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Appendices A, B, and C contain all proofs for the results in Sections 3, 4, and 5, respec-
tively. Appendix D contains a description of a plausible alternative equilibrium construction,

and a discussion of why this alternative cannot be used to prove Theorems 1 and 2.
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A Proofs for Section 3

Proof of Proposition 1. Many parts of this proof follow similar arguments in RSV. Suppose
ac A" U AM is implemented in an unrestricted mechanism. Then player 1 optimally tells
the truth in each period and the result follows immediately.

Suppose a € AN\{A™UAM} is implemented in a T-period quota mechanism. For player

i #1,

. (6T ) 1—6 «— . Q(0)
lim o™ () = lim Byor | 75 > duglo| = — 9i((0),0)
=0 0O
because g; is constant in #. Moreover, limp_, % = m(f), which proves the claim for i # 1.

Only player 1 takes actions, so her payoff is continuous in ¢ and v! () is well-defined.
Following RSV, define the set of copulas M C A(O x O) as the set of distributions p(m, ) €
M suchthat Y o pu(m,0) =53 _ou(@,m)=m0)foraldc O. Let fi,(m,0) = Prob(m, =
m, 0, = 0|o) for some strategy o.

I first claim that for any x; > 0, there exists some 7™ < oo such that for any 7" > T,

there exists a p, € M such that

=
I3 3wl < 0 (10)
Note that > ., I Prob(m, = m, 0, = 0lo) = S Prob(6;, = blo) = S m.
Because 7 is the stationary distribution of P(6,.1|6;), liInT_mo%ZtT;O1 m = m. More-
over, Y o o S Prob(m; = m,0, = 0lo) = S/ Prob(m; = m|s) = Q(m). Since

im0 7 S Q(m) = m(m), the marginals of the distribution Prob(m; = m, 8, = 0|o)
converge to m as 1" — oo. It follows that there exists some copula p, € M satisfying (10).
Further, the rate of convergence for each marginal is independent of the strategy o.

In the limit as 6 — 1, player 1’s utility can be written

% ?:_01 ZGG@ ng@ g1 (a<m>7 e)ﬂt (ma ‘9) = Zae@ ng@ g1 (Oé(m)’ ‘9) * :lr ZZ:ol ﬂt (m’ 9) <
> 0eo Yameo g1(a(m), 0)u(m, 0) + x1|O

by (10).
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Define '™ € M to be the copula satisfying p’™"(0,0) = = (), for all § € ©, and
pIruth(m, 9) = 0 otherwise. Lemma 1 from RSV can be slightly modified to show that an

allocation rule satisfies (1) if and only if for all € M,

ZZgl w(m, 6) <ZZgl 0) i (m, ).

0cO meo 0O meo

Plugging in p = p, and using (10),

TS ), Ol 0) < 33 g1(al0), 06 0m,0) + xalOF

t=0 0c© mecO 0cO® meO

A similar argument can be applied to p7™*" to yield

> (), 0)u " (m Zzgl «(0) + xa|OF.

0O meO t=0 0cO

Let o be an optimal strategy. Consider a strategy ¢ that reports truthfully so long
as that message is available, and otherwise reports deterministically among the remaining
types. This strategy is feasible, and as 7" — oo it can be shown that % ZtT o i = T

Then there exists a T™ such that if T" > T,

-1
1
=Y o] < Bos[an(a(0).0) + xilOP (1)
=0
But lims ,; F [1 T S oty t|a] = [ S uiglo |, bounding vf (@) from above.

Player 1 plays optimally and ¢ is always feasible. So there exists a 7™ such that if T" > T,

Zu1t|a > Eor [91((0),0)] — 2x1|O[". (12)
[l

Proof of Proposition 2. Fix a (d,T) perturbed game, o € A, and discount factor 4.
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(1): Suppose that a € A"\ {Am U AM} and so is implemented using a quota mechanism.
Given a (d, T)-perturbed game, let o@T) be player 1’s optimal reporting strategy. For player
1

I

S (@T)

€ argmax F
oeY

1-§ T-1 1
1_oT Z(Stul,t + T Zdl(ht,HT)\a] .
t=0

In any strategy o, message m € O is sent ()(m) times. In particular,

T—

Z o

+Z Q ytﬂT (ht’ 0T)|mt = 9] .

0cO

1—5 <2 1
1_ 5T Zétulﬁt —+ T Zdz(ht, 0T>|0'
t=0

(13)
The second term in this expression is constant in . Hence, o(*T) is an optimal strategy in

d,T)

the unperturbed game: o(®?) = o¥(a). Convergence to v’ () follows immediately.

Now suppose a € A™UAM is implemented using an unrestricted mechanism. Consider a

strategy o that induces the same joint distribution over (6;, a;)i_;' as 07", Then Definition
7 implies that for all ¢ < T, E [d(hf,0r)|c] = E [d(hf,0r)c™"], so player 1 cannot

profitably deviate to o. In particular, if & min- or max-maxes player i # 1, then a(0) = a(0')

for all 8,0" € © and player 1 has no profitable distribution from o?m",

Truth

Suppose « min- or max-maxes player 1 and suppose ¢ and o induce different joint

distributions over (6, a;){—y". Fix a history and type 6, such that ¢ and o”™*" lead to different

actions in period t for types #;. By Assumption 3, player 1 loses no less than 1—_56T 0L in

this period. She gains no more than zmax, 5 {d(ht,GT) - d(ﬁt,GT)} < 4 at the end of
the game by mis-reporting her type in period ¢. Continuation play is independent of period

t because the mechanism is unrestricted. Therefore, player 1 has no incentive to lie in any

period if
1-6
d < 5T(5 LT =d(o,T).
Under this condition, o@") = ¢%(a) = o7,

(2): If d < d(5,T), then 0'»") = g%(a). Player 1’s optimal strategy is independent of the
prior v, so payoffs are continuous in v. Since lims_,; v®7)(a)) = v” () by definition, (3) holds

for ||v — x|| small and § < 1 close to 1.
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Proof of Proposition 3. Define o*7) = g%(a*7)) and let %) be the set of feasible strategies
in the T-period mechanism implementing a*7). Let h* be a history at the beginning of block
(k).

