frac{1}{2}$ and decreasing if $r \geq \frac{1}{2}$. Hence, S is maximized at $r=\frac{1}{2}$.

Differentiating S, we have

$$
S^{\prime}(r)= \begin{cases}2 r(1-2 r), & \text { if } r \geq 1-d \tag{5}\\ 2 r(1-2 r)+\frac{3 d^{2}}{2}+\frac{3 d^{2}(1-r)}{2 \sqrt{12 d^{2}-3(1-r)^{2}}}, & \text { if } 1-\sqrt{3} d<r<1-d \\ 1-3 r^{2}, & \text { if } r \leq 1-\sqrt{3} d\end{cases}
$$

Case 1. Suppose that $r<\frac{1}{2}$. We use (5) to verify that $S^{\prime}(r)>0$. Since $2 r(1-2 r)>0$, we have $S^{\prime}(r)>0$ for the first case of (5). Similarly, for the second case, we have

$$
\begin{aligned}
S^{\prime}(r) & =2 r(1-2 r)+\frac{3 d^{2}}{2}+\frac{3 d^{2}(1-r)}{2 \sqrt{12 d^{2}-3(1-r)^{2}}} \\
& \geq 2 r(1-2 r) \\
& >0
\end{aligned}
$$

For the last case of S^{\prime} in (5), we have

$$
\begin{aligned}
S^{\prime}(r) & =1-3 r^{2} \\
& \geq 1-3\left(\frac{1}{2}\right)^{2} \\
& =\frac{1}{4} .
\end{aligned}
$$

This shows that $S^{\prime}(r)>0$. Hence, S is increasing if $r<\frac{1}{2}$.
Case 2. Suppose that $r \geq \frac{1}{2}$. By assumption, $d \geq \frac{1}{2}$. This implies that $1-d \leq \frac{1}{2}$, and, therefore, $r \geq 1-d$. Hence, by (5), we have $S^{\prime}(r)=2 r(1-2 r)$. Since $r \geq \frac{1}{2}$, we have $S^{\prime}(r) \leq 0$. This shows that S is decreasing if $r \geq \frac{1}{2}$.

B Proof of Claim 3

B. 1 Case (i): $r \leq 1-\sqrt{3} d$.

By (5), $S^{\prime}(r)=1-3 r^{2}$. Hence, S is strictly increasing if $r \leq \frac{\sqrt{3}}{3}$ and strictly decreasing if $r \geq \frac{\sqrt{3}}{3}$.

If $1-\sqrt{3} d \geq \frac{\sqrt{3}}{3}$, or $d \leq \frac{\sqrt{3}-1}{3}$, then S is strictly increasing on $\left[0, \frac{\sqrt{3}}{3}\right]$ and strictly decreasing on $\left(\frac{\sqrt{3}}{3}, 1-\sqrt{3} d\right]$. Hence, S is uniquely maximized at $r=\frac{\sqrt{3}}{3}$.

If $1-\sqrt{3} d \leq \frac{\sqrt{3}}{3}$, or $d \geq \frac{\sqrt{3}-1}{3}$, then S is strictly increasing on $[0,1-\sqrt{3} d]$. Hence, S is uniquely maximized at $r=1-\sqrt{3} d$.

B. 2 Case (ii): $1-\sqrt{3} d \leq r \leq 1-d$.

We first evaluate S^{\prime} at the two end points of the interval $[1-\sqrt{3} d, 1-d]$. By (1),

$$
\begin{aligned}
S^{\prime}(1-\sqrt{3} d)= & 2(1-\sqrt{3} d)(1-2(1-\sqrt{3} d)) \\
& +\frac{3 d^{2}}{2}+\frac{3 d^{2}(1-(1-\sqrt{3} d))}{2 \sqrt{12 d^{2}-3(1-(1-\sqrt{3} d))^{2}}} \\
= & 2(1-\sqrt{3} d)(-1+2 \sqrt{3} d)+\frac{3 d^{2}}{2}+\frac{3 d^{2} \cdot \sqrt{3} d}{2 \sqrt{12 d^{2}-3 \cdot 3 d^{2}}} \\
= & -2+6 \sqrt{3} d-9 d^{2}
\end{aligned}
$$

