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Abstract

This document contains the proofs of Examples 2 and 3 in the main text (Sections

S1 and S2, respectively). All numbered items contain the prefix “S.” Any numbered

reference without the prefix “S” refers to an item in the main text.
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S1. Proof of Example 2 in Main Text

Proof of Example 2. The proof is in two steps. Step 1 characterizes the threshold θ∗σ defining

the optimal deterministic monotone rule, whereas Step 2 constructs the non-monotone policy

that strictly improves over the optimal deterministic monotone one.

Step 1. The primitives in this example satisfy the conditions in Theorem 2 in the main

text. This means that, given any signal s disclosed by any policy Γ, MARP is in threshold

strategies, which in turn implies that the default outcome is monotone in θ.

Next recall that, for any default threshold θ ∈ [0, 1], the corresponding signal threshold

x∗σ (θ) is implicitly defined by Pσ (x
∗
σ (θ) |θ) = θ. Using the fact that, for any θ ∈ [−K, 1 +K]

and x ∈ [θ − σ, θ + σ], Pσ (x|θ) = (x− θ + σ) /2σ, we have that x∗σ (θ) = (1 + 2σ) θ − σ.

For any θ̂ ∈ [0, 1], let Γθ̂ ≡ {{0, 1} , πθ̂} be the deterministic monotone policy with cutoff

θ̂. Next, let V Γθ̂

σ (·) be the function defined by V Γθ̂

σ (θ) ≡ UΓθ̂

σ (x∗σ (θ) , 1|x∗σ (θ)) for any θ ∈

[θ̂/(1+2σ), 1]. This function represents the expected payoff differential between investing and

not investing of the marginal investor with signal x∗σ (θ), when each investor invests if and

only if their signal is above x∗σ (θ) (and hence default occurs if, and only if, fundamentals are

below θ), the quality of the investors’ signal is σ, and the policy Γθ̂ announces that s = 1, thus

revealing that θ ≥ θ̂. Note that, for any 0 ≤ θ < θ̂/(1+2σ), x∗σ(θ)+σ < θ̂, which implies that

the signal x∗σ(θ) is not consistent with the event that fundamentals are above θ̂. Equivalently,

when θ ≥ θ̂, the lowest possible signal that an individual may receive is θ̂ − σ. When each

investor invests if and only if x > θ̂ − σ, default occurs if and only if θ ≤ θ̂/(1 + 2σ). Hence,

the lowest default threshold that is consistent with the policy Γθ̂ is θ̂/(1 + 2σ). The function

V Γθ̂

σ (θ) is thus defined only for θ ∈ [θ̂/(1 + 2σ), 1].

The cutoff θ∗σ characterizing the optimal deterministic monotone policy is given by

θ∗σ = inf{θ̂ ∈ [0, 1] : V Γθ̂

σ (θ) ≥ 0 for all θ ∈ [θ̂/(1 + 2σ), 1]}. (S1)

Claim S1. For any θ̂ ∈ [0, 1], V Γθ̂

σ (·) has a unique minimizer. Letting

θmin
σ (θ̂) ≡ argminθ∈[θ̂/(1+2σ),1]V

Γθ̂

σ (θ) ,

we have that θmin
σ (θ̂) satisfies x∗σ(θ

min
σ (θ̂))− σ = θ̂.

Proof of Claim S1. Clearly, for any θ ∈ [θ̂/(1 + 2σ), θ̂], V Γθ̂

σ (θ) = g. This is because
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when each investor invests if and only if x > x∗σ (θ) default occurs only for fundamentals below

θ. Hence the announcement that θ > θ̂ reveals to the marginal investor with signal x∗σ (θ)

that default will not occur.

Next, observe that for any θ ∈ (θ̂, (θ̂ + 2σ)/ (1 + 2σ)], x∗σ (θ)− σ < θ̂, implying that1

V Γθ̂

σ (θ) = g − (g + |b|)Pσ[θ̃ ≤ θ|θ̃ ≥ θ̂;x∗σ (θ)] = g − (g + |b|) θ − θ̂

(1 + 2σ) θ − θ̂
,

which is strictly decreasing in θ. Finally, note that, for any θ ∈ ((θ̂ + 2σ)/ (1 + 2σ) , 1],

x∗σ (θ)− σ > θ̂, implying that

V Γθ̂

σ (θ) = g − (g + |b|)Pσ[θ̃ ≤ θ|θ̃ ≥ θ̂;x∗σ (θ)] = g + (g + |b|) (θ − 1) ,

which is strictly increasing in θ. Hence, V Γθ̂

σ (·) has a single minimizer over [θ̂/(1 + 2σ), 1].

The latter is equal to θmin
σ (θ̂) = (θ̂ + 2σ)/ (1 + 2σ) and is such that x∗σ(θ

min
σ (θ̂))− σ = θ̂. □

Next, let Γθ∗σ ≡ ({0, 1} , πθ∗σ) be the optimal deterministic monotone policy (with cut-off

θ̂ = θ∗σ). Using the characterization of θ∗σ in (S1), we thus have that, under Γθ∗σ , at the point

θmin
σ (θ∗σ) at which V

Γθ∗σ
σ reaches its minimum, V Γθ∗σ

σ (θmin
σ (θ∗σ)) = 0. Using the fact that

V Γθ∗σ
σ

(
θmin
σ (θ∗σ)

)
= g − (g + |b|) θmin

σ (θ∗σ)− θ∗σ
(1 + 2σ) θmin

σ (θ∗σ)− θ∗σ
,

we then have that θ∗σ = (1 + 2σ) |b|
g+|b| − 2σ. Next, let Γ∅ be the no-disclosure policy and note

that, for any θ ∈ [0, 1],

V Γ∅
σ (θ) = g − (g + |b|)Pσ[θ̃ ≤ θ|x∗σ (θ)] = g + (g + |b|) (θ − 1) ,

which is increasing in θ and has a unique zero at θ = |b|/ (g + |b|) ≡ θMS.

This means that, in the absence of any disclosure, under the unique rationalizable strategy

profile (and hence under MARP), each agent invests if and only if x > x∗σ
(
θMS

)
, and default

occurs if and only if fundamentals are below θMS. The results above then imply that the

optimal deterministic policy Γθ∗σ is defined by a threshold θ∗σ = (1 + 2σ) θMS−2σ = x∗σ
(
θMS

)
−

σ that coincides with the left end-point of the support of the posterior beliefs of each agent

1The notation Pσ

[
θ̃ ≤ θ|θ̃ ≥ θ̂;x

]
stands for the probability that an investor with signal x assigns to the

event that θ̃ ≤ θ when the quality of his exogenous signal is parametrized by σ and the policy reveals that
θ̃ ≥ θ̂.

3



with signal x∗σ
(
θMS

)
. In fact, for any truncation point θ̂ < x∗σ

(
θMS

)
− σ, there exists θ close

to θMS such that V Γθ̂

σ (θ) < 0 implying that refraining from investing for all x < x∗σ
(
θMS

)
is rationalizable in the continuation game following the announcement that θ ≥ θ̂, implying

that the policy Γθ̂ fails to satisfy PCP. Similarly, for any truncation point θ̂ > x∗σ(θ
MS) − σ,

V Γθ̂

σ (θ) reaches its minimum at θmin
σ (θ̂) > θMS and is such that V Γθ̂

σ (θmin
σ (θ̂)) = V

Γ∅
σ (θmin

σ (θ̂)) >

V
Γ∅
σ (θMS) = 0, where the inequality follows from the monotonicity of V

Γ∅
σ (·). Hence, θ∗σ =

x∗σ
(
θMS

)
− σ.

Step 2. Having characterized the optimal deterministic monotone policy Γθ∗σ , we now show

that, when σ is small, there exists another policy Γ that also satisfies PCP and guarantees no

default for a larger set of fundamentals than Γθ∗σ .

