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I A: Proof and Propositions

In this section we provide a detailed analysis of the dynamic programming problem in the general
case with two assets. That is, as in Section 5, we assume that a household can save with money
and nominal bond, and that only money can be used to finance lumpy consumption. The real
rate of return of money holdings is —m < 0, while the real rate of return of nominal bonds is
p. Anticipating properties of equilibrium, we assume that p € [—m,r). The analysis of the pure
currency economy corresponds to the special case in which money and bond are perfect substitute,
ie, p+m=0.

I.1 The Bellman equation

Let ¢; flow consumption, h; flow labor, and y; lumpy consumption. Let z; denote the real balances,
and w; the real wealth of a household at time ¢ (the sum of his real balances and of his real holdings
of nominal bonds). The constraint that lumpy consumption must be finance by real balance can be
written y; < z;. But notice that, since p > —m, the real return on bond weakly dominates that on
money. Therefore we can assume without loss of generality that z; = y;. That is, the real balance
of the household at time t is exactly equal to his intended lumpy consumption, and the rest of the
household real wealth is invested in nominal bonds.!

f p+ 7 = 0, this is only weakly optimal. In fact, in some cases, equilibrium will require that z; > y:. However,
at this stage of the analysis, we are only concerned with deriving elementary properties of the value function and of
the total saving function, w;. Clearly, these do not depend on the particular optimal portfolio choice chosen by the
household.



The Bellman equation for a household in our model is the functional equation T[W]| = W where:
TW](w) = sup/ e (rta)t {u(ce,h—h) + U (ye) + W (we — )]} dt, (1)
0

with respect to a left-continuous plans for flow consumption, ¢, flow labor, h;, lumpy consumption,
yt, a piecewise continuously differentiable plan for real wealth, ws, and subject to:

wo =w (2)
0 <y <uwy, 3)
wt:ht—ct—f—p(wt—yt)—ﬂyt—k'f. (4)

In what follows we will say that consumption flows, labor flows, and lumpy consumption are feasible
if they satisfy the above stated requirements, together with the path of wealth they generate. We
will also maintain the assumption that A 4+ Y > 0, i.e., when w is small enough, a household can
increase its wealth by working full time and consuming nothing. Let C denote the set of bounded,
positive, continuous, increasing, and concave function of w. We obtain:

Lemma I.1 If W € C then T[W] € C.

Proof. Clearly, if W > 0 then T[W] > 0 since this is also true for u(c,¢) and U(y). If W is
bounded then one sees directly from the objective that:

1 «
(TWw)l < ——lull + ——— AU+ W} (5)

where ||u|| and ||U|| denote the sup norm. It thus follows that T'[W] is bounded. We also have
that T[W] is increasing if W is increasing: indeed, any plan feasible with initial condition w; is
also feasible with initial condition wo > wi and yield higher value since it the household is left with
higher wealth at his next lumpy consumption opportunity. Finally, the concavity of T[W] follows
directly from the objective being concave and the graph of the constraint correspondence being
convex.

The harder part of the proof is to establish that T'[W] is continuous. We proceed in two steps.
First note that, since T'[W] is concave and increasing, it must be continuous over (0, c0) (see, for
example, Corollary 1, Chapter 7, in Luenberger 69). To show continuity at w = 0, consider some
small ¢ > 0. By working full time, hy = h, consuming nothing, and saving only in cash, the
household can reach ¢ at time 7. solving wr. = ¢, where &y = h + T — 7w;. Solving this ODE
explicitly shows that

1 us €
T.=——1 1—= == . 6
: n°g< h+T€) e o ©)
Clearly, since utility flows are bounded below by zero, we must have that T[W](0) > e~ "+ T=T [W (¢)],

that is T[W](0) is greater than the value of working full time, consuming nothing, saving only in
cash until T, and behaving optimally thereafter. This implies in turn that:

0 < TIW](e) = TIW(0) < (1 - =) T[W)(e). (7)



Since T[W] is bounded and T, — 0 as € — 0, continuity at zero follows. m
An important result for what follows is:

Lemma 1.2 If W € C, then T[W] has a bounded derivative at z = 0:

i TWIE) = TIWI(0) _ 7 +a
e—0 £ h+7

Wl
In particular, T[W) is Lipchitz with coefficient (r + a)||W||/h.

