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Abstract

This document contains the proofs of Examples 2 and 3 in the main text (Sections
S1 and S2, respectively). All numbered items contain the prefix “S.” Any numbered

reference without the prefix “S” refers to an item in the main text.



S1. Proof of Example 2 in Main Text

Proof of Example 2. The proof is in two steps. Step 1 characterizes the threshold 6 defining
the optimal deterministic monotone rule, whereas Step 2 constructs the non-monotone policy
that strictly improves over the optimal deterministic monotone one.

Step 1. The primitives in this example satisfy the conditions in Theorem 2 in the main
text. This means that, given any signal s disclosed by any policy I', MARP is in threshold
strategies, which in turn implies that the default outcome is monotone in 6.

Next recall that, for any default threshold 6 € [0, 1], the corresponding signal threshold
x% (0) is implicitly defined by P, (z% () |#) = 6. Using the fact that, for any 6 € [-K,1 + K]
and x € [0 — 0,0 + 0], P, (2|0) = (x — 0 4 o) /20, we have that 2% (6) = (1 +20)0 — 0.

For any 6 € [0,1], let T% = {{0,1}, 7%} be the deterministic monotone policy with cutoff
0. Next, let Varé () be the function defined by Voré 0) = Ugé (% (0),1]z% (0)) for any 6 €
[0/(1420),1]. This function represents the expected payoff differential between investing and
not investing of the marginal investor with signal z* (), when each investor invests if and
only if their signal is above z% () (and hence default occurs if, and only if, fundamentals are
below 6), the quality of the investors’ signal is o, and the policy ' announces that s = 1, thus
revealing that 6 > 0. Note that, for any 0 < 0 < 6/(1+20), 2(0) + o < 6, which implies that
the signal z(0) is not consistent with the event that fundamentals are above 0. Equivalently,
when 6 > é, the lowest possible signal that an individual may receive is 6 — 0. When each
investor invests if and only if z > 6 — ¢, default occurs if and only if § < /(1 + 20). Hence,
the lowest default threshold that is consistent with the policy I is 6/(1 + 2¢). The function
VI’ (6) is thus defined only for 6 € [/(1 + 20), 1].

The cutoft 8 characterizing the optimal deterministic monotone policy is given by
65 =inf{d e [0,1]: VI () >0 for all 6 € [§/(1+20),1]}. (S1)
Claim S1. For any 6 € [0, 1], Vgré (+) has a unique minimizer. Letting
min /) — . 0
0, (0) = arg mmee[é/(1+za),1]VaF (9),

we have that ™™ (0) satisfies x*(0™"(0)) — o = 6.
Proof of Claim S1. Clearly, for any 6 € [0/(1 + 20), 0], Vopé (f) = g. This is because
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when each investor invests if and only if x > z (0) default occurs only for fundamentals below
0. Hence the announcement that 6 > @ reveals to the marginal investor with signal zx (0)
that default will not occur.

Next, observe that for any 0 € (6, (0 4+ 20)/ (1 + 20)], 2% (§) — o < 0, implying that!

D>

- 5 B . 0 —

VI 0)=g—(g+ b)) P16 <66 > 6:z%(0)] =g — (g+ |b]) ———,
(6) =g — (9 +[b)) P-[0 < 0] )] =9—(g ||)<1+20)9_0

which is strictly decreasing in 6. Finally, note that, for any 6 € ((§ + 20)/(1+ 20),1],

z* () — o > 6, implying that

VI (0) = g — (g+ b)) [0 < 016 > 6;2% ()] = g+ (g+ [b]) (6 — 1),

which is strictly increasing in 6. Hence, VUFé (-) has a single minimizer over [(/(1 + 20), 1].
The latter is equal to 67" () = (6 + 20)/ (1 4 20) and is such that =% (67"(0)) — o = 6. O

Next, let T'% = ({0,1},7%) be the optimal deterministic monotone policy (with cut-off
0 = 0%). Using the characterization of 8% in (S1), we thus have that, under % at the point
0™ (9%) at which VI’ reaches its minimum, V" (47 (9%)) = 0. Using the fact that

o (607) — 03

9% (pmin (p*\) _ —
V, (07 (07) =9 (9+|b|)(1+2a)0g""(9;)—9?§’

we then have that 0% = (1 + 20) g%l‘bl — 20. Next, let Iy be the no-disclosure policy and note

that, for any 6 € [0, 1],

VI(0) =g — (g+ [bl) P[0 < 0|z ()] = g+ (g + [b]) (0 — 1),

which is increasing in @ and has a unique zero at 8 = |b|/ (g + |b]) = 6.

This means that, in the absence of any disclosure, under the unique rationalizable strategy
profile (and hence under MARP), each agent invests if and only if x > 2 (6’M S ), and default
occurs if and only if fundamentals are below #*°. The results above then imply that the

optimal deterministic policy I'% is defined by a threshold 6} = (1 + 20) 0% —20 = 7, (™) —
o that coincides with the left end-point of the support of the posterior beliefs of each agent

IThe notation P, |6 < 9\5 > é; x| stands for the probability that an investor with signal x assigns to the

event that 6 < 6 when the quality of his exogenous signal is parametrized by o and the policy reveals that
0>0.



with signal 2, (#**). In fact, for any truncation point 0 < a* (6M9) — o, there exists 6 close
to OM5 such that VUFé () < 0 implying that refraining from investing for all z < z% (HMS)
is rationalizable in the continuation game following the announcement that ¢ > é, implying
that the policy I fails to satisfy PCP. Similarly, for any truncation point 6 > i (M%) — o,
VI’ (9) reaches its minimum at 67" (f) > M5 and is such that VI’ (077 (6)) = Vi o (67 (4)) >
V2 9(6MS) = 0, where the inequality follows from the monotonicity of V, ° (-). Hence, 8% =
xh (GM s ) —0.