Let σ# ≡ θMS

2(1−θMS)
> 0. For any σ ∈ (0, σ#), θ∗σ = (1 + 2σ) θMS −2σ > 0. For any σ, δ, γ >

0 small, let θ′′σ(δ, γ) ≡ x∗σ
(
θMS − δ

)
−σ = (1+2σ)(θMS−δ)−2σ and θ′σ(δ, γ) ≡ θ′′σ(δ, γ)−γ. Note

that, for any σ ∈ (0, σ#), δ > 0 and γ > 0 can be chosen so that 0 < θ′σ(δ, γ) < θ′′σ(δ, γ) < θ∗σ.

Consider the non-monotone deterministic policy Γδ,γ ≡ {{0, 1} , πδ,γ} given by

πδ,γ (1|θ) ≡ 1
{
θ ∈

[
θ′σ(δ, γ), θ

′′
σ(δ, γ)

]
∪ [θ∗σ,∞)

}
.

We show that, for any σ ∈ (0, σ#), there exit δ, γ > 0 such that (i) 0 ≤ θ′σ(δ, γ) < θ′′σ(δ, γ) < θ∗σ,

and (ii) V
Γδ,γ
σ (θ) ≥ 0 for all θ > θ′σ(δ, γ)/(1 + 2σ), with V

Γδ,γ
σ (θ) = 0 only for θ = θMS.2

First observe that, for any σ ∈ (0, σ#), δ ∈
(
0, θMS − 2σ

1+2σ

)
and

0 < γ ≤ (1 + 2σ)
(
θMS − δ

)
− 2σ ≡ R0

(
δ, θMS , σ

)
guarantee that 0 ≤ θ′σ(δ, γ) < θ′′σ(δ, γ) < θ∗σ.
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Next note that, for any (σ, δ, γ) with σ ∈ (0, σ#), δ ∈
(
0, θMS − 2σ/ (1 + 2σ)

)
and 0 < γ ≤

R0

(
δ, θMS, σ

)
, V

Γδ,γ
σ (θ) = V Γθ∗σ

σ (θ) for all θ ∈
[
θMS − δ, 1

]
. Indeed, for any θ ∈

[
θMS − δ, 1

]
,

x∗σ (θ) − σ > θ′′σ(δ, γ) implying that the the posterior beliefs of the marginal investor with

signal x∗σ (θ) under the policy Γδ,γ coincide with those under the policy Γθ∗σ .

2Consistently with the notation above, V
Γδ,γ
σ (θ) is the expected payoff of the marginal investor with

signal x∗σ(θ) when the policy Γδ,γ announces that s = 1 and the quality of the agents’ exogenous signals is

parametrized by σ. For any θ < θ′σ(δ, γ)/(1 + 2σ), x∗σ(θ) + σ < θ
′
, which implies that the signal x∗σ(θ) is not

consistent with the event that fundamentals are above θ′σ(δ, γ). Equivalently, because the lowest signal that is
consistent with θ ∈ [θ′σ(δ, γ), θ

′′
σ(δ, γ)]∪[θ∗σ,∞) is θ′σ(δ, γ)−σ, the lowest default threshold is θ′σ(δ, γ)/(1+2σ).

3Observe that σ ∈ (0, σ#) implies that θMS − 2σ/ (1 + 2σ) > 0. In turn, δ ∈
(
0, θMS − 2σ/ (1 + 2σ)

)
implies that 0 < θ′′σ(δ, γ) < θ∗σ and that R0

(
δ, θMS , σ

)
> 0. Finally, that 0 < γ ≤ R0

(
δ, θMS , σ

)
implies that

0 ≤ θ′σ(δ, γ) < θ′′σ(δ, γ).
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Let θ♯σ(δ, γ) be such that x∗σ
(
θ♯σ(δ, γ)

)
− σ = θ

′
σ(δ, γ). Dropping the arguments of θ♯σ(δ, γ),

θ
′
σ(δ, γ) and θ

′′
σ(δ, γ) to ease the notation, we have that

θ′ = θ′′ − γ = x∗σ
(
θMS − δ

)
− σ − γ = (1 + 2σ)

(
θMS − δ

)
− 2σ − γ.

From the definition of θ̂ we have that x∗σ(θ̂) − σ = (1 + 2σ) θ♯ − 2σ = θ′. Combining the

above two results we obtain that θ♯ = θMS − δ − γ/ (1 + 2σ). Fixing σ ∈ (0, σ#), note that,

for δ, γ > 0 small, θ♯ ≥ θ∗σ. Specifically, for any σ ∈ (0, σ#) and any 0 < δ < 2σ
(
1− θMS

)
,

θ♯ ≥ θ∗σ if and only if

γ ≤ (1 + 2σ)
(
2σ

(
1− θMS

)
− δ

)
≡ R1

(
δ, θMS , σ

)
.

Next, observe that, for any θ ∈
[
θ♯, θMS − δ

)
,

V
Γδ,γ
σ (θ) = g − (g + |b|)Pσ[θ̃ ≤ θ|θ̃ ∈ [x∗σ (θ)− σ, θ′′] ∪ [θ∗σ,∞);x∗σ (θ)]

= g − (g + |b|)
(
θ′′ − θ∗σ + 2σ (1− θ)

)
/
(
θ′′ − θ∗σ + 2σ

)
,

which is strictly increasing in θ. Similarly, for any θ ∈
[
θ∗σ, θ

♯
)
,

V
Γδ,γ
σ (θ) = g − (g + |b|)Pσ[θ̃ ≤ θ|θ̃ ∈ [θ′, θ′′] ∪ [θ∗σ,∞);x∗σ (θ)]

= g − (g + |b|) θ − θ∗σ + γ

x∗σ (θ) + σ − θ∗σ + γ
= g − (g + |b|) θ − θ∗σ + γ

(1 + 2σ) θ − θ∗σ + γ
,

which is strictly deceasing for any γ ≤ θ∗σ. Note that θ′ ≥ 0 requires that γ ≤ θ∗σ. Next, note

that, for θ ∈ [θ′′, θ∗σ),

V
Γδ,γ
σ (θ) = g − (g + |b|)Pσ[θ̃ ≤ θ|θ̃ ∈ [θ′, θ′′] ∪ [θ∗σ,∞);x∗σ (θ)]

= g − (g + |b|) γ

x∗σ (θ) + σ − θ∗σ + γ
= g − (g + |b|) γ

(1 + 2σ) θ − θ∗σ + γ
,

and, therefore, V
Γδ,γ
σ (·) is increasing over the range [θ′′, θ∗σ). Finally, for θ ∈ [θ′, θ′′), we have

that

V
Γδ,γ
σ (θ) = g − (g + |b|)Pσ[θ̃ ≤ θ|θ̃ ∈ [θ′, θ′′] ∪ [θ∗σ,∞);x∗σ (θ)]

= g − (g + |b|) θ − θ′

x∗σ (θ) + σ − θ∗σ + γ
= g − (g + |b|) θ − θ′

(1 + 2σ) θ − θ∗σ + γ
.

Hence V
Γδ,γ
σ (·) is decreasing over [θ′, θ′′) if (1 + 2σ) θ′ = x∗σ (θ

′) + σ > θ∗σ. Using the fact that

θ′ = θ′′ − γ, together with the fact that θ′′ = x∗σ
(
θMS − δ

)
− σ and θ∗σ = (1 + 2σ) θMS − 2σ,
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we have that (1 + 2σ) θ′ > θ∗σ if

γ < 2σ
[
(1 + 2σ) θMS − 2σ

]
/ (1 + 2σ)− (1 + 2σ) δ ≡ R2

(
δ, θMS, σ

)
.

Lastly, observe that, for any θ ∈ [θ
′
/(1 + 2σ), θ′], V

Γδ,γ
σ (θ) = g.