By Definition 8, only a single period ¢t*7) chosen uniformly at random from T"J) will

affect continuation play. Define
1 > £ *
d(m,0) = — AZT 81 = 0)E [urg|o™, b, Opr = 0, myes) = m] . (14)
=t+

Given 6;, the distribution of f7 is independent of h' or any actions taken in block (k, 7).
Thus, ¢* is optimal if for any (&, j),

. 1—-9 1
O'(k7.7) c arg Ug;%i(j) E t ;j) (1 — 5T 5t tul,t -+ le (mt/, 0’]’)) |0-7 ht . (15)
= s

By Proposition 2, ¢*7) is an optimal strategy in any (d, T)-perturbed game with d < d(3, T").

Hence, to show ¢* optimal, it suffices to show that for any m,m, 6 € O,

Equation (14) may be written

ZZ':1 Z;’O=j+1 D erthah 5 11_}‘; [urg|o™, ht, Oy = 0, My = m] +

dl(m’e) - K 00 t'—t 1-§ % 7t
Zk’:k-}-l Zj’:j the:r(k/,j/) J 16T [ul,t|‘7 B O = 0, my0e) = m]

Property 3 of Definition 8 implies that for all &' # k and j' > j, a*7) does not depend on
M. By definition of o*, actions in block (&', ') depend only on o¥7). Hence, for k' # k
and j° > j, actions and payoffs in block (&, ;") are independent of myx.;). So (16) may be

simplified to

|di(m, 0)—di (1, 0)] = i >t 16 [ Eluido®, b, 0r = 0,myesn = m] -
1(m, 0)—di(m, 0)| = — 7 )
J=j+1 et 1-0 E [uy|o*, B, Oppr = 0, mys) = 10

(17)
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If a(m) = a(m), then |dy(m,8) — dy(m,8)| = 0 by Property 3 of Definition 8.
Suppose a(m) # a(m). An irreducible and aperiodic Markov chain converges to the
invariant distribution at an exponential rate. So for any x > 0 and ¢ > 0, there exists a

K* < oo such that for any K > K*, j/ > j, and any prior v € A(©),

||7TminT<k7j/)—InaxT(k’j) - 7T|| < /fﬁj/_j.
Payoffs satisfy |u;]| < 1, so

S verwan 8" S (B Juyelo, bt 07 = 0, myes = m]) —

L,
/ 5 < kel T
't 1— t _ _
Dvertan 00 g (B ure|o™, B T posn = T, my00) = ml)
Moreover, by Proposition 1, there exists ¢* < 1 such that if 6 > §*,
t'—t 1-9 t _ _
Zt’ET(’W') 0 1-0T (B [u o™, hY T peean = T, My = m) —
< e (18)

ST [T ()|, B, mycr = 1]

Combining these facts, for K > K* and § > 0",

Zt’eT(’w") 6"t 11:55T (B [U1,t|0*7 ht, 0 = 0, myny = m]) —

) S filej,_j + €. (19)
SKTTHTE [vf (a)|o*, B,y = m]

Combining (19) with Property 4 of Definition 8, for any m,m € O,

o0

di(m, 0) = di (1, 0)] < 3T > T2 (Vs 1))
3'=0
For any 6 < 1, if 67X < §, then
s 0 1 1 1 1
KT _
;)5 ! (GJ’Hl) Y (R e 7 S v oL &
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By Proposition 2, ¢*7) is an optimal strategy in block (k,7) so long as

1 1
kT
o E(l_&TKEH_’_ 1_5) <d(6,T).

For any 6 € (0,1), d(5§,T) > 67 L. So this inequality holds for € > 0 sufficiently small. So for
any 6 < 1, there exists a 6* < 1 and K* < oo such that for K > K*, § > §*, and §7% < ¢,
o* is an optimal equilibrium of the (7, K')-recurrent mechanism.

At history ' in block (k,j) and 7’ > j, (19) implies (4). € > 0 may be made arbitrarily

small by choosing §*, K*, and § appropriately, proving the claim.

B Proofs for Section 4

Proof of Proposition 4. 1fvis (T, , W, §)-decomposable for some ¢ > 0, then it is (T, (', W, 0)-
decomposable for any (' < (.

Fix € > 0, let W C R" be a closed, convex, and bounded set, and consider w € W. I
construct an equilibrium with payoff v € B(w,¢). From Proposition 3, choose § < 1 and
K > 0 such that W is (T, Q,QTR)—decomposable and (4) holds for the chosen € > 0. Define
§ = QKLH and ( = Minses 5] C((STR). Since ¢ is continuous and strictly positive, ¢ > 0. Then
W is (T, ¢, (STR)—decomposable for any & € [0,8]. For any & > 6, there exists some K > K
such that 07X € [QTK, 5TR] and (4) holds for a (T, K) mechanism and the given e. So W is
(T, ¢, 67%)-decomposable.

Given ¢ and K, define 6 = 67%. T construct a (T, K)-recurrent mechanism with payoffs
that approximate w. For any k € {0,..., K — 1}, denote w** = w, and let a*% and

w*9(y, 0) be the allocation rule and continuation payoff that (7', ¢,d)-decompose w*®9.

1. In block (k,j), implement an allocation rule a*7) that (T,C,g)—decomposes wk9) 13

Let w*7)(y, 0) be the corresponding continuation payoffs.

