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Appendix B: Production

This section presents an alternative model specification, which allows for production.
Furthermore, different from the main part of the paper, agents compete for a single prize
(as in, for example, Garfinkel 1990, Hirshleifer 1995, and Skaperdas 1992) and the prize
consists of the total production of all agents. Each agent receives a fraction of total pro-
duction, which is determined by the contest success function in ratio form. Production
is assumed to incur a convex cost. We uphold our assumptions regarding link formation
from the main part of the paper. Moreover, we assume that agents are homogeneous.

Again we find that all Nash equilibria obey structural balance. Note that for our re-
sults to hold, we need to assume that the parameter of the contest success function, φ,
is smaller than 1. This guarantees that agents have incentives to coordinate their ac-
tions relative to third agents. Interestingly, efficiency considerations now depend on the
shape of the cost function. If the parameter of the cost function is weakly larger than 2,
then the network such that all links are positive yields the (uniquely) largest sum of pay-
offs and the sum of production levels is maximal. Note that, as in the main part of the
paper, this network can always be sustained as a Nash equilibrium. However, we show
by way of an example that, if the parameter of the cost function is smaller than 2, then
a Nash equilibrium may exist, such that the sum of payoffs is strictly larger than in the
network where all links are positive.

Note that this model specification can be seen as a variation of König et al. (2015),
where, rather than assuming a fixed network of alliances and conflicts and agents that
choose their fighting effort, we assume that fighting effort is fixed, while the network of
alliances and conflicts is endogenous (and production is introduced).

Model description

Let N = {1�2� � � � � n} be the set of identical agents, with n ≥ 3. Denote by pi agent i’s pro-
duction level and define i’s strategy by si = (pi� gi�1� gi�2� � � � � gi�i−1� gi�i+1� � � � � gi�n), with
pi ≥ 0 and, as in the main part of the paper, gi�j ∈ {−1�1} for each j ∈ N\{i}. Again
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agent i is said to extend a positive link to j if gi�j = 1 and to extend a negative link if
gi�j = −1. The set of strategies of i is denoted by Si and the strategy space is denoted by
S = S1 × · · · × Sn. The network of relationships is written as g = (g1�g2� � � � �gn), where
gi = (gi�1� gi�2� � � � � gi�i−1� gi�i+1� � � � � gi�n). The undirected network ḡ is defined as in the
main part of the paper. The vector of production levels is denoted by p = (p1� � � � �pn).

We define the following sets: N+
i (g) = {j ∈ N | ḡi�j = 1} is the set of agents to which

agent i reciprocates a positive link and, therefore, ḡi�j = 1 in the undirected network ḡ;
N−

i (g) = {j ∈N | ḡi�j = −1} is the set of agents such that i extends and/or receives a nega-
tive link and, therefore, ḡi�j = −1. Ne−

i (g) = {j ∈N | gi�j = −1} is the set of agents to which
agent i extends a negative link. We further define the set of agents that are negatively
connected with agent i and sustain a higher number of positive links than agent i. We
denote this set by Ns−

i (g) = {j ∈ N | ḡi�j = −1 and ni(g) < nj(g)}, where ni(g) is defined
as in the main part of the paper. Denote the cardinalities ei(g) = |Ne−

i (g)| and ns−i (g) =
|Ns−

i (g)|. The strength or power of an agent is again determined endogenously. More
precisely, the strength of agent i in network g is given by ηi(g) = a + βni(g) − γns−i (g),
with a > 0, β > 0, and γ > 0. Note that the term −γns−i (g) ensures that agents may find
it profitable to extend negative links in the payoff specification presented here. We con-
sider the following payoff function, which allows for production:

ui(g�p) =
∑
j∈N

pj · ηi(g)φ∑
j∈N

ηj(g)φ
− 1

α
·pα

i − ei(g)ε�

Relative to the main part of the paper, we abstract for simplicity from the cost of con-
flict and exclude the term −ci(g)κ. Total production is split among all agents according
to their endogenously determined strengths. Production incurs a convex cost, i.e., α> 1.
We assume that 0 <φ< 1, which guarantees incentives for stronger agents to coordinate
their actions relative to weaker agents and is, therefore, crucial for our equilibrium char-
acterization.1 The equilibrium concept used is again pure strategy Nash equilibrium.
A strategy profile s∗ is a pure strategy Nash equilibrium (NE) if and only if

