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1 Proof of Theorem 4

The proof resembles the one of Theorem 3. In particular, we will use a matrix A associated

with an order over bundles induced by the prices α of a CEEI to prove the existence of certain

linear prices. However, the main difference is that we will not be using all the strict orderings

induced by α.

Let x be an incentive compatible and Pareto efficient allocation rule. First, we apply the

same connection to Ashlagi and Shi (2016) as in the proof of Theorem 3. Hence, in this new

environment we treat bundles as objects. An allocation rule x is A-S Pareto efficient if there

is no other allocation rule x′ such that:

1. For each bundle b ∈ B we have
∫
U
x′
b(u)dF =

∫
U
xb(u)dF .

2. For each u ∈ U we have u ·x′(u) ≥ u ·x(u) and there is a set A ⊂ U such that F (A) > 0

and the inequality is strict for each u ∈ A.

Similarly to Lemma 1, it is immediate to see that any Pareto efficient allocation rule must

∗CREST - Ecole polytechnique, France. Email: julien.combe@polytechnique.edu.
†Economics department, Nazarbayev University Email: vladyslav.nora@nu.edu.kz
‡Paris School of Economics, France. Email: tercieux@pse.ens.fr.

1



also be A-S Pareto efficient.1 Hence, by Theorem 1 of Ashlagi and Shi (2016), we know that,

with a continuous distribution F with full relative support, the mechanism x is a CEEI for

some prices (αb)b∈B ∈ (0,∞]|B|. Note that these prices, following the definition of Ashlagi and

Shi (2016), are strictly positive and some of them can be infinite. We let αmax := maxb∈B αb,

and αmin := minb∈B αb. We start with the following simple observation.

Lemma 1. If x is CEEI for prices α, then αmin ≤ 1.

Proof. If αb > 1 for each bundle b, then for each q ∈ ∆, we have α · q > 1. Hence, x(u)

is not affordable for each u, a contradiction.

Now, fix new prices α̂ ∈ [0,∞]|B|. Note that we now allow these prices to be null. We call

an allocation rule x a r-CEEI with prices α̂ if, intuitively, it is a CEEI with budget r (instead

of 1), i.e., arg max
q∈∆

{u · q : α̂ · q ≤ r}. As before, we can similarly define α̂min.

Lemma 2. If x is a CEEI with prices α ∈ (0,∞]|B|, then x is a r-CEEI with prices α̂ ∈
[0,∞]|B|, budget r = 1− αmin and α̂min = 0.

Proof. By Lemma 1, we have αmin ≤ 1. Then reducing the budget and all the prices by

αmin does not change the budget set, and hence x is still a CEEI under the reduced budget

and prices, i.e., a r-CEEI and prices α̂ ∈ [0,∞]|B| with α̂min = 0 as required.

Fix prices α ∈ [0,∞]|B|. Let B∞ = {b : αb = ∞}. Note that B∞ is nonempty when

αmax = ∞. We denote the highest finite price by αmax∗ := maxb{αb : αb < ∞}, and let bmax∗

be a bundle such that αb = αmax∗ . The following lemma is useful to construct improving

bilateral transfers.

Lemma 3. If x is a r-CEEI with prices α ∈ [0,∞]|B| and αmin = 0. Let the set P ⊂ B2 be

defined as follows:

• Case 1: if αmax∗ ≤ r, let P := B\B∞ ×B∞ with B∞ := {b : αb = ∞}.

• Case 2: if αmax∗ > r and r = 0, let B0 := {b : αb = 0} and P := B0 ×B\B0.

• Case 3: αmax∗ > r and r > 0: let P := {(b, b′) : αb < αb′}.

Then, for any pair (b, b′) ∈ P :

1Indeed, the allocation x′ in the definition of A-S Pareto efficiency would also be valid if one uses the
definition of Pareto efficiency in Section 5.
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1. αb < αb′.

2. There is an open set f(b, b′) ⊂ U s.t. i) ub < ub′ and ii) for some m > 0, xb(u) ≥ m for

all u ∈ f(b, b′).

Proof. As discussed above, if x is an incentive compatible and Pareto efficient allocation

rule, then, using Lemma 2, it is a r-CEEI with prices α ∈ [0,∞]|B| such that αmin = 0. We

follow each case of the lemma.

Case 1: αmax∗ ≤ r. In this case all bundles with a finite price are affordable. By definition,

for each (b, b′) ∈ P , we have αb < αb′ so the first condition of the lemma holds.