We thus have that the function V
Γδ,γ
σ is such that (1) V

Γδ,γ
σ (θ) ≥ 0 for all θ ≥ θ

′
/(1 + 2σ),

and (2) V
Γδ,γ
σ (θ) = 0 only if θ = θMS, if and only if the following conditions hold: (a)

V
Γδ,γ
σ

(
θ♯
)
> 0, and (b) V

Γδ,γ
σ (θ′′) > 0. Requiring that V

Γδ,γ
σ

(
θ♯
)
> 0 is equivalent to

g − (g + |b|)
(
θ♯ − θ∗σ + γ

)
/
(
x∗σ

(
θ♯
)
+ σ − θ∗σ + γ

)
> 0

⇔ θMS (θ∗σ − γ)−
(
(1 + 2σ) θMS − 2σ

)
θ♯ > 0.

Recall that θ∗σ = (1 + 2σ) θMS − 2σ. Using the fact that θ♯ = θMS − δ − γ
1+2σ

, we conclude

that a sufficient condition for V
Γδ,γ
σ

(
θ♯
)
> 0 is that

(
θMS − δ − γ/ (1 + 2σ)

)
θ∗σ < θMS (θ∗σ − γ)

⇔ γ < δ (1 + 2σ)
(
(1 + 2σ) θMS − 2σ

)
/ (2σ) ≡ R3

(
δ, θMS , σ

)
.

Next, observe that V
Γδ,γ
σ (θ′′) > 0 is equivalent to

γ <
(
1− θMS

) (
(1 + 2σ) θ′′ − θ∗σ + γ

)
⇔ γ <

(
1− θMS

θMS

)(
(1 + 2σ)

[
(1 + 2σ)

(
θMS − δ

)
− 2σ

]
− (1 + 2σ) θMS + 2σ

)
≡ R4

(
δ, θMS , σ

)
.

We conclude that, for any σ ∈ (0, σ#), (i) 0 ≤ θ′σ(δ, γ) < θ′′σ(δ, γ) < θ∗σ, and (ii) V
Γδ,γ
σ (θ) ≥

0 for all θ > θ′σ(δ, γ)/(1 + 2σ), with V
Γδ,γ
σ (θ) = 0 only for θ = θMS, if

0 < δ < min

{
θMS − 2σ

1 + 2σ
, 2σ

(
1− θMS

)
,
2σ

[
(1 + 2σ) θMS − 2σ

]
(1 + 2σ)

2 ,
2σ

1 + 2σ

[
θMS − 2σ

1 + 2σ

]}
≡ ς

(
θMS , σ

)
and 0 < γ < min0≤i≤4Ri

(
δ, θMS, σ

)
. Note that σ < σ# implies that ς

(
θMS, σ

)
> 0, whereas

δ < ς
(
θMS, σ

)
implies that min0≤i≤4Ri

(
δ, θMS, σ

)
> 0. Finally note that, for any σ ∈ (0, σ#),

and any θ ≥ θ′σ(δ, γ), the payoff V
Γδ,γ
σ (θ) is continuous in the threshold θ∗σ. Hence there exists

a policy Γ whose rule π is given by π (1|θ) ≡ 1 {θ ∈ [θ′σ(δ, γ), θ
′′
σ(δ, γ)] ∪ [θ∗σ + ε,∞)} with

ε > 0 arbitrarily small, such that Γ strictly improves over Γθ∗σ and is such that V Γ
σ (θ) > 0 for

all θ > θ′σ(δ, γ)/(1 + 2σ), implying that Γ satisfies PCP. Q.E.D.
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S2. Proof of Example 3 in Main Text

Preliminaries. For any θ ∈ (0, 1), any σ ∈ R+, let x
∗
σ(θ) be the critical signal threshold

such that, when all agents invest for x > x∗σ(θ) and refrain from investing for x < x∗σ(θ),

default occurs if and only if the fundamentals are below θ. Note that, in this example

x∗σ(θ) ≡ θ + σΦ−1(θ), where Φ is the cdf of the standard Normal distribution and ϕ its

density. Also let x∗σ(0) ≡ −∞ and x∗σ(1) ≡ +∞. For any (θ0, θ̂, σ) ∈ (0, 1) × R× R+,

let ψ(θ0, θ̂, σ) denote the payoff from investing of an investor with private signal x∗σ(θ0),

when default occurs if and only if θ ≤ θ0, the policy reveals that θ ≥ θ̂, and the preci-

sion of private information is σ−2. Then let σ̂ ≡ inf {σ ∈ R+ : ψ (θ0,0,σ) > 0 all θ0 ∈ (0, 1)}

if {σ ∈ R+ : ψ (θ0,0,σ) > 0 all θ0 ∈ (0, 1)} ≠ ∅ and else σ̂ = +∞.4 Then let Ψ (σ) ≡

infθ0∈(0,1) ψ (θ0,0,σ) and note that limσ→0+ Ψ(σ) < 0, implying that σ̂ > 0. For any σ ∈ R+

for which ψ (θ0,0,σ) > 0 for all θ0 ∈ (0, 1), the policy maker can avoid default for every θ > 0

by using the monotone rule π (θ) = 1 {θ > 0}. This case is uninteresting. Hereafter, we thus

confine attention to the case in which σ < σ̂.

Let UΓ
σ (x, 1|x) denote the payoff from investing of an agent with signal x who expects

all other agents to invest if and only if their signal exceeds x , when the precision of private

information is σ−2, and the policy Γ announces that s = 1. Also let

UΓ
σ (x∗σ (0) , 1|x∗σ (0)) ≡ lim

x→−∞
UΓ
σ (x, 1|x)

and

UΓ
σ (x∗σ (1) , 1|x∗σ (1)) ≡ lim

x→+∞
UΓ
σ (x, 1|x) .

Now let Gσ denote the set of deterministic binary policies Γ = ({0, 1}, π) such that,

π(θ) = 0 for all θ ≤ 0, π(θ) = 1 for all θ > 1 and UΓ
σ (x, 1|x) ≥ 0 for all x ∈ R.5 From

the proofs of Theorems 1 and 2, observe that, given any σ, any deterministic binary policy Γ

satisfying PCP and such that π(θ) = 0 for all θ ≤ 0 and π(θ) = 1 for all θ > 1 belongs in Gσ.

However, Gσ contains also policies that do not satisfy PCP.6

4Recall that, when the announcement that s = 1 reveals that θ ≥ 0, the unique rationalizable profile
features all agents investing, irrespective of x, if and only if ψ (θ0,0,σ) > 0 for all θ0 ∈ (0, 1).

5We let π(θ) = 1 (alternatively, π(θ) = 0) denote the degenerate lottery assigning measure 1 to s = 1
(alternatively, s = 0).

6These are those for which there exists x such that UΓ
σ (x, 1|x) = 0; when Γ announces s = 1, in addition to
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Proof Structure. The proof is in four steps. Step 1 establishes that, when σ is small,

under any policy Γ = ({0, 1}, π) ∈ Gσ, any interval (θ′, θ′′] ⊂
(
0, θMS

]
receiving a pass grade

(i.e., such that π(θ) = 1 for all θ ∈ (θ′, θ′′]) has a sufficiently small Lebesgue measure, with

the measure vanishing as σ → 0+.

Step 2 then considers an auxiliary game Gσ in which the agents play less aggressively than

under MARP. Namely, Gσ is the game in which (i) the policy maker’s choice set is Gσ and (ii)

given any policy Γ ∈ Gσ, all agents invest after receiving the signal s = 1 and refrain from

investing after receiving the signal s = 0.7 We show that, when σ is small, given any policy

Γ ∈ Gσ that gives a fail grade to an interval (θ′, θ′′] ⊆ (θ, θMS] of large Lebesgue measure,

there exists another policy Γ# ∈ Gσ that gives a pass grade to a F -positive measure subset of

(θ′, θ′′], has a mesh smaller than Γ, and is such that, when agents play as in Gσ, the probability

of default under Γ# is strictly smaller than under Γ.