Proof. The upper bound follows directly from (6) and (7). The Lipchitz properties follows by
concavity.

Lemma 1.3 The functional equation W = T[W] has a unique bounded solution, and this solution
belongs to C.

Proof. The Blackwell sufficient conditions for a contraction (see Theorem 3.3 in Stokey Lucas,
89) are satisfied for T[WW]: monotonicity follows directly because if W1 (w) > Wa(w) for all w > 0,
then any feasible plan generates a higher utility with W; rather than Ws, implying that T[W;] >
T[W3]. Discounting follows directly, with a modulus of contraction %~ < 1. It then follows from
the Contraction Mapping Theorem (see Theorem 3.2 in Stokey Lucas, 89) that T'[W] has a unique
bounded solution. Lemma I.1 implies that this solution belongs to C. =

From the arguments in the proofs above, we can derive two auxiliary results:

Corollary 1.4 The solution of the functional equation T[W| =W satisfies:

W < Jlull + af|U]]

+ «
W (0) <~ Lo
lim W’ (z) =0.

w—r00

where W' (w) and W/ (w) denote, respectively, the left- and the right-derivative of W (w).

Proof. The first upper bound follows directly from using ||T'[W]|| = ||[W]| in equation (5). The
second one follows directly from Lemma 1.2 and from the fact that T[W] = W. To show that
lim,_ oo W’ (w) = 0 note that, by concavity, we have that wW’ (w) < W(w) — W(0). But since
W (z) is bounded, it follows that limy, 0o W/ (w) =0. ®

A useful result is that:

Lemma 1.5 The solution of the functional equation T[W| = W is strictly increasing and has
strictly positive left- and right-derivatives.



Proof. Consider any n > 0 and some feasible path {c, hs, y;} that achieves at least W(w) —n
starting at w. Then, for any € > 0, the value W (w + ¢) must be greater than the value of following
{ct, hi,yr + e~ ™}. That is, one keeps the same plan for flow consumption and labor and save the
extra ¢ initial wealth in cash. The extra saving in cash allows to consume an extra ce~™ at the
first lumpy consumption opportunity. Plugging this into the Bellman equation, we obtain that:

Ww+e)>Ww)—n+ /000 ae” (et (U (ye +ee™™) = U (yo)] dt

T
> W(w)—n —I—/O e~ (rralt (U (ye +ee™™) = U (yr)] dt, (8)

for any arbitrary horizon T. Now fix some horizon T'. It is clear from (4) that the wealth of a
household is bounded above by the wealth obtained at time 7" by consuming nothing, working
full time, and saving only in bond for the entire interval. Let us denote this upper bound by w.
Given the concavity of U(y), the inequality y; < @ provides a lower bound for the integral on the
right-hand side of (8):

W(w+e)>Ww)—n+ /OT ae” T (& 4 ee™™) — U (@)] dt.

Taking the limit 7 — 0 we obtain that W(w + ¢) > W(w), i.e., the value function is strictly
increasing. It must have strictly positive left- and right-derivatives because it is concave. m

1.2 The Hamilton Jacobi Bellman Equation

First, let us note that, by standard arguments:

Lemma 1.6 The solution of the functional equation T|W| = W satisfies the maximum principle.
For any w and ¢,

1)
W (w) = sup {/ {u (Ct, h — ht) +aU(yy) + W(wy — yt)]} e~ (rta)t gy o o= (rta)oyy ((,U5)}
0
with respect to feasible consumption flow, labor flows, and lumpy consumption.

Our main result is:

Proposition 1.7 For all w > 0 and all X\ € [W/_ (w), W (w)]:
(r+a)W(w) < sup{u(c,ﬁ—h) +alUy)+Ww—y)]|+A[h—c+pw—y)—my+ Y] }, 9)

with respect to ¢ > 0, h € [0, B] , y € [0,w], and with the convention that W' (0) = +oo. Moreover,
if Wi (w) = W' (w), then (9) holds with equality.



Notice that, at w = 0, W’ (w) = oo so that A is only restricted to be larger than W’ (0), and so
can be chosen to be arbitrarily large. One can show that this is equivalent to letting A = W (0)
and imposing the constraint that the saving function is positive.?