Step 2. Having characterized the optimal deterministic monotone policy I'%, we now show
that, when o is small, there exists another policy I' that also satisfies PCP and guarantees no
default for a larger set of fundamentals than I'%.

Let o7 = 2(19_]\—;;5,)
0 small, let 87(8,v) = a7, (0M° — 0) —0 = (1420) (65 —6)—20 and 0/.(6, ) = 07(6,v)—~. Note

that, for any o € (0,0%), § > 0 and v > 0 can be chosen so that 0 < ¢',(8,7) < 02(5,7) < 0%.
Consider the non-monotone deterministic policy I's, = {{0,1}, 7.} given by

> 0. For any o € (0,0%), 0% = (1 + 20) M5 —20 > 0. For any 0, 6,7 >

o (110) =1 {6 € [0'5(6,7),05(5,7)] U5, 00)} .

We show that, for any o € (0, 0%), there exit d,y > 0 such that (i) 0 < &',(8,7) < 07(6,v) < 0%,

and (i) V, > (6) > 0 for all 8 > 6',(8,7)/(1 + 20), with V2 *" (8) = 0 only for § = M5 2

First observe that, for any o € (0,0%), § € (0, oMS — 1-250) and

0<v<(1+420) (0M —6) — 20 = Ry (5,6M5,0)

guarantee that 0 < ¢',(d,v) < 62(6,7) < 622
Next note that, for any (o, d,7) with o € (0,0%), 6 € (0, OMS — 20/ (1 + 20)) and 0 < v <
Ry ((5, oM. O’), Voo (0) = VUFGZ (0) for all 0 € [OMS — 0, 1]. Indeed, for any 0 € [QMS — 0, 1],

*

i (0) — o > 07(0,7) implying that the the posterior beliefs of the marginal investor with

(e

signal 2 () under the policy I's, coincide with those under the policy I'%.

2Consistently with the notation above, Voo (6) is the expected payoff of the marginal investor with
signal z%(#) when the policy I's, announces that s = 1 and the quality of the agents’ exogenous signals is
parametrized by o. For any 0 < 0',(5,7)/(1 + 20), 2%(0) + o < 6, which implies that the signal z*(6) is not
consistent with the event that fundamentals are above ', (0, 7). Equivalently, because the lowest signal that is
consistent with 8 € [0',(0,), 02(8,7)]U[0%, 00) is 6, (5, 7) — o, the lowest default threshold is ', (4,v)/(1420).

30bserve that o € (0,0%) implies that 65 — 20/(1420) > 0. In turn, § € (0,05 — 20/ (1 + 20))
implies that 0 < 67/(5,7v) < 6% and that Ry (5, GMS,U) > 0. Finally, that 0 < v < Ry (5, GMS,U) implies that
0<6,(6,7v) <07(5,7).



Let 6%(8,~) be such that « (6%(,7)) — o = 6,(0,). Dropping the arguments of 6%(4,7),
0.(8,7) and @.(8,7) to ease the notation, we have that

0 =0"—y=ua, (0" —6)—0c—v=(1+20) (0™ —6) —20 — .

From the definition of § we have that z:(0) — o = (1+20)6* — 20 = #. Combining the
above two results we obtain that 6% = M5 — § — /(1 + 20). Fixing o € (0,0%), note that,
for 6,7 > 0 small, % > 0*. Specifically, for any o € (0,0%) and any 0 < § < 20 (1 — GMS),
6 > 0% if and only if

v<(1+420) (20 (1 —GMS) —0) =Ry (5,9MS,U).
Next, observe that, for any 0 € [Hﬂ, oMS — 5),

Vot (0) = g—(g+b)Po10 < 010 € [z () — 0,0"] U [0, 00); 25 (0)]
= g—(g+ b)) (6" —0; +20(1—-0)) /(6" —6; +20),

which is strictly increasing in 6. Similarly, for any 6 € [9(’;, Qﬁ),

Vit (0) = g—(g+[b)Ps[0 < 6|6 € [6,0") U 65, 00); 2 (6)]
— 0=t e =9 0+ ) e

which is strictly deceasing for any v < #%. Note that 6’ > 0 requires that v < #%. Next, note
that, for 0 € [0”,0%),

—(g+ o) P[0 < 618 € [¢,6"] U [0, 00); 7 ()]

o
_ b =g— b
(9+H)x;(9)+a—9;+7 g—(g+10])

Vo' () =
y

g
g " )
(1+20)0 — 0%+~

and, therefore, Vj > (+) is increasing over the range [0#”,0%). Finally, for 6 € [#',0"), we have
that

r n 0 * *
Vo' (0) = g—(g+1b) P[0 < 0|0 €[0,0"1U [0}, 00); 27 (0)]
o ¢ ) o ¢
@ to—i1y 97U 1420005+~

= g—(g+1b])

Hence V> (+) is decreasing over [#',0") if (1 +20)60 = z* (6') + o > 6. Using the fact that
' = 0" — v, together with the fact that 6" = 2} (09 — §) — o and 6 = (1 + 20) M9 — 20,



we have that (1 +20)60" > 0% if
v < 20 [(1420)0M° —20] /(1420) — (1+20)6 = Ry (6,0"%,0).

Lastly, observe that, for any 6 € [6'/(1 + 20),6'], Vo> (8) = g.