2. At the end of block (k, j), choose one period t*7) € T®*J) uniformly at random (using

the public randomization device).

13Using the public randomization device ¢ to randomize among allocation rules, when appropriate.
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3. In block (k,j + 1), set @9+ = w®9) (y, 04y, 0,000)).

I claim that the resulting mechanism is (7', K)-Recurrent. Properties 1 and 2 of Definition 8
follow immediately from the construction. Property 3 follows by noting that if a(6) = a(6),
then w(y,0) = w(y, é) for all y. Thus, w(y, ) and w(y, é) can be implemented by the same
sequence of allocation rules. For Property 4, given a public history h%, , at the beginning
of block (k, j) and any myw., € O, (5) implies that E [@®7 TV |o*, b, myw.n] = 0(h,,) is

independent of m,x ;. Written non-recursively,

1—o7 > . o
1 — 5TK (h;ub) (1 - 6T) Z(CSTK)] 1E [UT(a(kJ—H ))|O- ) h%um mt(k,j)]
j'=1

for any myw.,) € ©. So Property 4 of Definition 8 is also satisfied and this mechanism is
(T, K)-Recurrent.
If players commit to actions, then by Proposition 3 ¢* is an optimal strategy for player

1 and (4) holds. By definition,

D (1 =HE [v"(@®)|o*] € B(w, (1 - d)v" ("))

j=0

since v7 (a®9) = T (%) for any k € {0, ..., K — 1}. Because v} (a(®?) € [-1,1],

o K-1
SNSRI (1= 6T)E [ (@*)o*] € B (w, (1-4)). (20)
§=0 k=0

Suppose QTK satisfies 1 — QTK < €. Then for each player 1,

3200t (1= O)E [uiglo™] = 32720 Yoklo orerwen (L = 8)E |
00 T sy (1= 6T E [uT () + e|o7] < 7
w+(1—5)—|—2;’;05KTj(1—5KT)e:w—|—(1—5)+e§w—|—26

uz,t‘a*] S

where the first equality follows from rewriting the sum, the first inequality applies the upper
bound from (4), the second inequality follows from (20), and the final line follows immedi-

ately. A similar bound can be derived from below. Hence, the vector of equilibrium payoffs
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in the mechanism satisfies v € B(w, 2¢), as desired.

It remains to show that players have no incentive to deviate from the actions specified
by the mechanism. Suppose that a*7) ¢ AM U A™. A deviation at history h® in block (, j)
affects payoffs in other blocks with probability % Let (1 —9)B € [0,1] be the maximum of
0 and the largest myopic gain for any type deviating from his equilibrium action.

By choice of K and ¢, the gain from deviating to a; = a’ at h' is no more than

E [u o, bt %D =t a, = '] —
E [ui o™, bt 15D =t a, = &) (my)]

(1—5)B+%Z > 6t(1-9)

3> treT (k")

Deviations are not profitable if this expression is weakly negative. Using (3), we can replace
payoffs with invariant payoffs, plus an approximation error:
E [v] (a®)|o*, bt t*D) = ¢ a, = a'] —

(1—5)B+% > KU (1-0") +2¢ | <0.

=i E [U?(a(’“’j/)ﬂa*, Atk =t ap = a9 (my)]

Since B > 0, multiplying both sides by % and applying the definition of w and w;(y, m)

yields the sufficient condition

TK orr (k.9) _ oK
(1= 0" B + o (Eyfwily, mlai, ol (m)] - @) + 2° <0,

T —i
For € > 0 sufficiently small, this inequality is implied by Property 3 of enforceability. Thus,
for § > 0 and K > K, player i has no profitable deviation from a®7) ¢ A"\{AM U A™}.

If a®7) ¢ AM U A™ min- or max-maxes player i # 1, then the same argument proves the
claim. If %) min- or max-maxes player 1, then Proposition 3, proves that player 1 cannot
profitably deviate by lying. T show that it is not profitable for player 1 to either (a) tell the
truth and then deviate in action, or (b) misreport type and then deviate in action.

Consider the deviation (a). Property 4 of enforceability implies that conditional on
reporting truthfully, player 1 has no incentive to deviate in action.

Consider the deviation (b). Such a deviation does not change payoffs in subsequent

periods of block (k,j), since the mechanism in that block is unconstrained. Therefore, the
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gain from such a deviation is bounded above by

o (1) (101,04 (m),) = 4(a(6).00) + - (B, ol (m)] = ) + 2

By definition of min-max and max-max, the first term in this expression is weakly nega-

tive. The value of the second term is independent of 6. Because (7) holds when 6 = m,

%Ey [wi(y,m)|ar, a_1(m)] — w < —24e. So player 1 has no profitable deviation.
I have shown that for all 6 > §, there exists a (T, K)-Recurrent mechanism with payoffs
satisfying v € B(w, €) that is also an equilibrium in the game without commitment. This

proves the claim.

Proof of Proposition 5. This proof proceeds in three steps. First, I define several key con-
cepts; second, I prove a lemma that is a building-block for the proposition; and finally, I

prove the proposition itself.

Definition 13. For any k € R and A € RY such that ||\|| = 1, define H(\, k) = {v|]\-v < k}
as a half-space in direction . For fized (T,(, ), define the maximal score attainable by
allocation rule a € A’ in direction A, denoted kT (a, X\, (,6), as the mazimum k = X\ - v with
v € RY such that v is (T, ¢, H(\ k), §)-decomposable with action «. Define H' (o, A, (,0) =
H(\ K (o, N, ¢, 0)).

Definition 14. For a unit normal A, define kT(\) = max e A - vT (). Let H'()\) =
H(\ET(N) and QT =N, HT (V).
Lemma 1 (Lemma B.2). 1. There exists a continuous and decreasing function () such

that kT (a, X, ¢(6),0) is independent of §.

