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In this online appendix, we discuss budget balance and surplus extraction in dynamic

mechanisms with interdependent valuations. We also study efficient dynamic mechanisms

when agents’ signals evolve independently. Finally, we provide proofs that are omitted in

the main paper.

1. Budget-Balanced Mechanisms

We first consider budget-balanced mechanisms when time horizon is infinite (T = ∞).1

The mechanism Γ = (Θt, at, pt)
T
t=1 is ex ante budget balanced if

E

[
T∑
t=1

δt−1

N∑
i=1

pit

]
≥ 0.

The mechanism is budget balanced if for each t,

E

[
N∑
i=1

pit

]
= 0.

The mechanism is ex post budget balanced if for each t,

N∑
i=1

pit ≡ 0.

These notions are related to the mechanism designer’s financing abilities. When the designer

has access to long-term outside financing, an ex ante balanced budget means that the ex-

pected present value of all transfers from agents is non-negative. If the financing ability is

limited, the relevant notion is budget-balance, which says that in each period the designer

Date: First draft: March 15, 2013. Current draft: July 25, 2017.
1For the finite-horizon case, the same approach adopted in this subsection yields a balanced budget in all

but the last period.
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breaks even on average. Without any outside financing, ex post budget-balance requires that

agents’ transfers sum to zero in each period for any realized signal profile.

As we mentioned in the paper, one problem with the constructed efficient dynamic mech-

anisms is that they run large deficits subsidizing agents in each period. Budget balance

requires these subsidies to be financed by the participants. An important insight from

Athey and Segal [1] is that the problem of contingent deviations needs to be carefully ad-

dressed when signals are persistent, since transfers in each period to be calculated based on

the conditional distribution of signals in order to balance the budget. However, the condi-

tional distributions are manipulable by agents through their previous reported signals. The

balanced team mechanism proposed by Athey and Segal [1] is not applicable in our settings

with interdependent valuations and information correlation.

We first show that ex ante budget balanced mechanisms can be constructed by introducing

participation fees to the original efficient dynamic mechanism in the first period. After ob-

serving the first period’s signal θi1, each agent i pays a proportion of the expected discounted

sum of other agents’ total subsidies, an amount that is independent of her current signal θi1.

In expectation, the total amount of participation fees is equal to the total amount of future

subsidies. Specifically, let {pit} denote the transfers in efficient dynamic mechanism con-

structed in Theorem 3.1 in the paper. Note that for each i, pi1 ≡ 0. For each θ1 ∈ Θ1, every

agent’s equilibrium payoff in the efficient mechanism is W (θ1). So the expected discounted

sum of subsidies for agent i is

E

[∑
t≥1

δt−1pit

]
= E

[
W (θ1)−

∑
t≥1

δt−1ui(a∗t (θt), θt)

]
,

where the expectation is over the entire sequence of signal profiles. For each i and θi1, define

ηi(θi1) , −E

[∑
t≥1

δt−1pit

∣∣∣θi1
]

= −E

[
W (θ1)−

∑
t≥1

δt−1ui(a∗t (θt), θt)
∣∣∣θi1
]
.

Then for each agent i, consider the transfers {p̃it} defined as

p̃i1(θ1) =
1

N − 1

∑
j 6=i

ηj(θj1),

and p̃it = pit for t ≥ 2. Note that p̃i1 is independent of agent i’s report, so {p̃it} is also periodic

ex post incentive compatible. Moreover, by the law of iterated expectations, the expected



DYNAMIC MECHANISMS 3

sum of transfers satisfies

E

[
N∑
i=1

∑
t≥1

δt−1p̃it

]
= E

[
N∑
i=1

p̃i1 +
N∑
i=1

∑
t≥2

δt−1p̃it

]

= E

[
N∑
i=1

(
ηi(θi1) +

∑
t≥1

δt−1pit

)]

=
N∑
i=1

E

[
−E

[∑
t≥1

δt−1pit

∣∣∣θi1
]

+
∑
t≥1

δt−1pit

]

= 0.

Suppose next that the designer has limited instruments for intertemporal financing. We

now construct a budget balanced mechanism under which the expected sum of transfers in

each period is zero. For each i, t, at and θt, define

ξi(at, θt) , ui(at, θt)−
1

N

N∑
j=1

uj(at, θt)

to be the deviation of agent i’s flow utility from the average flow utility. Since ξi(at, θt) is

bounded, by the argument in the proof of Theorem 3.1, if Assumption 2 holds, there exist

transfers p̂it+1 : Θ−it+1 × Θi
t × At × Θ−it → R such that for each at, θ

−i
t and each pair (θit, r

i
t),

we have

ξi(at, θt) = δ
∑

θt+1∈Θt+1

p̂it+1(θ−it+1, θ
i
t; at, θ

−i
t )µt+1(θt+1|at, θt)

≤ δ
∑

θt+1∈Θt+1

p̂it+1(θ−it+1, r
i
t; at, θ

−i
t )µt+1(θt+1|at, θt).