Proposition 1.7 is a version of the statement that the value function is a viscosity solution of the
Hamilton-Jacobi-Bellman equation (HJB). To prove this result we cannot directly apply existing
theorems, because these usually assume that the rate of change of the state variable is bounded
(for example Assumption A1l in Chapter 3 of Bardi and Capuzzo-Dolcetta 1997). This assumption
fails in our model, since a household can in principle choose arbitrarily large consumption flows
and so deplete its wealth balance very quickly. Another difference with standard theorems is that
we consider an optimization problem for which the agent is making some of its decision at Poisson
arrival times, so that the “flow reward” depends on the function whose smoothness we seek to
establish, W (w).

Preliminary results. To adapt the standard proof, we first establish that, in fact, depleting
money balance very quickly cannot be optimal. To see this, consider an agent who consumes at a
very high rate during a time interval of length §, in such a way that its wealth decrease by k x §, for
some very large k. The utility gain would be bounded by ||u||d but the continuation value would
decrease by an amount that is approximately equal to W’ (w) x kd. If k is very large, the net utility
must be negative. Formally, we show that:

Lemma 1.8 For all w > 0 and all 0 > 0, there is some k > 0 such that, for all 6 > 0 and any
feasible controls ¢z hy and y; starting at wy = w, ws < w — kd implies that

1)
W(w) > 60+ / {u(ce,h—he) + a[Uye) + W(we — yo) e U dt + W (w) e )2,
0
Proof. Consider any feasible control starting at wy = w:

0
W(w) — /O {u (Ct, h — ht) + o [U (ye) + Wiwy — yt)]} e~ (r+a)t g (ws) e (rta)s
2W () = W (5) = S [l + U] + all W] 2 A ) = 8 [l +al U] + W],

for any A € [W/ (w), W’ (w)], since W is concave. By Lemma 1.5, A > 0 and so the result follows
by choosing some k > (6 + ||u|| + o||U|| + o|W]|)/A. =
Next, we establish an equi-continuity property for all optimal controls that satisfy ws > wg— kd.

Lemma 1.9 Consider any k > 0 and any € > 0. Then, there exists some § > 0 such that, for any
control over [0,6], starting at wy:

ws > wo —kd = |wr —wo| < e forallt €0,0].

2 To see this, write A\ = W4 (0) 4+ u for some p > 0. The right-side of (9) is greater than the left-side for all
A > WX (0) if and only if the infimum of the right-side of (9) with respect to u > 0 is greater than the left-side. By
the saddle point theorem, this infimum is equal to the maximized value of the HJB subject to the constraint that the
saving function is positive.



Proof. Since p+ 7 > 0, the law of motion for w; implies that
wr < h+ T+ yw (10)
for some v > |p|. Direct integration of (10) over [0, ¢] gives:

h+7T

o<+ L (1) s < (ML a1

Since the right-side is continuous and equal to zero at ¢ = 0, it follows that there exists 6 > 0 such
that w; —wp < e for all t € [0, 4].
Next we show that wy — w; > —e. To do so, we integrate (10) over [t, ] instead. We obtain:

oy > wye—16- _ AT [1 _ efv(afw}
Y

= wr —wp > (ws — wop) e V00—t _ [M + wo] [1 — 677(670} > —kd — [M + wo} [1 — 6776] .
Y Y

Again, since the right-hand side is continuous in § and equal to zero at § = 0, we obtain that, if we
choose ¢ > 0 small enough, w; —wy > —¢ for all ¢ € [0,0]. m

Proof of the inequality in Proposition 1.7. Towards a contradiction, suppose that there is
some A € [W, (w), W’ (w)], and some § > 0 such that:

(r+ Q)W (w) > 0 +sup {u(c,h — h) +a[U(y) + W(w —y)] + A[h—c+p(w—y) — 7y + Y]} (11)

with respect to ¢ > 0, h € [0,h] and y € [0,w]. By continuity, there exists & > 0 such that this
inequality holds for all @ such that |w — @| < e. Given this € > 0 and the k£ constructed in Lemma
1.8, pick ¢ according to Lemma 1.9 so that |w; — w| < e for all ¢ € [0,d]. This implies that, for any
feasible control such that ws > w — kd:

(r+a)W (wi) > 0+ u (e, h—he) +a[Ulye) + Wl —yo)] + Xhe — e+ p(we — ye) — 7ye + )
for all ¢t € [0,6]. Now let p(w) = W(w) + AM@w — w). By construction, W(w) = ¢(w) and by

concavity, p(w) > W(@) for all @. In particular, if w = 0, then this inequality holds for all
A > W, (0). Therefore:

o (ws) T W (ws) e TV > o (w) = W (w) = 0

s
d
s W(w) > —/ pn [(p (wt)e_(’””“)t} dt + W(wé)e—(wa)(s
0

6
& Ww) = /0 {(r+a)p(w) — ¢ (W)} e UT dt + W (ws) e F°,



But ¢ (w) > W (wy), ¢ (w) = A, and @y = hy — ¢t + p (wr — y¢) — myr + L. Plugging these into the
above, substituting in inequality (11), we obtain:

5
W(w) > 06 +/ {u (co,h — ) + o [U () + W(wr — )]} e T dt + W (wg) e )9,
0

for any control such that ws > w — ké. If w > 0, Lemma 1.8 shows that this inequality also holds
for any control such that ws < w — ké. Thus, we can take the suppremum over all feasible controls,
and we obtain a contradiction of the maximum principle.

Proof of the equality in Proposition 1.7, when the value function is differentiable. In
this case the standard proof applies. If W' (w) = W’ (w), then the value function is differentiable
and so W/(w) is an element of its sub-differential. Thus, by Lemma 1.7 in Bardi and Capuzzo-
Dolcetta (1997) there exists a continuously differentiable p(w) such that p(w) = W(w) and p(@) <
W (@) in a neighborhood of w. This implies in particular that ¢'(w) = W’(w). Thus, all we need to
show is that the reverse inequality of (9) holds with A = ¢/(w). Towards a contradiction, assume
that there is some 6 > 0 and some (¢, h, §j) such that:

(r+a)W(w)+0 < u@h—h)+aU@) +Ww—9)]+ ¢ W) [ﬁ—é—i—p(w—g))—mj—i—'f]. (12)

Consider the control ¢; = ¢ and hy = h and y+ = min{w, ¥}. Then by continuity there is some
small enough ¢ such that the inequality continues to hold for all ¢t € [0,d] and ¢ (w;) < W (wy).
Using the definition of ¢(x), we also have that:

0=W (W) — ¢ (w) <W (ws) e " — ¢ (wg) e~ rFe)?

6
& Ww) < —/ % [ap (wt)e_(”o‘)t} dt + W (ws) e~ (r+e)d
0

0
& W(w) < /(; [(T + a)p (w) — (p’ (wi) d}t] e~ (r+a)t 1 + W (ws) e—(r+a)d

Now note that ¢ (w¢) < W (wy), that Wy = hy — ¢ + p (we — y) — 7y + Y, and substitute in (12) to
obtain:

é
Wi(w) < / {0+ u(ce,h—he) + a[U(ye) + W(wr — ye)] } e~ gt W (wg) e )
0
which contradicts the Maximum Principle of Lemma 1.6 .

1.3 The derivatives of the value function

In this section we derive a number of results regarding the derivative of the value function. In
particular, we show that the value function is continuously differentiable, and twice differentiable
almost everywhere over (0,00). The key implication of differentiability is that the HJB (9) holds
with equality. This leads to simple characterizations of the policy functions.



1.3.1 Preliminary results

For what follows it will be useful to study the following penalized problem, for any (w, \) € [0, 00) X
(0, 00):

H(w,)\)zsup{u(c,ﬁ—h)—I—a[U(y)—i-W(w—y)]+)\[h—c—|—p(w—y)—7ry+’f]}

X(w,)\)Eargmax{u(cjh—h)+a[U(y)+W(w—y)]+)\[h—c+p(w—y)—7ry+T]}

with respect to ¢ > 0, h € [0,h] and y € [0,w]. We obtain two Lemmas about this penalized
problem.

Lemma 1.10 Under both SI and linear preferences, the mazimized objective, H(w, \) is continuous,
concave inw and convex in X. The the maximum correspondence, X (w, \), is compact-valued, upper
hemsi continuous, non-empty, and convex.

