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1 Proof of Lemma 4

By applying an affine transformation on the payoffs of the players we can assume w.l.o.g. that

u(β) = (0, R) and u(γ) = (R, 0), and then Jη is the line segment that connects (η,R−2η)

and (R− 2η, η). We will prove that all the points on Jη are equilibrium payoffs.1

We construct an equilibrium in public strategies, in which the expected discounted

payoff after every public history is in Jη. The mixed-action pair αn that the players

play along the equilibrium path is either β or γ. Whenever the repeated game payoff xn

satisfies xn1 <
R−η

2
, i.e., whenever xn is in the upper half of the line segment Jη, the players

will play αn = β; otherwise they play αn = γ. Since the sum of payoffs of both players in

both β and γ is R, while the sum of payoffs of both players in each point on Jη is R− η,

the players must spend at every stage an expected amount of (1 − r∆)η on monitoring.

The expected amount spent on monitoring by Player i at stage n is pni ci. Consequently,

define

pi := (1−r∆)η
ci

, (12)

and instruct Player 1 (resp. Player 2) to monitor Player 2 (resp. Player 1) with probability

p1 (resp. p2) in every stage in which the players play the mixed-action pair β (resp. γ).

Condition (A4) implies that pi < 1. By Condition (A3) we have pi >
2(1−r∆)
r∆η

for

i ∈ {1, 2}. Due to the discussion in Section 5.2 (see Eq. (8)), a deviation of Player 2

(resp. Player 1) to an action outside the support of β2 (resp. γ1) is not profitable, provided

it triggers a punishment at the minmax level.

We now turn to the formal definition of the proposed equilibrium. For every stage

n = 1, 2, · · · if xn1 <
R−η

2
then

• αn = β: the players play the mixed-action pair β.

• pn1 = p1 and pn2 = 0. That is, only Player 1 monitors and he does it with probabil-

ity p1 given in (12).

• If Player 1 monitors Player 2 then xn+1 is given by (see Figure 8)

xn+1
1 :=

xn1 + c1

r∆
, xn+1

2 := R− η − xn1 + c1

r∆
.

• If Player 1 does not monitor Player 2 then xn+1 is given by

xn+1
1 :=

xn1
r∆
, xn+1

2 := R− η − xn1
r∆
.

1The attentive reader will note that due to the affine transformation on payoffs we in fact prove Lemma

4 only in the case that u1(γ) − u1(β) = u2(β) − u2(γ). This assumption simplifies the calculations and

highlights the main ideas of the proof.
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If xn1 ≥
R−η

2
the play is defined analogously: the players play the mixed-action pair γ,

Player 1 does not monitor Player 2, Player 2 monitors Player 1 with probability p2 given

in (12), if Player 2 monitors Player 1 at stage n then

xn+1
1 := R− η − xn2 + c2

r∆
, xn+1

2 :=
xn2 + c2

r∆
,

while if Player 2 does not monitor Player 1 at stage n then

xn+1
1 := R− η − xn2

r∆
, xn+1

2 :=
xn2
r∆
.

R

R

R− η

R− η
0

0

η

η

u(γ)

u(β)

xn

xn+1 if Player 1 monitored

xn+1 if Player 1 did not monitor

Jη

Figure 8: The construction in the proof of Lemma 4.

Since Dn
i = 0 for every n ∈ N, it is sufficient to verify that Conditions (C2)–(C6)

are satisfied. Since xi ≥ η > 0 ≥ vi for every x ∈ Jη and every i = 1, 2, Condition (C2)

holds. The definition of pi and Condition (A1) imply that Condition (C3) holds. The

verification that Conditions (C4)–(C6) hold follows by simple algebraic manipulations.

We provide here the verification of Condition (C4). Assume then that xn1 ≤
R−η

2
, so that

αn = β and pn1 = p1. Since Player 1 plays a best response at β, we have u1(a1, α
n
2 ) = 0 for

every a1 ∈ supp(αn1 ). Since Dn
1 = 0, Condition (C4) translates to xni = r∆xn+1

i − ci · 1Ini ,

which holds by the definition of xn+1
1 . Regarding Player 2, since he is indifferent at β, we

have u2(αn1 , a2) = R for every a2 ∈ supp(αn2 ). Since Dn
2 = 0, Condition (C4) translates

to

xn2 = (1− r∆)R + r∆
(
p1

(
R− η − xn1 +c1

r∆

)
+ (1− p1)

(
R− η − xn1

r∆

))
.