2. Suppose X is non-coordinate!* and let o € AL.Then for any ¢ > 0 and § € (0,1),
ET(a, N, ¢, 0) = X -7 ().

3. Let \ be coordinate with \; =1 and o« € A™ U AM. Fiz § < 1. For all € > 0, there
exists a { > 0 such that if ¢ <, k" (a, N\, (,0) > X- 0T (a) — .

1A vector A € RY is coordinate if exactly one element of \ is non-zero, and is otherwise non-coordinate.
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Proof of Lemma B.2. Statement 1: Fix a half-space H, and suppose v € H is (T, (, H,))-
decomposable by allocation rule a and continuation payoffs w(y,6). For any §' € (0,1),

define
) (1 =19

W0 = 55" T s s
and
=
(= 11— 5

H is convex and v,w(y,0) € H, so w'(y,0) € H. One can check that (6) and (7) hold for
discount ¢, so & and w'(y,0) (T, {’, H,¢')-decompose v.
Statement 2: This result is a natural modification of Lemma 5.4 in Fudenberg, Levine,
and Maskin (1994), with the sole difference that continuation payoffs satisfy (7).
Statement 3: Suppose ) is coordinate to the i** axis, so that for all j # 1, Aj =0, and
\; = 1. Let @ min- or max-max player i. Fix § < 1. For € > 0, define H = H(\, \-vT (o) —¢).
I would like to show that for all € > 0, there exists a ¢ > 0 such that if ¢ < ¢, then there

exist {w(y,0)},0 € He such that
A ((1=0)v"(a) + 0By [w(y, 0)|a(9)]) = A-v"(a) — ¢, (21)
(7) holds for j # i, and for all § € ©,

) d
s — > e , o .
T Wi ¢z aieg};%o}iw) {TEy[wz@a 0) | a, 04_1(9)]}

For all ¢ > 0, define the hyperplane h? = {x € R¥|z; = vl () — q}. For all j # i, let

{w;(y,0)}y, satisfy (7) such that for all 6, E, [i;(y, 0)|a(0)] = v] (a). For any ¢ > 0, define
¢ :Y x © = R such that ¢°(y,6) > 0 and for all 0, E, [qc(y, 9)|a(0)} = ¢¢ with

5 5
_ZF& > el ¢ . ,
TR v {TEy (5. ) ’““O‘—Z(e)}'

By pairwise full rank, such a ¢¢ exists for any ¢ > 0. Moreover, ¢¢ (y,6) = %qg(y,Q). Let

wi(y, ) = v} (@) — e = ¢*(y,0).
As defined above, {w(y,8)},9 € H¢. Noting that \; = 0 and \; = 1, (21) may be
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rewritten

(1= 0)vi () + 0By g [v] (a) — € — ¢*(y,0)]a(0)] = v (o) — €

or By [¢°(y,0)|a(0)] < %€ But lime_gmax,¢(y,0) = 0 because ¢¢ (y,0) = %qc(yﬁ).
Therefore, for any € > 0, there exists a ¢ > 0 such that this inequality holds if ¢ < . This

proves the claim.

]

Completing Proof of Proposition 5. Let W C QT be smooth. By Proposition 4, it suffices
to show that for any § > §, there exists a continuous function ¢(§) > 0 such that W is
(T, ((6),d)-decomposable.

First, I claim that it suffices to show that for each v € W, there exists a open set U,
with v € U, , a §, < 1, and a continuous function (,(6) > 0 such that for any § > 4,, all
u € U, are (T,(,(0), W, §)-decomposable. Suppose for all v € W there exists such a §, and
Gv(6). Then the set {U,}, . is a open cover of W. W is compact, so there exists some
finite subcover {U,,}*,. Let § = max,d, and for all § > §, ¢(§) = min, ¢, (). Since
R < 00, § < 1and ¢(§) > 0. Since each (,,(§) is continuous, ((§) is continuous. Then for
all § > & and each ¢ < ((9), each U, is (T,¢(), W, d)-decomposable. Thus, W C Ufil U,
is (7,¢(9), 0)-decomposable for continuous function ((-).

Next, suppose that for each point on the boundary of W, v € bd(WW), there exists such
an open set U, with v € U,, 0, < 1, and continuous function (,(d) > 0. Then I claim that
such U,, 6, < 1, and (,(0) > 0 exist for every point v € W. Because W is compact and
convex, for all v € W, there exist a finite number of points {vy, ....,vz} € bd(IW) and weights
{M,..,7z} such that > v, = 1 and Y ~,v, = v. Take §, = max, J,_, (,(6) = min, (,_(d),
and U, = {z|z =) v.x, for x, € U, }. Then U, is an open set with v € U,, and for § > 4,
Uy is (T, ¢,(0), W, §)-decomposable as a convex combination of decomposable points.

Finally, let v € bd(W). T need to find an open set U, with v € U, a d,,, and a continuous
function (,(0) such that U, is (T, (,(0), W, d)-decomposable. Let A be the unit normal to
W at v, k = X-v, and H = H'(\ k). Then HT(\, k) C HT(\) holds strictly, since
W C int(QT). Suppose A is non-coordinate, and let u be a boundary point of H7()\). By
Lemma B.2, for any ¢ > 0 and 6 € (0,1), u is (T, ¢, HT(\), d)-decomposable into allocation
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rule a and continuation payoffs w(y,d) € H*()). Since v is a boundary point of H, which
is a proper subset of HT()), there exists some § < 1, ¢ > 0, and ¢ > 0 such that v can be

(T, ¢, HT (A, k — €), §)-decomposed using allocation rule a.

For ¢’ > 0, define ((¢') = 1;;(. Note that ((-) is continuous. Using (7), it can be

shown that v can be (T, ¢(&"), HT </\, k — 5(1_6,)e> ,5’>—decomposed using allocation rule a.