Set p̂i1 ≡ 0 for each i and consider the dynamic mechanism {a∗t , p̂t}. The expected sum of

transfers in period t+ 1 under the truthful strategies is

∑
θt+1∈Θt+1

N∑
i=1

p̂it+1(θ−it+1, θ
i
t; a
∗
t (θt), θ

−i
t )µ(θt+1|a∗t (θt), θt) =

N∑
i=1

ξi(a∗t (θt), θt) = 0.

Moreover, if Assumption 3 holds, then similar to the logic in Theorem 3.2, there are

transfers p̃it+1 : Θ−it+1 × At ×Θ−it → R such that for each at and θt, we have

ξi(at, θt) = δ
∑

θt+1∈Θt+1

p̃it+1(θ−it+1; at, θ
−i
t )µt+1(θt+1|at, θt),
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and hence a balanced budget

∑
θt+1∈Θt+1

N∑
i=1

p̃it+1(θ−it+1; a∗t (θt), θ
−i
t )µt+1(θt+1|a∗t (θt), θt) = 0.

Therefore, we only need to show that either {p̂t} or {p̃t} achieves incentive compatibility.

The result is summarized in the next proposition.

Proposition 1.1. Suppose T =∞. Under either Assumption 2 or 3, there exists an efficient

dynamic mechanism that is periodic ex post incentive compatible and balances the budget

in the truthful equilibrium.

Note that the above transfers, {p̂t} and {p̃t}, only balance the budget on the equilibrium

path. More assumptions on the joint distributions of signals are needed for ex post budget

balance along the line of analysis in Kosenok and Severinov [6] and Hörner, Takahashi and

Vieille [5]. Since this question is beyond the scope of the current paper, we leave it for future

research.

2. Efficient Mechanisms without Correlation

If the correlation conditions are violated, the construction in the proof of Theorem 3.1 and

Theorem 3.2 may not work for some utility functions. In this section, we drop the assumption

that signal spaces are finite but restrict our attention to one-dimensional environments and

the evolution of private information is independent across agents. We construct a transfer

schedule that extends the generalized VCG mechanism to dynamic settings.

We say that a transfer {pt}Tt=1 or a mechanism {a∗t , pt}Tt=1 is history-independent if for each

t and θt, and for any two public histories ht and h′t,

pt(ht, θt) = pt(h
′
t, θt).

That is, a history-independent transfer pt depends only on the reported profile rt ∈ Θt in

period t. Under a history-independent mechanism, agent i’s period-t continuation payoff

depends only on her private signal θit, i.e.,

V i
t (θit) = max

rit∈Θi
t

E
[
ui(a∗t (r

i
t, θ
−i
t ), θt)− pit(rit, θ−it ) + δV i

t+1(θit+1)
]
.
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In this case, we also define V i
t (at, θt) as

V i
t (at, θt) = ui(at, θt) + δE [V i

t+1(θit+1)|at, θt].

Assumption 5 (One-dimensional private signals) For each i and each t, Θi
t = [0, 1].

Under Assumption 5, we can generalize the monotonicity condition in static model studied

by Bergemann and Välimäki [2]. To save notation, assume that for each t, At = A ≡

{a1, . . . , aK}. For any i, t and θ−it , define the set Θi,k
t ⊂ Θi

t as

Θi,k
t =

θit ∈ Θi
t

∣∣∣∣∣∣
∑

i u
i(ak, θt) + δE [Wt+1(θt+1)|ak, θt]

≥
∑

i u
i(al, θt) + δE [Wt+1(θt+1)|al, θt],

∀al 6= ak

 .

We say that the collections of sets {Θi,k
t }Kk=1 satisfies monotonicity if for each k, θit, θ̃

i
t ∈ Θi,k

t

implies that for each λ ∈ [0, 1], λθit + (1 − λ)θ̃it ∈ Θi,k
t . Under monotonicity, there exists an

efficient allocation a∗t in period t such that after relabeling the social alternatives, Θi
t can

be partitioned into successive intervals {Si,1t , . . . , S
i,K
t } and each ak is chosen if and only if

θit ∈ S
i,k
t . Then for each i, t and θ−it , there is a linear order ≺it (which also depends on θ−it )

on A:

a1 ≺it . . . ≺it aK .