We thus have that the function Vi " is such that (1) Vo > (6) > 0 for all § > 6’ /(1 + 20),
and (2) 5o (0) = 0 only if § = M5 if and only if the following conditions hold: (a)
Vo (6%) > 0, and (b) V2> (6") > 0. Requiring that Vj, > (6%) > 0 is equivalent to

g—(g+ 1) (6 =05 +7) / (5 (#) +o =05 +7) > 0
& 0M5 (05 — ) — ((1+20)0M5 —25) 6% > 0.

Recall that 6} = (14 20)6"% — 20. Using the fact that 6% = 6% — § — ;75— we conclude
that a sufficient condition for V, *” (Qﬁ) > 0 is that

(0% =6 =~/ (1+20)) 0, < 645 (6; —)
Sy < §(1+20)((1+20)0M5 —20) /(20) = R3 (6,015, 0)..
Next, observe that Vj (0") > 0 is equivalent to
vo< (1-0M9) ((1420)0" — 0% +7)
9MS

oy < (1—9MS> ((1+20) [(1+20) (6M5 —6) — 20] — (1 +20) 0M5 + 20) = Ry (6,6M7,0)..

We conclude that, for any o € (0,0%), (1) 0 < 0',(6,7) < 02(3,7) < 6%, and (ii) V, o 0) >
0 for all & > ¢,(6,7)/(1+ 20), with V2 *" () = 0 only for 6 = M5 if

20 20 [(1420)60M% —20] 20 20
: MS 1_ gMS MS - MS
O<§<m1n{9 1+20,20( 0 ), (1+20)2 T+ 20 0 525 §<9 ,U)

and 0 < v < ming<;<4R; (6,6°,5). Note that o < o# implies that ¢ (69, 0) > 0, whereas
0<¢ (QMS, a) implies that ming<;,<4R; (5, oMS a) > 0. Finally note that, for any o € (0,07%),
and any 6 > ¢ (0,7), the payoft Vo (0) is continuous in the threshold 6%. Hence there exists
a policy I' whose rule 7 is given by 7 (1|0) = 1{0 € [0/,(d,7),02(0,7)] U [0% + €,00)} with
e > 0 arbitrarily small, such that T strictly improves over I'%> and is such that VI (8) > 0 for
all 0 > ¢',(3,7)/(1 + 20), implying that I" satisfies PCP. Q.E.D.



S2. Proof of Example 3 in Main Text

Preliminaries. For any 6 € (0,1), any 0 € R, let x%(f) be the critical signal threshold
such that, when all agents invest for x > 2%(f) and refrain from investing for x < x%(6),
default occurs if and only if the fundamentals are below 6. Note that, in this example
z5(0) = 0 + o®71(), where ® is the cdf of the standard Normal distribution and ¢ its
density. Also let 2%(0) = —oo and z%(1) = +oo. For any (6y,0,0) € (0,1) x R x R,
let w(é’o,é,a) denote the payoff from investing of an investor with private signal z%(6p),
when default occurs if and only if 8 < 6y, the policy reveals that 6 > 0, and the preci-
sion of private information is ¢~2. Then let 6 = inf {oc € Ry : 9 (6p,0,0) > 0 all 6, € (0,1)}
if {c€Ry: ¢¥(6,0,0) >0 all € (0,1)} # 0 and else 6 = +oo.* Then let ¥ (0) =
infg,e(0,1) ¥ (00,0,0) and note that lim, o+ W (o) < 0, implying that 6 > 0. For any 0 € R,
for which v (6y,0,0) > 0 for all 6 € (0,1), the policy maker can avoid default for every 6 > 0
by using the monotone rule 7 () = 1 {6 > 0}. This case is uninteresting. Hereafter, we thus
confine attention to the case in which o < 4.

Let Ul(x,1]z) denote the payoff from investing of an agent with signal x who expects
all other agents to invest if and only if their signal exceeds = , when the precision of private
information is ¢~2, and the policy I" announces that s = 1. Also let

Uy (25 (0), 1|27 (0) = lim U (w,1]x)

T—r—00

and

U (22 (1), 1|25 (1)) = lim U (z,1]x).

o400

Now let G, denote the set of deterministic binary policies I' = ({0,1},7) such that,
m(0) = 0 for all @ < 0, 7(A) = 1 for all > 1 and UL (z,1|z) > 0 for all z € R.> From
the proofs of Theorems 1 and 2, observe that, given any o, any deterministic binary policy I"
satisfying PCP and such that 7(f) = 0 for all # < 0 and 7(d) =1 for all § > 1 belongs in G,.

However, G, contains also policies that do not satisfy PCP.

4Recall that, when the announcement that s = 1 reveals that § > 0, the unique rationalizable profile
features all agents investing, irrespective of x, if and only if 9 (6,0,0) > 0 for all 6y € (0, 1).

We let 7(0) = 1 (alternatively, () = 0) denote the degenerate lottery assigning measure 1 to s = 1
(alternatively, s = 0).

6These are those for which there exists z such that UL (z,1|x) = 0; when I announces s = 1, in addition to



Proof Structure. The proof is in four steps. Step 1 establishes that, when o is small,
under any policy T' = ({0, 1}, 7) € G,, any interval (¢,6"] C (0, QMS] receiving a pass grade
(i.e., such that 7(f) = 1 for all & € (#',0"]) has a sufficiently small Lebesgue measure, with
the measure vanishing as o — 0F.