Step 3 then combines the results from Steps 1 and 2 to show that, when σ is small, given

any policy Γ ∈ Gσ for which the mesh M (Γ) of (0, θMS] is larger than ε, there exists another

policy Γ′ ∈ Gσ with a mesh M(Γ′) smaller than ε such that, when agents play as in Gσ, the

probability of default is strictly smaller under Γ′ than under Γ. Starting from Γ′ ∈ Gσ one

can then construct a “nearby” policy Γ∗∈ Gσ such that the probability of default under Γ∗ is

arbitrarily close to that under Γ′ (and hence strictly smaller than under the original policy Γ)

and such that UΓ∗
σ (x, 1|x) > 0 for all x. The last property implies that Γ∗ satisfies PCP also

when agents play according to MARP. The policy Γ∗ thus strictly improves upon Γ also in

the original game, as claimed in the main text.

Finally, step 4 closes the proof by showing how to construct the function E relating the

noise σ in the agents’ exogenous private information to the bound E(σ) on the mesh of the

policies.

Step 1. We start with the following result:

Lemma S2-A. For any ε ∈ R++, there exists σ(ε) ∈ R++ such that, for any σ ∈ (0, σ(ε)],

the following is true: for any policy Γ = ({0, 1}, π) ∈ Gσ and any cell (θ′, θ′′] ∈ DΓ with

|θ′′ − θ′| > ε, necessarily π(θ) = 0.

the rationalizable profile under which all agents invest, there also exists a rationalizable profile under which
each agent invests if and only if his signal exceeds x.

7The agent’s behavior is consistent with MARP only for those Γ ∈ Gσ for which, for all x, UΓ
σ (x, 1|x) > 0.
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Proof of Lemma S2-A. We first show (Property S2-A below) that, for any σ > 0,

if the policy maker were to replace Γ with the cutoff policy Γθ
′
, then for any θ ≤ θ′′,

UΓθ
′

σ (x∗σ(θ), 1|x∗σ(θ)) ≥ UΓ
σ (x

∗
σ(θ), 1|x∗σ(θ)).8 Next, we show (Property S2-B below) that, for

any θ > θ′, as σ goes to zero, UΓθ
′

σ (x∗σ(θ), 1|x∗σ(θ)) converges uniformly to
∫ 1

0
u(θ, A)dA. Be-

cause
∫ 1

0
u(θ, A)dA < 0 for θ < θMS, the above two properties imply that, for σ small,

UΓ
σ (x

∗
σ(θ), 1|x∗σ(θ) < 0 for some θ ∈ (θ′, θ′′], and hence that Γ /∈ Gσ. The result in the lemma

then follows by contrapositive.

Property S2-A. For any policy Γ = ({0, 1}, π) ∈ Gσ and any cell (θ′, θ′′] ∈ DΓ such that

π(θ) = 1 for all θ ∈ (θ′, θ′′], UΓ
σ (x

∗
σ(θ), 1|x∗σ(θ)) ≤ UΓθ

′

σ (x∗σ(θ), 1|x∗σ(θ)) for all θ ≤ θ′′.

Proof of Property S2-A. The proof follows from Results S2-A-1 and S2-A-2 below.

Result S2-A-1. Pick any policy Γ = ({0, 1} , π) ∈ Gσ. Given the partition DΓ ≡{
di =

(
θi, θ̄i

]
: i = 1, ..., N

}
of (0, θMS] induced by Γ, take any cell di =

(
θi, θ̄i

]
for which

π (θ) = 1 for all θ ∈ di. Let Γi
L = {{0, 1} , πi

L} ∈ Gσ be the policy constructed as follows:

(a) πi
L (θ) = 0 for all θ ≤ θi; and (b) πi

L (θ) = π (θ) for all θ > θi. Then, for all θ ∈ [0, 1],

U
Γi
L

σ (x∗σ(θ), 1|x∗σ(θ)) ≥ UΓ
σ (x∗σ(θ), 1|x∗σ(θ)).

Proof of Result S2-A-1. Note that, under the new policy, πi
L (θ) = π (θ) × 1 {θ > θi}.

The posterior beliefs Λ
Γi
L

σ (·|x, 1) about θ of an agent with exogenous signal x and endogenous

signal s = 1 under the new policy Γi
L thus dominate, in the FOSD sense, the analogous beliefs

ΛΓ
σ (·|x, 1) under the original policy Γ.9 The result then follows from the fact that, given any

default threshold θ, the payoff differential from investing when the fundamentals are equal to

θ̃ and default occurs if and only if θ̃ ≤ θ is nondecreasing in θ̃. End of Proof of Result S2-A-1.

Result S2-A-2. Pick any policy Γ = {{0, 1} , π} ∈ Gσ. Given the partition DΓ ≡{
di =

(
θi, θ̄i

]
: i = 1, ..., N

}
of (0, θMS] induced by Γ, take any cell di =

(
θi, θ̄i

]
, i ≥ 2, for

which π (θ) = 1 for all θ ∈ di. Let Γi
R = {{0, 1} , πi

R} ∈ Gσ be the policy constructed from Γ

as follows: (a) πi
R (θ) = π (θ) for all θ ≤ θi; and (b) πi

R (θ) = 1 for all θ > θi. Then, for all

θ ≤ θ̄i, U
Γi
R

σ (x∗σ(θ), 1|x∗σ(θ)) ≥ UΓ
σ (x

∗
σ(θ), 1|x∗σ(θ)).

Proof of Result S2-A-2. Let Θ1 ≡ {θ ∈ Θ : π (θ) = 1} and Θ0
i ≡ {θ ∈ (θi, 1] : π (θ) = 0}.

8For any θ̂ ∈ [0, 1], Γθ̂ = ({0, 1}, πθ̂) is the deterministic monotone policy with cut-off θ̂.
9No matter the shape of the beliefs ΛΓ

σ (·|x, 1), the announcement that θ > θi is always “good news” in the

sense of Milgrom (1981) and hence Λ
Γi
L

σ (·|x, 1) ≻FOSD ΛΓ
σ (·|x, 1).
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For any θ# ≤ θ̄i, and any x,

Λ
Γi
R

σ

(
θ#|x, 1

)
= P[θ ≤ θ#|x, θ ∈ (Θ1 ∪Θ0

i )] =
P[θ ≤ θ# ∧ θ ∈ (Θ1 ∪Θ0

i )|x]
P[θ ∈ (Θ1 ∪Θ0

i )|x]

=
P[θ ≤ θ# ∧ θ ∈ Θ1|x]
P[θ ∈ (Θ1 ∪Θ0

i )|x]
+

P[θ ≤ θ# ∧ θ ∈ Θ0
i |x]

P[θ ∈ (Θ1 ∪Θ0
i )|x]

=
P[θ ≤ θ# ∧ θ ∈ Θ1|x]
P[θ ∈ (Θ1 ∪Θ0

i )|x]
≤ P[θ ≤ θ#|x, θ ∈ Θ1] = ΛΓ

σ(θ
#|x, 1).

