Supplementary Appendix

A Optimal Mechanisms with Large Laminar Depth

In this section we provide an example where all optimal laminar partitional mechanisms
have depth exceeding |©|+ 2 (i.e., the depth in the single-agent case, see Proposition 2 (i)).
There are two players N = {1,2} with two possible types ©; = Oy = {0, 1} and four
possible actions each A; = Ay = {0, 1,2, 3}. For convenience, we order type profiles and
define a function  : ©1 x O — {0,1,2,3} such that §(0,0) = 0,(0,1) =1,6(1,0) =2,
d(1,1) = 3. The players play a zero-sum game. The payoff matrix of the row player for
the type profile 6 = (61,6,) is: w(I + Pj(p)), where P, is the permutation matrix whose
(¢4, 05)-th entry is one if {5 — ¢; = kmod(4). The state w is distributed uniformly on
[0, 1]. The type profile distribution is such that ¢(0,0) = 0.1, ¢(0,1) = 0.2, ¢(1,0) = 0.3,
¢(1,1) = 0.4. The state and the types are distributed independently. The designer’s payoff
is 1 if a; = a9 and O otherwise.

An optimal mechanism is given in Figure 4. As can be seen from this figure the depth of
the laminar family supporting the optimal information structure is larger than |©| + 2 = 6.
We numerically verified that any other laminar partitional mechanism mechanism that is
optimal also has depth greater than 6. Furthermore, when the number of actions is smaller
(and the type space is the same) for any payoff structure laminar families of smaller depth
suffice. Conversely, when the number of actions is larger, even with the same type space it
is possible to obtain even deeper laminar families at the optimal mechanism for variants of

this example.

B A Finite-Dimensional Formulation for the Multi-Agent

Case

In the single-agent case, when the agent has finitely many actions Section 4.1 established
that it is possible to obtain the optimal mechanism by solving a finite-dimensional convex
program. This simplification was partly driven by two factors: (i) the agent can perfectly
infer the posterior mean from the action recommendation (ii) the posterior mean levels
that induce a given action can be characterized explicitly given the agent’s payoff function.

These factors allowed us to remove the recommended action from the problem and express
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Figure 4: Optimal mechanism. (a) shows the colors associated with each strategy profile.
(b) is the laminar partitional signals that constitute an optimal mechanism. Different shades
of green encode the strategy profiles where the designer achieves nonzero payoff. For
all type profiles, such strategy profiles are associated with smaller states. The laminar
partitional signals in this example have depth 12.



it purely in terms of posterior means. As these factors are not present in the multi-agent
case, it is unclear whether one can obtain the optimal mechanism through a solution of a
finite-dimensional optimization problem. We next argue that indeed through the solution
of finite-dimensional programs it is possible to obtain an optimal mechanism, for as long
as the agents have finitely many actions.

Consider the formulation in (OPT). Note that for any given profile § the distribution ¢’
over type profiles determines the action profiles recommended at different posterior mean
levels. Since no action profile is recommended with positive probability at two different
posterior mean levels, it means that action profiles are ordered according to the posterior
mean levels that induce them. Denote by &Y this order: 6%(a) > ¢°(a’) if posterior mean
that induces « is larger than that associated with @’ when the type profile is 6.

Following an approach similar to the one in Section 4.1, we can now express the de-

signer’s problem as follows:

%%x max Z »(0) Zpaﬁv(a, 0)

|A[y©
f;@,lx‘)@‘ 6c6 acA
yicRl4ilx[©
1
s.t. Z Zap < / F~(z)dx Ve, l>1,

a|50(a)250(z) 1 ZQ‘JG(Q)Z(;O(Z) Pa,0
Z’Z“v@ = / F(z)dx Vo eo,
acA Q2
D 0(0) ) (uin(a,0)zap + tiz(a, 0)pas)
9_1' a—g

> Z o(0) Z(Uu(aé, i, 0)za0 + win(aj, a_i, 0)pap) Vi, 0;,a;,a

971' a—g

Yi,0,,00,a; = Zcb(@) Z(Uﬂ(aé, lei,@)za,e;,e,i + wis(aj, a, 9)pa,9;,e,i) Vi, 0;, 0}, a;, a;
ZZ¢ Z uzl a 9)2a0+uz2(a Q)Pae > Zyzez,e ,a; vzaezagg
Za,0Pa’ 0 > Za’,0Pa,0 V«9, 59(Cb) > 59((1,)
Za,0 < Pap Va, 0.