For each (b, b′) ∈ P , let f(b, b′) ⊂ U be the set of utility vectors such that:

• ub′ = 2M + εb′ with εb′ ∈ (0, ε̄),

• ub = M + εb with εb ∈ (0, ε̄),

• ub′′ = εb′′ with εb′′ ∈ (0, ε̄) for each b′′ ̸= b, b′,

where M and ε̄ are some constants. Clearly, the set f(b, b′) is open in U as a product of

open intervals. For M > ε̄, bundle b′ gives the highest utility followed by b, followed by all

other bundles. Note that since (b, b′) ∈ B\B∞ × B∞ and αmax∗ ≤ r, b is always affordable

under the CEEI while b′ is not. Since b gives the highest utility among affordable bundles for

u ∈ f(b, b′), we have xb(u) = 1 as required.

Case 2: αmax∗ > r and r = 0. In this case, only free bundles are affordable. Since αmin = 0,

the set B0 is non-empty. By construction, we have αb = 0 < αb′ for any (b, b′) ∈ P so that

the first requirement of the lemma holds.

For each (b, b′) ∈ P we now define the set f(b, b′) ⊂ U in the same way as in Case 1. Note

that since (b, b′) ∈ B0 ×B\B0 and r = 0, bundle b is always affordable under the CEEI while

b′ is not. Since b gives the highest utility among affordable bundles for u ∈ f(b, b′), we have

xb(u) = 1 as required.

Case 3: αmax∗ > r and r > 0. In this case, note that we can normalize the budget to one

by dividing all the prices by r and obtain the same CEEI. So, in what follows, we assume that

r = 1. Remember that we have at least one free bundle since αmin = 0. By definition of P ,

the first requirement of the lemma holds.

Fix constants M, ε̄, δ̄. Remember that bmax∗ is a bundle such that αbmax∗ = αmax∗ . For

each (b, b′) ∈ P let f(b, b′) be the set of utility vectors such that:
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• ub′′ = αb′′ + εb′′ with εb′′ ∈ (0, ε̄) for b′′ ̸= b, bmax∗ such that αb′′ < ∞,

• ub′′ = M + εb′′ with ε ∈ (0, ε̄) for b′′ ∈ B∞,

• ub = αb + δb + εb with εb ∈ (0, ε̄),

• ubmax∗ = αbmax∗ + δbmax∗ + εbmax∗ with εbmax∗ ∈ (0, ε̄).

In words, utility vectors in f(b, b′) assign to each bundle b′′ an utility equal to the bundle’s

price αb′′ (or a large constant if this price is infinite) perturbed by some positive constant.

For each bundle b′′ ̸= bmax∗ with price αb′′ < ∞, let s(αb′′) be the next strictly highest price,

possibly infinite, i.e., s(αb′′) := minb′{αb′ : αb′ > αb′′}. We can choose positive constants M, δb,

δbmax , and ε̄, so that they satisfy the following constraints:

(i) For each b′′ such that αb′′ ̸= αbmax∗ we have:

αb′′ + δb + ε̄ < s(αb′′). (1.1)

And M > αbmax∗ + δbmax∗ + ε̄.

(ii)

δb > ε̄. (1.2)

(iii) If αb > 0 and b ̸= bmax∗
, then for each b′′ ̸= b, bmax∗ such that αb′′ > 0 we have:

δb
αb

>
δbmax∗ + ε̄

αbmax∗
+

(
1

αb

− 1

αbmax∗

)
ε̄ >

δbmax∗

αbmax∗
>

ε̄

αb′′
. (1.3)

The constraint 1.1 makes sure that the ranking induced by the perturbed utilities is consistent

with the strict ranking induced by prices α. Constraint 1.2 implies that bundle b is the most

attractive bundle among all bundles with the same price. Constraint 1.3 implies that bundles

b and bmax∗ deliver the highest utility per unit of artificial currency among all non-free bundles

with finite price, and, roughly speaking, b is sufficiently more attractive than bmax∗ .2 Clearly,

the set f(b, b′) is open in U as a product of open intervals in R.
2Note that there are positive constants M, δb, δbmax∗ , and ε̄ satisfying (i), (ii) and (iii). Indeed, one can set

