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Supplemental Appendix A: Strategies and outcomes

This supplemental appendix contains the formal restrictions on the players’ strategy
spaces to ensure that any combination of strategies leads to a unique and well defined
outcome.

To this end, it is convenient to have an exogenous underlying stochastic process that
governs the arrival of shocks and, given the agent’s effort, determines the state of com-
pliance. Let (�, F , P ) be a probability space. Let the marked point process z = {zt }t≥0

represent the arrival of random shocks, where zt = 0 except at isolated times t0 < t1 < · · · ,
which arrive at constant rate λ > 0. At each random time tj with j ∈ N, the value of the
shock ztj is independently and uniformly distributed on [0, 1]. Let {Ft } be the natural
filtration generated by z. The state of compliance {θt }t≥0 is constant between shocks,
and immediately after the arrival of a shock at time tj , we have θtj = 1 if αηtj ≥ ztj and
θtj = 0 if αηtj < ztj .

A history at time t is a collection of paths

ht = {
ηs , θs, θ̂s , NI

s , Fs
}
s∈[0,t],

where
(
ηs , θs, θ̂s , NI

s , Fs
) ∈ [0, 1] × {0, 1} × {0, 1} ×N0 ×R+.

Throughout, we denote strict histories for which the realization at time t is excluded by
ht−. Let Ht be the set of all time-t histories and let Ht− be the set of all strict histories.
Let H = ⋃

t≥0 Ht and H− = ⋃
t≥0 Ht−.

The agent’s strategy specifies efforts and reports as functions of histories. A strategy
for the agent is defined as a pair (e, ρ) = ({et , ρt }t≥0 ) with

et : Ht− → [0, 1], ρt : Ht− × {0, 1} → {0, 1},

where et(ht− ) is the agent’s effort at time t and ρt(ht−, θt ) is the agent’s report at time t

after history ht− when the state at time t is θt . Note that while the agent submits a re-
port regarding compliance continually, at every t ≥ 0, this is for notational convenience
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only. It is equivalent and most natural for most applications to think of the agent as
sending messages only sporadically to report transitions in compliance. To capture the
principal’s uncertainty about the agent’s effort choices and the true state of compliance,
consider a partition HP

t of the history set Ht , which comprises all subsets of Ht whose
elements are indistinguishable to the principal. Define the partition HP

t− similarly for
strict histories at t. To allow for randomized inspections, we equip the principal with
a (private) random signal π, defined on a sufficiently rich probability space with state
space 	. A strategy for the principal is defined as a pair (n, f ) = ({nt , ft }t≥0 ) of mappings

nt : 	×Ht− × {0, 1} → {0, 1}, ft : Ht− × {0, 1}3 →R+,

which are constant on every HP
t− ∈ HP

t− for each t ≥ 0, where ft is required to be weakly
increasing over time. Here nt(π, ht−, θ̂t ) is equal to 1 if an inspection is performed at
time t and equal to 0 otherwise. By ft(ht−, θt , θ̂t , dNI

t ) we denote the cumulative fine
imposed by the principal at time t. We abuse notation slightly and write ft(ht ) instead
of ft(ht−, θt , θ̂t , dNI

t ) whenever there is no danger of confusion. The exit decision for
each player at any history is a binary variable indicating whether this player decides to
exit or not. For ease of exposition, we do not introduce additional notation for these
choices; they translate into lower bounds on the expected payoffs of the players in the
equilibrium definition below. The strategies above are to be understood as conditional
on no player having exited previously. Actions to be chosen after one player exited are
irrelevant.

To ensure that any strategy profile results in a unique and well defined process of
actions, we adopt the approach by Kamada and Rao (2023) and require that actions are
not changed “too frequently” on any time interval. To apply this approach, first restrict
the strategy spaces for the fine and effort choices. A history ht ∈ Ht has an intervention
for the agent at time t if either t = 0 or if t > 0 and at least one of the following holds:
(i) θt − θt− �= 0; (ii) θ̂t − θ̂t− �= 0; (iii) NI

t − NI
t− �= 0. Similarly, there is an intervention

for the principal if either t = 0 or if t > 0 and at least one of the properties (ii) and (iii)
holds. No new information arrives in between interventions. We restrict the principal’s
fine strategy to reflect this and require that it be predictable in between inspections.
Formally, for any two histories ht and h′

t , ft(ht ) �= ft(h′
t ) only if there exists τ ≤ t such

that τ is an intervention time for the principal and the truncation of the above histories
at time τ, hτ and h′

