A Supplementary Appendix

A. 1 Proof of Theorem 2

The proof of Theorem 2 follows a similar construction as Fudenberg and Maskin (1986) and Abreu, Dutta and Smith (1994). Due to the notational complexity of the proof, I first illustrate the self-enforcing matching process using a phase diagram, before proceeding with the full proof of Theorem 2.

A.1. 1 A Phase Diagram Illustration

Consider a case when there are only two firms $\mathcal{F}=\left\{f, f^{\prime}\right\}$. Below is a phase diagram illustrating the self-enforcing matching process.

In this phase diagram, $\lambda \in \Lambda^{*}$ is the random matching we want to sustain on the path of play. The matching $\underline{m}_{f} \in \arg \min _{m \in M_{\mathcal{R}}} \max _{W \subseteq D_{f}(m),|W| \leq q_{f}} u_{f}(W)$ is the minmax matching for firm f, and \underline{m}_{f} is defined similarly.

The random matchings λ_{f} and $\lambda_{f^{\prime}}$ are "firm-specific punishments" that are played after the minmax phase. In particular, they are random matchings that guarantee the following properties:

$$
u_{f}\left(\lambda_{f}\right)<u_{f}(\lambda) \text { and } u_{f}\left(\lambda_{f}\right)<u_{f^{\prime}}\left(\lambda_{f}\right)
$$

In other words, each firm prefers the on-path randomization λ over their own firm-specific punishments, and each firm prefers the other firm being punished over being punished itself.

The existence of λ_{f} and $\lambda_{f^{\prime}}$ can be shown by resorting to the non-equivalent utilities (NEU) condition in Abreu, Dutta and Smith (1994): Observe that for each firm, when it is unmatch, it is indifferent towards how the other firm f^{\prime} matches with workers, so their utilities cannot be positive affine transformation of another. Lemma 1 and Lemma 2 in Abreu, Dutta and Smith (1994) then ensure the existence of λ_{f} and $\lambda_{f^{\prime}}$ that satisfy the properties above.

A.1.2 Complete Proof of Theorem 2

Fix $\lambda^{0} \in \Lambda^{*}$. Define $u^{0}=u\left(\lambda^{0}\right)$ and $U^{*} \equiv\left\{u(\lambda): \lambda \in \Lambda^{*}\right\}$. Observe that for firms in $\mathcal{F} \cap \mathcal{R}$, the set $M_{\mathcal{R}}^{\circ}$ satisfies the non-equivalent utilities (NEU) condition in Abreu, Dutta and Smith (1994): holding $f \in \mathcal{F} \cap \mathcal{R}$ unmatched, f is indifferent towards how another firm $f^{\prime} \in \mathcal{F} \cap \mathcal{R}$ matches with workers, so their utilities cannot be positive affine transformation of another. Lemma 1 and Lemma 2 in Abreu, Dutta and Smith (1994) then ensure the existence of vectors $\left\{u^{f}: f \in \mathcal{F} \cap \mathcal{R}\right\} \subseteq U^{*}$, such that

$$
u_{f}^{f}<u_{f}^{0} \text { and } u_{f}^{f}<u_{f}^{f^{\prime}}
$$

for all $f, f^{\prime} \in \mathcal{F} \cap \mathcal{R}$ and $f \neq f^{\prime}$. Let $\lambda^{f} \in \Lambda^{*}$ be the distribution over $M_{\mathcal{R}}$ that give rise to the payoff vector u^{f} for each f. In addition, for each $f \in \mathcal{F} \cap \mathcal{R}$, let

$$
\underline{m}_{f} \in \underset{m \in M_{\mathcal{R}}^{\circ}}{\arg \min } \max _{W \subseteq D_{f}(m),|W| \leq q_{f}} u_{f}(W)
$$

be the stage-game recommendation to minmax firm f.
Consider the matching process represented by the automaton $\left(\Theta, \gamma^{0}, f, \gamma\right)$, where