ui
(
s∗
i � s∗

−i

) ≥ ui
(
si� s∗

−i

)
� ∀si ∈ Si�∀i ∈ N�

We denote agent i’s deviation strategy from strategy si by s′
i and the resulting strategy

profile after a proposed deviation is denoted by s′. If i’s deviation only consists of altering
links (i.e., the production level remains constant in the proposed deviation), then we
simply write g′

i and again denote the network after proposed deviation by g′.

Analysis

We start by showing that in a fixed network, which we denote with gf , there exists a
unique pure strategy Nash equilibrium in production levels, p.

1Note that for φ > 1, one can easily construct examples for which Nash equilibria are not structurally
balanced.
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Lemma B1. For any fixed network gf , there exists a unique pure strategy Nash equi-
librium in production levels, p, with pi > 0 ∀i. Furthermore, if ηi(g

f ) > ηj(g
f ), then

pi(g
f ) > pj(g

f ) and ui(g
f �p) > uj(g

f �p).

Proof. Note that each agent i’s equilibrium production level, pi, is uniquely defined
since ui(g

f �p) is concave in pi and agent i’s share of production is fixed for a given net-

work gf , so that pi(g
f ) = (ηi(g

f )φ/
∑

j∈N ηj(g
f )φ)

1
α−1 . Since ηi(g

f )φ/
∑

j∈N ηj(g
f )φ > 0

for all i in any network gf , it then follows directly that pi(g
f ) > 0 ∀i in any gf . Since we

assume α> 1, ηi(g
f ) > ηj(g

f ) implies that pi > pj also holds in any Nash equilibrium p.
Note next that if ηi(g

f ) > ηj(g
f ), then ui(g

f �p) > ui(g
f �p1� � � � �pi−1�pj�pi+1� � � �pn) >

uj(g
f �p). �

Lemma B2. In any NE s = (g�p), there does not exist a pair of agents i and j such that
gi�j = gj�i = −1 for all i� j ∈N .

Proof. Assume there exists a pair of agents i and j, which extend negative links to each
other. This cannot be part of any Nash equilibrium, since a deviation in the form of
extending a positive link to the respective other agent (while keeping the production
level constant) increases payoffs by ε. �

Lemma B3. In any NE s = (g�p), if ḡi�j = −1 with ηi(g) < ηj(g), then gi�j = 1.

Proof. Assume, contrary to the above, that ḡi�j = −1 with gi�j = −1, gj�i = 1, and ηi(g) <
ηj(g). Then agent i can profitably deviate with gi + g+

i�j , yielding ḡ′
i�j = 1, while keeping

the production level, pi, constant. Denote the network after proposed deviation with
g′ and note that ηi(g′) = ηi(g) + β + γ and ηj(g′) = ηj(g) + β. Note that since ηi(g) <
ηj(g) and 0 <φ< 1, there exists a pair of real numbers x� y ∈ R with x > y > 1 such that
x ·ηi(g)φ = (ηi(g)+β+ γ)φ and y ·ηj(g)φ = (ηj(g)+β)φ. To show that ui(g + g+

i�j�p)−
ui(g�p) > 0 holds, it is sufficient to show that

(
ηi(g)+β+ γ

)φ
(
ηi(g)+β+ γ

)φ + (
ηj(g)+β

)φ +
∑

l∈N\{i�j}
ηl(g)φ

>
ηi(g)φ

ηi(g)φ +ηj(g)φ +
∑

l∈N\{i�j}
ηl(g)φ

�

With the above information, we can now write
(
ηi(g)+β+ γ

)φ
(
ηi(g)+β+ γ

)φ + (
ηj(g)+β

)φ +
∑

l∈N\{i�j}
ηl(g)φ

= x ·ηi(g)φ

x ·ηi(g)φ + y ·ηj(g)φ +
∑

l∈N\{i�j}
ηl(g)φ

>
x ·ηi(g)φ

x ·ηi(g)φ + x ·ηj(g)φ + x ·
∑

l∈N\{i�j}
ηl(g)φ

= ηi(g)φ

ηi(g)φ +ηj(g)φ +
∑

l∈N\{i�j}
ηl(g)φ

�
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Therefore, proposed deviation is profitable. �

Proposition B1. In any NE s = (g�p), if ηi(g) = ηj(g), then ḡi�j = 1, and if ηi(g) �=
ηj(g), then ḡi�j = −1.

Proof. We start with the first part of the statement.
Step 1. In any NE s = (g�p), if ηi(g) = ηj(g), then ḡi�j = 1. Assume, to the contrary,

that there exists a pair of agents i and j, such that ηi(g) = ηj(g) and ḡi�j = −1. Assume
w.l.o.g. that i extends the negative link, i.e., gi�j = −1. This cannot be part of any Nash
equilibrium, since agent i can profitably deviate by extending a positive link to j, while
keeping pi constant. Note that ηi(g′) = ηi(g)+β and ηj(g′) = ηj(g)+β hold. Marginal
payoffs of proposed deviation can be written as

ui
(
g + g+

i�j�p
) − ui(g�p)

=
(∑
j∈N

pj

)
·
( (

ηi(g)+β
)φ

(
ηi(g)+β

)φ + (
ηj(g)+β

)φ +
∑

l∈N\{i�j}
ηl(g)φ

− ηi(g)φ

ηi(g)φ +ηj(g)φ +
∑

l∈N\{i�j}
ηl(g)φ

)
+ ε�

To show that ui(g + g+
i�j�p)− ui(g�p) > 0, it is sufficient to show that

(
ηi(g)+β

)φ
(
ηi(g)+β

)φ + (
ηj(g)+β

)φ +
∑

l∈N\{i�j}
ηl(g)φ

>
ηi(g)φ

ηi(g)φ +ηj(g)φ +
∑

l∈N\{i�j}
ηl(g)φ

holds. Note that since ηi(g) = ηj(g), there exists a x ∈R with x > 1 such that x ·ηi(g)φ =
x ·ηj(g)φ = (ηi(g)+β)φ = (ηj(g)+β)φ and we can therefore write

(
ηi(g)+β

)φ
(
ηi(g)+β

)φ + (
ηj(g)+β

)φ +
∑

l∈N\{i�j}
ηl(g)φ

= x ·ηi(g)φ

x ·ηi(g)φ + x ·ηj(g)φ +
∑

l∈N\{i�j}
ηl(g)φ

>
x ·ηi(g)φ

x ·ηi(g)φ + x ·ηj(g)φ + x ·
∑

l∈N\{i�j}
ηl(g)φ

= ηi(g)φ

ηi(g)φ +ηj(g)φ +
∑

l∈N\{i�j}
ηl(g)φ

�
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Therefore, proposed deviation is profitable. That is, in any Nash equilibrium, if
ηi(g) = ηj(g), then ḡi�j = 1. Note that we therefore know that if ηi(g) = ηj(g) ∀i� j ∈ N ,
then all links in g are positive. Next, assume that there exists a pair of agents such that
ηi(g) �= ηj(g). The remaining part of the proof uses an induction argument and we start
by proving the base case in three steps (Steps 2–4 of the proof).

Base Case. In any NE, s = (g�p), ḡi�j = 1 ∀i� j ∈ Pm(g), and ḡi�k = −1 ∀i ∈ Pm(g) and
∀k /∈ Pm(g).