τ , are distinguishable for the principal. In other words, this restriction
requires the principal’s fines to be specified pathwise; at each intervention, it is fully
specified how fines proceed until another intervention arrives. Similarly, we restrict the
agent’s effort strategy to be predictable in between interventions: For any two histories
ht− and h′

t−, et(ht− ) �= et(h′
t− ) only if there exists τ < t such that τ is an intervention time

for the agent and hτ �= h′
τ. Based on Kamada and Rao (2023), we require all strategies

to fulfill the properties traceability and frictionality as defined below. Lemma E then
shows that any combination of strategies from this class yields a well defined and unique
outcome path. A history h is said to be consistent with the agent’s strategy (e, ρ) at time
t if ρt(ht−, θt ) = θ̂t and et(ht ) = ηt . Similarly, a history h is consistent with the principal’s
strategy (n, f ) at time t if nt(π, ht−, θ̂t ) = dNI

t and ft(ht ) = dFt .
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Definition 1. The agent’s strategy (ρ, e) is traceable if for any time-t history ht and any
principal-action path {NI

s , Fs}s≥0 that coincides with ht for all s < t, there is a continu-
ation path {θ̂s , ηs}s≥t that is consistent with (ρ, e). Analogously, The principal’s strategy
(n, f ) is traceable if for any time-t history ht and any agent-action path {θ̂s , ηs}s≥0 that
coincides with ht for all s < t, there is a continuation path {NI

s , Fs}s≥t that is consistent
with (n, f ).

Definition 2. The agent’s strategy (ρ, e) is frictional if for any time-t history ht , there
is conditional probability 1 that the report path {θ̂s}s≥t has only finitely many report
changes on any finite interval [t, u] for all paths {ηs , θ̂s}s≥t such that there is a principal-
action path {NI

s , Fs}s≥t for which the history (ht−, {NI
s , Fs}s≥t , {ηs , θ̂s}s≥t ) is consistent

with the agent’s strategy. Analogously, the principal’s strategy (n, f ) is frictional if for any
time-t history ht , there is conditional probability 1 that the inspection path {Ns}s≥t has
only finitely many inspections on any finite interval [t, u] for all paths {NI

s , Fs }s≥t such
that there is an action path {ηs , θ̂s}s≥t for which the history (ht−, {NI

s , Fs }s≥t , {ηs , θ̂s}s≥t )
is consistent with the principal’s strategy.

Lemma E (Existence and Uniqueness of Consistent Outcome Path). Given any pos-
sible history hu− = {π0, zt , ηt , θ̂t , NI

t , Ft }t∈[0,u) ∪ {ηu}, any combination of strategies
((e, ρ), (n, f )) that are traceable and frictional yields a unique consistent path
({ηt }t∈(u,∞), {θ̂t , NI

t , Ft , }t∈[u,∞) ) almost surely.

Proof. The proof proceeds in two steps. First we show uniqueness and then existence.

Step 1: Uniqueness Fix a pair of strategies, a history up to u, and any realization
of the shock process {zt }t∈[u,∞). Suppose there are two distinct continuation paths
x = {ηx

t , θ̂xt , NIx
t , Fx

t }t∈[u,∞) and y = {η
y
t , θ̂yt , NIy

t , Fy
t }t∈[u,∞) that are consistent with the

strategies and the shock path. Let t = inf{t ≥ u : xt �= yt } be the first time at which the pro-
cesses differ. Strategy e maps history hA

tAk
into a deterministic process {ηs}s∈(tAk ,∞) only

for times tAk at which an intervention for the agent occurs. Likewise, strategy f maps
history htPk

into a deterministic process {Fs }s∈[tPk ,∞) for times tPk with an intervention for

the principal. Therefore, if ηx
s �= η

y
s for s > u or Fx

s �= F
y
s for s ≥ u, then there must also be

a time t ≤ s with an intervention at t, i.e., ∃n ∈ N such that t = tAk or t = tPk . Furthermore,
we must have hx

t �= h
y
t at this intervention. With probability 1, the realization {zt }t∈[u,∞)

has only finitely many jumps on any closed interval. Hence, by frictionality, there are
at most finitely many interventions on any closed interval. Therefore, t defined above
must be an intervention time and the infimum is attained, i.e., xt �= yt . We therefore
must have θ̂xt �= θ̂

y
t or NIx

t �= NIy
t and, as t is the first such time, hx

t− = h
y
t−. Whereas θ̂xt

and θ̂
y
t both result from the same strategy, this, however, implies that θ̂xt = θ̂