5 (1=5)
Moreover, the continuation payoffs w’'(y, ) satisty |w'(y,6) —v| < &(1 —¢’) for some R.

Define U(¢') as the ball around v of radius 2£(106"). Since W is smooth, for ¢’ sufficiently
close to 1 there exists a & > 0 such that the difference between H and W is at most #(1—4")%.
Hence, there exists some § < 1 such that for all § > 6, there exists a ((J) > 0 such that if
¢ < ((d), then v can be (T, (,int(W), d)-decomposed. Because continuation payoffs are in
int (W), they can be translated by a constant independent of y to generate a neighborhood
U, about v that can be (T, (, W, )-decomposed.

Suppose now that A is coordinate to the i'" axis. As before, HT (X, k) C HT()) strictly.
In particular, there exists some € > 0 such that HT(\, k) C HT (X, v} (a) — €) strictly, where
a € {a™ oM} By Lemma B.2, for some § < 1 and ¢ > 0, a point on the boundary of
HT (X, vf (@) = %) can be (T, ¢, H' (X, v} (o) — §), 0)-decomposed using allocation rule . But
then v can be (T,¢, HT (N, v} (a) — €), §)-decomposed using allocation rule a. The rest of the
proof proceeds as in the previous case.

Fix a € A!, suppose there exists some \ such that v*(a) ¢ H()\). Then by definition,
Aol (@) > maxgeqar A - 0T (o). Contradiction. The set QT is convex, so VI* C Q7. Hence,
any smooth W C int(V7*) can be approximated by a set of equilibrium payoffs for sufficiently
high 6.

C Proofs for Section 5

For the purposes of this proof, assume without loss that Fjy., [TT”“"(H)} = 0, and define

L= min{[:,f/} > 0.
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Definition 15 (Definition C.1: Preliminary Definitions). Let o € {&M’i,dm’i}iiQ. Define

the invariant payoff for a as

() =F

T-1

1 a0

=0

For all other allocation rules o € A’, let 97 (a) = v” (a). Define VT* analogously to VT*:
VT = co{ T)|ae AL, for alli: oF(a) > f)iT(am’i)} .

Lemma 2 (Lemma C.1). Suppose either:
1. a€ /ll\ {flm U AM} 18 tmplemented by a T-period quota mechanism, or
2. a € {dM’l, dm’l} 15 implemented by a T'-period unrestricted mechanism.

Define d(5,T) = 2=

i(6,7),
player 1’s optimal strategy equals oi(a). Moreover, for all € > 0, there exists x > 0 and
6% < 1 such that if ||v — || < x, 6 > 6%, and d < d(8,T), then

E € B(d"(a),e). (22)

1-§ T-1
g 2 O ulo ™
t=0

Let oTmuth be the strategy in which my; = 0y, for all t > 0. Then oi(a) = o™ for a €

{dm,l7 dM’l}.

Proof of Lemma C.1. Suppose a € {dM’l,dm’l}. As in Lemma 2, ¢@T) = gTruth if d <
d(0,T). (22) follows immediately.
Suppose a € /l[\ {flm UAM} is implemented by a T-period quota mechanism. By

definition, o(®7)(§) solves

|_g 2 =
4,7 - ¢ P
ol )(5)€argm§me 1_5T;5g( )+ = ;d hy ,0r)|o

As in Lemma 2, each m € © is sent exactly @)(m) times. Therefore, o}(a) maximizes player

1’s payoff. The unperturbed game may be written as a Markov decision problem, so there
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exists a Blackwell optimal strategy o*(a) and a threshold §* < 1 such that for any § > §*,
of(a) = o*(a). It follows that

lim F

Zat |a<“>] = "(a).

O

Definition 16 (Definition C.2). For 7 : © - R, d € Ry, and T € N, a (d, T)-perturbed

game simulating transfers 7 is a T-period game with payoffs (2). For any my,my,0r € O,

By, [di((me, ), Or)|od(me)] — Ey, [di (e, ye), 07)|a(rn)] € B (T(my) — 7(1), d) -

For any m; = my such that oz(m) = O‘(m) and y =1, d((mtvyt)79T) = d((mtayt)79T)'

M,i Amz}N Then player 1’s optimal reporting

Lemma 3 (Lemma C.2). Suppose a € {a o
strategy equals o™ in any (d,T)-perturbed game simulating transfers 777" with d <

J(é, T). For any e > 0, there exists a 0 < 1 and x > 0 such that if 6 > & and ||v — 7|| < X,

1 T—1
E 1_5T25t u o € B (0" (a),€) .

Proof of Lemma C.2. By Assumption 4, for any 6,60’ € © such that a(0) # a(6'), g1(«(0),0)—
rTruth(9) — L > gy(al#),0) — 777"(9'). Consider a (d, T)-perturbed game with transfers

rTruth gatisfying d < d(8,T), and let 0@T) be player 1’s optimal reporting strategy. Contin-

d,T) Truth if

uation payoffs are independent of history in an unrestricted mechanism, so o =0

for any t < T, for all m,m’, 0,60, € ©,

1—-9¢ 1 1—-96 1

5T5 (Ct(m), 6)+TEy [d((m7 y)7 HT)’Oé(m)] Z 1 _ 6T

T

This condition trivially holds if «(8) = «(#'). If a(8) # «(¢'), then E, [d((m,y), 0r)|a(m)] —
E,, [d((m/,y),07)|a(m’)] > 7(8) — 7(8") — 2d. So player 1 reports truthfully if

1—-6 2d 1 1—-6 1
ﬁ(stgl(a(e), 0) — — + =7(0) > !