The first equality follows from the fact that, under the new policy Γi
R, the signal s = 1 carries

the same information as the announcement that θ ∈ (Θ1 ∪Θ0
i ). The third equality follows

from the fact that Θ1 ∩ Θ0
i = ∅. The fourth equality follows from the fact that Θ0

i contains

only fundamentals above θ̄i and that θ# ≤ θ̄i. The inequality follows from the fact that

P [θ ∈ (Θ1 ∪Θ0
i ) |x] ≥ P [θ ∈ Θ1|x] along with the definition of conditional probability. The

last equality follows from the fact that, under the original policy Γ, the signal s = 1 carries

the same information as the announcement that θ ∈ Θ1. Given the above inequality, and the

fact that b < 0 < g, we then have that, for any θ ≤ θ̄i,

UΓ
σ (x

∗
σ(θ), 1|x∗σ(θ)) = b · ΛΓ

σ (θ|x∗σ(θ), 1) + g ·
(
1− ΛΓ

σ (θ|x∗σ(θ), 1)
)

≤ b · ΛΓi
R

σ (θ|x∗σ(θ), 1) + g ·
(
1− Λ

Γi
R

σ (θ|x∗σ(θ), 1)
)
= U

Γi
R

σ (x∗σ(θ), 1|x∗σ(θ)).

End of Proof of Result S2-A-2.

Property S2-A follows from Results S2-A-1 and S2-A-2, by taking the cell di = (θ′, θ′′]. □

Now, fix ε ∈ (0, θMS). For any θ∗ ∈ [0, θMS − ε], let Γθ∗ be the monotone rule with cut-off

θ∗. For any θ∗ ∈ [0, θMS − ε], any σ ∈ R++, let

Hσ(θ
∗; ε) ≡ infθ∈[θ∗,θ∗+ε]U

Γθ∗

σ (x∗σ(θ), 1|x∗σ(θ)).

Note that UΓθ∗

σ (x∗σ(θ), 1|x∗σ(θ)) is continuous in (θ∗, θ, σ) over [0, 1]2 × (0, σ̂]. From Berge’s

Maximum Theorem, Hσ(θ
∗; ε) is thus continuous in (θ∗, σ) over [0, θMS − ε]× (0, σ̂].

For all θ∗ ∈ [0, θMS − ε], all θ ∈ (θ∗, θ∗ + ε], limσ→0+ U
Γθ∗

σ (x∗σ(θ), 1|x∗σ(θ)) =
∫ 1

0
u(θ, A)dA.

Because
∫ 1

0
u(θ, A)dA is strictly increasing in θ and equal to zero at θ = θMS, for any

θ∗ ∈ [0, θMS − ε], H0+(θ
∗; ε) ≡ limσ→0+ Hσ(θ

∗; ε) = limσ→0+ limθ→θ∗+ U
Γθ∗

σ (x∗σ(θ), 1|x∗σ(θ)) =∫ 1
0 u(θ

∗, A)dA. We show next that Hσ(·; ε) converges uniformly to the limit function H0+(·; ε)

over [0, θMS − ε].

Property S2-B. Fix ε ∈ (0, θMS). For any ϵ < ε, there exists σ′(ϵ) > 0 such that, for
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any σ ≤ σ′(ϵ), and any θ∗ ∈ [0, θMS − ε], |Hσ (θ
∗; ε)−H0+ (θ∗; ε)| < ϵ.

Proof of Property S2-B. The limit function H0+(·; ε) is uniformly continuous over

[0, θMS − ε]. As a consequence, there exists δ > 0 such that for any θ, θ̃ ∈ [0, θMS − ε], with

|θ̃ − θ| ≤ δ, necessarily |H0+(θ̃; ε) −H0+ (θ; ε) | < ϵ/2. Next, let Dδ ≡ {(θi, θ̄i] : i = 1, ..., N},

N ∈ N, be any interval partition of (0, θMS−ε] with the property that every cell (θi, θ̄i] ∈ Dδ is

such that |θ̄i−θi| ≤ δ. For any i = 1, ..., N , any σ > 0, let θ̂iσ ≡ sup{argmaxθ∈[θi,θ̄i]
Hσ (θ; ε)}.

ThatHσ (θ; ε) is continuous in (σ, θ) implies that the hypothesis of Berge’s Maximum Theorem

hold and, hence, the correspondence argmaxθ∈[θi,θ̄i]
Hσ (θ; ε) is compact-valued and upper

semi-continuous in σ. As a result, for any σ > 0, θ̂iσ = max{argmaxθ∈[θi,θ̄i]
Hσ (θ; ε)}.

Moreover, limσ→0+ Hσ(θ̂
i
σ; ε) = H0+(θ̂

i
0+ ; ε), where θ̂

i
0+ ≡ limσ→0+ θ̂

i
σ.

For any θ∗ ∈ [0, θMS − ε], let
(
θj, θ̄j

]
∈ Dδ be the partition cell containing θ∗. Then,

Hσ (θ
∗; ε)−H0+ (θ∗; ε) ≤ Hσ(θ̂

j
σ; ε)−H0+ (θ∗; ε)

= Hσ(θ̂
j
σ; ε)−H0+(θ̂

j
0+ ; ε) +H0+(θ̂

j
0+ ; ε)−H0+ (θ∗; ε) < Hσ(θ̂

j
σ; ε)−H0+(θ̂

j
0+ ; ε) + ϵ/2 < ϵ

for all σ < σ̄j(ϵ), for some σ̄j(ϵ) > 0. The first inequality is by definition of θ̂iσ. The second

inequality follows from the fact that |θ̂j0+ − θ∗| < δ. The last inequality follows from the fact

that limσ→0+ Hσ(θ̂
j
σ) = H0+(θ̂

j
0+). Similar arguments imply that Hσ (θ

∗; ε)−H0+ (θ∗; ε) > −ϵ

for all σ < σj(ϵ), for some σj(ϵ) > 0.

Now let σ′(ϵ) ≡ min{min
i∈N

{σ̄i(ϵ)} ,min
i∈N

{σi(ϵ)}}. For any σ ≤ σ′(ϵ), and any θ∗ ∈ [0, θMS−ε],

we thus have that |Hσ (θ
∗; ε)−H0+ (θ∗; ε)| < ϵ, thus proving that Hσ (·; ε) converges uniformly

to H0+ (·; ε) as σ → 0+. This completes the proof of Property S2-B. □

Next, given ε ∈ (0, θMS), pick an arbitrary η ∈ (
∫ 1

0
u(θMS−ε, A)dA, 0). BecauseH0+(θ

∗; ε) ≤

η for all θ∗ ∈ [0, θMS − ε], and because Hσ (·; ε) converges uniformly to H0+ (·; ε), there exists

σ(ε) > 0 such that, for any σ < (ε), and any θ∗ ∈ [0, θMS − ε], Hσ(θ
∗; ε) ≤ η < 0. Therefore,

for any σ < σ(ε), and any deterministic monotone policy Γθ∗ with cut-off θ∗ ∈ [0, θMS − ε],

there exists θ ∈ [θ∗, θ∗ + ε] such that UΓθ∗

σ (x∗σ(θ), 1|x∗σ(θ)) ≤ η.

Together, Properties S2-A and S2-B then imply that, for any σ < σ(ε), and any policy

Γ such that π(θ) = 1 for all θ ∈ (θ′, θ′′] for some (θ′, θ′′] ∈ DΓ with |θ′′ − θ′| > ε, necessarily

UΓ
σ (x∗σ (θ) , 1|x∗σ (θ)) < 0 for some θ ∈ (θ′, θ′′]. Hence Γ /∈ Gσ. The claim in Lemma S2-A then

follows by contrapositive. This completes the proof of Lemma S2-A. ■
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Step 2. Next, we show that, for any policy Γ = ({0, 1}, π) ∈ Gσ that gives a fail grade to

an interval (θ′, θ′′] ⊆ (0, θMS] of large Lebesgue measure, there exists another policy Γ# ∈ Gσ

with a mesh M(Γ#) < M(Γ) such that, when agents play as in Gσ, the probability of default

under Γ# is strictly smaller than under Γ. The result follows from Lemmas S2-B, S2-C and

S2-D below.

Lemma S2-B. For any Γ = ({0, 1}, π) ∈ Gσ such that infθ∈[0,1] U
Γ
σ (x∗σ (θ) , 1|x∗σ (θ)) > 0,

there exists another policy Γ̂ = ({0, 1}, π̂) ∈ Gσ, with M(Γ̂) ≤ M(Γ), such that, in the

auxiliary game Gσ, the probability of default under Γ̂ is strictly smaller than under Γ.