1. $\Theta=\left\{\theta(e, m): e \in \mathcal{F} \cap \mathcal{R} \cup\{0\}, m \in M_{\mathcal{R}}\right\} \cup\{\underline{\theta}(f, t): f \in \mathcal{F} \cap \mathcal{R}, 0 \leq t<L\}$ is the set of all states;
2. γ^{0} is the initial distribution over states, which satisfies $\gamma^{0}(\theta(0, m))=\lambda^{0}(m)$ for all

$$
m \in M_{\mathcal{R}}^{\circ}
$$

3. $O: \Theta \rightarrow M$ is the output function, where $O(\theta(e, m))=m$ and $O(\underline{\theta}(f, t))=\underline{m}_{f}$;
4. $\kappa: \Theta \times M \rightarrow \Delta(\Theta)$ is the transition function. For states $\{\underline{\theta}(f, t) \mid 0 \leq t<L-1\}, \kappa$ is defined as
$\kappa\left(\underline{\theta}(f, t), m^{\prime}\right)= \begin{cases}\underline{\theta}\left(f^{\prime}, 0\right) & \text { if } m^{\prime} \neq \underline{m}_{f} ; m^{\prime}=\left[\underline{m}_{f^{\prime}},\left(f^{\prime}, W\right)\right] \text { for some } f^{\prime} \in \mathcal{F} \cap \mathcal{R} \text { and } W \subseteq \mathcal{W} \\ \underline{\theta}(f, t+1) & \text { otherwise }\end{cases}$
For states $\underline{\theta}(f, L-1)$, the transition is defined as $\kappa\left(\underline{\theta}(f, L-1), m^{\prime}\right)= \begin{cases}\underline{\theta}\left(f^{\prime}, 0\right) & \text { if } m^{\prime} \neq \underline{m}_{f} ; m^{\prime}=\left[\underline{m}_{f^{\prime}},\left(f^{\prime}, W\right)\right] \text { for some } f^{\prime} \in \mathcal{F} \cap \mathcal{R} \text { and } W \subseteq \mathcal{W} \\ \gamma^{f} & \text { otherwise }\end{cases}$
where for each $f \in \mathcal{F} \cap \mathcal{R}, p^{f}$ is the distribution over states that satisfies $\gamma^{f}(\theta(f, m))=$ $\lambda^{f}(m)$ for all $m \in M$.

For states $\theta(e, m)$, the transition is
$\kappa\left(\theta(e, m), m^{\prime}\right)= \begin{cases}\underline{\theta}\left(f^{\prime}, 0\right) & \text { if } m^{\prime} \neq \underline{m}_{f} ; m^{\prime}=\left[\underline{m}_{f^{\prime}},\left(f^{\prime}, W\right)\right] \text { for some } f^{\prime} \in \mathcal{F} \cap \mathcal{R} \text { and } W \subseteq \mathcal{W} \\ \gamma^{e} & \text { otherwise }\end{cases}$
where the distributions γ^{e} are defined as above.
Note that owing to the identifiability of deviating firm (Lemma 2), for any $\theta \in \Theta$ and matching $m^{\prime} \neq O(\theta)$, we can uniquely identify the firm responsible for this deviation, so the transition above is well-defined.

Note that no firms in \mathcal{T} wish to deviate, since they are always matched with their top coalition workers; no workers want to deviate since all recommended matchings are in $M_{\mathcal{R}}^{\circ}$. It remains to verify no firm $f \in \mathcal{F} \cap \mathcal{R}$ has incentives to deviate. Choose a number $Z>\sup _{\{m \in M, f \in \mathcal{F} \cap \mathcal{R}\}} u_{f}(m)$

For states of the form $\{\theta(e, m)\}$: Consider a one-shot deviation (f, W). There are two cases to consider.

Case 1: $f \neq e$. Without deviation, f has value $(1-\delta) u_{f}(m)+\delta u_{f}^{e}$. After deviation, f yields less than $(1-\delta) Z+\delta\left(1-\delta^{L}\right) \underline{u}_{f}^{\mathcal{R}}+\delta^{L+1} u_{f}^{f}$. There is no profitable one-shot deviation for f if

$$
(1-\delta) u_{f}(m)+\delta u_{f}^{e} \geq(1-\delta) Z+\delta\left(1-\delta^{L}\right) \underline{u}_{f}^{\mathcal{R}}+\delta^{L+1} u_{f}^{f}
$$

As $\delta \rightarrow 1$, the LHS converges to u_{f}^{e} while the RHS converges to u_{f}^{f}. By construction, $u_{f}^{e}>u_{f}^{f}$, so such deviations are not profitable for δ high enough.