Step 2. In any NE s = (g�p), N+
i (g)\{j} = N+

j (g)\{i} and N−
i (g) = N−

j (g) ∀i� j ∈
Pm(g). The statement holds trivially for |Pm(g)| = 1. Assume |Pm(g)| ≥ 2 and, con-
trary to the above statement, that ∃i� j ∈ Pm(g) : N+

i (g)\{j} �= N+
j (g)\{i} (and therefore

N−
i (g) �=N−

j (g)). That is, there exists a pair of agents i� j ∈ Pm(g), such that their respec-
tive sets of friends and enemies are different. Note that from the first part of the proof
we know that ḡi�j = 1 ∀i� j ∈ Pm(g). From Lemma B2, we further know that agents not in
Pm(g) extend positive links to all agents in Pm(g), i.e., gk�i = 1 ∀k /∈ Pm(g) and ∀i ∈ Pm(g).
Therefore, for i� j ∈ Pm(g) : N+

i (g)\{j} �= N+
j (g)\{i} (and therefore N−

i (g) �= N−
j (g)) to

hold, it must be that i and j play different strategies relative to third agents, which we
denote with gi\j �= gj\i. That is, there must exist a pair of agents k and l, such that
ḡi�k = −1 and ḡi�l = 1, while ḡj�k = 1 and ḡj�l = −1. Without loss of generality assume
that ηk(g) ≥ ηl(g). Agent i can then profitably deviate with gi + g+

i�k + g−
i�l. To see this,

note that we can write the marginal payoffs of proposed deviation as

ui
(
g + g+

i�k + g−
i�l�p

) − ui(g�p)

=
(∑
j∈N

pj

)
·
(

ηi(g)φ(
ηk(g)+β+ γ

)φ + (
ηl(g)−β− γ

)φ +
∑

j∈N\{k�l}
ηj(g)φ

− ηi(g)φ

ηk(g)φ +ηl(g)φ +
∑

j∈N\{k�l}
ηj(g)φ

)
�

The expression is strictly positive, due to 0 <φ< 1 and ηk(g) ≥ ηl(g), and proposed
deviation is therefore profitable.

Step 3. In any NE, s = (g�p), ḡi�k = −1 ∀i ∈ Pm(g) and ∀k ∈ Pm−1(g). Assume to the
contrary that there exists an agent k ∈ Pm−1(g) such that ḡi�k = 1 for some i ∈ Pm(g).
From the previous step we know that then ḡi�k = 1 ∀i ∈ Pm(g). Note that k ∈ Pm−1(g)
and therefore N−

k (g) �= ∅. From the first part of the proof we know that ḡj�k = 1 ∀j�k ∈
Pm−1(g). By Lemma B2, we further know that gh�k = 1 ∀h ∈ Pm−x(g) and ∀x ∈ N: x ≥ 2.
Therefore, gl�k = 1 ∀l ∈ N\{k}. We can now discern two cases. For gk\i �= gi\k, we can
use the same argument as in Step 2 to show that either k or i (or both) can profitably
deviate. If, alternatively, gk\i = gi\k holds, then we reach an immediate contradiction, as
ηk(g) = ηi(g) for k ∈ Pm−1(g) and i ∈ Pm(g).

Step 4. In any NE, s = (g�p), ḡi�k = −1 ∀i ∈ Pm(g) and ∀k /∈ Pm(g). If there are only
two sets of agents with different numbers of positive links, then we are done by Step
3. Assume that there are at least three such sets and that there exists a pair of agents
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i ∈ Pm(g) and k /∈ Pm(g) ∪ Pm−1(g) such that ḡi�k = 1. Recall that from Step 2 we know
that agents in Pm(g) are positively connected, while agents in Pm(g) extend negative
directed links to all agents l ∈ Pm−1(g). Note further that ηl(g) > ηk(g) ∀l ∈ Pm−1(g).
Agent i can then profitably deviate with the strategy gi + g+

i�l + g−
i�k. Proposed deviation

is profitable by an analogous argument to that used in Step 2.
Define the super set P̃r(g) = ⋃i=m

i=m−r P
i(g). Note that P̃0(g) = Pm(g).

Inductive Step. In any NE, s = (g�p), if ḡi�j = 1 ∀i� j ∈ Pm−x(g) and ḡi�k = −1 ∀i ∈
Pm−x(g) and ∀k /∈ Pm−x(g) holds ∀x ∈ N : 0 ≤ x ≤ r, then ḡi�j = 1 ∀i� j ∈ Pm−(r+1)(g) and
ḡi�k = −1 ∀i ∈ Pm−(r+1)(g) and ∀k /∈ Pm−(r+1)(g).