Hence,

$$
\begin{equation*}
S^{\prime}(1-\sqrt{3} d)>0 \Longleftrightarrow d>\frac{\sqrt{3}-1}{3} \approx 0.24 \tag{6}
\end{equation*}
$$

where we use the assumption that $d<\frac{1}{2}$. Similarly,

$$
\begin{aligned}
S^{\prime}(1-d) & =2(1-d)(1-2(1-d))+\frac{3 d^{2}}{2}+\frac{3 d^{2}(1-(1-d))}{2 \sqrt{12 d^{2}-3(1-(1-d))^{2}}} \\
& =2(1-d)(-1+2 d)+\frac{3 d^{2}}{2}+\frac{3 d^{2} \cdot d}{2 \sqrt{12 d^{2}-3 \cdot d^{2}}} \\
& =-2+6 d-2 d^{2} .
\end{aligned}
$$

Hence,

$$
\begin{equation*}
S^{\prime}(1-d)>0 \Longleftrightarrow d>\frac{3-\sqrt{5}}{2} \approx 0.38 \tag{7}
\end{equation*}
$$

By Claim $6, S^{\prime}$ is strictly decreasing on $[1-\sqrt{3} d, 1-d]$. We now use this fact and (6) and (7) to prove Case (ii) of Claim 3.

If $\frac{3-\sqrt{5}}{2} \leq d<\frac{1}{2}$, then by (7) we have $S^{\prime}(1-d)>0$. Since S^{\prime} is decreasing, we have $S^{\prime}(r)>0$ for all $r \in[1-\sqrt{3} d, 1-d]$. Thus, S is strictly increasing and is uniquely maximized at $r=1-d$.

If $\frac{\sqrt{3}-1}{3}<d<\frac{3-\sqrt{5}}{2}$, then by (6) and (7) we have $S^{\prime}(1-\sqrt{3} d)>0$ and $S^{\prime}(1-d)<0$, respectively. Since $S^{\prime \prime}<0$, there exists a unique solution $r_{0} \in$ $(1-\sqrt{3} d, 1-d)$ to $S^{\prime}(r)=0$. Moreover, $S^{\prime}(r)>0$ for all $r<r_{0}$ and $S^{\prime}(r)<0$ for all $r>r_{0}$. This implies that S is strictly increasing on $\left[1-\sqrt{3} d, r_{0}\right]$ and strictly decreasing on $\left[r_{0}, 1-d\right]$. Hence, S is uniquely maximized at r_{0}.

If $d \leq \frac{\sqrt{3}-1}{3}$, then by (6) we have $S^{\prime}(1-\sqrt{3} d)<0$. Since S^{\prime} is decreasing, we have $S^{\prime}(r)<0$ for all $r \in[1-\sqrt{3} d, 1-d]$. That is, S is strictly decreasing and is uniquely maximized at $r=1-\sqrt{3} d$.

This completes the proof of Case (ii).

B. 3 Case (iii): $r \geq 1-d$.

By (5), $S^{\prime}(r)=2 r(1-2 r)$. Since $1-d \geq \frac{1}{2}$, we have $S^{\prime}(r)=2 r(1-2 r)<0$ for all $r \geq 1-d$. Hence, S is strictly decreasing and is uniquely maximized at $r=1-d$.

C Proof of Claim 5

On the interval $[1-\sqrt{3} d, 1-d]$, we have

$$
S(r)=\frac{1}{3}(1-r)^{3}-\frac{3 d^{2}(1-r)-d^{2} \sqrt{12 d^{2}-3(1-r)^{2}}}{2}+r\left(1-r^{2}\right) .
$$

Differentiating S, we have

$$
\begin{aligned}
S^{\prime}(r) & =-(1-r)^{2}-\frac{-3 d^{2}-d^{2} \cdot \frac{6(1-r)}{2 \sqrt{12 d^{2}-3(1-r)^{2}}}}{2}+1-3 r^{2} \\
& =2 r(1-2 r)+\frac{3 d^{2}+\frac{3 d^{2}(1-r)}{\sqrt{1 d^{2}-3(1-r)^{2}}}}{2} \\
& =2 r(1-2 r)+\frac{3 d^{2}}{2}+\frac{3 d^{2}(1-r)}{2 \sqrt{12 d^{2}-3(1-r)^{2}}}
\end{aligned}
$$