Case 2: $f=e$. Without deviation, f has value $(1-\delta) u_{f}(m)+\delta u_{f}^{f}$. After deviation, f yields less than $(1-\delta) Z+\delta\left(1-\delta^{L}\right) \underline{u}_{f}^{\mathcal{R}}+\delta^{L+1} u_{f}^{f}$. There is no profitable one-shot deviation for f if

$$
(1-\delta) u_{f}(m)+\delta u_{f}^{f} \geq(1-\delta) Z+\delta\left(1-\delta^{L}\right) \underline{u}_{f}^{\mathcal{R}}+\delta^{L+1} u_{f}^{f}
$$

The inequality is equivalent to

$$
Z-u_{f}(m) \leq \delta\left(1+\ldots+\delta^{L-1}\right)\left[u_{f}^{f}-\underline{u}_{f}^{\mathcal{R}}\right]
$$

By construction, $u_{f}^{f}-\underline{u}_{f}^{\mathcal{R}}>0$. Choose L large enough so that $L\left(u_{f}^{f}-\underline{u}_{f}^{\mathcal{R}}\right)>Z-u_{f}(m)$. As $\delta \rightarrow 1$, the LHS remains unchanged while the RHS converges to $L\left(u_{f}^{f}-\underline{u}_{f}^{\mathcal{R}}\right)$, so such deviations are not profitable for δ high enough.

For states of the form $\{\underline{\theta}(f, t)\}$: Consider a one-shot deviation $\left(f^{\prime}, W\right)$. There are two cases to consider.

Case 1: $f^{\prime} \neq f$. Without deviation, firm f^{\prime} has payoff $\left(1-\delta^{L-t}\right) u_{f^{\prime}}\left(\underline{m}_{f}\right)+\delta^{L-t} u_{f^{\prime}}^{f}$. After deviation, f^{\prime} has payoff less than $(1-\delta) Z+\delta\left(1-\delta^{L}\right) \underline{u}_{f^{\prime}}^{\mathcal{R}}+\delta^{L+1} u_{f^{\prime}}^{f^{\prime}}$. There is no profitable one-shot deviation for f^{\prime} if

$$
\left(1-\delta^{L-t}\right) u_{f^{\prime}}\left(\underline{m}_{f}\right)+\delta^{L-t} u_{f^{\prime}}^{f} \geq(1-\delta) Z+\delta\left(1-\delta^{L}\right) \underline{u}_{f^{\prime}}^{\mathcal{R}}+\delta^{L+1} u_{f^{\prime}}^{f^{\prime}}
$$

As $\delta \rightarrow 1$, the LHS converges to $u_{f^{\prime}}^{f}$ for all $0 \leq t \leq L$, while the RHS converges to $u_{f^{\prime}}^{f^{\prime}}$. By construction $u_{f^{\prime}}^{f}>u_{f^{\prime}}^{f^{\prime}}$. So the above inequality holds for sufficiently high δ.

Case 2: $f^{\prime}=f$. Without deviation, firm f^{\prime} has payoff $\left(1-\delta^{L-t}\right) \underline{u}_{f^{\prime}}^{\mathcal{R}}+\delta^{L-t} u_{f^{\prime}}^{f^{\prime}}$. When deviating from $\underline{m}_{f^{\prime}}, f^{\prime}$ can obtain at most $\underline{u}_{f}^{\mathcal{R}}$. So its payoff from deviation is at most

$$
(1-\delta) \underline{u}_{f^{\prime}}^{\mathcal{R}}+\delta\left(1-\delta^{L}\right) \underline{u}_{f^{\prime}}^{\mathcal{R}}+\delta^{L+1} u_{f^{\prime}}^{f^{\prime}}=\left(1-\delta^{L+1}\right) \underline{u}_{f^{\prime}}^{\mathcal{R}}+\delta^{L+1} u_{f^{\prime}}^{f^{\prime}}
$$

Firm f^{\prime} has no profitable deviation if $\left(1-\delta^{L-t}\right) \underline{u}_{f^{\prime}}^{\mathcal{R}}+\delta^{L-t} u_{f^{\prime}}^{f^{\prime}} \geq\left(1-\delta^{L+1}\right) \underline{u}_{f^{\prime}}^{\mathcal{R}}+\delta^{L+1} u_{f^{\prime}}^{f^{\prime}}$, or

$$
u_{f^{\prime}}^{f^{\prime}} \geq \underline{u}_{f^{\prime}}^{\mathcal{R}} .
$$

This is true by construction. So f^{\prime} has no profitable one-shot deviation.
We have verified that there is no profitable one-shot deviation in any states of the automaton. This completes the proof.

References

Abreu, Dilip, Prajit K. Dutta, and Lones Smith, "The folk theorem for repeated games: a NEU condition," Econometrica, 1994, 62 (4), 939-948.

Fudenberg, Drew and Eric Maskin, "The folk theorem in repeated games with discounting or with incomplete information," Econometrica, 1986, pp. 533-554.