δb, ε̄ small enough and M high enough so that (i) holds. With an even smaller ε̄, (ii) holds. Finally, with ε̄
small again and δbmax∗ small, (iii) holds true. Also note that since we have assumed that αmax∗ < ∞, then
αbmax∗ < ∞ so that constraint 1.3 is indeed true.
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We now show that if u ∈ f(b, b′), then xb(u) = m for some m > 0. We begin by showing

that, in the CEEI, there does not exist b′′ ̸= b, bmax∗ and u ∈ f(b, b′) such that αb′′ > 0 and

xb′′(u) > 0. For the sake of contradiction, suppose such b′′ and u exist. Consider reducing

expenditures of such agents on b′′ by η > 0, and increasing their expenditures on bmax∗ by

η. So their probability share of b′′ decreases by η/αb′′ , and their probability share of bmax∗

increases by η/αbmax∗ ≤ η/αb′′ . To keep the sum of probability shares equal to 1, increase the

share of any free bundle by η/αb′′ − (η/bmax∗). For a sufficiently small η > 0, such transfer of

mass is feasible and increases the utility of agents with u ∈ f(b, b′) by constraint 1.1 above, a

contradiction to the allocation being a CEEI.

First, suppose αb = 0. Then, given the above result, an agent with u ∈ f(b, b′) must

spend her entire budget on bmax∗ in purchasing a 1/αbmax∗ < 1 probability share of bmax∗ , and

complete the allocation with the free bundle b in purchasing a 1− (1/αbmax∗ ) > 0 probability

share of b because δb > ε̄b′′ for each b′′ ̸= b such that αb′′ = 0.

Second, suppose αb > 0. Notice that, because of constraint 1.3, an agent with u ∈ f(b, b′)

must allocate the entire budget between bundles b and bmax∗ , and potentially complete the

allocation with a share of a free bundle which delivers the highest utility, denoted by b0.

Specifically, she solves the following optimization problem:

max
0≤z≤1

(αbmax∗ + δbmax∗ + εbmax∗ )
z

αbmax∗
+ (αb + δb + εb)

1− z

αb

+ εb0

(
1− z

αbmax∗
− 1− z

αb

)
,

subject to

1− z

αbmax∗
− 1− z

αb

≥ 0.

Given the constraint 1.3, the objective is linearly decreasing in z. If αb ≥ 1, then the

constraint does not bind and optimally xb(u) = 1/αb, i.e., the entire budget is spent on b.

If αb < 1, then the constraint binds, which implies that xb0(u) = 0, and the budget is split

between bmax∗ and b such that

xb(u) =
αbmax∗ (1− αb)

αbmax∗ − αb

.

Summarizing, for each u ∈ f(b, b′) we have

xb(u) ≥ min

{
1− 1

αbmax∗
,
1

αb

,
αbmax∗ (1− αb)

αbmax∗ − αb

}
:= m > 0.

as required.
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Last, we show that from the sets f(b, b′) as in Lemma 3, we can create an open cone of

preferences with positive mass having the same property. The reader interested in the proof

of Theorem 4 can skip the proof since it mostly relies on topology arguments.

Lemma 4. Fix a r-CEEI x with prices α. If the distribution F has full relative support, then

for each pair (b, b′) ∈ P and its associated open set f(b, b′) from Lemma 3, there exists an

open cone C(b, b′) ∈ C such that F (C(b, b′)) > 0 and for each u ∈ C(b, b′) and some m > 0 we

have xb(u) ≥ m.

Proof. Fix a pair (b, b′) ∈ P and the associated open set f(b, b′) ⊂ U from Lemma 3.3

In the sequel, we recall that ProjD stands for the projection from U into D, i.e.,

ProjD(u) := (ub −
∑

b ub

|B|
)b.

Note that, from Lemma 3, under a r-CEEI, for any u ∈ f(b, b′), then xb(u
′) ≥ m > 0.

For any u′ = λu − ξ1 with λ > 0 and ξ ∈ R since the choices are invariant to linear

transformations of u, we also have xb(u
′) ≥ m. In words, rescaling and translating the

cardinal utilities will not impact the optimal choice of the agent in a CEEI. Given λ > 0, we

denote Xλ := {u′ ∈ U : u′ = λu for some u ∈ f(b, b′)}. Note that for any λ > 0, Xλ is open

in U (since the function u 7→ λu is an homeomorphism). Now, let us consider Z := ∪λ>0Xλ.

Note that, as a union of open sets, Z is open in U . Let C := ProjD(Z). Here again, for

any u ∈ C, we must have xb(u) ≥ m since such u are simple linear transformations of utility

vectors in f(b, b′).

