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H Solving for the value function

In this appendix, we explain how to solve for the sender’s value function
using Proposition 1. We detail in particular how the value is computed in
the two-action example, allowing us to draw Figure 1.

Partition C \D into maximal intervals (Rk)Kk=1. (In the two-action ex-
ample, the maximal intervals are [0, 2/3) and (2/3, 1].) Fix a continuity
interval Rk. The homogeneous part (without the u) of the differential equa-
tion (∂) has general solution AH1 −BH2 for constants A,B ∈ R, where

H1(p) := pξ(1−p)1−ξ, ξ := 1/2+
√

1/4 + 2rσ2/λ and H2(p) := H1(1−p).

A particular solution may be obtained from formula (6.2) in Coddington
(1961, ch. 3). Things are easier when the sender has expected-utility prefer-
ences, so that f(a, ·) is affine, as u itself is then a particular solution. This is
the case in the two-action example, and in the three-action example below.
In the expected-utility case, the value function is given on each maximal
interval Rk of C \D as

v(p) = u(p) +ARk
H1(p)−BRk

H2(p) for all p ∈ Rk,

where the constants (ARk
, BRk

)Kk=1 are the unique ones that ensure that the
properties in Proposition 1 are satisfied: the boundary condition v = u on
{0, 1}, the continuity of v on D, and smooth pasting on C ∪D.
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H.1 The two-action example (§4.1)

Here D = {2/3}, and C contains [0, 2/3) and may or may not contain [2/3, 1].
In either case,

v(p) =
{
A[0,2/3)H1(p)−B[0,2/3)H2(p) for p ∈ [0, 1/2)
αp− β +A(2/3,1]H1(p)−B(2/3,1]H2(p) for p ∈ (2/3, 1],

where α = 3/2 and β = 1/2.1 The boundary conditions require that B[0,2/3) =
0 and A(2/3,1] = 0. Continuity of v at 2/3 requires that

A[0,2/3)H1(2/3) = α(2/3)− β −B(2/3,1]H2(2/3).

If λ is sufficiently high, then 2/3 ∈ C, in which case smooth pasting must
hold at 2/3:

A[0,2/3)H
′
1(2/3) = α−B(2/3,1]H

′
2(2/3).

Thus the constants are uniquely pinned down.
If λ is low, then 2/3 /∈ C, in which case v = u on [2/3, 1]. Thus B(2/3,1] = 0,

whence A[0,2/3) is pinned down by the continuity condition.
To determine which case applies for a given value of λ, calculate A[0,2/3)

assuming that the first case applies. If

A[0,2/3)H1(2/3) ≥ u(1/2) = 1/2,

then the first case does indeed apply; if not, then not.

H.2 A three-action example

Consider the flow payoff u depicted in Figure 2. The underlying model has
actions A = {0, 1, 3}, flow payoff fS(a, p) = a for the sender, and payoffs
fD(0, p) = 0, fD(1, p) = 2p− 1 and fD(3, p) = 14

3 p− 3 for the decision-maker.
Figure 2 depicts the concave envelope, as well as the sender’s value function
for high and low values of λ.

Clearly C contains [0, 1/2) and (1/2, 3/4), and does not contain [3/4, 1].
Thus the value function off D is

v(p) =


A[0,1/2)H1(p)−B[0,1/2)H2(p) for p ∈ [0, 1/2)
`+A(1/2,3/4)H1(p)−B(1/2,3/4)H2(p) for p ∈ (1/2, 3/4)
h,

1If C contains [2/3, 1] then the expression for p ∈ (2/3, 1] holds since (HJB) must be
satisfied in the classical sense by Proposition 1. If not, then Proposition 1 requires that
v = u, which amounts to setting A(2/3,1] = B(2/3,1] = 0.
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(b) Value v for low λ.

Figure 2: Three-action example.

where ` = 1 and h = 3. The boundary condition at p = 0 again requires that
B[0,1/2) = 0. Continuity of v at 1/2 and at 3/4 requires that

A[0,1/2)H1(1/2) = `+A(1/2,3/4)H1(1/2)−B(1/2,3/4)H2(1/2)
and `+A(1/2,3/4)H1(3/4)−B(1/2,3/4)H2(3/4) = h.

These are two equations in three unknowns.
If λ is sufficiently high that 1/2 ∈ C, then smooth pasting must hold at

1/2, giving us the third equation

A[0,1/2)H
′
1(1/2) = A(1/2,3/4)H

′
1(1/2)−B(1/2,3/4)H

′
2(1/2).

If λ is sufficiently low that 1/2 /∈ C, then v(1/2) = u(1/2) = `. We thus
obtain a third equation from the requirement that v be continuous at 1/2:

A[0,1/2)H1(1/2) = `.

To discern which case applies, compute A[0,1/2) assuming that the first
(information arrives fast) case applies. If A[0,1/2)H1(1/2) ≥ `, then the fast-
arrival case does indeed apply; if not, then not.