Step 2 then considers an auziliary game G, in which the agents play less aggressively than
under MARP. Namely, G, is the game in which (i) the policy maker’s choice set is G, and (ii)
given any policy I' € G,, all agents invest after receiving the signal s = 1 and refrain from
investing after receiving the signal s = 0.7 We show that, when ¢ is small, given any policy
I' € G, that gives a fail grade to an interval (¢',6"] C (8,6M5] of large Lebesgue measure,
there exists another policy I'* € G, that gives a pass grade to a F-positive measure subset of
(6',0"], has a mesh smaller than I', and is such that, when agents play as in G, the probability
of default under I'# is strictly smaller than under T

Step 3 then combines the results from Steps 1 and 2 to show that, when ¢ is small, given
any policy ' € G, for which the mesh M (T') of (0, 0*9] is larger than e, there exists another
policy IV € G, with a mesh M (I"”) smaller than e such that, when agents play as in G, the
probability of default is strictly smaller under I'” than under I'. Starting from I" € G, one
can then construct a “nearby” policy I'*€ G, such that the probability of default under I'* is
arbitrarily close to that under I (and hence strictly smaller than under the original policy IT")
and such that Ul (x,1|x) > 0 for all x. The last property implies that I'* satisfies PCP also
when agents play according to MARP. The policy I'* thus strictly improves upon I' also in
the original game, as claimed in the main text.

Finally, step 4 closes the proof by showing how to construct the function &£ relating the
noise ¢ in the agents’ exogenous private information to the bound £(o) on the mesh of the

policies.
Step 1. We start with the following result:

Lemma S2-A. For any e € Ry, there exists o(e) € Ry, such that, for any o € (0,0(¢g)],
the following is true: for any policy T' = ({0,1},7) € G, and any cell (¢',0"] € D' with

0" —0'| > ¢, necessarily w(0) = 0.

the rationalizable profile under which all agents invest, there also exists a rationalizable profile under which
each agent invests if and only if his signal exceeds .
"The agent’s behavior is consistent with MARP only for those I' € G,, for which, for all z, UL (z,1|x) > 0.



Proof of Lemma S2-A. We first show (Property S2-A below) that, for any o > 0,
if the policy maker were to replace I' with the cutoff policy Fal, then for any 6 < ¢,
UL (2(0),1|z%(0)) > UF(2%(0),1]2%(h)).2 Next, we show (Property S2-B below) that, for

any 0 > 0/, as o goes to zero, UL’ (2% (6), 1|2%(0)) converges uniformly to fol u(f, A)dA. Be-
cause fol u(f, A)dA < 0 for § < M5 the above two properties imply that, for o small,
UL(z2(0),1)z%(0) < 0 for some 0 € (¢,0"], and hence that T' ¢ G,. The result in the lemma

then follows by contrapositive.
Property S2-A. For any policy T' = ({0,1},7) € G, and any cell (¢,0"] € D' such that
7(0) =1 for all 0 € (¢,0"], UL (x%(0),1|22(0)) < UL’ (22(0),1]x%(0)) for all 6 < 6.

g

Proof of Property S2-A. The proof follows from Results S2-A-1 and S2-A-2 below.

Result S2-A-1. Pick any policy T = ({0,1},7) € G,. Given the partition D' =
{di = (QZ-,Q_Z»] 1= 1,...,N} of (O,@MS] induced by T, take any cell d; = (Qi,ﬁ_i] for which
7(0) =1 for all 6 € d;. Let T = {{0,1},7%} € G, be the policy constructed as follows:
(a) 7t (0) = 0 for all 0 < 0,; and (b) 7 (0) = 7 () for all @ > 0,. Then, for all 6 € [0,1],
Uz (5(0), 123(0)) > UE (a5(0), 1] (0)).

Proof of Result S2-A-1. Note that, under the new policy, 7% (§) = w () x 1 {6 > 6,}.
The posterior beliefs Agi (|, 1) about @ of an agent with exogenous signal x and endogenous
signal s = 1 under the new policy I'; thus dominate, in the FOSD sense, the analogous beliefs
AL (:]z, 1) under the original policy .9 The result then follows from the fact that, given any
default threshold 6, the payoff differential from investing when the fundamentals are equal to
6 and default occurs if and only if 8 < 0 is nondecreasing in 6. End of Proof of Result S2-A-1.

Result S2-A-2. Pick any policy T = {{0,1},7} € G,. Given the partition D' =
{di = (QZ-,Q_Z»] D= 1,...,N} of (0,0™9] induced by I, take any cell d; = (Qi,éi}, 1> 2, for
which 7 (0) =1 for all 0 € d;. Let Ty = {{0,1} , 7%} € G, be the policy constructed from T’
as follows: (a) 7% (0) = 7 (0) for all 0 < 60,; and (b) 7% (0) =1 for all > 0,. Then, for all
0 < i, Us(a3(6),1]a3,(6)) = UF (23(0), 113 (6)).

Proof of Result S2-A-2. Let©' = {0 € O : 7 (f) =1} and ©Y = {0 € (9,,1] : 7 (§) = 0}.

8For any 6 € [0, 1], rf = ({0,1}, 7Té) is the deterministic monotone policy with cut-off 6.
9No matter the shape of the beliefs vAg (|, 1), the announcement that 6 > 0, is always “good news” in the

sense of Milgrom (1981) and hence AL (:|z,1) =rosp AL (+|z,1).



For any 6# < 0;, and any x,

PO < 67 N0 € (0L U OY)|7]
P € (01 UOY)|z]
_ PO<OFAOcOx] PO<OFAOCOlz] PlO<6F A0 O]

P c (@ U0))a] | PHc(© Uz  PWe (0 U]
P9 < 6% |z,0 € ©'] = AL (67 |z, 1).