We first claim that C is a cone. Take any u′ ∈ C and any λ > 0. We must show that

λu′ ∈ C. Indeed, since u′ ∈ C, we must have that for some u ∈ Z, ProjD(u) = u′. Hence,

ProjD(λu) = λProjD(u) = λu′ where the first equality uses the linearity of ProjD. Since, by

definition of set Z, it must be that λu belongs to Z, ProjD(λu) = λu′ implies that λu′ ∈
ProjD(Z) = C, as claimed.

Now, we show that C is open in D in order to eventually show that C is open in C. This
comes from the feature that ProjD is an open map together with the fact that Z is open in

U .4 Finally, we want to show that our cone C is open in C, i.e., C ∩ D̃ is open in D̃. This is

true since, as we just claimed, C is open in D and so C ∩ D̃ is open in D̃ by definition of the

3Remember that the sets P and f(b, b′) change depending on the values of the cutoffs α as shown in the
proof of Lemma 3.

4ProjD is a continuous mapping under our topologies and it is surjective and linear. By the open mapping
theorem, ProjD is an open mapping, i.e., for any open set O in U , ProjD(O) is open in D.
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relative topology. Thus, we can set C(b, b′) := C. The open cone C(b, b′) satisfies xb(u) ≥ m

for any u ∈ C(b, b′). Since F has full relative support and C(b, b′) is open in D̃, we have

F (C(b, b′)) > 0.

We are now equipped with all the lemmas to prove Theorem 4. Similar to the proof of

Theorem 3, the proof relies on constructing feasible bilateral transfers whenever there is no

solution to a well constructed set of linear inequalities. The proof is divided into several

cases depending on the value of αmax and αmin. For each of them, we will show that we can

construct a spot MRB which induces the same allocation as the initial CEEI. As in the proof

of Proposition 5, we will construct a matrix A associated to a strict ordering over bundles in

B and consider the system of linear inequalities Ap < 0. We will show that, if such system

has no solution, there exists y such that y ≥ 0, y ̸= 0 and ATy = 0, and that such y can

be used to construct feasible improving bilateral transfers for a positive mass of agents (using

Lemma 4) so that x is not Pareto efficient.

Proof. Suppose x is an incentive compatible and Pareto efficient allocation rule. By

Lemma 2, x is a r-CEEI with prices α ∈ [0,∞]|B| such that αmin = 0. Fix the set P of pairs

of bundles as defined in Lemma 3. First, we show that there exist linear prices ᾱ such that

ᾱb < ᾱb′ for each (b, b′) ∈ P .

Construct the matrix A as in the proof of Proposition 5 so that each row of A corresponds

to a pair of bundles (b, b′) ∈ P and each column corresponds to a generalized object in O. For

the sake of contradiction suppose such linear prices ᾱ do not exist. Then, as in Proposition

5, there exists y such that y ≥ 0, y ̸= 0 and ATy = 0, and, in what follows, we use y to

construct improving bilateral transfers for a positive mass of agents.

For each (b, b′) ∈ P , Lemma 4 guarantees that there exists an open cone C(b, b′) such

that F (C(b, b′)) > 0, and for each u ∈ C(b, b′) we have ub < ub′ and xb(u) ≥ m > 0. For

each (b, b′) ∈ P , consider a transfer of a probability mass (ϵ/F (C(b, b′)))yb,b′ from b to b′ for

agents with u ∈C(b, b′) at their random allocation x(u). By construction of C(b, b′), this is

an improving bilateral transfer given a sufficiently small ϵ > 0. Moreover, because ATy = 0,

by Lemma 7 these transfers do not change the allocated mass of each object. Therefore, x is

not Pareto efficient, which is a contradiction. It follows that there exist linear cutoffs ᾱ such

that ᾱb < ᾱb′ for each (b, b′) ∈ P . Without loss of generality assume that maxb ᾱb = 1.

To finish the proof, we construct a spot MRB mechanism that implements r-CEEI x. By

Proposition 3, x is a MRB mechanism L = (α̂,G), where cutoffs α̂ are the normalized prices

α as in the proof of Proposition 3. Using the linear prices ᾱ, we now construct a collection
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of distributions G ′ such that the spot MRB mechanism with L′ = (ᾱ,G ′) implements the

allocation rule x. For each distributionGx(u) ∈ G, let the corresponding distributionG′
x(u) ∈ G ′

assign probability xb(u) to ᾱb instead of α̂b. We now consider the same cases as in Lemma 3.