In Step 4 we showed that ḡi�j = 1 ∀i� j ∈ Pm(g) and ḡi�k = −1 ∀i ∈ Pm(g) and ∀k /∈
Pm(g). Assume the statement holds for all sets Pm−x(g) with x ∈ N : 0 ≤ x ≤ r. From
Lemma B3, we know that gi�k = −1 and gk�i = 1 ∀i ∈ P̃r(g) and ∀k /∈ P̃r(g), while from
Lemma B2, we know that in any Nash equilibrium there does not exist a pair of agents
i and k such that gi�k = gk�i = −1. We can now use an argument analogous to that
used in Steps 2–4 of the base case, relabeling Pm(g) with Pm−(r+1)(g) and Pm−1(g) with
Pm−(r+2)(g), to establish the above result. �

To simplify notation, we write Ai(g) = ηi(g)φ∑
j∈N ηj(g)φ

.

Proposition B2. There exists a NE s = (g�p) such that all agents are friends.

Proof. If all links are positive, then a relevant deviation of agent i consists of extending
negative links to some subset of agents N \ {i} and adjusting the production level. It is
easy to see that then Ai(g′) <Ai(g) and no profitable deviation exists. �

In Proposition B3, we compare the sum of payoffs and the sum of production levels
across different networks, where production levels are assumed to be the Nash equilib-
rium production levels for the corresponding network. That is, we write pi(g) for agent
i’s equilibrium production level given g and, likewise, denote the Nash equilibrium vec-
tor of effort levels for given network g with p(g). We show that when the parameter of the
cost function α is larger than or equal to 2, then the network where all links are positive,
which we denote with g+, yields the uniquely largest sum of payoffs and the (weakly)
largest sum of production levels. Note that g+ can be sustained as a Nash equilibrium.

Proposition B3. If α ≥ 2, then (i)
∑

i∈N ui(g+�p(g+)) >
∑

i∈N ui(g�p(g)) ∀g �= g+ and
(ii)

∑
i∈N pi(g+)≥ ∑

i∈N pi(g) ∀g �= g+.

Proof. Note first that from the first order conditions, we know that for a given fixed

network g, the corresponding Nash equilibrium effort levels are given by pi = Ai(g)
1

α−1 .

Note that in g+, Ai(g+) = 1
n ∀i ∈ N and, therefore, pi = ( 1

n)
1

α−1 ∀i ∈ N . Note further that∑
i∈N Ai(g) = 1 ∀g. We can write the sum of gross payoffs, which we denote with π(g�p),

as

π(g�p) =
∑
i∈N

Ai(g)
1

α−1 − 1
α

∑
i∈N

Ai(g)
α

α−1 �
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If α ≥ 2, then Ai(g)
1

α−1 is (weakly) concave, while Ai(g)
α

α−1 is strictly convex. Since∑
i∈N Ai(g) = 1 ∀g and Ai(g+) = 1

n ∀i ∈ N , it follows directly that the sum of gross payoffs
is maximal in g+. Since linking cost are also strictly lower than in any other network, the
sum of payoffs is uniquely largest in the network where all links are positive. Similarly,

since pi =Ai(g)
1

α−1 is (weakly) concave,
∑

i∈N Ai(g) = 1, and Ai(g+)= 1
n ∀i ∈N , the sum

of production levels is (weakly) largest in g+. �

If, however, α is strictly smaller than 2, then a network other than g+ may yield a
strictly larger sum of payoffs. We provide an example below.

Example (Production). Assume n = 10, a = 1, α = 1�9, β = 1, γ = 0�1, φ = 0�1, and ε =
0�001. Then one can show that nine agents ganging up on one agent can be sustained
as a Nash equilibrium. Total welfare is then given by approximately 1�4, while in the
network where all links are positive, total welfare is approximately 0�7.2 ♦
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