AT (0#12,1) = Bl <0%[2.0 < (0) UOD)] =

IN

The first equality follows from the fact that, under the new policy I'%, the signal s = 1 carries
the same information as the announcement that 6 € (©' U©Y). The third equality follows
from the fact that ©' N ©? = (). The fourth equality follows from the fact that ©? contains
only fundamentals above 6; and that % < §;. The inequality follows from the fact that
Pl e (01 UBY)|z] > P[0 € ©z] along with the definition of conditional probability. The
last equality follows from the fact that, under the original policy I', the signal s = 1 carries
the same information as the announcement that € ©'. Given the above inequality, and the
fact that b < 0 < g, we then have that, for any 6 < 6;,

Uy (3 (0). 13 (0) = b- AL (0l25(0).1) +g- (1= A7 (0la3(0). 1)) |
b Ao (8]25(0),1) + g - (1= Ao (Bl5(0). 1)) = Us ™(5(0), 1/a5(0)).

IN

End of Proof of Result S2-A-2.
Property S2-A follows from Results S2-A-1 and S2-A-2, by taking the cell d; = (¢',0”]. O
Now, fix ¢ € (0,0M5). For any 0* € [0,0M5 —¢], let T be the monotone rule with cut-off

*. For any 0* € [0,0M5 —¢], any 0 € R, let
H, (0% ) = infoeppe g1 UL (25(0), 1|22(6)).

Note that UEG* (z%(0),1|x*(0)) is continuous in (6*,6,0) over [0,1]* x (0,6]. From Berge’s
Maximum Theorem, H,(6*; ) is thus continuous in (6%, o) over 0,05 — ] x (0, 5].

For all 0* € [0,0MS — ¢, all 6 € (6%, 0% + €], lim,_o+ UL (23(0), 1](0)) = [ u(6, A)dA.
Because f01 u(f, A)dA is strictly increasing in 6 and equal to zero at § = 6MS for any
0 € [0,0M5 — 2], Hy(0%¢) = limy o1 Ho(6%5) = lim, e limgges UL (23(8), 1|25 (0)) =

fol u(6*, A)dA. We show next that H,(-;¢) converges uniformly to the limit function Hy+(-;¢)

over [0,0M5 — ¢].

Property S2-B. Fiz ¢ € (0,0M%). For any e < ¢, there ezists o’(¢) > 0 such that, for
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any o < o'(€), and any 0* € [0,0M5 — ¢, |H, (0*;¢) — Hor (0%;6)| < e.

Proof of Property S2-B. The limit function Hgy+(-;€) is uniformly continuous over
[0,0M5 — ¢]. As a consequence, there exists § > 0 such that for any 0,0 ¢ [0,0M5 — €], with
0 — 6] < 6, necessarily |Hy+ (6;¢) — Hyr (8;¢) | < €/2. Next, let Dy = {(6,,6)] :i =1,...,N},
N € N, be any interval partition of (0, 9"° —¢] with the property that every cell (,,6;] € Ds is
such that |0; —6,] < 4. Forany i = 1,..., N, any o > 0, let 6/ = sup{arg MaXge [y, 4] H, (6;¢)}.
That H, (0;¢) is continuous in (o, §) implies that the hypothesis of Berge’s Maximum Theorem
hold and, hence, the correspondence arg MaXpclg, 5] H, (6;¢) is compact-valued and upper
semi-continuous in o. As a result, for any ¢ > 0, 6! = max{argmaxee[gwéi] H, (6;¢)}.
Moreover, lim,_o+ Hy(0;€) = Ho+(6)+;¢), where 0}, = lim,_,o+ 6.

For any 0* € [0,0M% — ¢], let (Qj, éj] € Ds be the partition cell containing 6*. Then,

H, (0%:¢) — Hor (0%;¢) < H,(07;¢) — Hos (0%:¢)
= Hg(ég; ) H0+<90+, ) + H0+<90+, ) - H0+ (9*,8) < Hg<ég;€) H0+(00+, ) + 6/2 <€

for all ¢ < &;(e), for some @;(¢) > 0. The first inequality is by definition of #2. The second
inequality follows from the fact that \éj — 0*| < 4. The last inequality follows from the fact
that lim,_o+ H,(01) = H0+(9 +). Similar arguments imply that H, (0*;e) — Ho+ (0*;¢) > —
for all o < g;(¢), for some g;(€) > 0.

Now let o/(€) = min{mm {ai(e)}, min{a-(e)}}. For any o < o’(¢), and any 6* € [0, M5 —¢],
we thus have that |H, (6%;¢) — Ho+ (0*;¢)| < €, thus proving that H, (-;€) converges uniformly
to Hy+ (+;€) as 0 — 07. This completes the proof of Property S2-B. [J

Next, given € € (0,0M9), pick an arbitrary n € fo u(6M5—g, A)dA,0). Because Ho+ (0%;¢) <
n for all 6* € [0,0M5 — ¢], and because H, (+; &) converges uniformly to Hy+ (+;€), there exists
o(g) > 0 such that, for any o < (¢), and any 0* € [0,0M° — €], H,(6*;¢) < n < 0. Therefore,
for any o < o(g), and any deterministic monotone policy I'Y" with cut-off 8* € [0, 9*°

there exists 6 € [6*, 0% + ¢] such that Uge* (xx(0), 1|xx(0)) <.