Proof. We have that u(c,h — h) + A(h — ¢) < |Jul| + Ak — A¢, which is strictly negative for all
¢ > |lul|/A+h. Therefore, any consumption ¢ > ||u||/\+h is dominated by ¢ = 0. This implies that
we can restrict attention to consumption choices such that ¢ < ||ul|/A 4+ h. Thus an application of
the Theorem of the Maximum (see Theorem 3.6 in Stokey and Lucas, 89) shows that the maximum
correspondence is compact valued, upper hemi continuous and non empty. The convexity of the set
X (w, A) follows because the objective is concave and the constrained set convex. The maximized
objective is convex in A because it is the upper envelope of affine functions of A\. It is concave in w
because the objective is concave and, holding A fixed, the graph of the constraint correspondence
is convex. ®

Next, we discuss properties of the problem when the household has SI preferences:

Lemma 1.11 Under SI preferences

e The optimal consumption choice, c(\), is strictly decreasing, continuous, and satisfies limy_,o c(A) =
00, limy 00 ¢(A) = 0.

o There is some A > 0 such that, for all X € [0, )], the optimal labor choice is h(\) = 0. For
all A > X, the optimal labor choice is stm’ct{y positive, strictly increasing, continuous, with
lim,_, 5 h(A) = 0. Moreover, limy_,o h(\) = h.

o The consumption and labor flows, [c(\),h(N)], are continuously differentiable over (0, 00)
except perhaps at A where they have left and right-hand side derivatives.

e The mazximized objective, H(w,\), is strictly convez in \.

Proof. Given Inada conditions, we must have c¢(A) > 0 and h(\) < h. The necessary and
sufficient first-order conditions are

uc [¢(A),h —h(N)] = A
ug [e(X), h — h(N)] > X with “=""if A(X) > 0.



Let ¢(\) denote the solution of u. [é()\), h] = A. By strict concavity, it follows that c()) is strictly
decreasing, and using the Inada conditions that limy_o¢(A) = oo and limy_,o ¢(A) = 0. The
first-order condition implies that A(A) = 0 if and only if ¢(A) = é(\) and

ug [6(N),B] — A > 0.

Since uce(c,¢) > 0 and since ¢()) is decreasing, the left-hand side is a strictly decreasing function
of X\, which is positive when A — 0 and negative when A\ — oo. Thus, there exists \ such that
h(\) = h if and only if A < A. When \ € (0, \), the first-order conditions hold with equality, and a
direct application of the Implicit Function Theorem implies, after some calculations, that

h/()‘) =Y
while, for A € (), 00):
<0

Ugp — Ucyp

/ 5 )

c ()‘) = )
Ue,clee — Uy

Ucp — Ueyc

W(A) = > 0,

2
Ue,cUee — Uy

where all second derivatives above are evaluated at [¢(\), h(A\)] and where we used that both ¢ and
¢ are normal goods, which implies that uy ¢ — u.¢ < 0. This shows that the consumption and labor
flows are, respectively, strictly increasing and decreasing, and continuously differentiable except
perhaps at A where they have left- and right-derivatives.

To show that limy_,oc c(A) = 0, note that A = uc [¢(A), h — h(N)] < uc [¢(N), h] since ueqe > 0.
Therefore, limy_soo Ue [c(/\), ﬁ] = 0o and the result follows from the Inada conditions. Similarly, for
A > X, wehave A = ug [¢(A), b — h(N)] < ug [¢(A), h — h(X)]. Therefore, limy_,o0 ug [c(X), h — h(N)] =
oo, and the result follow from the Inada conditions.

Finally, we show that the maximized objective is strictly convex. The maximized objective can

be written as the sum of two functions of A, H(\,w) = Hi(\) + Ha(w, \), where
Hi(\) = max {u(c,h —h)+ A(h—c)}

Hy(w, ) = max, {aU(y) + W(w—y)] + Ap(w —y) — 7w+ T]}.