Proof of Lemma S2-B. That infθ∈[0,1] U
Γ
σ (x∗σ (θ) , 1|x∗σ (θ)) > 0 implies that, starting

from Γ = ({0, 1}, π), one can construct another policy Γ̂ = ({0, 1}, π̂) sufficiently close to Γ

(in the L1 norm) and such that π̂(θ) ≥ π(θ) for all θ, with the inequality strict over some

positive F -measure set (θ̃′, θ̃′′) ⊆ (0, 1], and such that (a) π̂(θ) = 0 for all θ ≤ 0, (b) π̂(θ) = 1

for all θ > 1, (c) U Γ̂
σ (x, 1|x) ≥ 0 all x, and (d) M(Γ̂) ≤ M(Γ). By definition of Gσ, Γ̂ ∈ Gσ.

That, in the auxiliary game Gσ, the probability of default under Γ̂ is strictly smaller than

under Γ, then follows from the fact that all agents invest when they receive the signal s = 1.

This completes the proof of Lemma S2-B. ■

For any σ > 0, and any policy Γ = ({0, 1}, π) ∈ Gσ, U
Γ
σ (x∗σ (·) , 1|x∗σ (·)) is continuous over

[0, 1]. Hence infθ∈[0,1] U
Γ
σ (x∗σ (θ) , 1|x∗σ (θ)) = minθ∈[0,1] U

Γ
σ (x∗σ (θ) , 1|x∗σ (θ)).

Lemma S2-C. Let Γ = ({0, 1}, π) ∈ Gσ be such that minθ∈[0,1] U
Γ
σ (x∗σ (θ) , 1|x∗σ (θ)) = 0.

For any θ♯σ ∈ argminθ∈[0,1] U
Γ
σ (x∗σ (θ) , 1|x∗σ (θ)), there exists γΓσ > 0 such that π (θ) = 1 for

F−almost all θ ∈
(
θ♯σ − γΓσ , θ

♯
σ

)
.

Proof of Lemma S2-C. The proof is by contraposition. Suppose there exists δ > 0 such

that π (θ) = 0 for F -almost all θ ∈
(
θ♯σ − δ, θ♯σ

)
. Observe that the sign of

UΓ
σ

(
x∗σ

(
θ♯σ − δ

)
, 1|x∗σ

(
θ♯σ − δ

))
is the same as the sign of

b

∫ θ♯σ−δ

−∞
ϕ
((
x∗σ

(
θ♯σ − δ

)
− θ

)
/σ

)
π (θ) dF (θ) + g

∫ +∞

θ♯σ−δ

ϕ
((
x∗σ

(
θ♯σ − δ

)
− θ

)
/σ

)
π (θ) dF (θ).
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Next observe that

0 = UΓ
σ

(
x∗σ

(
θ♯σ

)
, 1|x∗σ

(
θ♯σ

))∫ +∞

−∞
ϕ
((
x∗σ

(
θ♯σ

)
− θ

)
/σ

)
π (θ) dF (θ)

=

∫ ∞

−∞

(
b1

{
θ ≤ θ♯σ

}
+ g1

{
θ > θ♯σ

})
ϕ
((
x∗σ

(
θ♯σ

)
− θ

)
/σ

)
π (θ) dF (θ)

>

∫ ∞

−∞

(
b1

{
θ ≤ θ♯σ

}
+ g1

{
θ > θ♯σ

})
ϕ
((
x∗σ

(
θ♯σ − δ

)
− θ

)
/σ

)
π (θ) dF (θ)

=

∫ ∞

−∞

(
b1

{
θ ≤ θ♯σ − δ

}
+ g1

{
θ > θ♯σ − δ

})
ϕ
((
x∗σ

(
θ♯σ − δ

)
− θ

)
/σ

)
π (θ) dF (θ)

= UΓ
σ

(
x∗σ

(
θ♯σ − δ

)
, 1|x∗σ

(
θ♯σ − δ

))∫ +∞

−∞
ϕ
((
x∗σ

(
θ♯σ − δ

)
− θ

)
/σ

)
π (θ) dF (θ)

The first equality follows from the assumptions of the lemma. The second equality follows

from the definition of the function UΓ
σ

(
x∗σ

(
θ♯σ
)
, 1|x∗σ

(
θ♯σ
))
. The inequality follows from the

monotonicity of x∗σ (·), the fact that ϕ ((x− θ)/σ) is log-supermodular in (x, θ), and Property

SCB in the proof of Theorem 2 in the main text. The third equality follows from the fact

that π (θ) = 0 for F -almost all θ ∈
(
θ♯σ − δ, θ♯σ

)
. The last equality follows from the definition

of the function UΓ
σ (x

∗
σ(θ

♯
σ − δ), 1|x∗σ(θ♯σ − δ)). Hence, UΓ

σ (x
∗
σ(θ

♯
σ − δ), 1|x∗σ(θ♯σ − δ)) < 0, thus

contradicting the assumption that Γ ∈ Gσ. This completes the proof of Lemma S2-C. ■

Lemma S2-D. For any ε > 0, there exists σ#(ε) ∈ (0, σ̂) such that, for any σ ∈ (0, σ#(ε)],

and any policy Γ = ({0, 1}, π) ∈ Gσ for which there exists (θ′, θ′′] ∈ DΓ such that (a) |θ′′−θ′| >

ε and (b) π(θ) = 0 for all θ ∈ (θ′, θ′′], there exists another policy Γ# =
(
{0, 1}, π#

)
∈ Gσ,

with M(Γ#) ≤M(Γ), such that, in the auxiliary game Gσ, the probability of default under Γ#

is strictly smaller than under Γ.

Proof of Lemma S2-D. For any θ ∈ (0, 1), lim
σ→0+

x∗σ (θ) ≡ x∗0+ (θ) = θ. Furthermore, for

any ε ∈ (0,min{θMS, 1 − θMS}), the function x∗0+ :
[
ε
4
, 1− ε

4

]
→ R is uniformly continuous.

Hence, for any δ < ε/4, there exists σ̃ (δ) > 0 such that, for any σ ∈ (0, σ̃(δ)], and any

θ ∈
[
ε
4
, 1− ε

4

]
, we have that |x∗σ (θ) − θ| ≤ δ.10 In turn, this implies that, for any ε > 0

small, there exists σ#(ε) ∈ (0, σ̂] such that, for any σ ∈ (0, σ#(ε)], and any (θ′, θ′′] ∈ DΓ such

that |θ′′ − θ′| > ε, we have that, for any θ ∈ [θ′′, 1 − ε
4
], |θ − x∗σ (θ)| < |(θ′ + θ′′)/2− x∗σ (θ)| .

Likewise, for any θ ∈ [ε/4, θ′], and any θ̂ ≥ θ′′, we have that |θ − x∗σ (θ)| < |x∗σ (θ) − θ̂| when
10The proof for the existence of a sequence

{
x∗σn

(·)
}
n
with domain

[
ε
4 , 1−

ε
4

]
converging uniformly to its

limit function x∗0+(·) follows from the same arguments that establish the uniform convergence of {Hσn
(·)}n to

H0+(·) in Step 1.
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σ ∈ (0, σ#(ε)].

Next, pick any policy Γ = ({0, 1}, π) ∈ Gσ for which there exists d ≡ (θ′, θ′′] ∈ DΓ such that

(a) |θ′′ − θ′| > ε and (b) π(θ) = 0 for all θ ∈ (θ′, θ′′]. If minθ∈[0,1] U
Γ
σ (x∗σ (θ) , 1|x∗σ (θ)) > 0, the

result follows directly from Lemma S2-B. Thus assume that minθ∈[0,1] U
Γ
σ (x∗σ (θ) , 1|x∗σ (θ)) = 0.