Assumption 6 (Independent transitions) For t = 1, µ1 =
∏N

i=1 µ
i
1, where for each i,

µi1 ∈ ∆(Θi
1). For each t > 1, µt(θt|at−1, θt−1) =

∏N
i=1 µ

i
t(θ

i
t|at−1, θ

i
t−1), where for each i,

µit : A×Θi
t−1 → ∆(Θi

t) is a transition probability.

Suppose a∗t (θt) = ak, then consider the following history-independent transfer

pit
∗
(θt) =

k∑
κ=1

∑
j 6=i

[
uj(aκ−1, xit(κ, θ

−i
t ), θ−it )− uj(aκ, xit(κ, θ−it ), θ−it )

]
(1)

+
k∑

κ=1

δE
[
Wt+1(θt+1)− V i

t+1(θt+1)|aκ−1, xit(κ, θ
−i
t ), θ−it

]
−

k∑
κ=1

δE
[
Wt+1(θt+1)− V i

t+1(θt+1)|aκ, xit(κ, θ−it ), θ−it
]
,

where xit(κ, θ
−i
t ) , inf{θit : a∗t (θ

i
t, θ
−i
t ) = aκ}. Note that pit

∗
(θt) does not depend directly on

θit under Assumption 6.
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Finally, recall that Wt(θt) is the continuation social surplus given period-t signal profile

θt. For each at and θt, define Wt(at, θt) as

Wt(at, θt) =
N∑
i=1

ui(at, θt) + δE [Wt+1(θt+1)|at, θt].

The next theorem shows that the transfer constructed in (1) is periodic ex post incentive

compatible under some restrictions on the primitives. Therefore, it extends of the generalized

VCG mechanism to dynamic environments with interdependent valuations.

Proposition 2.1. Suppose that Assumptions 5 and 6 hold. There exists a periodic ex post

incentive compatible mechanism {a∗t , pt} with history-independent transfers if for each t, i

and θ−it , there exists an order on the allocation space A such that

(1) Wt(at, θ
i
t, θ
−i
t ) is single-crossing in (at, θ

i
t),

(2) V i
t (at, θ

i
t, θ
−i
t ) has increasing difference in (at, θ

i
t).

Remark 2.2. The transfer schedule (1) can also be viewed a generalization of the dynamic

pivot mechanism constructed by Bergemann and Välimäki [3]. To see this, suppose that

each utility function ui does not depend on θ−it and that private information is statistically

independent across agents, then (1) can be written as

pit
∗
(θt) =

∑
j 6=i

[
uj(a∗t (θ

i, θ−i), θ−it )− uj(a∗t (θt), θ−it )
]

+ δE
[
W−i(θt+1)|a∗t (θi, θ−i), θt

]
− δE

[
W−i(θt+1)|a∗t (θt), θt

]
,

where

W−i(θt) = W (θt)− V i(θt) = max
{as}s≥t

E

[∑
s≥t

δs−t

(
ui(as, θ

i) +
∑
j 6=i

uj(as, θ
j
s)

)]
.

Therefore each agent i’s transfer pit
∗

in every period t is the flow externality cost that she

imposes on other agents.

3. Surplus Extraction

In this section, we consider the problem of full surplus extraction in the infinite-horizon

(T = ∞) case. We assume that each agent’s utility function is non-negative and normalize

each agent’s outside option from any period onward to zero. To simplify notations, we also
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assume that the transition probabilities are stationary, i.e., for each t, Θt = Θt+1, At+1 = At,

and µt+1(θt+1|at, θt) = µ(θt+1|at, θt). We will show that the designer can always extract all

the expected surplus from the agents by exploiting the intertemporal correlation of private

information. We also emphasize that intertemporal correlation plays a key role in surplus

extraction as it does in efficient mechanisms. In contrast, the attempt of generalizing Crémer

and McLean [4] and McAfee and Reny [7] based on correlation of intra-period signals fails

due to the possibility of belief manipulations by agents.

Formally, we say that a dynamic mechanism {at, pt} achieves full-surplus extraction if

E

[
W (θ1)−

N∑
i=1

∞∑
t=1

δt−1pit

]
= 0.

That is, the expected discounted total transfer collected by the designer is equal to the

expected maximal social surplus. The following result shows that a simple modification of

the efficient dynamic mechanism in Theorem 3.1 ensures full surplus extraction and agents’

participation constraints in the first period.

Proposition 3.1. Suppose T =∞. Under Assumptions 1 and 2 (or Assumptions 1 and 3),

there exists a periodic ex post incentive compatible dynamic mechanism that achieves full

surplus extraction.