In this optimization problem, p, ¢ denotes the probability with which strategy profile a is
induced when the type profile is 0, and mg, = z,0/pas is the corresponding posterior

mean level. Note that {p, g, 2,0 } . tuple constitutes a reparameterization of G?. For a given



order 6 on posterior mean levels, the first two constraints amount to a restatement of the
MPC constraint GY = F. Note that if agents report their types truthfully and follow the
action recommendations, the payoff of agent i for type profile  and action recommendation
profile a is given by w;i(aj, a—,0)2a00_,/Pay 0., + wi2(a;, a—;,0). This implies that his
expected payoff>® is given as in the left hand side of the third constraint. Similarly, the
right hand side is the payoff from taking action a}. Thus, the third constraint ensures that
if agents report their type truthfully and agent ¢ gets the action recommendation a;, any
deviation reduces his payoff. Suppose that agent i is of type 6; but he misreported his
type as 6., and received action recommendation a;. Assuming all agents still truthfully
report their types and follow action recommendations, what is ¢’s payoff from taking action
a;? The right hand side of the fourth constraint captures this quantity. At the optimal
solution, the left hand side, y; ¢, ¢/ o, €quals the maximization of this quantity over a;, which
is the best payoff i can guarantee after the type report #, and action recommendation a;.
Aggregating these terms over all 7 yields the right hand side of the fifth constraint, which
is the expected payoff of agent ¢ from misreporting his type as #;. The left hand side is
the payoff from truthful reporting and following action recommendations. Thus, the fifth
constraint ensures that agent ¢ has no incentive to misreport his type. The sixth constraint
can be equivalently written as mg, = 2,0/Pap > Mow = Za'9/Parp- This ensures that
the {Pa.0, 200 }o tuple and the associated distribution (G is consistent with 47 in terms of
the ranking of the posterior means of strategy profiles. Finally, the last constraint (together
with the nonnegativity of p, g, 2,,9) ensures that the posterior means are between 0 and 1.

To solve this problem, we can first fix ¢° in the outer problem and solve the associated
inner problem. Then, we can search over the orders ¢’ (of which there are finitely many) in
the outer problem. There are two challenges with this approach. First, the number of orders
to consider in the outer problem can be large. Second, unlike the formulation in Section
4.1, due to the sixth constraint the inner problem is not convex.

It turns out that it is possible to overcome both challenges. Let us start with the second
challenge. Despite the fact that the inner problem is nonconvex, a locally optimal solution
can be obtained using, e.g., gradient ascent. If at a locally optimal solution, the nonconvex
constraints are not binding then, it follows that the solution is locally optimal in the prob-

lem where these constraints are relaxed. However, the latter problem is convex and local

38 As explained in the main text, this quantity is actually equal to the expected payoff times Yo, 0(0).
With some abuse of terminology, throughout the supplementary appendix we ignore this normalization and
refer to such quantities as payoffs.



optimality implies global optimality. Thus, the aforementioned solution is a globally opti-
mal solution to the inner problem. In all our numerical experiments (including the Cournot
example discussed in Section 2.1) this was the case, i.e., when we obtained a locally opti-
mal solution using a solver, we observed that the nonconvex constraints did not bind and
verified global optimality of the said solution.