_5]7

Together, Properties S2-A and S2-B then imply that, for any o0 < o(¢), and any policy
I" such that w(0) = 1 for all § € (#',0"] for some (¢,0"] € D' with |0” — #'| > &, necessarily
UL (22 (0), 1)z (0)) < 0 for some 6 € (¢,0"]. Hence I' ¢ G,. The claim in Lemma S2-A then
follows by contrapositive. This completes the proof of Lemma S2-A. B
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Step 2. Next, we show that, for any policy I' = ({0,1},7) € G,, that gives a fail grade to
an interval (¢',0"] C (0,6M5] of large Lebesgue measure, there exists another policy I'* € G,
with a mesh M (I'#) < M(T') such that, when agents play as in G, the probability of default
under I'# is strictly smaller than under I'. The result follows from Lemmas S2-B, S2-C and
S2-D below.

Lemma S2-B. For any I' = ({0,1},7) € G, such that infye1; Uy (2% (6), 1|2k (6)) > 0,
there exists another policy T = ({0,1},%) € G,, with M(T') < M(T), such that, in the
auziliary game Gy, the probability of default under T is strictly smaller than under T.

Proof of Lemma S2-B. That infpep1y UL (2% (6), 1|2} (f)) > 0 implies that, starting
from I" = ({0,1},7), one can construct another policy [ = ({0,1}, 1) sufficiently close to I'
(in the L; norm) and such that 7(0) > w(6) for all 6, with the inequality strict over some
positive F-measure set (6',6") C (0, 1], and such that (a) #(6) = 0 for all § < 0, (b) #(f) = 1
for all @ > 1, (¢) UL(z,1|z) > 0 all z, and (d) M(I') < M(I'). By definition of G,, I € G,.
That, in the auxiliary game G, the probability of default under I is strictly smaller than
under I', then follows from the fact that all agents invest when they receive the signal s = 1.
This completes the proof of Lemma S2-B. B

For any ¢ > 0, and any policy I' = ({0,1},7) € G,, UL (z% (-), 1]a* (+)) is continuous over
[0,1]. Hence infyeo UL (2% (0),1]z% (0)) = mingey UL (% (0), 1|z% (0)).

Lemma S2-C. Let ' = ({0,1},7) € G, be such that mingep1) UL (2% (), 1|2} (6)) = 0.
For any 6}, € arg mingep,1) UL (7 (), 1]x% (9)), there exists - > 0 such that @ () = 1 for
F—almost all § € (0%, —~L%,0%).

Proof of Lemma S2-C. The proof is by contraposition. Suppose there exists § > 0 such
that 7 (0) = 0 for F-almost all 6 € (95, — 9, «93) Observe that the sign of
T (o (65— 8) 1l (6 —5))

[

is the same as the sign of
+o00o

05 —6
b [ 6z (6~ 6) =) Jo) m @ AF @) g [ o (s (65 ) 0) ) 7 () AF(6).

—0 ot s
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Next observe that

0 = UF (x( 1ya: :o¢( x (95 —9) /a) () dF(0)
- /Z(b1{9<9ﬁ}+g1{9>9 })¢<(m (95_)—9)/0)7r(0)dF(9)
> /_:(b1{0§0§,}+91{0>9g})¢((;p; 0. —5) —6) /o) 7 () dF ()
NG

1l < 99,—5} tg1 {9 > 0! —5}) qs((xj; (99,—5) —9) /a)w(@)dF(H)

—+00

Ur (wy (05— 0) 13 (65 - 9)) /_

The first equality follows from the assumptions of the lemma. The second equality follows

& ((xa (eg - 5) - 9) /0) 7 (8) dF(8)

[e.9]

from the definition of the function U! (mj; («9};) 1zt (93)) The inequality follows from the
monotonicity of z¥ (-), the fact that ¢ ((x — 6)/0) is log-supermodular in (z, ), and Property
SCB in the proof of Theorem 2 in the main text. The third equality follows from the fact
that 7 (6) = 0 for F-almost all 6 € (6% — §,6%). The last equality follows from the definition
of the function UL (x* (6% — 0), 1|a% (6% — §)). Hence, UL (2% (6% — 6), 1]x% (6% — 6)) < 0, thus
contradicting the assumption that I' € G,. This completes the proof of Lemma S2-C. B
Lemma S2-D. For any ¢ > 0, there exists o7 (¢) € (0,6) such that, for any o € (0,07 (¢)],
and any policy T' = ({0,1},7) € G, for which there exists (6',0"] € D' such that (a) |0" —6'| >
e and (b) w(0) = 0 for all 6 € (0',0"), there exists another policy T# = ({0,1},7%) € G,,
with M(T'#) < M(T"), such that, in the auziliary game G, the probability of default under T'#

18 strictly smaller than under I'.

Proof of Lemma S2-D. For any 6 € (0, 1), glirél+ z} (0) = x5, (0) = 0. Furthermore, for
any ¢ € (0,min{0™%,1 — 6M5}), the function z, : [£,1 — £] — R is uniformly continuous.
Hence, for any § < e/4, there exists ¢ (§) > 0 such that, for any o € (0,5(9)], and any
0 € [£,1— %], we have that |z (6) — 6] < 6.° In turn, this implies that, for any £ > 0
small, there exists o7 (g) € (0, 4] such that, for any o € (0,07 ()], and any (¢/,6"] € D' such
that 6" — 0| > ¢, we have that, for any 6 € [0",1 — §], |0 — 2} (0)] < [(¢' +6")/2 — 2} (0)].

Likewise, for any 0 € [¢/4,0'], and any 6 > 6", we have that |0 — 2% (0)| < |« (0) — ] when

'The proof for the existence of a sequence {x} (-)} with domain [£,1 — §] converging uniformly to its

limit function x5, (-) follows from the same arguments that establish the uniform convergence of {H,, (-)},, to
Hy+(+) in Step 1.
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o € (0,07 (e)].