In effect, the dynamic surplus extraction mechanism in Proposition 3.1 asks each agent to

pay a fixed and bounded participation fee and choose from a collection of lotteries in each

period, followed by announcing her current signal as in the efficient dynamic mechanism

in Theorem 3.1. The outcome of each lottery is revealed in the next period, depending on

other agents’ reports in both periods. All lotteries pay bonuses to the agent, thereby ensuring

agents to participate in the mechanism in each period. The upfront participation fees, which

can be thought as prices of entering any such lotteries, serve to extract the surplus from

agents.

Remark 3.2. Another notion of surplus extraction would require that the designer obtains

the entire continuation social surplus after each history. While in our mechanism each agent

collects zero expected surplus from the beginning of their interactions, her continuation

payoff after any nontrivial history is in fact positive as she obtains bonuses from the lottery

purchased in the previous round. Thus, the mechanism does not satisfy this stronger version



8 HENG LIU

of surplus extraction. We conjecture that given agents’ interim participation constraints in

each period, it is impossible to achieve surplus extraction after each history.

4. Appendix A: Proofs of Results in Sections 1–3

4.1. Proof of Proposition 1.1.

Proof. Since budget balance under either {p̂t} or {p̃t} is established in the main text, we

only need to show that both mechanisms, {a∗t , p̂t} and {a∗t , p̃t}, are periodic ex post incentive

compatible. By the one-shot deviation principle, it suffices to prove that truth-telling is

incentive compatible for agent i in period t after any history, if all agents report truthfully

from period t + 1 onward. Here we prove the result for {a∗t , p̃t}. The proof for {a∗t , p̂t} is

similar and hence omitted.

Fix any ht = {ht−1, θt−1, at−1}, we need to show that for each i and θ, rit = θit is a solution

to the following maximization problem

max
rit

{
ui(a∗t (r

i
t, θ
−i
t ), θt)− p̃it(θ−it ; at−1, θ

−i
t−1)(2)

+ δ
∑
θt+1

[
1

N
W (θt+1)− p̃it+1(θ−it+1; a∗t (r

i
t, θ
−i
t ), θ−it )

]
µt+1(θt+1|a∗t (rit, θ−it ), θt)

}
.

By construction, we have

δ
∑

θt+1∈Θt+1

p̃it+1(θ−it+1; a∗t (r
i
t, θ
−i
t ), θ−it )µt+1(θt+1|a∗t (rit, θ−it ), θt)

=ui(a∗t (r
i
t, θ
−i
t ), θt)−

1

N

N∑
i=1

ui(a∗t (r
i
t, θ
−i
t ), θt).

So the problem (2) is equivalent to

max
rit

{
ui(a∗t (r

i
t, θ
−i
t ), θt)− p̃it(θ−it ; at−1, θ

−i
t−1)− ui(a∗t (rit, θ−it ), θt)(3)

+
1

N

N∑
i=1

ui(a∗t (r
i
t, θ
−i
t ), θt) + δ

∑
θt+1∈Θt+1

1

N
W (θt+1)µt+1(θt+1|a∗t (rit, θ−it ), θt)

}
.
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Since the second term in the objective function of (3), p̃it(θ
−i
t ; at−1, θ

−i
t−1), is independent of

rit, solutions to problem (3) are also solutions to the following problem

(4) max
rit

 1

N

N∑
i=1

ui(a∗t (r
i
t, θ
−i
t ), θt) + δ

∑
θt+1∈Θt+1

1

N
W (θt+1)µt+1(θt+1|a∗t (rit, θ−it ), θt)

 .

The result then follows from the definition of a∗t . �

4.2. Proof of Proposition 2.1.

Proof. The proof is by backward induction on t. For each t, the argument follows the same

lines as the proof of Proposition 3 in Bergemann and Välimäki [2] (pages 1029–1030) with

the transfers defined in (1).

�

4.3. Proof of Proposition 3.1.

Proof. The proof is similar to that of Theorem 3.1. For each t and i, agent i’s current signal

θit is correlated with other agents’ signals θ−it+1 in the next period as in Assumption 2, there

exists a function q̃it+1 : Θ−it+1 × Θi
t × At × Θ−it → R such that for each at, θ

−i
t and each pair

(θit, r
i
t),

ui(at, θt) = δ
∑

θt+1∈Θt+1

q̃it+1(θ−it+1, θ
i
t; at, θ

−i
t )µ(θt+1|at, θt)

≤ δ
∑

θt+1∈Θt+1

q̃it+1(θ−it+1, r
i
t; at, θ

−i
t )µ(θt+1|at, θt).

By the stationarity assumption, we have q̃it+1 = q̃it for each t ≥ 2. For each at, θ
−i
t , let

Ki(at, θ
−i
t ) ∈ R be an upper bound of |q̃it+1|, i.e.,

Ki(at, θ
−i
t ) > sup

θ−i
t+1,θ

i
t

∣∣q̃it+1(θ−it+1, θ
i
t; at, θ

−i
t )
∣∣ .

