A Supplementary Appendix

A.1 Proof of Theorem 2

The proof of Theorem 2 follows a similar construction as Fudenberg and Maskin (1986)
and Abreu, Dutta and Smith (1994). Due to the notational complexity of the proof, I first
illustrate the self-enforcing matching process using a phase diagram, before proceeding
with the full proof of Theorem 2.

A.1.1 A Phase Diagram Illustration

Consider a case when there are only two firms 7 = {f, f’}. Below is a phase diagram

illustrating the self-enforcing matching process.
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In this phase diagram, A € A* is the random matching we want to sustain on the

path of play. The matching m; € arg min,,ey Maxwcp,m),wi<q, Uy(W) is the minmax
matching for firm f, and m f is defined similarly.
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The random matchings A and A4 are “firm-specific punishments” that are played after
the minmax phase. In particular, they are random matchings that guarantee the following
properties:

ug(Ap) <up(A) and wup(Ag) <up(Ay)

In other words, each firm prefers the on-path randomization A over their own firm-specific
punishments, and each firm prefers the other firm being punished over being punished
itself.

The existence of Ay and Ay can be shown by resorting to the non-equivalent utilities
(NEU) condition in Abreu, Dutta and Smith (1994): Observe that for each firm, when it
is unmatch, it is indifferent towards how the other firm f’ matches with workers, so their
utilities cannot be positive affine transformation of another. Lemma 1 and Lemma 2 in
Abreu, Dutta and Smith (1994) then ensure the existence of Ay and Ay that satisfy the

properties above.

A.1.2 Complete Proof of Theorem 2

Fix \° € A*. Define u® = u(A\°) and U* = {u()\) : A € A*}. Observe that for firms in
F N'R, the set My, satisfies the non-equivalent utilities (NEU) condition in Abreu, Dutta
and Smith (1994): holding f € FN'R unmatched, f is indifferent towards how another firm
f' € FNR matches with workers, so their utilities cannot be positive affine transformation
of another. Lemma 1 and Lemma 2 in Abreu, Dutta and Smith (1994) then ensure the
existence of vectors {u/ : f € FNR} C U*, such that

f 0 f f
uy < uy and uy <u

forall f, f' € FNRand f # f'. Let \f € A* be the distribution over Mz, that give rise to
the payoff vector u/ for each f. In addition, for each f € F N'R, let

m; € arg min max up(W)
meMg WED(m),|W|<qy

be the stage-game recommendation to minmax firm f.
Consider the matching process represented by the automaton (©,~°; f,~), where
1.©={0(e,m):ec FNRU{0},me Mg} U{0(f,t): fEFNR, 0<t<L}
is the set of all states;

2. 7Y is the initial distribution over states, which satisfies 7°(0(0,m)) = \°(m) for all



m e M3,
3. 0 :© — M is the output function, where O(6(e, m)) = m and O(0(f,t)) = m;
4. k:© x M — A(O) is the transition function. For states {0(f,¢)|0 <t < L —1}, x

is defined as

o(f',0) it m' # me;m' = [my, (f,W)] forsome f'€ FANRand W C W

0(f.t),m') =
w0 1), m') O(f,t+1) otherwise

For states 0( f, L — 1), the transition is defined as

O(f,0) ifm' £mgm' = [mg, (f,W)] forsome f/€ FNRand W C W
vt otherwise
where for each f € FNR, p is the distribution over states that satisfies v/ (6(f,m)) =

M (m) for all m € M.

For states 0(e, m), the transition is

) 0(f',0) ifm' #me;m' = [my, (f,W)] for some f' € FARand W C W
rk(0(e,m),m') =

e

v otherwise

where the distributions v are defined as above.

Note that owing to the identifiability of deviating firm (Lemma 2), for any § € © and
matching m’ # O(0), we can uniquely identify the firm responsible for this deviation, so

the transition above is well-defined.

Note that no firms in 7 wish to deviate, since they are always matched with their top
coalition workers; no workers want to deviate since all recommended matchings are in

M. Tt remains to verify no firm f € F N R has incentives to deviate. Choose a number

Z > SUD e, fernry tr (M)

For states of the form {6(e, m)}: Consider a one-shot deviation (f, ). There are two

cases to consider.

Case 1: f # e. Without deviation, f has value (1 — §)uy(m) + du$. After deviation, f
yields less than (1—0)Z +d(1 —6")u} + 5L+1u§. There is no profitable one-shot deviation
for f if

(1= 8)ug(m) + ou§ > (1 —0)Z + 6(1 — 6“)uf + 64w}



As 0 — 1, the LHS converges to u} while the RHS converges to u}c By construction,

uf > u?, so such deviations are not profitable for ¢ high enough.

Case 2: f = e. Without deviation, f has value (1 — &§)us(m) + 5u§. After deviation, f
yields less than (1 —0)Z +46(1—6")uf + 5L+1u}c. There is no profitable one-shot deviation
for f if

(1= 8)up(m) + 0wl > (1—86)Z +6(1 — 6")uf + 61w

The inequality is equivalent to

Z—up(m) <6(1+...+ 5L_1)[u§ — uf]

By construction, u§ — uff > 0. Choose L large enough so that L(uf —uf) > Z —us(m).

As 6 — 1, the LHS remains unchanged while the RHS converges to L(u}c — 2}2), so such

deviations are not profitable for ¢ high enough.

For states of the form {(f,t)}: Consider a one-shot deviation (f’, W). There are two
cases to consider.

Case 1: " # f. Without deviation, firm f’ has payoff (1 — 5L*t)uf/ (my) + 6" "u f . After
deviation, f’ has payoff less than (1 —0)Z +6(1 — 0% )uf + Syt 4~ There is no proﬁtable
one-shot deviation for f’ if

(1= 6" Yup (my) + 05"l > (1—6)Z + 6(1 — 6")ulf + 6% uf,

As 6 — 1, the LHS converges to ujﬁ, forall 0 <t < L, while the RHS converges to « f:.

By construction uﬁ, > ul - So the above inequality holds for sufficiently high J.

Case 2: f' = f. Without deviation, firm f has payoff (1 — 6" ")ufS + 6L_tu§j. When
deviating from m , f’ can obtain at most g}z So its payoff from deviation is at most

(1= O)uf +0(1 — 6)uf + 65 uf, = (1 — a4 Ny + 65+,

Firm f’ has no profitable deviation if (1 — ¢*~*)uf + (5L‘tu§: > (1= 0"l + 5L+1u§i,
or

f R
Uf/ > Qf/

This is true by construction. So f’ has no profitable one-shot deviation.

We have verified that there is no profitable one-shot deviation in any states of the au-

tomaton. This completes the proof.
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