The first challenge is problem specific, but the search can be drastically reduced in some
cases. For instance, observe that in the Cournot example of Section 4.1, there are 9 strategy
profiles, and naively there are 9! orders to consider. However, due to the symmetry in the
problem it can be readily seen that the posterior means associated with strategy profiles
(a;, a;) and (a;, a;) are identical. Furthermore, intuitively, posterior means associated with
larger aggregate supply levels will be larger. Thatis mg , > my o if a;+a; > a;+a;. Once
this restriction imposed, together with symmetry the number of orders to consider reduces
only to two (one where strategy profiles (0, 2), (2,0) are associated with higher posterior
mean levels than (1, 1), and one with lower). Thus, solving the inner problem for these two
orders, and picking the solution that results in a higher payoff delivers the optimal mecha-
nism. This is in fact how we obtain the optimal mechanisms in Section 2.1 (where we also
numerically verify that imposing the aforementioned condition is without loss). Notably
this approach allows for constructing the optimal mechanisms without discretization of the
state space. Using the approach described here the optimal solution to the optimization
problem in Section 2.1 is obtained in ~ 20 ms for most weighted combinations of C'S and

F'P (using off-the-shelf interior point methods of the Knitro solver).

C Additional Details for the Example in Section 4.2

Here we revisit the example in Section 4.2. The indirect utility %(m, #) of the buyer in this
example is given in Figure 5. When the expected quality m of the good is low, all types
find it optimal to purchase zero units, yielding a payoff of zero. As the expected quality
improves, the purchase quantity increases. In Figure 5, the curve for each type is piecewise
linear, and the kink-points of each curve correspond to the posterior mean levels where the
agent increases his purchase quantity. Since the state and hence the posterior mean belong
to [0, 1], the purchase quantity of each type is at most 2 units, and each curve in the figure
has at most two kink-points. This is easily seen as the utility any buyer type derives from
consuming the third unit of the good is bounded by (# +w) max{5—3,0} < (0.6+1)-2 =
3.2 which is less than the price of 10/3. These observations imply that in this problem, the
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Figure 5: The indirect utility of the agent

agent effectively considers finitely many actions, namely the quantities in 0, 1 and 2.

The effect of the incentive compatibility constraints on the optimal mechanism are eas-
ily seen from Figure 3. For instance, the high type’s payoff from a truthful type report
is strictly positive. If this were the only relevant type, the designer could choose a strictly
smaller threshold than 0.06 and still ensure purchase of two units whenever state realization
is above this threshold, thereby increasing the expected purchase amount of the high type.
However, when the other types are also present, such a change in the signal of the high
type incentivizes this type to deviate and misreport his type as low or medium. Changing
the signals of the remaining types to recover incentive compatibility, reduces the payoff the
designer derives from them. The mechanism in Figure 3 maximizes the designer’s payoff
while carefully satisfying such incentive compatibility constraints.

As discussed in Section 4.2, in the binary action case it is without loss to focus on
public mechanisms (which do not elicit the agent’s type). In this case, one way to obtain
an optimal public mechanism is to first solve for the optimal mechanism without restric-
tion to public ones, and then reveal to each type the signals associated with all types. By
contrast, the mechanism illustrated in Figure 3 does not admit such a payoff-equivalent
public implementation. For instance, under this mechanism the high type purchases two
units whenever the state realization is higher than 0.06. Suppose that this type of agent had
access to the signals of, for instance, the low type as well. Then, he could infer whether the
state is in [0.06, 0.16] U [0.94, 1]. Conditional on the state being in this set, his expectation
of the state would be approximately 0.43. This implies that the expected payoff of the high
type from purchasing the second unit is (0.43 + 0.6) x 3 — 10/3 < 0. Thus, for state

realizations that belong to the aforementioned set, the high type finds it optimal to strictly



reduce his consumption (relative to the one in Figure 3). In other words, observing the ad-
ditional signal reduces the expected purchase of the high type (and the other types). Hence,
such a public implementation is strictly suboptimal. As a side note, the optimal public
implementation can be obtained by replacing different types with a single “representative
type” and using the framework of Section 3. More precisely, we can replace the designer’s
indirect utility with 0(m) = >~ , ¢(0) maxae a(m,0) v(a, m, ) and maximize [ o(m)dG(m)
by choosing a distribution G > F' (without any side constraints — since with public signals
the designer does not screen the agent, and hence the IC constraints become irrelevant).
We numerically conducted this exercise and also verified that restricting attention to public

mechanisms yields a strictly lower expected payoff to the designer.