LetKi = maxat,θ−i
t
Ki(at, θ

−i
t ). We also set q̃i1 ≡ 0 for all i. Note that the dynamic mechanism

{a∗t , q̃t} is well-defined.

We first show that {a∗t , q̃t} is periodic ex post incentive compatible. Again assume all

agents other than agent i report truthfully. If agent i reports truthfully in period t, i.e.,
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rit = θit, her continuation payoff is

ui(a∗t (θt), θt)− q̃it(θ−it , rit−1; at−1, θ
i
t−1)

− δ
∑

θt+1∈Θt+1

q̃it+1(θ−it+1, θ
i
t; a
∗
t (θt), θ

−i
t )µ(θt+1|a∗t (θt), θt)

= − q̃it(θ−it , rit−1; at−1, θ
i
t−1).

Suppose agent i deviates to a message rit such that a∗t (r
i
t, θ
−i
t ) = a∗t (θt), then her continu-

ation payoff satisfies

ui(a∗t (θt), θt)− q̃it(θ−it , rit−1; at−1, θ
i
t−1)

− δ
∑

θt+1∈Θt+1

q̃it+1(θ−it+1, r
i
t; a
∗
t (θt), θ

−i
t )µ(θt+1|a∗t (θt), θt)

≤ ui(a∗t (θt), θt)− q̃it(θ−it , rit−1; at−1, θ
i
t−1)

− δ
∑

θt+1∈Θt+1

q̃it+1(θ−it+1, θ
i
t; a
∗
t (θt), θ

−i
t )µ(θt+1|a∗t (θt), θt)

= − q̃it(θ−it , rit−1; at−1, θ
i
t−1).

Suppose agent i deviates to a message rit such that a∗t (r
i
t, θ
−i
t ) = a′ 6= a∗t (θt), then her

continuation payoff satisfies

ui(a′, θt)− q̃it(θ−it , rit−1; at−1, θ
i
t−1)− δ

∑
θt+1∈Θt+1

q̃it+1(θ−it+1, r
i
t; a
′, θ−it )µ(θt+1|a′, θt)

≤ ui(a′, θt)− q̃it(θ−it , rit−1; at−1, θ
i
t−1)− δ

∑
θt+1∈Θt+1

q̃it+1(θ−it+1, θ
i
t; a
′, θ−it )µ(θt+1|a′, θt)

= − q̃it(θ−it , rit−1; at−1, θ
i
t−1).

Thus, after any history ht, truth-telling is optimal for agent i provided that other agents

also report their signals truthfully. The transfers q̃it+1 can be viewed as lottery payments in

period t + 1 that agent i commits to fulfill in period t. Since each agent in every period on

average pays her flow utility in the previous period, it is straightforward to verify that the

designer extracts all surplus with the mechanism {a∗t , q̃t}.

Although agent i’s participation constraint in period 1 is satisfied under the mechanism

{a∗t , q̃t} as we have q̃i1 ≡ 0, her participation constraints in any subsequent period could be

violated. To see this, note that the above reasoning also shows that agent i’s equilibrium
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continuation payoff after history ht is −q̃it(θ−it , rit−1; at−1, θ
i
t−1), which may be less attractive

than her outside option from period t onward.

This problem can be resolved by replacing the transfers q̃it+1 in period t + 1 with an

upfront charge in period t and lottery bonuses in period t + 1. Recall that for each at, θ
−i
t ,

Ki(at, θ
−i
t ) is an upper bound of qit+1(·, ·; at, θ−it ). For each t and i, define a new transfer

function q̂it+1 : Θ−it+1 ×Θi
t × At ×Θ−it → R by

q̂it+1(θ−it+1, θ
i
t; at, θ

−i
t ) ≡ q̃it+1(θ−it+1, θ

i
t; at, θ

−i
t )−Ki(at, θ

−i
t ).

Also define q̂i1 ≡ 0. Note that by construction qit+1 ≤ 0 for each t and i. Thus, q̂it+1 can be

viewed as lottery bonuses for agent i. Set cit(at, θ
−i
t ) = δKi(at, θ

−i
t ) to be the entrance fee or

“price” of the lottery {q̂it+1} that agent i pays in period t.

Finally, for each agent i, define a sequence of transfers p̂it as follows: (a) in the first period,

agent i pays an entrance fee p̂i1(θ1) = ci1(a∗1(θi1, θ
−i
1 ), θ−i1 ); (b) in each subsequent periods,

agent i collects the lottery bonus and pays another entrance fee, i.e., ∀t ≥ 1,

p̂it+1(ht, θt+1) = q̂it+1(θ−it+1, θ
i
t; at, θ

−i
t ) + cit+1(a∗t+1(θit+1, θ

−i
t+1), θ−it+1).