0'gr(a(m'), 0)+ =By [d((m', y), Or)|o(m'

)



L So there exists 6 < 1

This inequality holds strictly as 6 — 1 because limg_,; 11__5‘; o' = 7.

such that for all § > ¢, player 1 reports truthfully in each period. Hence,
T-1

lim £ L=0 Zétutb(d’T)(é) = vl (a)

6—1 1—67T
t=0

as desired.

Lemma 4 (Lemma C.3). For any a € Al,

lim 97 (a) = Epr [g((0),0)] .

T—00
Proof of Lemma C.3. Suppose first that o € {dM’i,&m’i}i]il. If i = 1, then o}(a) = oTruth

by Lemma C.1 and the result follows immediately. If ¢ = 1, the result follows immediately

by Definition C.1.
Suppose instead that o € fl[\ {dM’i, dm’i}jil. This argument borrows heavily from the

analogous argument by RSV. I claim that player 1 reports truthfully “with high probability

in each period.” Formally, for any y > 0, there exists a T < oo such that if 7" > T, for all

0 €0,
=
(lsl_rg T ;Prob {a(m;) = a(b;)|c} > 1—x. (23)

Towards contradiction: suppose there exists x > 0 such that for all 7%, (23) does not hold.
Recall the set of copulas M C A(O x O) from Proposition 1. Define p as the copula that
player 1’s optimal strategy o approximates. For both (11) and (12) to hold simultaneously,

it must be that
21012 = 3737 gua(m), 0) (17 (m, 0) — p(m, 0)) . (24)

0cO meO

I seek to bound ||pT™#" — || using this statement.

a € A°M 5o Lemma 1 from RSV can be slightly modified to show that

> wm, 0)gi(a(m),0) < Y " (m, 0)g1(a(6),6)

0cO meo 0cO meO
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for any p that assigns positive weight to (m,6) combinations for which a(m) # a(0). wuo
is one of the finite number of extremal points {uo, ..., ur} € M. For each r < R, either
wr(m,0) > 0 for m,6 € © only if a(m) = a(f), or there exists ¢ > 0 such that for any
m,0 € O,

DSOS WM m, 0)g1(e(0),0) = Y ) p(m, 0)gi(a(m), 0) >

0O meO 0O meO

Let Ry = {r < R|u,(m,0) > 0 only if a(m) = «(#)}. There exist . > 0 that sum to 1
such that =" B,u,. Therefore, (24) may be written

4Xl|@|2 > Zee@ Zmé@ gi(a(m),0) (NTruth(ma 0) — ngR Brptr(m, 8)) =
S sco Smee 91(a(m), 0) (1= o) (m, 0) = S Bupn(m. 6) ) =
oco Lmeo 01(a(m), 0) I B (177 (m, 6) — p(m, 0)) =
S err B (Loco Lmeo (a1(a(m), 0) (177" (m, 0) = i (m,0)))) > €%, m,

So (24) implies
MO >c > B (25)

ré¢Rr

For any xo > 0, there exists T* < oo such that for all 7" > T™, there exists 0* < 1 such that
for all § > &%, x1|0©|*> < X2, and thus ngmT B, < 2.

For any p: © X © — R, define A(u) = 32, 9)ja(m)= a(e)u(m 0). Then A(pu) > 1 —

> ey Br > 1 =22 By (10), for any (m,0) € © x ©, th o fie(m, 0) — p(m,0) < 1.
Therefore, ‘/\ (% S ﬂt> - A (,u)‘ < x1/©]? and so

T-1

1

= > Prob {a(m) = a(8,)|o} > 1 - ff xi|ep.
t=0

As 0 — 1, choosing X1, x2 > 0 so that X2 + x]|©|*> < x proves the contradiction.
For any € > 0, choose T™ < oo such that for any 7" > T, there exists 0* < 1 such that if
d > 0%,

T-1

L= ZétProb{a my) = a(0,)|c®D} > 1 — e

1 =47
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The claim follows.

]

Definition 17 (Definition C.3). Consider the infinite-horizon dynamic game and fir T, K €
N and § € (0,1). A (T, K)-Recurrent mechanism in the game with an expert satisfies the

properties of Definition 8, with the following changes:
e The allocation implemented in block (k,j) is a7 € Al

e Property 4 is replaced by the following condition. For any public history ht,, at the
beginning of block (k,j):

1. If om0 e AN\{am™t aMAN,  then there exists wg’“’j)(h;ub) such that for all t*9) €

T(k’j)a My(k,5) € 6;

Z STKEG'=4) (1_5TK)E [vlT(oz(k’j/))

j'=j+1

* 1t _ _ kgt
0" Rpups M) s Tonin 70ed) = W] = Wy (hPub)'

2. If o®9) ¢ {am @M, | then define T™9) : © — R as the transfers satisfying
(4) for the allocation rule a®7). Then there exists wi’“’j)(h'jgub) € R such that for
all € O,

Z]o'/o:j—l-l 6TK(jl_j)<]' - 5TK)E [U{(a(hj/)) |J*7 h%ub’ My(kg) = ‘97 Tmin Tk:3) = W} -

16T

0 (W) + S ®9)().

Lemma 5 (Lemma C.4). For any ¢ > 0, there exists a K < oo and § < 1 such that if
K>K,§>6, and 675 <1 —¢, then in any (T, K)-Recurrent mechanism in the game with

an expert, o*is an optimal strategy. For any history h' at the start of block (k,j) and any

J>7,

Z (1-(5)(5t/E ['LLt/|*7 ht} € B (E [(1 — (ST)(SKTj/JrkTUT(a(kJ’))‘O_*’ ht] ’(1 o 5T)5KT]'/+I€T€> .

t'eT (k3"

(26)
Proof of Lemma C.4. For e, > 0, let Ky < oo be such that for any prior, ||7rk,—1)—7|| < €.
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Fix 0; < 1 and €; > 0 such that if 6 > ¢; and ||v — 7|| < €1, then Lemmas C.1 and C.2 hold
with bound ¢ > 0.
Let h' be a history in block (k,7j), and let Y *9) be the set of feasible strategies in the

T-period mechanism implementing o*7). Lemmas C.1 and C.2 imply that for all j' > j,

S I (1 6)E [uplo®, 1] — (1= 87)E [0 (@) o ]| < (1= 67)e,
t'eT (k5"
Which in turn implies (26).