Case 1: αmax∗ ≤ r. In the r-CEEI, each agent is assigned her favorite bundle out of the

ones with a finite price. In the spot MRB with L′ = (ᾱ,G ′), each agent can also receive the

same bundle and cannot receive a positive share of any bundle with an infinite price because

those bundles keep having the highest prices under the linear cutoffs ᾱ and the distributions

in G ′ put probability 1 on the budget strictly below these prices. Hence, the induced allocation

rule must be the same.

Case 2: αmax∗ > r and r = 0. In the r-CEEI, each agent is assigned her favorite free

bundle. Similarly to the previous case, each agent can also receive the same bundle in the

spot MRB with L′ = (ᾱ,G ′). Moreover, she cannot receive a positive share of any other

bundle because those bundles have strictly higher prices than the ones of the free bundles

under the linear cutoffs ᾱ and the distributions in G ′ put probability 1 on the budget strictly

below these prices. Hence, the induced allocation rule must be the same.

Case 3: αmax∗ > r and r > 0. Note that in L′ = (ᾱ,G ′), for each realization of a random

budget, the set of affordable bundles is the same as in L for each distribution because the linear

cutoffs ᾱ have the same strict order as prices α. Then, we have that, for each distribution

and for each set of bundles, the probability that this set is affordable is the same in L and L′.

Hence, the induced allocation rule must be the same.

2 Proof of Proposition 4

Recall that a spot mechanism x is characterized by a GLC with parameters (α, G) where

xπ(h)(π) = G(minm=1,...,h−1 απ(m)) − G(minm=1,...,h απ(m)) for every π and h = 1, . . . , |O|. In

addition, we know that there exists non-linear p = (pt)t=1,...,T where pt = (pti)i∈Ot for each

t = 1, ..., T satisfying

αo =
T∑
t=1

ptot

for each o = (o1, ..., oT ) ∈ O. We say that (α, G,p) corresponds to spot mechanism x.

Lemma 5. Take a sequence xn → x where, for each n, xn is a spot mechanism. Further,

assume that the corresponding sequence (αn, Gn,pn) converges to (α, G,p). We must have

that x is a spot mechanism and (α, G,p) corresponds to x.
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Proof. Since for each n :

xn
π(h)(π) = Gn( min

m=1,...,h−1
αn
π(m))−Gn( min

m=1,...,h
αn
π(m))

for every π and h = 1, . . . , |O|, the same must hold as well in the limit, i.e.,

xπ(h)(π) = G( min
m=1,...,h−1

απ(m))−G( min
m=1,...,h

απ(m))

for every π and h = 1, . . . , |O|.

In addition, since for each n, for each t = 1, ..., T, we have

αn
o =

T∑
t=1

pt,not

for each o = (o1, ..., oT ) ∈ O, the same must hold as well in the limit, i.e.,

αo =
T∑
t=1

ptot .

Hence, x is a spot mechanism and (α, G,p) corresponds to x, as claimed.

Proof of Proposition 4.

“=⇒” Assume that x is robustly OE and IC at F . Pick a sequence Fn → F where Fn

has full-support. Because, x is robustly OE and IC at F , we know that there is a sequence

{xn} such that xn → x and xn is OE and IC at Fn for each n. Note that, by Theorem 1, this

implies that xn is a spot mechanism for each n. Let (αn, Gn,pn) correspond to xn for each

n. Note that αn and pn clearly lie in a (sequentially) compact set. In addition, the space

of probability measures over the compact set [0, 1] is sequentially compact in the topology of

weak convergence of measures. So Gn also lies in a sequentially compact set.5 Thus, taking a

subsequence if necessary, we can assume that (αn, Gn,pn) → (α, G,p). By Lemma 5, x is a

spot mechanism.

“⇐=” Assume that x is a spot mechanism. By Theorem 1 (and the observation that

Theorem 1 “⇐=” holds without the full-support assumption—see Footnote 58), x is OE and

IC for all distributions F ′. Now, fix any sequence of distributions Fn → F and let xn be the

5This comes from Prokhorov’s Theorem and the observation that probability measures in our space are all
supported on the same compact set and so the space is automatically tight.
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constant sequence equal to x for all n. By the previous observation, xn is OE and IC at Fn

for each n. Trivially, xn → x. Hence, x is robustly OE and IC at F .
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