y
t , leaving as

the only possibility that NIx
t �= NIy

t . This contradicts consistency of both processes with

the fixed strategy (as hx
t− = h

y
t−). Hence, any pair of traceable and frictional strategies

gives at most one consistent outcome.
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Step 2: Existence Existence of a consistent outcome path is shown constructively: Start
with arbitrary history hu− = {π0, zt , ηt , θ̂t , NI

t , Ft }t∈[0,u) ∪ {ηu} and fix a realization of the
shock process {zt }t∈[u,∞). We apply the steps below iteratively until they give an outcome
path consistent with z and the strategies for t ≥ u: Define paths {η0

t , θ̂0
t , NI0

t , F0
t } equal

to the history up to u and such that for t > u, η0
t = et(hmaxk tAk <u ), and for t ≥ u, θ̂0

t = θ̂u−,

NI0

t =NI
u−, and dF0

t = ft(hmaxk tAk <u ).1 Let n = 1 and t(1) = u.

(i) By traceability, there are paths {ηn
t , θ̂nt }t≥0 such that, for t < t(n), {θ̂nt , ηn

t } =
{ηn−1

t , θ̂n−1
t }, and that {ηn

t , θ̂nt , NIn−1

t , Fn−1
t }t≥0 is consistent with the agent’s strat-

egy and process z for t ≥ t(n). Set {ηn
t , θ̂nt } equal to these processes. Similarly,

traceability implies that there exist paths {NIn
t , Fn

t } with (NIn
t , Fn

t ) = (NIn−1

t , Fn−1
t )

for t < t(n) and such that {ηn
t , θ̂nt , NIn

t , Fn
t }t≥0 is consistent with the principal’s

strategy on t ≥ u. Set {NIn
t , Fn

t } equal to these processes and continue to step (ii).

(ii) If {ηn
t , θ̂nt , NIn

t , Fn
t } is consistent with the strategies for all t ∈ [u, ∞), stop the pro-

cedure. The proof is complete. Otherwise, redefine n = n+1 and set t(n+1) equal
to the largest time v such that there is an intervention at v and {ηn

t , θ̂nt , NIn
t , Fn

t } is
consistent with the strategies for all t ∈ [u, v), and go to step (i).

If the above procedure stops after finite n, that is because of having given a consistent
process and the proof is complete. In the case in which it does not stop after finitely
many iterations,

lim
n→∞

{
ηn
t , θ̂nt , NIn

t , Fn
t

}
t≥0

is consistent with the strategies on [u, ∞) with probability 1. To see this, note that for
every n, t(n+2) > t(n). Given that, with probability 1, any finite interval has only finitely
many interventions, limn→∞ t(n) = ∞, which implies consistency of the resulting pro-
cess for all t ∈ [u, ∞).

Supplemental Appendix B: Martingale representation of promised utility

Proof of Lemma A. Denote by F the filtration generated by the random processes θ,
θ̂, and νI . Define

Wt :=
∫ t

0
e−rs(−dFs − cηs ds) + e−rtUt .

The corresponding representation in differential form is

dWt = e−rt(−dFt − cηt dt ) − re−rtUt + e−rt dUt . (23)

The process {Wt } is an F-martingale by construction. By the martingale representation
theorem for marked point processes (Last and Brandt (1995, Theorem 1.13.2)), there

1That is, report and inspections are held constant from u onward, and fines and effort are chosen ac-
cording to the strategies (depending only on the last intervention before u) for the case that no further
interventions occur.
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exist F-predictable functions �̃θ
t , �̃θ̂

t , and �̃I
t such that

dWt =
∑

a∈{θ, θ̂,I}

�̃a
t

(
dNa

t − dνat
)
. (24)

Replacing �̃a
t = e−rt�a

t and then equating (23) and (24) yields

dUt = rUt dt + dFt + cηt dt +
∑

a∈{θ, θ̂,I}

�a
t

(
dNa

t − dνat
)
.

This is the representation of the evolution of promised utilities shown in the lemma.