Next, pick any policy I' = ({0, 1}, w) € G, for which there exists d = (¢’,60"] € D" such that
(a) 0" — 0| > e and (b) w(#) = 0 for all § € (¢',0"]. If mingep1) Uy (2% (6), 1|2k (6)) > 0, the
result follows directly from Lemma S2-B. Thus assume that minge(o 1 Ur (2% (6) , 1|2 (6)) = 0.

Suppose that mingejpr.1) Uy (27 (0) 0] (6)) > 0. By Lemma S2-C, U (x7 (6) , 1|2 (0)) >
0 for all 6 € (¢',0"]. Hence, mingegr 1y Uy (2% (6) , 1]z (0)) > 0.

Below we show that, starting from I', we can then construct a policy I € G,, with
M(I") < M(T") such that, when agents play as in G, the probability of default under I'? is
strictly smaller than under I'. I'" is obtained from I' by giving a pass grade to a positive-
measure interval of types in the middle of (¢',6”]. Formally, take n € (0,(0” — ¢')/2) and
let I = ({0,1},7") be the policy whose rule 7" is given by (a) n7(8) = w(0) for all 6 ¢
[(6'+0")/2,(0'4+0")/2+n], and (b) 7" (§) = 1 for all @ € [(0'+60")/2,(0'+6")/2+n]. Below we
show that U™ (x% (0),1|z% (0)) > 0 for all § € [0,1]. To see this, let ©' = {§ € © : 7 () = 1}
be the collection of fundamentals receiving a pass grade under the original policy I'. For any

6 € [0,¢'], and any =z,

AL (0]x,1) = P[0 < Blz,0 € (O U [0 +6")/2,(0' +60")/2 +1))]

_ P[H<6nG<O! [a] 5 11 _ AT
T POE(OMU[(67+6")/2,(0'+0") /2+4n))|] < PO <bz.0 €07 =A7,(0],1).

The first equality follows from the fact that, under I'”, the signal s = 1 carries the same
information as the announcement that § € (0 U [(#' 4 0”)/2, (6" + 6")/2 + n]). The inequality
follows from the fact that P [§ € (' U [(#' +0")/2,(6' +6")/2 + 1)) |a:] >P [é € @1|x} The
last equality follows from fact that, under the original policy I', the signal s = 1 carries the
same information as the announcement that 6 € O

Given the above inequality, and the fact that, b < 0 < g, we then have that, for any
6 €10,¢],

Uy (25(0), Lz (6)) = b+ Ag (0]27(0), 1) + g - [1 = Ay (0]27(6), 1)]
< b A (Ol (0),1) + g [1= AT (0125(0),1)] = Uy (25(0), L=5(0)).

(e

with the continuity of UL" (z% (0),1]z% (9)) in 1 implies that minge1y U, (2% (0) , 1|2} (0)) >

Hence UM (2 (0), 1|27 (0)) > 0, all @ < ¢'. That mingejp q) Ul (2% (0), 1]z} (0)) > 0, along

g

0 for n small. Hence I'7 € G,.
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Next, consider the more interesting case in which mingepr 1 U, (z (0),0]z% () = 0.
Let 0% = inf {6 > 6" : UL (2% (6), 1|2%(0)) = 0}. An implication of Lemma S2-C is that that
07 > 0". Also let (0”,0""] C [0, 1] be the first interval to the immediate right of (¢,0”] such
that 7(6) = 1 for all § € (6",6""] and let = min {6, 7 }.1!

Now, pick £ > 0 small and let §(£) be implicitly defined by

F((¢' +6")/2+€) = F((0' +0")/2) = F((6" +0)/2+ 6(6)) — F((6" +6)/2). (52)

Consider the policy T'¢ = ({0, 1}, %) defined by (a) 7¢(6) = m(0) for all 6 & [(0' +0")/2, (0’ +
0")/24E]U[(0" +0)/2, (0" +0)/246(€)], (b) 7¢(0) = 1 for all @ € [(¢/ +0")/2, (0" +0")/2+£],
and (c) 7€(6) = 0 for all § € [(8” + 0)/2, (8" + 0)/2 + 6(¢)]. Below we establish that, when
¢ > 0 is small, such a policy is such that mingeo U (% (8), 1|2% (9)) > 0 and hence I'¢ € G,.
To see this, for any arbitrary policy I = {{0,1},7}, any 6 € [0, 1], let

V, (0) = Uy (27(0), L= (9)) po (25 () 1),

where, for any z, p(z,1) = Jo T(0)ps(2|0)dF (), with ps(2]0) = Lo((x — 0)/0).
By definition of %, we must have that, for all §, 0 = VI (9#) < VI (). Next, for any

€ >0, define g (§) = mlnge[gnyl]VaF (0). Let w(0,0) = g1{f > A} +b1{A < A} and note that,
for any 0,

0'+0") /246 (0" +6)/2+5(¢)
re r
EO=vios [ w00 @ WE@ [l 0t 0)040)

Using the envelope theorem, we have that, for any 65 € arg mingegn V2" (6),

Pr(©) = (O +0/2+€)u((0+0"/2+6065) o (5616 +0")/2+€)
(" + )2+ 5() T <w”+0/2+5<>9> O+ 02+ HENSE)
= F(O+0")/2+€) [a(0" +6")/2 + & 65)po (27(0 )\(9'+9")/2+§)
—a((6" +6)/2 + 6 )795)190(%(95)\(9”’ 6)/2+38(€))],

where the second equality uses the implicit function theorem applied to (S2) to obtain that

" The existence of such an interval follows from the fact that 7(6) = 1 in a left neighborhood of % by virtue
of Lemma S2-C. Also observe that, when §” < 69 such an interval is adjacent to (¢’,6”] and hence 6" = 6" .
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5(E) = f((0+0")/2+6)/f((8" +8)/2+5(€)). As a consequence,

limg o+ @l (§) = £ (0 +0")/2) [ (' +0")/2.6F ) po (365)1(6/ +07)/2)  (83)
—a((0" + 0)/2,0% )po (5 (0F) (0" + 0) /2)].