It remains to show that o* is optimal for player 1. Consider a history h' at the beginning
of block (k,7) and define d;(m,6) as in (14). Conditional on history h’, 67 is independent
of 0. Thus, o* is optimal if (15) holds.

If alk9) e AT\ {dM’i,dm’i}jiz, then (15) holds by substituting d for d in the proof of
Proposition 3. If a7) ¢ {&M’i, dm’i}jiz, note that (17) holds. By Lemma C.2 it suffices to

show that d; satisfies
di(m, ) — di(1m,0) € B (TUw') (m) — 70D (1), (6, T)) .

Following the same steps as Proposition 3, for any x > 0, ¢; and €5 may be chosen

sufficiently small that

0o . E |:/UT a(k7]/) 0_*7 l_LI‘Illl'l{’__['(k5‘7)}7 m (ki) = m:| _
dy(m, 6) — dy(im,0) < 3 §7KC) D
'=jt+1 E [UT(Oé(k’” Do, BT} e = m] + 2x

with a similar bound from below. By Property 4(b) of Definition C.3, this bound may be

written

di(m,0) — d (11, 0) < S (555 (759 (m) — 769 (1) + 2 ) =

(r®D(m) = 709 (1)) + {5

and similarly from below.

So long as 675 < 1 —¢, x > 0 may be chosen sufficiently small (by choosing large
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§ <1land K < 1) that 1_25% is arbitrarily small. In particular, they can be chosen so that
di(m,0) < d. Therefore, o* is an optimal strategy by Lemma C.2.
O

Definition 18 (Definition C.4). A payoff v € RY is (T, ¢, W, §)-decomposable in the game

with an expert if there exists some o € AL and vectors w(y,0) € RY such that:

1. Ifa ¢ {aM dm’i}iE{Q ..... vy there exists w € RY such that for all§ € O, E, [w(y,0)|a(0)] =

w. If a € {aMi, qami

I
‘_Sl

}i€{2 77777 Ny there exists w € RY such that E.,, [w(y, 0)|a(6)]

2. The adding up constraint (6) holds.

3. Allocation rule o is (T, ¢, W, d)-enforceable:

(a) If o & {dM’l,dm’l};il, then for all i,m,0, (7) holds.

(b) If o € {@M’l,o?m’l}, then for all m,0, and i # 1, (7) holds. For i =1, (7) holds
if m=40.

(¢c) Ifa € {dM’l,dm’l}l];, then for all® € ©, E, [w1(y,0)|a(8)] = wy+(1—0)7Tmh (),
where I () satisfies Assumption 4 for a. For all i # 1,m,0, (7) holds. For
i =1, (7) holds if m = 0.

4. For any 0,0" € © such that «(0) = «(0"), for ally €Y, w(y,0) = w(y,').
A set W is (T,(,d)-decomposable if every w € W is (T, (, W, d)-decomposable.

Lemma 6 (Lemma C.5). Let W C RY be a closed, convex, bounded set. Suppose there
exists some 6 < 1 such that for all 6 > 5, there exists a continuous function ((§) > 0 such
that W is (T, ((0), d)-strictly self-decomposable. Then for all € > 0, there exists §* such that
for all 6 > 0%, w € W, there exists an equilibrium of the infinite-horizon game with payoff

v € B(w,e€).

Proof of Lemma C.5. Fix € > 0, let W C R" be such a set, and consider w € W. As in
Proposition 3, there exists ( > 0 such that if ¢ < (, there exists a 6 < 1 such that for all
§ > 6, K can be chosen so that W is (T, d7%)-decomposable
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Given § and K, define 6 = 675, Construct a mechanism as in the proof of Proposition
4. T claim this mechanism is (7, K)-recurrent in the game with an expert. Properties 1, 2,
and 3 of (7, K)-recurrent mechanisms in the game with an expert follow immediately from
the construction.

Consider Property 4 of (T, K)-recurrent mechanisms. Fix block (k,j). If a®) ¢
{&M’i, dm’i}l.];, then by definition of o* player 1 reports truthfully in each period of T,
Therefore,

I

% 7 min{d 7.9
7 h { 5

Eoor [7(0)] = @{*

(kvj) . o _(k’])
b [wl (yt(k»j)amt(k»j)ﬂa }, Tmin T(kg) = T| = W, +

because Fy., [7(8)] = 0. Applying (6) and noting that if 7_. ru,) = 7, then 7 +@ 1) =

7, I conclude

5TKw§k7j)(ht) _ Z 5TKj’(1 . 5TK>E [UT(O./(k’j+j/))|O'*, hminT<k’j+1)’ﬂ_minT%’jJrj/) _ W}
j'=1

Therefore, Property 4(b) of (T, K)-Recurrent mechanisms holds. If o) ¢ {dM’i,dm’i}iZiQ,
then a very similar argument shows that Property 4(a) holds. So Property 4 holds and the
constructed mechanism is (7', K')-Recurrent.