Supplemental Appendix C: Proof of Lemma C with support left open

In this section, we show how the arguments in the proof of Lemma C extend to the case
in which t0 /∈ T . First, note that if its infimum t0 is not contained in the set T , then for any
δ > 0, we can find an ε ∈ (0, δ) such that t0 +ε ∈ T . Further, by choosing δ small enough,

we can ensure that the expected inspection probability
∫ t0+δ
t0 dνIs becomes arbitrarily

small. In the first case with U0
t0 >−B, there exists an ε > 0 small enough such that t0 +ε ∈

T and also U0
t0+ε

> −B by right continuity of U0
t . In this case we can apply the argument

above to schedule a predictable inspection at time t0 + ε. To satisfy the agent’s incentive
constraints, this modification is paired either with an additional fine after a high report
at t0 + ε or with an additional transition fine for any transition at times s ∈ [t0, t0 + ε),
depending on the sign of �I

t0+ε
. In the second case with U0

s = −B, on [t0, t0 +δ) for some

δ > 0, then by �I
s > −B − U0

s , we have that �I
t0+ε

> 0. In this case, we can proceed in a
similar way as above and introduce an additional fine to compensate for the increase in
the agent’s expected payoff caused by performing the inspection with probability 1 and
keep the path of persistent payoffs U1

s unchanged for s ≤ t0. However, to ensure that the
obedience and honesty constraints are also satisfied on (t0, t0 + ε], the fine is increased
gradually on the interval (t0, t0 +ε). Specifically, construct the fine such that the honesty
constraint (H) binds (with U0

s = −B):

0 = −rBdt − λα
(
U1
s +B

)
dt + dFt + cdt. (25)

In the promise-keeping constraint (Pk), substituting for dFs with the binding honesty
constraint (25) and inserting U0

s = −B determines the evolution of U1
s on (t0, t0 + ε) via

the differential equation

û′
s = (r + λ)(ûs +B).

We keep the persistent utility at t0 unchanged, so the initial condition for the ordinary
differential equation (ODE) is ût0 = U1

t0 , which leads to the solution

ûs =U1
t0e

(r+λ)(s−t0 ) +B
(
e(r+λ)(s−t0 ) − 1

)

for s ∈ [t0, t0 + ε). To ensure, that this trajectory of persistent utility is feasible, we verify
that the fine dFs is positive and that the solution ût0+ε does not exceed U1

t0+ε
+ �I

t0+ε
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from the original equilibrium. The latter is necessary to reach U1
t0+ε

+ �I
t0+ε

as the con-

tinuation payoff after inspection at t0 + ε. For the fine, (25) with U1
s = ûs gives

dFs

dt
= −c + rB + λα(ûs +B) = −c + rB + λα

(
U1
t0 +B

)
e(r+λ)(s−t0 ).

This term is decreasing in s and, therefore, smallest at s = t0, where it is positive if

(r + λα)B + λαU1
t0 ≥ c.

For the original equilibrium to satisfy the obedience constraint, we must have U1
t0 ≥

−B + c
λα , so that the above inequality must be satisfied and the fines are positive. To

check that ût0+ε constructed above does not lie above U1
t0+ε

+ �I
t0+ε

from the original
equilibrium, note that the inspections in the original equilibrium had no effect on the
honesty constraint (H) as, by assumption, we are in the case U0

s = −B. Therefore, as
the original equilibrium satisfied the honesty constraints, the evolution of ûs , which
was constructed by making the honesty constraint binding, must lie weakly below the
original U1

s and, therefore, ût0+ε ≤ U1
t0+ε

+ �I
t0+ε

since �I
t0+ε

is positive by �I
t0+ε

> −B −
U0
t0 = 0. Hence, the newly constructed equilibrium includes a fine at inspection time

t0 + ε of Û1
t0+ε

− (U1
t0+ε

+ �I
t0+ε

) so that the persistent utility increases to the one from

the original continuation equilibrium after inspection at time t0 + ε.

References

Kamada, Yuichiro and Neel Rao (2023), “Strategies in stochastic continuous-time
games.” Technical report, Working Paper UTMD-040, University of Tokyo. [2]

Last, Günter and Andreas Brandt (1995), Marked Point Processes on the Real Line: The
Dynamical Approach. Springer. [4]

Co-editor Simon Board handled this manuscript.

Manuscript received 24 January, 2022; final version accepted 19 July, 2023; available online 25
July, 2023.

https://www.e-publications.org/srv/te/linkserver/setprefs?rfe_id=urn:sici%2F1933-6837%282024%2919%3A2%2B%3C1%3ASTRE%3E2.0.CO%3B2-D

	Supplemental Appendix A: Strategies and outcomes
	Step 1: Uniqueness
	Step 2: Existence

	Supplemental Appendix B: Martingale representation of promised utility
	Supplemental Appendix C: Proof of Lemma C with support left open
	References