Since xn2 = R− η−xn1 , after cancelling the term R−xn1 from its both sides, this equation

reduces to p1c1 = (1− r∆)η, which holds by the definition of p1.

2 Proof of Lemma 5

By applying an affine transformation on the payoffs of the players we can assume that

R
(1)
1 = R

(2)
2 and u1(β) = u2(γ) = 0. We will prove the following result which implies

Lemma 5.
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Lemma 9. Let β = (β1, β2) and γ = (γ1, γ2) be two mixed-action pairs and let R > 0

such that the following conditions hold:

1. Player 1 plays a best response at β, u1(β) ≥ 0, and u2(β1, a2) ≥ R for every action

a2 ∈ supp(β2);

2. Player 2 plays a best response at γ, u2(γ) ≥ 0, and u1(a1, γ2) ≥ R for every action

a1 ∈ supp(γ1);

Then the pentagon Qη whose extreme points are (see Figure 9) (v1 +η, v2 +η), (v1 +η,R−
2η), (R− 2η, v2 + η), (η,R− 2η), and (R− 2η, η) is a subset of NE(r, c1, c2,∆), provided

that the parameters r, c1, c2, ∆, and η satisfy Conditions (A1)–(A4).

Proof of Lemma 9. Let ξ ∈ Qη. We will construct an equilibrium with payoff ξ. The

construction will be similar to the construction in the proof of Theorem 4, and will use

burning-money processes. Recall that pi = (1−r∆)η
ci

for i ∈ {1, 2}.
Fix a Nash equilibrium α∗ in the base game. The play in the first stages depends on

three parameters: a payoff vector x ∈ Qη close to Jη and two nonnegative integers k1 and

k2. We first describe the play in the first k := max{k1, k2} stages, and then explain how

to choose the parameters x, k1, and k2.

The players play as follows:

• They play the mixed action α∗ for k stages.

• In the first k1 stages Player 1 monitors Player 2, and in the first k2 stages Player 2

monitors Player 1. If, for example, k1 < k2, then in the first k1 stages both players

monitor each other, and in the following k2 − k1 stages Player 2 monitors Player 1

while Player 1 does not monitor Player 2.

• From stage k + 1 onwards the players implement an equilibrium with payoff x.

The payoff to each Player i is then (1− rk∆)ui(α
∗) + rk∆xi − (1− rki∆)c: in the first

k stages the players play α∗, in the first ki stages Player i monitors Player j, and the

continuation payoff at stage k is x. We choose the parameters x, k1, and k2 to satisfy

(D1) ξi = (1− rk∆)ui(α
∗) + rk∆xi − (1− rki∆)c.

(D2) xi ≥ η for i ∈ {1, 2}.

(D3) R− η − 2c ≤ x1 + x2 ≤ R− η.
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Conditions (D2) and (D3) ensure that x is close to Jη: there is y ∈ Jη that dominates x

and satisfies yi − xi ≤ 3c. Fix then such y ∈ Jη and set

x1 := y, D1 := y − x.

For every stage n > k, if xn1 ≤
R−η

2
:

• αn = β: the players play the mixed-action pair β.

• If Dn
i ≥ ci then pni = 1: a player with a high debt monitors the other player (and

burns money).

• If Dn
1 < c1 then pn1 = p1; if Dn

2 < c2 then pn2 = 0: Only Player 1 monitors with

positive probability. Recall that Player 1 plays a best response at β, so that he

cannot gain by deviating from β1, hence he does not have to be monitored.

• If Player 1 monitors Player 2 and finds out that Player 2 played an action a2 6∈
supp(β2), then from stage n+ 1 onwards he switches to a punishment strategy that

reduces Player 2’s payoff to v2 + η.