I Generic uniqueness of long-run beliefs

We claimed in §5.1 that provided v(p0) > u(p0), generically, all best replies of
the sender induce the same long-run beliefs (viz. the beliefs {p−, p+} defined
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(a) Three-action example from Figure 2.
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(b) Two-action example from §4.1.

Figure 3: Knife-edge cases in which long-run beliefs are not unique.

in Corollary 3).
To see how uniqueness can fail, consider the three-action example in

supplemental appendix H.2. Figure 3a depicts the knife-edge case in which λ
is such that the fast-information value function with the convex-flat shape
in Figure 2a touches u at 1/2.2 In this case, the sender is indifferent between
providing and not providing information at 1/2, and strictly prefers to do
so on (0, 1/2) and (0, 3/4). The best reply Λ? from Corollary 2 stops at 1/2,
inducing the long-run beliefs {p−, p+} = {1/2, 3/4} from Corollary 3. But
since the sender is indifferent at 1/2, she also has a best reply that provides
information at 1/2, which induces long-run beliefs {0, 3/4}.

This scenario is non-generic in the sense that slightly increasing λ puts
us back in Figure 2a, where the sender strictly prefers to provide information
at full tilt at 1/2, whereas slightly decreasing λ puts us in Figure 2b, where
she strictly prefers to stop at 1/2.

Similarly, Figure 3b depicts the case in §4.1 in which λ has exactly the
value needed for the fast-information value function with the convex shape in
Figure 1a to just touch u at 2/3. In this example, there is more multiplicity:
the sender is indifferent on [1/2, 1], so has best replies that induce any mean-
p0 distribution of long-run beliefs supported on {0}∪ [2/3, 1]. (The best reply
Λ? induces the beliefs {0, 2/3}.) Again, perturbing λ makes the sender’s

2We thank Jeff Ely for pointing out this scenario.
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preference strict at 2/3, so that long-run induced beliefs are unique (either
{0, 2/3} or {0, 1}).

The non-genericity of multiplicity in these examples is a general phe-
nomenon. Multiplicity occurs for some prior p0 with v(p0) > u(p0) precisely
if the sender is indifferent between stopping and continuing at some p ∈ (0, 1)
and weakly prefers to continue on a neighbourhood of p. In such cases, her
preference becomes strict when λ is perturbed slightly.

J Piecewise continuity is merely tie-breaking

We asserted in §2.3 that provided the decision-maker’s flow payoff fD is non-
degenerate in a mild sense, it is without loss of optimality for her to restrict
attention to piecewise continuous Markov strategies A : [0, 1]→ ∆(A).

To justify this claim, begin by recalling from §3 that the decision-maker
best-replies to a Markov strategy of the sender by myopically maximising
fD(a, p) at each p. Fix two actions a, a′ ∈ A, and write

ψ(p) := fD(a, p)− fD(a′, p)

for their payoff difference. Say that ψ strictly up-crosses at p ∈ (0, 1) iff
ψ(p) = 0 and for any ε > 0, there are p′ ∈ (p− ε, p) and p′′ ∈ (p, p+ ε) such
that ψ(p′) < 0 < ψ(p′′), strictly down-crosses if the reverse inequalities hold,
and simply strictly crosses if either is the case. Write K ⊆ (0, 1) for the set
on which ψ strictly crosses. We claim that given some weak non-degeneracy
condition on fD, the crossing set K is discrete, so that the decision-maker
strictly prefers to switch actions only on a discrete set. (It suffices to consider
only two arbitrary actions a, a′ ∈ A because A is finite.)

To see what can go wrong, suppose that fD(a, p) = 0 and that p 7→
fD(a′, p) is a typical path of a standard Brownian motion. Then ψ is continu-
ous, but the strict crossing set K is non-empty with no isolated points (see e.g.
Theorem 9.6 in Karatzas and Shreve (1991, ch. 2)). This preference dithers
maniacally, wishing to switch actions back and forth extremely frequently.

As a first pass, observe that if ψ is monotone, or more generally if ψ
or −ψ has the single-crossing property (ψ(p) ≥(>) 0 implies ψ(p′) ≥(>) 0
for p < p′), then K is empty or a singleton, so certainly discrete. These
assumptions are satisfied by expected-utility preferences.

A weak non-degeneracy condition that suffices is local single-crossing: for
each p ∈ K, we have either ψ ≥ 0 or ψ ≤ 0 on a left-neighbourhood of p, and
similarly on a right-neighbourhood. Then each p ∈ K is manifestly the unique
strict crossing of ψ on a neighbourhood, hence isolated. A sufficient condition
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for this is local monotonicity: for each p ∈ K, we have ψ(p−ε) ≤ 0 ≤ ψ(p+ε)
for all sufficiently small ε > 0, or the reverse inequality.

K A very brief introduction to viscosity solutions

Crandall (1997), Katzourakis (2015) and Crandall, Ishii and Lions (1992)
provide overviews of the theory of viscosity solutions of second-order differen-
tial equations. Moll (2017), Evans (2010, ch. 10), Calder (2018) and Bressan
(2011) give easier treatments that deal mostly with first-order equations.