Suppose that minθ∈[θ′′,1] U
Γ
σ (x∗σ (θ) , 0|x∗σ (θ)) > 0. By Lemma S2-C, UΓ

σ (x∗σ (θ) , 1|x∗σ (θ)) >

0 for all θ ∈ (θ′, θ′′]. Hence, minθ∈[θ′,1] U
Γ
σ (x∗σ (θ) , 1|x∗σ (θ)) > 0.

Below we show that, starting from Γ, we can then construct a policy Γη ∈ Gσ, with

M(Γη) ≤ M(Γ) such that, when agents play as in Gσ, the probability of default under Γη is

strictly smaller than under Γ. Γη is obtained from Γ by giving a pass grade to a positive-

measure interval of types in the middle of (θ′, θ′′]. Formally, take η ∈ (0, (θ′′ − θ′)/2) and

let Γη = ({0, 1}, πη) be the policy whose rule πη is given by (a) πη(θ) = π(θ) for all θ /∈

[(θ′+θ′′)/2, (θ′+θ′′)/2+η], and (b) πη (θ) = 1 for all θ ∈ [(θ′+θ′′)/2, (θ′+θ′′)/2+η]. Below we

show that UΓη
(x∗σ (θ) , 1|x∗σ (θ)) ≥ 0 for all θ ∈ [0, 1]. To see this, let Θ1 ≡ {θ ∈ Θ : π (θ) = 1}

be the collection of fundamentals receiving a pass grade under the original policy Γ. For any

θ ∈ [0, θ′], and any x,

ΛΓη

σ (θ|x, 1) = P[θ̃ ≤ θ|x, θ̃ ∈ (Θ1 ∪ [(θ′ + θ′′)/2, (θ′ + θ′′)/2 + η])]

= P[θ̃≤θ∧θ̃∈Θ1|x]
P[θ̃∈(Θ1∪[(θ′+θ′′)/2,(θ′+θ′′)/2+η])|x] ≤ P[θ̃ ≤ θ|x, θ̃ ∈ Θ1] = ΛΓ

σ(θ|x, 1).

The first equality follows from the fact that, under Γη, the signal s = 1 carries the same

information as the announcement that θ̃ ∈ (Θ1 ∪ [(θ′ + θ′′)/2, (θ′ + θ′′)/2 + η]). The inequality

follows from the fact that P
[
θ̃ ∈ (Θ1 ∪ [(θ′ + θ′′)/2, (θ′ + θ′′)/2 + η]) |x

]
> P

[
θ̃ ∈ Θ1|x

]
. The

last equality follows from fact that, under the original policy Γ, the signal s = 1 carries the

same information as the announcement that θ̃ ∈ Θ1.

Given the above inequality, and the fact that, b < 0 < g, we then have that, for any

θ ∈ [0, θ′],

UΓ
σ (x

∗
σ(θ), 1|x∗σ(θ)) = b · ΛΓ

σ (θ|x∗σ(θ), 1) + g ·
[
1− ΛΓ

σ (θ|x∗σ(θ), 1)
]

≤ b · ΛΓη

σ (θ|x∗σ(θ), 1) + g ·
[
1− ΛΓη

σ (θ|x∗σ(θ), 1)
]
= UΓη

σ (x∗σ(θ), 1|x∗σ(θ)).

Hence UΓη
(x∗σ (θ) , 1|x∗σ (θ)) ≥ 0, all θ ≤ θ′. That minθ∈[θ′,1] U

Γ
σ (x∗σ (θ) , 1|x∗σ (θ)) > 0, along

with the continuity of UΓη

σ (x∗σ (θ) , 1|x∗σ (θ)) in η implies that minθ∈[0,1] U
Γη

σ (x∗σ (θ) , 1|x∗σ (θ)) ≥

0 for η small. Hence Γη ∈ Gσ.

14



Next, consider the more interesting case in which minθ∈[θ′′,1] U
Γ
σ (x∗σ (θ) , 0|x∗σ (θ)) = 0.

Let θ#σ ≡ inf
{
θ ≥ θ′′ : UΓ

σ (x
∗
σ(θ), 1|x∗σ(θ)) = 0

}
. An implication of Lemma S2-C is that that

θ#σ > θ′′. Also let (θ′′′, θ′′′′] ⊂ [0, 1] be the first interval to the immediate right of (θ′, θ′′] such

that π(θ) = 1 for all θ ∈ (θ′′′, θ′′′′] and let θ̂ = min
{
θ′′′′, θ#σ

}
.11

Now, pick ξ > 0 small and let δ(ξ) be implicitly defined by

F ((θ′ + θ′′)/2 + ξ)− F ((θ′ + θ′′)/2) = F ((θ′′′ + θ̂)/2 + δ(ξ))− F ((θ′′′ + θ̂)/2). (S2)

Consider the policy Γξ = ({0, 1}, πξ) defined by (a) πξ(θ) = π(θ) for all θ /∈ [(θ′ + θ′′)/2, (θ′ +

θ′′)/2+ξ]∪ [(θ′′′+ θ̂)/2, (θ′′′+ θ̂)/2+δ(ξ)], (b) πξ(θ) = 1 for all θ ∈ [(θ′+θ′′)/2, (θ′+θ′′)/2+ξ],

and (c) πξ(θ) = 0 for all θ ∈ [(θ′′′ + θ̂)/2, (θ′′′ + θ̂)/2 + δ(ξ)]. Below we establish that, when

ξ > 0 is small, such a policy is such that minθ∈[0,1]U
Γξ
(x∗σ (θ) , 1|x∗σ (θ)) > 0 and hence Γξ ∈ Gσ.

To see this, for any arbitrary policy Γ̃ = {{0, 1} , π̃}, any θ ∈ [0, 1], let

V Γ̃
σ (θ) ≡ U Γ̃

σ (x∗σ (θ) , 1|x∗σ (θ)) pΓ̃σ (x∗σ (θ) , 1) ,

where, for any x, pΓ̃σ(x, 1) ≡
∫
Θ
π̃(θ)pσ(x|θ)dF (θ), with pσ(x|θ) ≡ 1

σ
ϕ((x− θ)/σ).

By definition of θ#σ , we must have that, for all θ, 0 = V Γ
σ

(
θ#σ

)
≤ V Γ

σ (θ) . Next, for any

ξ > 0, define φR (ξ) ≡ minθ∈[θ′′,1]V
Γξ

σ (θ). Let u(θ̃, θ) ≡ g1{θ̃ > θ}+ b1{θ̃ ≤ θ} and note that,

for any θ,

V Γξ

σ (θ) = V Γ
σ (θ) +

∫ (θ′+θ′′)/2+ξ

(θ′+θ′′)/2
u(θ̃, θ)pσ(x

∗
σ (θ) |θ̃)dF (θ̃)−

∫ (θ′′′+θ̂)/2+δ(ξ)

(θ′′′+θ̂)/2
u(θ̃, θ)pσ(x

∗
σ (θ) |θ̃)dF (θ̃).