Both H; and Hs are convex in A, since they are the upper envelope of affine functions of A. To
show strict convexity, it is sufficient to show that Hp(\) is strictly convex. This follows because,
by an application of the envelope theorem:

0H;

N = h(A) = c(N),

which is strictly increasing. =



1.3.2 The first derivative of the value function

Lemma I.12 Suppose that (9) holds with equality for some w > 0 and some X € [W/ (w), W’ (w)].
Suppose in addition that there exists some (c, h,y) € X (w, \) such that h—c+p(w—y)—7my+7T = 0.
Then the value function is differentiable at w with

alU'(y)

W (w) = ——2
r+a+mw

Proof. Since the value function is concave, it is differentiable almost everywhere. Consider,
then, any w near w such that W is differentiable at @. Notice that, for & close enough to w, ¢, h
and y + & — w is feasible for the optimization problem defining H(w, ). Therefore:

(r+a)W(w) > ule,h—h) +alU(y+o—-w)+W(w-y)
+W(@)h—ctplw-y)—mly+o-w)+7]

u(e,h—h) +

u(c,h —h) +

where the second line follows from our maintained assumption that h —c+p(w —y) —7y+ Y =0,
and the third line follows from the concavity of W(w). At w, this inequality holds with equality.
Subtracting the equality at w from the inequality at @, we obtain:

alU(y+a—w)+W(w-y)]—7W(®) @ -]
alU(y+w—-w) +W(w-y)] - W@ - W),

NIV

(r+at+m) W@ -WwW]zalU(y+w-w) +W(w-y).

After dividing by @ — w > 0 and letting @ | w, we obtain that:
al’ (y)
w > — 7
+(w) T rt+a+mw
Dividing by @ — w < 0 change the direction of the inequality. Letting @ 1 w, we obtain

al' (y)

W (w) < ——=—.
r+a+mw
Since, by concavity, W/ (w) < W’ (w), we obtain that

al’ (y)

! _ ! _
W (w) = Wiw) = 220

as claimed. m
Proposition 1.13 The value function is continuously differentiable over [0, 00).

Proof. Suppose that there is some w € (0, 00) such that W/ (w) < W’ (w). Since W is concave,
it is differentiable almost everywhere, and so there exists an increasing sequence w,, < w such that
w,, — w and W is differentiable at w,,. Note that, by concavity, W'(w,,) is decreasing and positive
and so has a limit X\. Going to the limit in the Hamilton-Jacobi-Bellman equation of Proposition

10



L7, we obtain (r + )W (w) = H (w, A), where H(w, A) is the function on the right-hand side of the
HJB equation. Likewise, there exists a decreasing sequence w, > w such that w, — w and W (w)
is differentiable at @w,. By concavity, W’(w,) is increasing and bounded by W (0), which is finite
by Corollary 1.4, and so has a limit A. Going to the limit in the HJB equation, we obtain this time
(r+a)W(w) = H (w,\). We know from Lemma I.10 that H(w, \) is convex in A. Hence it follows
that, for all A € [\, A], (r + @)W (w) > H (z,A). By concavity, A < W/ (w) < W (w) < X. Together
with the inequality shown in Proposition 1.7, this implies that the HJB equation must hold with
equality, that is:

(r+a)W(w) = H(w, A)

for all A € [W/ (w), W’ (w)]. With SI preferences, we have reached a contradiction because we
know from Lemma I.11 that H(w, \) is in fact strictly convex in A.

With linear preference, we need a little more work before reaching a contradiction. First, we
notice that, since A < A, there exist Ay < A2, both in [\, A], such that 1 ¢ [\, A2]. Suppose for
example that Ao < 1 (the argument when A\; > 1 is symmetric). Then, for all A € [\, 2], the

optimal choice of consumption and labor flow in the HJB is ¢ = 0 and h = h. Hence:

H(w,\) = :%p]{a[U(yHW(w—y)HA[ﬁ+p(w—y)—7ry+ﬂ} (13)

with respect to y € [0,w]. An application of the envelope theorem (Theorem 1 in Milgrom and
Segal, 2002) implies that

A2
H(w,2g) —H(w, 2) = | - {h+plo = yW)] = my() + T} dX,

where y(\) is the solution of the optimization program on the right-side of (13). Notice that,
by strict concavity, y(A) is indeed uniquely defined. By the Theorem of the Maximum (Theorem
3.6 in Stokey and Lucas, 1989), it is continuous in A. Now since H(w,A2) = H(w, A1), it thus
follows that there evidently exists some A € [A1, Ao] such that the integrand is equal to zero, that
is h + plw—y(\)] — 7y(\) + T = 0. But we have reached a contradiction because, according to
Lemma 1.12, this implies that the value function is differentiable at w.