In case xn1 > R−η
2

the play is analogous: the players play the mixed-action pair γ, a

player with a debt of at least ci monitors the other with probability 1; if Player 1’s

(resp. Player 2’s) debt is lower than c1 (resp. c2), then he does not monitor Player 2

(resp. monitors Player 2 with probability p2); and if Player 2 monitors Player 1 and finds

out that Player 1 played an action outside the support of γ1, then he switches to a minmax

strategy against Player 1.

It is left to define the processes (xn)n∈N and (Dn)n∈N so that (a) the discounted payoff

will be x, and (b) no player will have an incentive to deviate. We will define these two

processes recursively. Suppose that xn ∈ Jη and Dn ∈ R2
+ have already been defined, and

assume that xni −Dn
i ≥ vi + η for i = 1, 2. If xn1 ≤

R−η
2

, define yn, zn, wn ∈ Jη as follows

(see Figure 9):

wn1 :=
xn1
r∆ + η(1− r∆) =

R−xn2
r∆ − η, wn2 :=

xn2−(1−r∆)R

r∆ ,

yn1 :=
xn1 +c

r∆ , yn2 := R− η − xn1 +c

r∆ ,

zn1 :=
xn1
r∆ , zn2 := R− η − xn1

r∆ .

(13)
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R

R

R− η

R− η

v2

v1

v2 + η

v1 + η

η

η

u(β)
u(γ)

xn

yn
zn
wn

Jη
Qη

Figure 9: The construction in the proof of Lemma 4.

The payoff vectors yn and zn will be the continuation payoffs when Player 1’s debt is

lower than c1. These quantities are similar to xn+1 in the proof of Lemma 4, where yn

(resp. zn) was the continuation payoff when Player 1 monitored (resp. did not monitor)

Player 2. wn will be the continuation payoff when Player 1’s debt is higher than c1. Note

that these three vectors are on Jη.

When xn1 > R−η
2

, the roles of the two players are exchanged: they play the mixed-

action pair γ, Player 2 monitors Player 1 with positive probability, and the continuation

payoffs wn, yn, and zn are defined analogously.

The continuation payoff xn+1 and the debt Dn+1 are given by the following table. For

the sake of convenience we provide the quantity r∆Dn+1
i for i = 1, 2. When Player 1

monitors Player 2, the action a2 that Player 2 plays at stage n is common knowledge, and

Dn+1 can depend on it. Recall that the event that Player i monitors Player j at stage n

is denoted by Ini .

If xn1 ≤
R−η

2 and ... xn+1 r∆Dn+1
1 r∆Dn+1

2

1 Dn
1 ≥ c1, D

n
2 ≥ c2 wn Dn

1 − c1 + (1− r∆)u1(β) + (1− r∆)η Dn
2 − c2 + (1− r∆)(u2(β1, a2)−R)

2 Dn
1 ≥ c1, D

n
2 < c2 wn Dn

1 − c1 + (1− r∆)u1(β) + (1− r∆)η Dn
2 + (1− r∆)(u2(β1, a2)−R)

3 Dn
1 < c1, I

n
1 , D

n
2 ≥ c2 yn Dn

1 + (1− r∆)u1(β) Dn
2 − c2 + c1

η (u2(β1, a2)−R)

4 Dn
1 < c1, I

n
1 , D

n
2 < c2 yn Dn

1 + (1− r∆)u1(β) Dn
2 + c1

η (u2(β1, a2)−R)

5 Dn
1 < c1,¬In1 , Dn

2 ≥ c2 zn Dn
1 + (1− r∆)u1(β) Dn

2 − c2 + (1− r∆)(u2(β)−R)

6 Dn
1 < c1,¬In1 , Dn

2 < c2 zn Dn
1 + (1− r∆)u1(β) Dn

2 + (1− r∆)(u2(β)−R)

Figure 10: The continuation payoff and the debt.

We explain below the intuition behind the definition of the burning-money process for

Player 1.
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• Whenever a player monitors the other to burn money (i.e., Dn
i ≥ ci, which implies

pni = 1), his debt decreases by ci. For instance, in lines 1 and 2, the first part of

r∆Dn+1
1 is Dn

1 − ci.