Under the mechanism {a∗t , p̂t}, after any history ht agent i’s continuation payoff from

truthtelling is well-defined and given by

ui(a∗t (θt), θt)− p̂it(ht, θt)− δ
∑

θt+1∈Θt+1

q̂it+1(θ−it+1, θ
i
t; a
∗
t (θt), θ

−i
t )µ(θt+1|a∗t (θt), θt)

− lim
T→∞

δT−t+1E [Ki(a∗T (θT ), θ−iT )|a∗t (θt), θt]

= ui(a∗t (θt), θt)− p̂it(ht, θt)− δ
∑

θt+1∈Θt+1

q̂it+1(θ−it+1, θ
i
t; a
∗
t (θt), θ

−i
t )µ(θt+1|a∗t (θt), θt)

= − q̂it(θ−it , rit−1; at−1, θ
i
t−1) ≥ 0.

On the other hand, agent i’s continuation payoff from lying in period t is no greater than

−q̂it(θ−it , rit−1; at−1, θ
i
t−1). Since the expected discounted sum of transfers satisfies

E

[∑
t

δt−1p̂it

]
= E

[∑
t

δt−1q̃it

]
,

it follows that the mechanism {a∗t , p̂t} is periodic ex post incentive compatible and achieves

full surplus extraction.

�
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5. Appendix B: Proofs Omitted in the Paper

In this section, we first prove Lemma A.2 in the paper and then complete the proofs of

Theorem 3.1 and Theorem 3.2 in the paper.

5.1. Proof of Lemma A.2. It follows directly from the following lemma (Lemma 5.1).

Let S and T be finite sets. For each t ∈ T , let µ(·|t) ∈ ∆(S) be a probability distribution

over S.

Lemma 5.1. Suppose for each t ∈ T , we have

dist2 (µ(·|t)− Conv {µ(·|t′)}t′ 6=t) ≥ ε,

for some ε > 0. Then for any function u : T → R, there exists a function p : S × T → R

such that for any t and t′,

u(t) =
∑
s∈S

p(s, t)µ(s|t) ≤
∑
s∈S

p(s, t′)µ(s|t),

and

max
s,t
|p(s, t)| ≤

(
1 +

4

ε

)
·max

t
|u(t)|.

Proof. For each t, let ν(·|t) ≡ (ν(s|t))s∈S = minν̃(·|t)∈Conv{µ(·|t′)}t′ 6=t
‖µ(·|t)− ν̃(·|t)‖2.2 Define

d(s, t) ≡ µ(s|t)− ν(s|t)
‖µ(·|t)− ν(·|t)‖2

.

Note that ‖d(·, t)‖2 = 1. By construction, for any t and t′, we have∑
s′∈S

d(s′, t) (µ(s′|t′)− ν(s′|t)) ≤ 0

and ∑
s′∈S

d(s′, t) (µ(s′|t)− ν(s′|t)) = ‖µ(·|t)− ν(·|t)‖2 ≥ ε.

Define

e(s, t) ≡
∑
s′∈S

d(s′, t)µ(s′|t)− d(s, t).

Then for any t and t′, we have∑
s′∈S

e(s′, t)µ(s′|t) = 0 < ε ≤
∑
s′∈S

e(s′, t)µ(s′|t′).

2‖ · ‖2 is the Euclidean norm.
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Define

p(s, t) ≡ u(t) + c · e(s, t)

where c = 2 maxt |u(t)|/ε. Then for any t and t′, we have

u(t) =
∑
s∈S

p(s, t)µ(s|t)

and ∑
s∈S

p(s, t′)µ(s|t) = u(t′) + c
∑
s∈S

e(s, t′)µ(s|t) ≥ u′(t) + cε ≥ u(t).

Finally, since maxs |e(s, t)| ≤ ‖e(·, t)‖2 ≤ 2, we have

max
s
p(s, t) ≤ |u(t)|+ 2c,

which implies that

max
s,t
|p(s, t)| ≤

(
1 +

4

ε

)
·max

t
|u(t)|.

�

5.2. Proof of Theorem 3.1 (Finite horizon). Let Wt(θt) denote the expected period-t

continuation social surplus given signal profile θt, i.e.,

Wt(θt) = E

[
T∑
s=t

δs−t
N∑
i=1

ui(a∗t (θt), θt)
∣∣∣θt] .