Further differentiating S^{\prime}, we have

$$
\begin{aligned}
& S^{\prime \prime}(r)= 2-8 r+\frac{3 d^{2}}{2} \frac{-\sqrt{12 d^{2}-3(1-r)^{2}}-(1-r) \frac{6(1-r)}{2 \sqrt{12 d^{2}-3(1-r)^{2}}}}{12 d^{2}-3(1-r)^{2}} \\
&=2-8 r+\frac{3 d^{2}}{2} \frac{-\left(12 d^{2}-3(1-r)^{2}\right)-3(1-r)^{2}}{\left(12 d^{2}-3(1-r)^{2}\right)^{3 / 2}} \\
&=2-8 r-\frac{18 d^{4}}{\left(12 d^{2}-3(1-r)^{2}\right)^{3 / 2}}, \\
& S^{\prime \prime \prime}(r)=-8+18 d^{4} \cdot \frac{3}{2} \cdot \frac{6(1-r)}{\left(12 d^{2}-3(1-r)^{2}\right)^{5 / 2}} \\
&=-8+\frac{162(1-r) d^{4}}{\left(12 d^{2}-3(1-r)^{2}\right)^{5 / 2}},
\end{aligned}
$$

and

$$
\begin{aligned}
S^{(4)}(r) & =162 d^{4} \cdot \frac{-\left(12 d^{2}-3(1-r)^{2}\right)^{5 / 2}-(1-r) \cdot \frac{5}{2} \cdot\left(12 d^{2}-3(1-r)^{2}\right)^{3 / 2} \cdot 6(1-r)}{\left(12 d^{2}-3(1-r)^{2}\right)^{5}} \\
& =162 d^{4} \cdot \frac{-\left(12 d^{2}-3(1-r)^{2}\right)^{5 / 2}-15 \cdot(1-r)^{2} \cdot\left(12 d^{2}-3(1-r)^{2}\right)^{3 / 2}}{\left(12 d^{2}-3(1-r)^{2}\right)^{5}} \\
& =162 d^{4} \cdot \frac{-\left(12 d^{2}-3(1-r)^{2}\right)-15(1-r)^{2}}{\left(12 d^{2}-3(1-r)^{2}\right)^{7 / 2}} \\
& =162 d^{4} \cdot \frac{-12\left(d^{2}+(1-r)^{2}\right)}{\left(12 d^{2}-3(1-r)^{2}\right)^{7 / 2}} \\
& =-\frac{1944 d^{4}\left(d^{2}+(1-r)^{2}\right)}{\left(12 d^{2}-3(1-r)^{2}\right)^{7 / 2}} .
\end{aligned}
$$

D Proof of Claim 6

We show that $S^{\prime \prime}<0$ on $[1-\sqrt{3} d, 1-d]$. We proceed in two steps. We break the interval $[1-\sqrt{3} d, 1-d]$ into two subintervals,

$$
[1-\sqrt{3} d, 1-\sqrt{5 / 2} d] \quad \text { and } \quad[1-\sqrt{5 / 2} d, 1-d]
$$

In Step 1, we show that $S^{\prime \prime}$ is negative on the first subinterval $[1-\sqrt{3} d, 1-\sqrt{5 / 2} d]$. In Step 2, we show that $S^{\prime \prime}$ is decreasing on the second subinterval $[1-\sqrt{5 / 2} d, 1-$ $d]$. This implies that $S^{\prime \prime}$ is negative on $[1-\sqrt{3} d, 1-d]$.

D. 1 Step 1

Using the expression for $S^{\prime \prime}$ in Claim 5, we show that an upper bound for $S^{\prime \prime}$ is strictly negative. By (2), for all r in the first subinterval $[1-\sqrt{3} d, 1-\sqrt{5 / 2} d]$, we have

$$
\begin{aligned}
S^{\prime \prime}(r) & =2-8 r-\frac{18 d^{4}}{\left(12 d^{2}-3(1-r)^{2}\right)^{3 / 2}} \\
& \leq 2-8(1-\sqrt{3} d)-\frac{18 d^{4}}{\left(12 d^{2}-3(1-(1-\sqrt{5 / 2} d))^{2}\right)^{3 / 2}} \\
& =2-8(1-\sqrt{3} d)-\frac{18 d^{4}}{\left(12 d^{2}-3 \cdot \frac{5}{2} d^{2}\right)^{3 / 2}} \\
& =2-8(1-\sqrt{3} d)-\frac{18 d^{4}}{\frac{27}{2 \sqrt{2}} d^{3}} \\
& =-6+8 \sqrt{3} d-\frac{4 \sqrt{2}}{3} d \\
& <-6+4 \sqrt{3}-\frac{2 \sqrt{2}}{3} \approx-0.015 \\
& <0
\end{aligned}
$$

where, since the second term on the right-hand side of the first line, $-8 r$, is decreasing in r and the last term

$$
-\frac{18 d^{4}}{\left(12 d^{2}-3(1-r)^{2}\right)^{3 / 2}}
$$

is increasing in r, the second line follows from applying $r \geq 1-\sqrt{3} d$ and $r \leq$ $1-\sqrt{5 / 2} d$ to the second and the last terms, respectively, the next three lines follow from simplifying terms, and the seventh from $d<\frac{1}{2}$. This shows that $S^{\prime \prime}(r)<0$ for all $r \in[1-\sqrt{3} d, 1-\sqrt{5 / 2} d]$.