The general idea of viscosity solutions is as follows. If w is a viscosity
solution of (HJB), then it must satisfy (HJB) in the classical sense on any
neighbourhood on which w′′ exists and is continuous. If w′′ does not exist at
p ∈ [0, 1], we require instead that (HJB) hold with the appropriate inequality
when w′′(p) is replaced by φ′′(p) for some twice continuously differentiable
local approximation φ to w at p. (The formal definition was given in §4.2.)

K.1 Illustration of the definition

Consider the three-action example from supplemental appendix H.2 (Fig-
ure 2). Write C2 for the set of twice continuously differentiable functions
(0, 1)→ R. Begin by observing that v is continuous, hence upper and lower
semi-continuous.

Consider a p in whose vicinity v is twice continuously differentiable, e.g.
p = 2/5. We may easily find φ1, φ2 ∈ C2 such that φ1 − v and v − φ2 are
locally minimised at p, as in Figure 4a. But in particular, we may choose
φ ∈ C2 to coincide with v on a neighbourhood of p. Then φ− v and v − φ
are both locally minimised at p, and φ′′(p) = v′′(p). Since v is a viscosity
sub-solution (super-solution) by Theorem 1, and u(p) = u?(p) = u?(p), it
follows that

v(p) ≤(≥) u(p) + λ
p2(1− p)2

2rσ2 max
{
0, v′′(p)

}
.

So (HJB) must be satisfied in the classical sense at p.
Next consider a point at which v′′ is undefined, e.g. p = 1/2. There

are many φ ∈ C2 such that φ − v has a local minimum at p; an example
is depicted in Figure 4b. Since v is a viscosity sub-solution of (HJB) and
u?(p) = u(p), we must have

v(p) ≤ u(p) + λ
p2(1− p)2

2rσ2 max
{
0, φ′′(p)

}
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(d) φ ∈ C2 for which v − φ does not have
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Figure 4: Functions φ ∈ C2 that approximate v locally.
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for any such φ. In fact, φ can be chosen so that φ′′(p) ≤ 0: the φ depicted in
Figure 4c is affine, so has φ′′(p) = 0. The sub-solution condition therefore
requires precisely that

v(p) ≤ inf
φ∈C2:

φ− v loc. min. at p

{
u(p) + λ

p2(1− p)2

2rσ2 max
{
0, φ′′(p)

}}
= u(p),

which holds (with equality, in fact).
By contrast, there are no φ ∈ C2 such that v − φ has a local minimum at

p; a (failed) attempt to find such a φ is drawn in Figure 4d. The fact that v
is a viscosity super-solution of (HJB) therefore has no bite at p = 1/2.

K.2 Some properties of viscosity solutions

There are other non-classical notions of ‘solution’ of a differential equation,
most importantly distributional solutions (e.g. Evans (2010, chs. 5–9)). But
for many differential equations, including HJB equations, viscosity solutions
are the appropriate notion. The chief reasons are twofold: viscosity solutions
exist, and they satisfy a comparison principle.

Begin with existence. Many HJB equations, including ours, fail to have a
classical solution. Many also fail to have non-classical solutions of e.g. the
distributional variety. By contrast, HJB equations always have a viscosity
solution.

The other virtue of viscosity solutions is that they satisfy a comparison
principle (also called a ‘maximum principle’) of the following kind: if w is a
sub-solution on (a, b), w is a super-solution on (a, b), and w ≤ w on {a, b},
then w ≤ w on (a, b). (See Crandall, Ishii and Lions (1992, Theorem 3.3).)
Classical sub- and super-solutions also satisfy a comparison principle, but
other non-classical notions of ‘solution’ do not.

The comparison principle may be used to obtain uniqueness results; a
standard one is that the HJB equation has at most one viscosity solution
with the right boundary conditions satisfying a linear-growth condition. It
follows that the value function is the unique solution with the right boundary
conditions and linear growth. (See Fleming and Soner (2006, ch. V).) We
use the comparison principle in this manner in the proofs of Lemmata 1 and
3 (appendices B and D).

The comparison principle may also be used to establish the continuity of
solutions, and thus of the value function. In particular, suppose that we have
shown that the upper (lower) semi-continuous envelope v? (v?) of the value
v is a sub-solution (super-solution) of the HJB equation, and that v? = v?
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on {0, 1}. (We do precisely this in the proof of Theorem 1 in appendix A.) A
comparison principle then yields v? ≤ v?, which since v? ≤ v ≤ v? implies
that v is itself a viscosity solution, hence continuous.

In our proof of Theorem 1 (appendix A), we eschew this approach in favour
of a direct proof that v is continuous. We do this because we are not aware of
a comparison principle that applies assuming only piecewise continuity of u.
The closest result that we know of is Theorem 3.3 in Soravia (2006), which
would be applicable under the additional hypotheses that u has only finitely
many discontinuities and satisfies u(p) ∈ [u(p−) ∧ u(p+), u(p−) ∨ u(p+)] at
every p ∈ (0, 1).
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