• When Dn
1 ≥ ci, as in lines 1 and 2, the last part of r∆Dn+1

1 is (1− r∆)η. The reason

for adding this term is that the construction assumes that the stage payoff is (0, R)

or (R, 0), so that the sum of stage payoffs of the two players is R. However, the sum

of payoffs in all points in Jη is R − η. Since both the continuation payoff and the

current payoff should be on Jη, we need to add (1− r∆)η to the debt of the players.

• Whenever Dn
1 ≥ c1, the continuation payoff wn+1 is defined to satisfy Condition

(C6) for Player 1. Indeed, using the definition of wn and Dn,

(1− r∆)u1(β)− c1 + r∆w1 − r∆Dn+1
1

= (1− r∆)u1(β)− c1 + r∆
(
xn1
r∆ + η(1− r∆)

)
−
(
Dn

1 − c1 + (1− r∆)u1(β) + (1− r∆)η
)

= xn1 −Dn
1 .

• Whenever Player 1 decides randomly whether or not to monitor Player 2 (lines 3–6

in the table in Figure 10), the continuation payoff xn+1 is given as in the proof of

Lemma 4. In case Player 1 monitors Player 2, the continuation payoff is yn and

otherwise it is zn. The continuation payoffs were chosen to ensure that Condition

(C4) holds. We verify this for line 3.

(1− r∆)u1(β) + r∆y1 − r∆Dn+1
1

= (1− r∆)u1(β)− c1 + r∆y1 − [Dn
1 + (1− r∆)u1(β)]

= (1− r∆)u1(β)− c1 + r∆[
xn1 + c1

r∆
]− [Dn

1 + (1− r∆)u1(β)]

= xn1 −Dn
1 .

We now verify that this definition satisfies the conditions listed in Section 5.3. In the

first k stages no player can profit by deviating, and so we need to verify these conditions

only from stage k onwards. We first check that Condition (C2) holds. One can verify that

if Dn
i ≥ ci then xn+1

i −Dn+1
i ≥ xni −Dn

i , and the result follows by induction. Otherwise,

Dn+1
i ≤ ci

r∆ . When xn1 ≤
Rη
2

, we have yn1 , z
n
1 ≥ xn1 ≥ η, and therefore xn+1

1 − Dn+1
1 ≥ 0.

Since xn2 ≤ R
2

, it follows that xn+1
2 − Dn+1

2 ≥ 0. The definition of pi together with

Condition (A3) imply that Condition (C3) is satisfied. The verification that Conditions

(C4)–(C6) hold amounts to substituting the quantities defined above in the relevant

equations, as illustrated above.
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3 Proof of Lemma 6

We denote u(a) = (A,B), and distinguish between four cases that are handled separately

(see Figure 11):

Case 1: u1(a) ≥ t21 and u2(a) ≥ t12.

Case 2: u1(a) < t11 and u2(a) > t12.

Case 3: u2(a) < t22 and u1(a) > t21, which is analogous to Case 2.

Case 4: Cases 1–3 do not hold.

Case 2

Case 3

Case 1

Case 4

Case 4

Case 4

t1

t2

(t21, t
1
2)

v2
v1

J

Figure 11: The four cases in the proof of Lemma 5.

The construction in this section will not employ burning-money processes. Rather,

we use a recursive construction: we identify a set J1 of payoff vectors, which can be

arbitrarily close to J ′, and for every payoff vector g ∈ J1 we define a one-shot auxiliary

game in which (a) the payoffs are the stage-payoff in the base game plus a continuation

payoff; (b) the continuation payoff, which depends on the players’ choices, are in J ∪ J1;

and (c) there is an equilibrium whose payoff is g and in which each player monitors the

other with probability p that satisfies Eq. (8).