First consider the problem in period T . By Assumption 4, there exists an ex post incentive

compatible transfer pT : ΘT → RN that implements the efficient allocation a∗T . Given

(a∗T , pT ), the payoff V i
T for each agent i in the truth-telling equilibrium is given by

V i
T (θT ) = ui(a∗T (θT ), θT )− piT (θT ),

for each θT .

Next consider agent i’s incentive problem in period T − 1 with an arbitrary public his-

tory hT−1 = (r1, a1, r2, a2, . . . , rt−1, at−1). Suppose that agents other than i always report

truthfully. For each pair (aT−1, θT−1), define

πiT−1(aT−1, θT−1) =
∑
j 6=i

uj(aT−1, θT−1) + δE
[
W (θT )− V i

T (θT )|aT−1, θT−1

]
.
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By Lemma A.1 in the paper there exists a function p̃iT (θ−iT , θ
i
T−1; aT−1, θ

−i
T−1) such that for

every aT−1, θ−iT−1, θiT−1 and riT−1, we have

πiT−1(aT−1, θT−1) = δ
∑
θT∈ΘT

p̃iT (θ−iT , θ
i
T−1; aT−1, θ

−i
T−1)µT (θT |aT−1, θT−1),

and ∑
θT∈ΘT

p̃iT (θ−iT , r
i
T−1; aT−1, θ

−i
T−1)µT (θT |aT−1, θT−1)

≤
∑
θT∈ΘT

p̃iT (θ−iT , θ
i
T−1; aT−1, θ

−i
T−1)µT (θT |aT−1, θT−1)

Define a new period-T transfer p̄iT : Θ−iT−1 ×Θi
T−1 × AT−1 ×ΘT → R for agent i as

p̄iT (θ−iT−1, θ
i
T−1; aT−1, θT ) = piT (θT )− p̃iT (θ−iT , θ

i
T−1; aT−1, θ

−i
T−1).

Note that p̃iT is independent of θiT , so agent i still finds it optimal to report truthfully in

period T under this new transfer p̄iT . By construction, given that other agents always report

truthfully, it follows that for every realized signal θiT−1, it is optimal for agent i to report

riT−1 = θiT−1. Also note that for every signal profile θT−1, agent i’s continuation payoff V i
T−1

in the truth-telling equilibrium is

V i
T−1(θT−1) = WT−1(θT−1).

Now for any t < T , suppose that there exist transfer schedules {p̄is+1}T−1
s=t for each agent i

such that truth-telling consists of a periodic ex post equilibrium from any period s = t, . . . , T

and each agent i’s continuation payoff in the truth-telling equilibrium is V i
t (θt) = Wt(θt) for

all θt. We need to construct a transfer p̄it : Θ−it × Θi
t−1 × At−1 × Θ−it−1 → R for each agent i

such that for all at−1, θ−it−1, θit−1 and rit−1,

−
∑
j 6=i

uj(at−1, θt−1) = δ
∑
θt∈Θt

p̄it(θ
−i
t , θ

i
t−1; at−1, θ

−i
t−1)µt(θt|at−1, θt−1),

and∑
θt∈Θt

p̄it(θ
−i
t , θ

i
t−1; at−1, θ

−i
t−1)µt(θt|at−1, θt−1) ≤

∑
θt∈Θt

p̄it(θ
−i
t , r

i
t−1; at−1, θ

−i
t−1)µt(θt|at−1, θt−1)

The existence of p̄it again follows from Lemma 1. Since p̄it is independent of θit, incentive

constraints for truth-telling in periods s = t, . . . , T still hold.
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By construction, if other agents always report truthfully, then it is optimal for agent i

to report riT−1 = θiT−1. Also note that in period t − 1, agent i’s continuation payoff in the

truth-telling equilibrium is

V i
t−1(θt−1) = Wt−1(θt−1),

for all signal profiles θt−1.

Finally, inducting on t backwards, we have a sequence of transfers {p̄t}Tt=1, where p̄i1 ≡ 0 for

each i. Therefore, truth-telling consists of a periodic ex post equilibrium under the efficient

dynamic mechanism {a∗t , p̄t}Tt=1.

5.3. Proof of Theorem 3.2 (Infinite horizon). Assume all agents other than i report

their signals truthfully and focus on agent i’s incentive problem. Fix a socially efficient

allocation rule a∗t . By Assumptions 1 and 3, for each i and t, there exists a contingent

transfer pit+1(θ−it+1; at, θ
−i
t ) that satisfies

−
∑
j 6=i

uj(at, θt) = δ
∑

θ−i
t+1∈Θ−i

t+1

pit+1(θ−it+1; at, θ
−i
t )µ−it+1(θ−it+1|at, θt),

for every at and θt. Set pi1 ≡ 0. Furthermore, since for any t ≥ T̄ , the matrix

M−i
t+1(at, θ

−i
t ) ≡

[
µ−it+1(θ−it+1|at, θit, θ−it )