That o < o (¢) implies that |z} (6%) — (0" +0)/2| < | (67) — (' +0")/2|. That p,(z|6)
is single-peaked in turn implies that p, (2% (07) (6’ +0") /2) < po(x(07)](8” +0)/2) and hence
that

@ (0 +0")/2,0) po (5 (0F) 0" +0")/2) =7 (0" + 0)/2,0% ) po (w5 (0F) 10" +6)/2)
= b+ (o (25 () 16 +0")/2) = po (w5 (6%) (0" +6)/2) ) > 0.

Thus, lime_o+ ¢ (£) > 0. By continuity of U (z% (0), 122 (A)) in €, we then have that,

for £ > 0 small, mingejpr 1) UL (zx (), 1|2% (9)) > 0.

Next, we prove that, under the pohcy ¢, mingegq UL (22 (0), 1]2% (0)) > 0. For any
€ > 0, define ¢, (§) = mlnge[o,gl]vg (0) . Arguments similar to those used above to compute
limg_o+ ¢’ (§) imply that, for any 0%# € argmingejg g1V, (6), when o < o#(e),

Jim (€)= (O +0")/2) [ +0")/2.68 ) s (657)| 0 +6)/2)
(0" + 0)/2,08F)p (3 (03)] (0" +0)/2)]
= (0 +0")/2) g [po (w3 OF )10 +0)/2) — pola; (0#)|(0" +8)/2))] > 0

The first equality follows from steps analogous to those used to establish (S3). The second
equality follows from the fact that, by assumption §## < ¢’. The inequality is a consequence
of the fact that, for o < o (e), |z} (0#%) — (0 + 6")/2| < |z (677%) — (6" + 0)/2)|, which,
together with the fact that the noise distribution is single-peaked, implies that

Po (x5, (OFF)|(O +6")/2) > po (2, (02)|(0" + 6)/2).

Hence, for ¢ > 0 small, UL (2% (0),1|z% (0)) > 0 for all § € [0,0']. Furthermore, by
Lemma S2-C, UL (2% (0),1]|z% (6)) > 0 for all § € (¢',0"]. Hence, provided that ¢ is small,
the continuity of UL* (2% (A),1]z% () in € implies that UL* (z% (0),1|z% () > 0 also for
0 € (0',0"]. Combining all the properties above, we thus conclude that, for £ > 0 small,
mingepo 1y UF* (2% (0),1|2% (0)) > 0. Hence I'¢ € G,.

By construction, M (I'¢) < M(T'). Furthermore, when agents play according to G, the
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probability of default under I'* is the same as under I'. Lemma S2-B then implies that,
starting from I'¢, one can construct a policy I'* € G,, close to I'* in the L; norm, such that
(1) M(T'#) < M(T%) and (2), when agents play according to G, the probability of default
under I'# is strictly smaller than under I'. This completes the proof of Lemma S2-D. B

Step 3. Steps 1 and 2 imply that there exists a function & : (0, min{6*%, 1 — 6M5}) —
Ryy , with 6(¢) < min{o(g), 0% ()} for all € € (0, min{¢™5,1 — #¥5}) and with () — 0F
as ¢ — 07, such that the following is true: For any ¢ € (O,min{QMS, 1— QMS}), any o €
(0,5 (¢)], and any policy I' = ({0,1},7) € G, with M (I') > ¢, there exists another policy
I = ({0,1},7") € G, with M (I'") < ¢ such that, when the agents play as in the auxiliary
game G, the probability of default under I" is strictly smaller than under I".'2

Furthermore, the arguments establishing Lemma S2-D reveal that the policy I can be
constructed so that UE/ (z,1|z) > 0 for all 2. The policy I" thus satisfies PCP also when
agents play according to MARP. The claim in the Example then follows by taking I'* = T"
with I satisfying the above properties.

Step 4. We now complete the proof by showing how to construct the function £ in the
example. Let (¢,) be a non-increasing sequence satisfying nh_}:aolo e, = 0. For each n € N, then
let 0, = @(ey,), with the function 7(-) as defined in Step 3. The results in Steps 1-3 above
imply that, given (e,, 0,), there exist strictly decreasing subsequences (£,) and (&,,) satisfying
nhg)lo Ep = nhjEO 0, = 0 such that, for any n € N, the conclusions in Step 3 hold for € = £,, and
d(en) = d,. Then let ¢ = 69 > 0 and &€ : (0,6] — R, be the function defined by £(0) = ¢,
for all o € (0,41,0,]. The result in the example then follows from Steps 1-3, by letting £(-)

be the function so constructed. Q.E.D.
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120bserve that the thresholds o(¢) and o7 (¢) identified in Steps 1 and 2 above are invariant to the initial
policy I'. The same arguments used to arrive at a policy I'# with mesh M (T'#) < M(T') can then be iterated
till one arrives at a policy I with mesh M(I") < e.
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