4 Case 1: u1(a) ≥ t21 and u2(a) ≥ t12.

Roughly, we prove that all the points in the triangle whose extreme points are t1, t2,

and (t21, t
1
2) are in E(r, c,∆), provided that c1, c2, and ∆ are sufficiently small. Fix

η < min{ t
2
1−u1(β∗)

7
,
t12−u2(γ∗)

7
}. Denote by −α the slope of the line segment [t1, t2]. Set (see
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Figure 12)

w1 := (t11 + η, t12 − 2αη), w2 := (t21 − 2η, t22 + αη), (14)

s1 := (t11 + 2η, t12 − 3αη), s2 := (t21 − 3η, t22 + 2αη), (15)

ẑ := (t21 − 4η, t12 − 4αη). (16)

Since J is an asymptotic set of Nash equilibrium payoffs, Lemma 5 implies that all the

points in the pentagon J0 whose extreme points are (v1, v2), (v1, w
1
2), (w2

1, v2), w1, and w2

are in E(r, c1, c2,∆), provided that c1, c2, and ∆ are sufficiently small. Denote the slope

of the line segment [s1, ẑ] by −d := − αη
t21−u1(β∗)−6η

, and the slope of the line segment [ẑ, s2]

by −e := − t12−u2(γ∗)−6αη

η
(see Figure 12).

By the choice of η,

E0: s1
1 < ẑ1 and s2

2 < ẑ2,

so that e > d > 0.

Assume that c1, c2, and ∆ are sufficiently small to satisfy Conditions (A1)–(A4), as

well as the following conditions for i ∈ {1, 2}:

E1: 1− r∆ < ci <
η
6
.

E2: 1
η
ci <

1
4
Be, 1

4
Ad < η

2(1−r∆)
.

E3: 2ci
dr∆ ,

2eci
r∆ < η.

E4: r∆ > 1
2

and 4(1− r∆) < η.

We will show that all points in the triangle J1, whose extreme points are s1, s2, and ẑ,

are in E(r, c1, c2,∆).
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ẑ

w1

w2

s1

s2

t1

t2

u(a) = (A,B)

slope = −d

slope = −e

slope = −α

J0

J1

g = (0, 0)

Figure 12: Case 1.

Fix a point g in the triangle J1, and for the calculations below add a constant to the

payoff so that g = (0, 0). We now describe a 2× 2 one-shot auxiliary game G(ζ1, ζ2, x, y)

whose payoffs depend on four positive real numbers ζ1, ζ2, x, and y, and an equilibrium

in that game that yields the payoff (0, 0).

• Each player has two actions, “Monitor” and “Don’t Monitor”.

• The payoff function is given by the table in Figure 13, in which at each entry,

Player 1’s payoff appears at the top and Player 2’s payoff at the bottom.

Player 2

Player 1

Monitor

Don’t Monitor

Don’t Monitor Monitor

(1− r∆)A+ r∆ ζ2
e
− c1

(1− r∆)B − r∆ζ2

(1− r∆)A− r∆x

(1− r∆)B − r∆y

(1− r∆)A− c1

(1− r∆)B − c2

(1− r∆)A− r∆ζ1

(1− r∆)B + r∆dζ1 − c2

Figure 13: The game G(ζ1, ζ2, x, y).
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The payoff is calculated as if, in the original repeated game with costly observation,

the players play the pure action pair a, each player chooses whether to monitor the other

player, and the continuation payoffs, which depend on the identity of the players who

chose to monitor, are given by the matrix in Figure 14.

Player 2

Player 1
Monitor

Don’t Monitor

Don’t Monitor Monitor

ζ2
e
,−ζ2

−x,−y
0, 0

−ζ1, dζ1

Figure 14: The continuation payoffs that underlie the game G(ζ1, ζ2, x, y).

Because the slopes of the line segments that define J1 are −d and −e, the vectors

( ζ2
e
,−ζ2) and (−ζ1, dζ1) are in J0 ∪ J1, provided that ζ1 and ζ2 are sufficiently small.

Recall that g = (0, 0) is in J1. We will have to ensure that x, y ∈ [0, η] so that (−x,−y)

is in J0 ∪ J1.