]
|Θ−i

t+1|×|Θi
t|

satisfies ∥∥∥(M−i
t+1(at, θ

−i
t )
)+
∥∥∥ ≤ D̄,

we can set the transfer pit+1(θ−it+1; at, θ
−i
t ) as

−→p i
t+1(·; at, θ−it ) =

1

δ

(
M−i

t+1(at, θ
−i
t )
)+−→u −i(·; at, θ−it ),

where−→p i
t+1(·; at, θ−it ) =

(
pit+1(θ−it+1; at, θ

−i
t )
)
θ−i
t+1

and−→u −i(·; at, θ−it ) =
(
−
∑

j 6=i u
j(at, θ

i
t, θ
−i
t )
)
θit

are column vectors. It follows that∥∥−→p i
t+1(·; at, θ−it )

∥∥
∞ ≤

1

δ

∥∥∥(M−i
t+1(at, θ

−i
t )
)+
∥∥∥ · ∥∥−→u −i(·; at, θ−it )

∥∥
∞ ≤

D̄

δ

∥∥−→u −i(·; at, θ−it )
∥∥
∞ ,

that is,

max
θ−i
t+1

∣∣pit+1(θ−it+1; at, θ
−i
t )
∣∣ ≤ D̄

δ
max
θit

∣∣∣∣∣∑
j 6=i

uj(at, θt)

∣∣∣∣∣ .
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Thus, for any sequence (at, θt)t≥1, we have

∞∑
t=1

δt−1
∣∣ui(at, θt)− pit(θ−it ; at−1, θ

−i
t−1)
∣∣

=
T̄∑
t=1

δt−1
∣∣ui(at, θt)− pit(θ−it ; at−1, θ

−i
t−1)
∣∣+

∞∑
t=T̄

δt
∣∣ui(at+1, θt+1)− pit+1(θ−it+1; at, θ

−i
t )
∣∣

≤Li +
∞∑
t=T̄

δt

[∣∣ui(at+1, θt+1)
∣∣+

D̄

δ
max
θit

∣∣∣∣∣∑
j 6=i

uj(at, θt)

∣∣∣∣∣
]

≤Li + max{1, D̄} ·

(
N∑
j=1

max
(at,θt)t≥1

∞∑
t=1

δt−1|uj(at, θt)|

)

where Li = max(at,θt)T̄t=1

∑T̄
t=1 δ

t−1
∣∣ui(at, θt)− pit(θ−it ; at−1, θ

−i
t−1)
∣∣ < ∞. Hence, by Assump-

tion 1, agent i’s discounted payoffs under the transfers pit+1(θ−it+1; at, θ
−i
t ) are always well-

defined. Applying the one-shot deviation principle, we only need to show that after any

public history up to period t, agent i does not benefit from deviating to rit 6= θit and ris = θis

for s > t.

If agent i reports truthfully in period t, i.e., rit = θit, her continuation payoff is

ui(a∗t (θt), θt)− pit(θ−it ; at−1, θ
−i
t−1)

+ δ
∑

θt+1∈Θt+1

[
W (θt+1)− pit+1(θ−it+1; a∗t (θt), θ

−i
t )
]
µt+1(θt+1|a∗t (θt), θt)

= W (θt)− pit(θ−it ; at−1, θ
−i
t−1).

Suppose agent i deviates to a message rit such that a∗t (r
i
t, θ
−i
t ) = a∗t (θt), then her con-

tinuation payoff remains the same. Thus, deviating to a message rit without changing the

allocation is not profitable.
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If agent i deviates to a message rit such that a∗t (r
i
t, θ
−i
t ) = a′ 6= a∗t (θt), then her continuation

payoff satisfies

ui(a∗t (r
i
t, θ
−i
t ), θt)− pit(θ−it ; at−1, θ

−i
t−1)

+ δ
∑

θt+1∈Θt+1

[
W (θt+1)− pit+1(θ−it+1; a∗t (r

i
t, θ
−i
t ), θ−it )

]
µt+1(θt+1|a∗t (rit, θ−it ), θt)

= ui(a′, θt)− pit(θ−it ; at−1, θ
−i
t−1)

+ δ
∑

θt+1∈Θt+1

[
W (θt+1)− pit+1(θ−it+1; a′, θ−it )

]
µt+1(θt+1|a′, θt)

≤ W (θt)− pit(θ−it ; at−1, θ
−i
t−1),

where the inequality follows from the definition of a∗t . Thus, deviating to a message rit which

changes the allocation is not profitable either. Therefore, we conclude that truth-telling

consists of a periodic ex post equilibrium.
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