D. 2 Step 2

By (4), $S^{(4)}(r)<0$ for all $r \in[1-\sqrt{3} d, 1-d]$. Hence, $S^{\prime \prime \prime}$ is decreasing. By (3),

$$
\begin{aligned}
S^{\prime \prime \prime}(1-\sqrt{5 / 2} d) & =-8+\frac{162(1-(1-\sqrt{5 / 2} d)) d^{4}}{\left(12 d^{2}-3(1-(1-\sqrt{5 / 2} d))^{2}\right)^{5 / 2}} \\
& =-8+\frac{162 \cdot \sqrt{\frac{5}{2}} d \cdot d^{4}}{\left(12 d^{2}-3 \cdot \frac{5}{2} \cdot d^{2}\right)^{5 / 2}} \\
& =-\frac{8}{3}(3-\sqrt{5})<0 .
\end{aligned}
$$

Hence, $S^{\prime \prime \prime \prime}(r)<0$ for all $r \in[1-\sqrt{5 / 2} d, 1-d]$. This implies that $S^{\prime \prime}$ is decreasing on the interval $[1-\sqrt{5 / 2} d, 1-d]$.

E Proof of Claim 4

Total differentiating (29) in the main text, the equation that defines r^{*}, we have

$$
\begin{aligned}
& 0=\left(2-8 r-\frac{18\left(\frac{1-\delta}{\delta}\right)^{2}}{\left(12 \frac{1-\delta}{\delta}-3(1-r)^{2}\right)^{3 / 2}}\right) \mathrm{d} r \\
& \quad+\frac{3}{2}\left(1+(1-r) \frac{6 \frac{1-\delta}{\delta}-3(1-r)^{2}}{\left(12 \frac{1-\delta}{\delta}-3(1-r)^{2}\right)^{3 / 2}}\right)\left(-\frac{1}{\delta^{2}}\right) \mathrm{d} \delta,
\end{aligned}
$$

where in the first line we use (2) for $S^{\prime \prime}(r)$. Rearranging terms yields

$$
\begin{equation*}
\frac{\mathrm{d} r}{\mathrm{~d} \delta}=\frac{\frac{3}{2 \delta^{2}}\left(1+(1-r) \frac{6 \frac{1-\delta}{\delta}-3(1-r)^{2}}{\left(12 \frac{1-\delta}{\delta}-3(1-r)^{2}\right)^{3 / 2}}\right)}{2-8 r-\frac{1\left(\frac{1-\delta}{\delta}\right)^{2}}{\left(12 \frac{1-\delta}{\delta}-3(1-r)^{2}\right)^{3 / 2}}} \tag{9}
\end{equation*}
$$

By Claim 6, the denominator on the right-hand side of (9) is negative. Hence, it suffices to show that the numerator is positive. Since $r>1-\sqrt{\frac{3(1-\delta)}{\delta}}$, by rearranging terms, we have

$$
\begin{equation*}
3 \frac{1-\delta}{\delta}>(1-r)^{2} \tag{10}
\end{equation*}
$$

Hence, the bracketed term of the numerator becomes

$$
\begin{aligned}
& 1+(1-r) \frac{6 \frac{1-\delta}{\delta}-3(1-r)^{2}}{\left(12 \frac{1-\delta}{\delta}-3(1-r)^{2}\right)^{3 / 2}} \\
= & 1+(1-r) \frac{-(1-r)^{2}}{\left(12 \frac{1-\delta}{\delta}-3(1-r)^{2}\right)^{3 / 2}}+(1-r) \frac{6 \frac{1-\delta}{\delta}-2(1-r)^{2}}{\left(12 \frac{1-\delta}{\delta}-3(1-r)^{2}\right)^{3 / 2}} \\
> & 1-\frac{(1-r)^{3}}{\left(12 \frac{1-\delta}{\delta}-3(1-r)^{2}\right)^{3 / 2}} \\
\geq & 1-\frac{(1-r)^{3}}{\left(4(1-r)^{2}-3(1-r)^{2}\right)^{3 / 2}} \\
\geq & 0,
\end{aligned}
$$

where the second line follows from rearranging terms, the third from applying (10) to conclude that the second term on the second line is greater than 0 , the fourth from applying (10) to substitute $3(1-r)^{2}$ for $12 \frac{1-\delta}{\delta}$ in the denominator on the third line, and the last from simplifying terms. This shows that the numerator of (9) is positive. Hence, $\frac{d r}{d \delta}<0$.