Set

p := 2(1−r∆)
r∆η

. (17)

We will find positive numbers ζ1, ζ2, x, and y such that the pair of strategies in which

each player monitors the other with probability p is an equilibrium of G(ζ1, ζ2, x, y) with

payoff (0, 0). By Eq. (8), this will imply that in the repeated game no player can profit

by a deviation to an action that he is supposed to play with probability 0, provided

such a deviation leads to a punishment at the maxmin level. By solving the indifference

conditions of the players we obtain that if

ζ2 =
e(c1 − (1− r∆)A)

r∆(1− p)
, (18)

ζ1 =
c2 − (1− r∆)B

dr∆(1− p)
, (19)

x =
(1− r∆)Ad(1− p)− p(c2 − (1− r∆)B)

d(1− p)2
, (20)

y =
(1− r∆)B(1− p)− pe(c1 − (1− r∆)A)

(1− p)2
, (21)

then having both players monitor each other with probability p is an equilibrium of

G(ζ1, ζ2, x, y).

Condition (E1) implies that ζ1 and ζ2 are positive; Conditions (E2) and (E4) imply

that x and y are positive; Conditions (E3) and (E4) imply that ζ1 and ζ2 are smaller

than η; and Condition (E2) implies that x and y are smaller than η. This concludes the

proof for Case 1.
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5 Case 2: u1(a) < t21 and u2(a) > t12.

The proof in this case is similar to the proof in Case 1, with a different definition of ẑ,

and the calculations are slightly more cumbersome. Recall that u(a) = (A,B), so that in

this case A < t11 and B > t12 (see Figure 15). The slope of the line segment [u(a), t2] is
t22−B
t21−A

< 0. Fix η > 0 sufficiently small to satisfy η < − t22−B
t21−A

, and define the points w1, w2,

s1, and s2 as in Case 1 (see Eqs. (14)–(15)). Set

e := − t22−B
t21−A

− η > 0.

Consider the line with slope −e that passes through s2, and let ẑ be the point on this

line that satisfies ẑ2 = t12 − 4η. Let d be the slope of the line segment [s1, ẑ]. Then

0 < d < e < ∞. Suppose that (E2)–(E4) hold for the d and e defined here, as well as

the following two conditions:

E5: ec1 <
1
8
, e(1− r∆)(−A) < 1

8
, and c2 < 4dη.

E6: d(−A)η2 > 8e(c2 + dc1).

Denote by J1 the triangle whose extreme points are s1, s2, and ẑ. We will prove that

all the points in the triangle J1 are in E(r, c1, c2,∆), provided that c1, c2, and ∆ are

sufficiently small.
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u(a) = (A,B)

ẑ

w1

w2

s1

s2

t1

t2

slope = −d

slope = −e

slope = −e− η

slope = −αJ

J1

g = (0, 0)

Figure 15: The setup in Case 2.

Fix a point g ∈ J1 and for the calculation below add a constant to the payoffs so that

g = (0, 0). Because g = (0, 0) is below the line segment [u(a), t2],

B
−A > e+ η. (22)

Consider the 2× 2 one-shot auxiliary game G(ζ1, ζ2, x, y) that is defined in Figure 14.

Having each player monitor the other with probability p = 3(1−r∆)
r∆η

is an equilibrium in the
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game G(ζ1, ζ2, x, y) that yields payoff (0, 0), where ζ1, ζ2, x, and y are given by (18)–(21).

Because A is negative, x is negative as well.

Condition (E1) implies that ζ1 is positive and together with Condition (E3) it implies

that it is less than η. Plainly ζ2 is positive, and Conditions (E1) and (E5) imply that is

it less than η. Condition (E2) implies that y is positive and Conditions (E1) and (E4)

implies that it is less than η. As mentioned above, x is negative, and Conditions (E1)

and (E5) imply that it is larger than −η.

To complete the proof we need to show that (−x, y) lies in J0 ∪ J1. To this end we

show that −y−x > −e. By Eqs. (20)–(21), this inequality reduces to

(1− r∆)dB(1− p)− ped(c1 − (1− r∆)A) > pe(c2 − (1− r∆)B)− (1− r∆)Ade(1− p).

Since p = 3(1−r∆)
r∆η

, we can divide all terms by (1− r∆), so that this inequality is equivalent

to

d(1− p)(B + Ae) + pe(dA+B) > 2e(c2+dc1)
r∆η

,

which holds by Condition (E6).