Suppose that players can commit to actions as a function of messages. Lemma C.4 applies
if 6 <1 and K < oo are sufficiently large. Hence, there exist §; < 1 and K; < oo such that
if § > 6, K > K;, and 075 < 1 — ¢, then o* (from Definition C.3) is an optimal reporting
strategy. If a9 ¢ {dM’i,dm”'}iJiQ, then v € B(w,2(1 — §75) + 67K() as in Proposition
4. If a®0) ¢ {dM’i,dm’i}iZiQ, then consider a modified (7', K')-Recurrent mechanism with
ak0) ¢ AI\ {@M,i’dm,i}jv

=2
satisfies |[v — w|| < 2(1 — 67%) + 675 ¢ by construction. So v € B(w,2(1 — 675) + 675().

and w1 = w. The payoff v in this modified mechanism

It remains to show that players have no incentive to deviate from the actions specified
by the mechanism. If a(*7) ¢ {dM’i, &m’i}i]\;, then the argument in Proposition 4 applies.!®
If aF9) € {aM dm’i}jvzz, then player 1 may deviate in three ways. First, she could report

truthfully but choose an incorrect action. Second, she could report falsely and play the

15Note that this argument applies regardless of players’ prior over 6, at the start of the period. Therefore,
it holds regardless of whether or not players observe their own payoffs.
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correct action for her reported type. Third, she could report falsely and play the wrong
action. The first and third types of deviation are not profitable because (7) holds for i = 1
and all (m,0). The second type of deviation is not profitable because truth-telling is an
optimal strategy in the mechanism. Thus, player 1 has no profitable deviation.

Player ¢ ¢ {l,1} likewise has no profitable deviation because (7) holds for all (m,#@).
Player [ believes that player 1 reports truthfully in each period, and hence believes m = 0
with probability 1. Therefore, player [ has no profitable deviation because (7) holds for
m = 0.'® This proves the result for §* > 0 and ¢ > 0 such that 2(1 — 6*) + 6*¢ < e.

O

Completing Proof of Theorem 2. Statement 1 of Lemma B.2 goes through without change.
For statements 2 and 3, the proof holds without change for a ¢ {dM’i,dm’i}i]\;. If a €
{dMﬁ@m’i}i]; and X\ # £(1,0,....,0), then Lemma B.2 goes through if the targeted con-
tinuation payoff is vf (a(6)) + 527(6) for player 1, and vf (a) for players i € {2, ..., N}. If
A = £(1,0,...,0), then no bonus scheme makes « enforceable and so k*(a, A\, (,d) = Foo.
Note, however, that k*(a, A, (,9) is the same as in Lemma B.2 if A = 4(1,0,...,0) and
ae {aMt amy.

For a unit normal \, define k7(\) = max__ 4 A - 0" (). Let HT(\) = H"(\,kT()\)) and
QT = Ny f]T()\). If A ==(1,0,...,0), then the proof of Proposition 5 uses k*(a, A, ¢, d) only
for v € {&M1, @™}, Thus, the relevant k* continues to be well-defined and the proposition

holds for Q7. But V7* C QT as in Theorem 1, so applying Lemma C.3 proves Theorem 2.
O

D Discussion of Alternative Mechanisms

This Appendix discusses a natural alternative to (7', K)-Recurrent Mechanisms, and high-

lights why such a natural construction would not work in the proofs of Theorems 1 and

16Consider the setting in which players observe their own payoffs. Suppose that in period ¢ — 1, player I’s
payoff was inconsistent with player 1’s reported type, even though player 1 was supposed to report truthfully
with probability 1. So player [ knows that player 1 has deviated. In that case, player 1 still has a strict
incentive to report truthfully in the current period. Thus, define player [I’s beliefs following the deviation as
any distribution with full support over types that are consistent with her observed payoff. Then incentives
in the continuation game are identical to the case where [ does not observe her payoff.
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2. Consider the following alternative construction: separate the infinite-horizon game in
blocks of T' periods, each of which is followed by another block of Ty periods in which play
is arbitrary. Fix T4 > 0 large. From the perspective of the last period in one block, the
distribution after T4 periods is close to the invariant distribution (though not vanishingly
close), so expected payoffs in that block are within some fixed € > 0 of invariant payoffs.
In much of what follows, I will ignore the Ty periods of arbitrary play and instead directly
assume that expected payoffs in future blocks are no more than e from invariant payoffs.
Let B > 0 be player i’s myopic gain from a deviation in period ¢, and let D’ be the
change in invariant payoffs in the block that is j blocks in the future from ¢ (with j > 1) as
a result of that deviation. For simplicity, assume expected payoffs in each future block are

no more than e away from invariant payoffs.!” Then player ¢ will not deviate if
(1—46 B+Z§TJ — 6T (D7 +2¢) <0

(2¢€ because both the on- and off-path expected payoffs could differ by e from their respective

invariant payoffs). Rewriting:
(1-6 B+Z(5TJ —6")DI < —267e.

To adapt the proof technique in FLM, it must be that Zj; 01— 6TDI — 0 as § — 1;
otherwise, continuation payoffs would not be in the set W of payoffs to be approximated
in equilibrium, since continuation invariant payoffs are drawn from a hyperplane that ap-
proaches the tangent hyperplane as § — 1.

If € = 0 (as it does in FLM), then this limit poses no problems because (1 —0)B — 0.
However, for any fized ¢ > 0, player ¢ will prefer to deviate as 6 — 1. Intuitively, player
1 cares much more about continuation payoffs than stage-game payoffs as 6 — 1, so in
particular cares about the possible gain in these continuation payoffs that arises due to

private information. In the limit, the potential gain from private information is larger than

17This is a very loose bound because private information continues to deteriorate over time, but it is useful
for illustrative purposes.
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the incentives provided by continuation play, so player ¢ cannot be deterred from deviating.
To decrease €, the construction must increase the number of inefficient periods 74. But
then Ty — oo as 6 — 1, so substantial inefficiencies might persist even in the limit. The
(T, K)-Recurrent mechanism avoids this problem because increasing K does not affect the

efficiency of the resulting equilibrium.
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