Finally, we need to establish that the value function is continuously differentiable. For this,
take any w > 0. By concavity, it follows that W’(w) > limgy, W/(@) = W' (w4 ). To obtain the
reverse inequality, take any w < @ < @. By concavity, we have that
W(w) - W) W(@) —W(w)

O = W (wy) > =
w—w w—w

W(w) > = W (wy) = W(w),

where the first inequality follows by letting @ | w and the second inequality follows by letting @ | w.
This shows that W'(wy) = W/(w). Proceeding similarly to the left of any w > 0, we obtain that
W(w_)=W'(w). m

Because the value function is continuously differentiable we obtain that:

11



Corollary 1.14 For all w > 0
(r + @)W (w) = max {u(c,h — h) + a[U(y) + W(w — y)] + W (w) [ — ¢ + plw — y) — 7y + T},

with respect to ¢ > 0, h € [0,h] and y € [0,w]. In particular, at w = 0, the equality holds with or
without imposing the positive saving constraint that h —c+ Y > 0.

Proof. The equality when w > 0 follows directly from Proposition 1.7 and the finding that
the value function is differentiable. All we need to show is that the equality holds at w = 0,
with and without imposing the positive saving function constraint. To see this, recall W'(w)
is continuous and that, according to Lemma I1.10, H (w, ) is continuous in (w, A). Therefore,
it follows that H [w, W'(w)] is continuous in w > 0. Going to the limit as w — 0 leads that
(r+a)W(0) = H [0, W(0)], i.e., it is equal to the value of the optimization program on the right-
side of HJB without imposing the positive saving constraint. By Proposition 1.7, the (r+«a)W(0) <
infysywr) H (0, A). Tt thus follows that infysy o) H (0,A) = H[0,W'(0)]. As argued earlier in
Footnote 2, taking the infimum over A > W’(0) is equivalent to setting A = W’(0) and imposing
the constraint that the saving function is positive. m

Next we show that:

Proposition 1.15 The derivative of the value function, W'(w), is strictly decreasing.

Proof. Suppose that there exists some ag < by such that W'(ag) = W'(bg) = Ag. Then, since
W'(z) is decreasing, W'(w) = Ao for all w € [ag, bp]. Plugging this back into the HJB we obtain
that:

(r+ a)W(w) =sup{u(c,h—h) +a[U(y) + W(w—y)]+ X [h—c+p(w—y) —my+ Y]}

with respect to ¢ > 0, h € [0,h] and y € [0,w].

This implies that ap > @, where @ solves aU’(@w) = (r + 7 + a)W’(0). Indeed, one easily sees
by taking first-order condition that, for all w < @, y = w solves the lumpy consumption problem,
i.e. it maximizes «a[U(y) + W(w —y)] — (p + m)W'(w)y. Hence, if ag < @, then for all w € [ap, @],
the value function satisfies:

(r+ a)W(w) =sup {u(c,h — h) + a[U(w) + W(0)] + Ao [h — ¢ — 7w + Y]},

with respect to ¢ > 0 and h € [0,h]. Since U(w) is strictly concave, then W (w) would be strictly
concave as well, contradicting the premise that W’ (w) = Ag for all w € [ag, bo)-
The first-order condition with respect to y is:

al' [y(w)] = aW' [w = y(w)] = Xo(p+ m) = ¥ =0,

where 1) is the multiplier for the constraint y < w. An application of the enveloppe theorem (for
example Corollary 5 in Milgrom Segal, 2002) shows that

(r+ )W (w) = (r+ a)hg = aW' [w — y(w)] + pAo + .

12



Substituting in the first-order condition to eliminate v, we obtain
(r+a+mX = al (y),
which implies that y is constant and equal to yo = (U’) " (1+ =) for all w € [ag, bp]. This implies

in turn that the constraint y < w is slack for all w € (ag, bp], that » = 0 and, from the envelope
condition, that:

r —
W/(W — %) = <1 + a,0> Ao = A,
for all w € (ap, bp]. Clearly, this remains true by continuity at w = ag. Thus, we have found a new

interval, a1, b1], where a1 = ag — yo and by = by — yo, such that W/(w) = A\1. As before a; > @. By
induction, we obtain a decreasing sequence a; > @ such that

k
W (ay,) = <1+ ! a”) o.