6 Case 4

To solve Case 4 we use Case 1 and jointly controlled lotteries. Specifically, by Case 1, the

grey area in Figure 16 is in NE(r, c1, c2,∆), provided that c1, c2, and ∆ are sufficiently

small.

w

ẑ

t1

t2

M2

M1

v2
v1

u(a)

J ′0

Part A

w

ẑ

u(a)

t1

t2

M2

M1

v2
v1

J ′0

Part B

Figure 16: The Proof in Case 4.
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To complete Case 4 we will show that the set NE(r, c1, c2,∆) is almost convex. Indeed,

suppose that at the first stage the players jointly choose between, say, implementing as

an equilibrium payoff a vector close to ẑ or a vector close to t2. This is done as follows:

• Let a1, a
′
1 ∈ A1 and a2, a

′
2 ∈ A2 be two distinct actions of the two players. At the

first stage Player 1 (resp. Player 2) chooses either a1 or a′1 (resp. a2 or a′2) with equal

probabilities, and both players monitor each other.

• If at the first stage one of the players fails to monitor the other, or fails to play one

of the designated actions, both players switch to punishment strategies.

• Otherwise, according to the realized action pair at the first stage, the players im-

plement from the second stage onwards one of the following payoff vectors as an

equilibrium payoff, where w = t2 + (−η, η).

Action pair Player 1’s payoff Player 2’s payoff

(a1, a2) ẑ1 − (1− r∆)u1(a1, a2) ẑ2 − (1− r∆)u2(a1, a2)

(a1, a
′
2) w1 − (1− r∆)u1(a1, a

′
2) w2 − (1− r∆)u2(a1, a

′
2)

(a′1, a2) w1 − (1− r∆)u1(a′1, a2) w2 − (1− r∆)u2(a′1, a2)

(a′1, a
′
2) ẑ1 − (1− r∆)u1(a′1, a

′
2) ẑ2 − (1− r∆)u2(a′1, a

′
2)

7 Public Perfect Equilibria

In the construction of Nash equilibria we used threats of punishment. In this section we

modify the proof of Lemma 5 so that the implementation of the vector ξ := (v1 +η, v2 +η)

will not involve noncredible threats. As is common in the literature, the implementation

of a credible punishment is accomplished by having the players lower their payoffs for a

fixed number of stages and returning to the equilibrium play afterwards.

The implementation of ξ in the proof of Lemma 5 includes a first phase that lasts

k stages, in which the players follow an equilibrium α∗ of the base game and partially

monitor each other. We change only the implementation of this phase.

Suppose w.l.o.g. that k1 ≤ k2, so that k = k2. Thus, Player 1 monitors Player 2 in the

first k1 stages, and Player 2 monitors Player 1 in the first k2 stages.

• In the first k stages Player 1 plays a minmax mixed action β1.

• In the first k1 stages Player 2 plays a minmax mixed action β2.

• In the following k2 − k1 stages Player 2 plays a best response γ2 against β1.
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If no deviation occurs, the expected payoff to Player 1 in the first k stages, given the

public history, is

δ1 :=

k1∑
n=1

(1− r∆)r(n−1)∆u1(an1 , a
n
2 ) +

k2∑
n=k1+1

(1− r∆)r(n−1)∆u1(an1 , γ2)− (1− rk1∆)c,

and the expected payoff to Player 2 in the first k stages, given the public history, is

δ2 :=

k1∑
n=1

(1− r∆)r(n−1)∆u2(an1 , a
n
2 ) +

k2∑
n=k1+1

(1− r∆)r(n−1)∆u2(an1 , γ2)− (1− rk2∆)c.

The continuation payoff x will be a random variable that satisfies

ξ = δ + rk2∆x,

where δ = (δ1, δ2). Provided ∆ is small, x is in Qη and satisfies d(x, Jη) ≤ 2η.

Whenever a deviation is observed, the players restart implementing ξ with the above

construction. It is left to the reader for verify that the construction is indeed a public

perfect equilibrium.
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