Using the envelope theorem, we have that, for any θξσ ∈ argminθ∈[θ′′,1]V
Γξ

σ (θ),

φ′
R (ξ) = f

(
(θ′ + θ′′)/2 + ξ

)
u
(
(θ′ + θ′′)/2 + ξ, θξσ

)
pσ

(
x∗σ(θ

ξ
σ)|(θ′ + θ′′)/2 + ξ

)
−f

(
(θ′′′ + θ̂)/2 + δ(ξ)

)
u((θ′′′ + θ̂)/2 + δ(ξ), θξσ)pσ(x

∗
σ(θ

ξ
σ)|(θ′′′ + θ̂)/2 + δ(ξ))δ′(ξ)

= f
(
(θ′ + θ′′)/2 + ξ

)
[u((θ′ + θ′′)/2 + ξ, θξσ)pσ(x

∗
σ(θ

ξ
σ)|(θ′ + θ′′)/2 + ξ)

−u((θ′′′ + θ̂)/2 + δ(ξ), θξσ)pσ(x
∗
σ(θ

ξ
σ)|(θ′′′ + θ̂)/2 + δ(ξ))],

where the second equality uses the implicit function theorem applied to (S2) to obtain that

11The existence of such an interval follows from the fact that π(θ) = 1 in a left neighborhood of θ#σ by virtue
of Lemma S2-C. Also observe that, when θ′′ < θMS , such an interval is adjacent to (θ′, θ′′] and hence θ′′′ = θ′′.
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δ′(ξ) = f ((θ′ + θ′′)/2 + ξ) /f((θ′′′ + θ̂)/2 + δ(ξ)). As a consequence,

limξ→0+ φ′
R (ξ) = f

(
(θ′ + θ′′)/2

)
[u

(
(θ′ + θ′′)/2, θ#σ

)
pσ

(
x∗σ(θ

#
σ )|(θ′ + θ′′)/2

)
(S3)

− u((θ′′′ + θ̂)/2, θ#σ )pσ(x
∗
σ(θ

#
σ )|(θ′′′ + θ̂)/2)].

That σ < σ#(ε) implies that |x∗σ
(
θ#σ

)
− (θ′′′+ θ̂)/2| < |x∗σ

(
θ#σ

)
− (θ′+θ′′)/2|. That pσ(x|θ)

is single-peaked in turn implies that pσ(x
∗
σ(θ

#
σ )|(θ′+θ′′)/2) < pσ(x

∗
σ(θ

#
σ )|(θ′′′+ θ̂)/2) and hence

that

u
(
(θ′ + θ′′)/2, θ#σ

)
pσ

(
x∗σ

(
θ#σ

)
|(θ′ + θ′′)/2

)
− u

(
(θ′′′ + θ̂)/2, θ#σ

)
pσ

(
x∗σ

(
θ#σ

)
|(θ′′′ + θ̂)/2

)
= b ·

(
pσ

(
x∗σ

(
θ#σ

)
|(θ′ + θ′′)/2

)
− pσ

(
x∗σ

(
θ#σ

)
|(θ′′′ + θ̂)/2

))
> 0.

Thus, limξ→0+ φ′
R (ξ) > 0. By continuity of UΓξ

σ (x∗σ (θ) , 1|x∗σ (θ)) in ξ, we then have that,

for ξ > 0 small, minθ∈[θ′′,1] U
Γξ

σ (x∗σ (θ) , 1|x∗σ (θ)) > 0.

Next, we prove that, under the policy Γξ, minθ∈[0,θ′′] U
Γξ

σ (x∗σ (θ) , 1|x∗σ (θ)) > 0. For any

ξ > 0, define φL (ξ) ≡ minθ∈[0,θ′]V
Γξ

σ (θ) . Arguments similar to those used above to compute

limξ→0+ φ′
R (ξ) imply that, for any θ##

σ ∈ argminθ∈[0,θ′]V
Γ
σ (θ), when σ ≤ σ#(ε),

lim
ξ→0+

φ′
L (ξ) = f

(
(θ′ + θ′′)/2

)
[u((θ′ + θ′′)/2, θ##

σ )pσ(x
∗
σ(θ

##
σ )|(θ′ + θ′′)/2)

−u((θ′′′ + θ̂)/2, θ##
σ )pσ(x

∗
σ(θ

##
σ )|(θ′′′ + θ̂)/2)]

= f
(
(θ′ + θ′′)/2

)
g
[
pσ(x

∗
σ(θ

##
σ )|(θ′ + θ′′)/2)− pσ(x

∗
σ(θ

##
σ )|(θ′′′ + θ̂)/2))

]
> 0.

The first equality follows from steps analogous to those used to establish (S3). The second

equality follows from the fact that, by assumption θ##
σ ≤ θ′. The inequality is a consequence

of the fact that, for σ ≤ σ#(ε), |x∗σ
(
θ##
σ

)
− (θ′ + θ′′)/2| < |x∗σ

(
θ##
σ

)
− (θ′′′ + θ̂)/2)|, which,

together with the fact that the noise distribution is single-peaked, implies that

pσ(x
∗
σ(θ

##
σ )|(θ′ + θ′′)/2) > pσ(x

∗
σ(θ

##
σ )|(θ′′′ + θ̂)/2).

Hence, for ξ > 0 small, UΓξ

σ (x∗σ (θ) , 1|x∗σ (θ)) > 0 for all θ ∈ [0, θ′]. Furthermore, by

Lemma S2-C, UΓ
σ (x∗σ (θ) , 1|x∗σ (θ)) > 0 for all θ ∈ (θ′, θ′′]. Hence, provided that ξ is small,

the continuity of UΓξ

σ (x∗σ (θ) , 1|x∗σ (θ)) in ξ implies that UΓξ

σ (x∗σ (θ) , 1|x∗σ (θ)) > 0 also for

θ ∈ (θ′, θ′′]. Combining all the properties above, we thus conclude that, for ξ > 0 small,

minθ∈[0,1] U
Γξ

σ (x∗σ (θ) , 1|x∗σ (θ)) > 0. Hence Γξ ∈ Gσ.

By construction, M(Γξ) < M(Γ). Furthermore, when agents play according to Gσ, the
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probability of default under Γξ is the same as under Γ. Lemma S2-B then implies that,

starting from Γξ, one can construct a policy Γ# ∈ Gσ, close to Γξ in the L1 norm, such that

(1) M(Γ#) ≤ M(Γξ) and (2), when agents play according to Gσ, the probability of default

under Γ# is strictly smaller than under Γ. This completes the proof of Lemma S2-D. ■

Step 3. Steps 1 and 2 imply that there exists a function σ̄ :
(
0,min{θMS, 1− θMS}

)
→

R++ , with σ̄(ε) ≤ min{σ(ε), σ#(ε)} for all ε ∈
(
0,min{θMS, 1− θMS}

)
and with σ̄(ε) → 0+

as ε → 0+, such that the following is true: For any ε ∈
(
0,min{θMS, 1− θMS}

)
, any σ ∈

(0, σ̄(ε)], and any policy Γ = ({0, 1}, π) ∈ Gσ with M (Γ) > ε, there exists another policy

Γ′ = ({0, 1}, π′) ∈ Gσ with M (Γ′) ≤ ε such that, when the agents play as in the auxiliary

game Gσ, the probability of default under Γ′ is strictly smaller than under Γ.12

Furthermore, the arguments establishing Lemma S2-D reveal that the policy Γ′ can be

constructed so that UΓ
′

σ (x, 1|x) > 0 for all x. The policy Γ
′
thus satisfies PCP also when

agents play according to MARP. The claim in the Example then follows by taking Γ∗ = Γ′

with Γ′ satisfying the above properties.

Step 4. We now complete the proof by showing how to construct the function E in the

example. Let (εn) be a non-increasing sequence satisfying lim
n→∞

εn = 0. For each n ∈ N, then

let σn = σ(εn), with the function σ(·) as defined in Step 3. The results in Steps 1-3 above

imply that, given (εn, σn), there exist strictly decreasing subsequences (ε̃n) and (σ̃n) satisfying

lim
n→∞

ε̃n = lim
n→∞

σ̃n = 0 such that, for any n ∈ N, the conclusions in Step 3 hold for ε = ε̃n and

σ̄(εn) = σ̃n. Then let σ̄ = σ̃0 > 0 and E : (0, σ̄] → R+ be the function defined by E(σ) = εn

for all σ ∈ (σn+1, σn]. The result in the example then follows from Steps 1-3, by letting E(·)

be the function so constructed. Q.E.D.
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