But we know from Lemma 1.4 that W’(z) is bounded above. Since p < r, we have reached a
contradiction. m

1.3.3 The second derivative of the value function

We now offer two propositions about the second derivative of the value function. First, we can
characterize the second derivative of the HJB whenever it exists.

Proposition 1.16 The value function is twice differentiable almost everywhere. Whenever W"(z)
exists:

(r+a+mW(w)>al'(y)+ W (w)[h—c+p(w—y) —mz+T]
for all (¢,h,y) € X [w, W (w)], and with an equality if w > 0.

Proof. Since W/(w) is decreasing, it is differentiable almost everywhere (see for instance Roy-
den, Chapter 5, Theorem 2). To obtain the relationship shown above, consider some w > 0 and
any (¢, h,y) € X [w, W (w)]. Assume that W'(w) admits a right-derivative, that is:

W// (er) — lim W/(CD) — W/(w)

dw w—w ’

exists. Then, for all @ > w and close enough to w, ¢, h, and § = y + © — w is feasible for the HJB
at @. Evaluating the right-hand side of the HJB at this feasible choice, we obtain:

(r+a)W(@)>ulc,h—h)+alUy+d—w)+ Ww—y9)]+ W @) [h—ctplw—y)—m(y+d—w),
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with an equality when @ = w. Subtracting the equality at w from the inequality at &, we obtain
that:

(r+a) [W(@) - W(w)] Z2a[U(y + o —w) = U(y)]
+ [W(@) =W ()] [h—c+pw—y)—ay+ Y] —aW'(@)(& —w).

Dividing by @ — w > 0 and letting @ — w, we obtain the inequality of the proposition. If w > 0
and W' (w) admits a left-derivative at w, then repeating the same steps with @ < w leads to the
reverse inequality.

Finally, the next proposition derives simple sufficient conditions for the value function to be
locally twice continuously differentiable:

Proposition 1.17 Consider any w such that: (i) w > 0, (ii) the saving function is not zero and
(ii1) if preferences are linear, W'(w) # 1. Then W (w) is twice continuously differentiable in a
neighborhood of w.

Proof. Consider any such w and let A = W/(w). With SI preference, X (&, \) is always singled
valued. With linear preference, given our maintained assumption that W'(w) = X # 1, X (&, \)
is single-valued in a neighborhood of (w,A). Since w > 0, there exists ¢ such that 0 < § < & for
all (w, 5\) in a neighborhood of (w, \). Hence, an application of Corollary 5 in Milgrom and Segal
(2002) implies that H (&, A) is differentiable in a neighborhood of (w, A) with

OH . i A )
=N = h() £ [w — (@, A)} —y(@, N+ T
OH 1 <1

% aU {y(w,)\)} — AT

Since the maximum correspondence is single valued and upper hemi continuous, it is continuous,
which implies that the partial derivatives are continuous as well.

Now the HJB implies that the equation —(r + )W (@) + H(&,A) = 0 is solved by A = A
when @ = w. The above discussion established that the equation is continuously differentiable
with respect to (@, A) in a neighborhood of (w,\). Moreover, %—If # 0 at (w, A) by our assumption
that the saving function is non zero. Hence, an application of the Implicit Function Theorem (for
example Theorem 13.7 in Apostol 1974) shows that this equation has a unique solution in some
neighborhood of w, and that this function can be written as a continuously differentiable function
of ©. But W'(®) also solves this equation and, by continuity, must lie in the same neighborhood
of w for & close enough to w. Hence, W/(®) must coincide with the continuously differentiable
function obtained by the above application of the Implicit Function Theorem. m

Note that the proposition does not apply at w = 0 since H(w, \) is not differentiable with
respect to w at that point. Indeed, we will show in the next section that lim,_o W (w) = —oc.

1.4 Properties of the policy functions
Because the HJB holds with equality, the optimal lumpy consumption problem can be written:

max a [U(y) +W(w —y)] — (p+m)W'(w)y. (14)
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with respect to y € [0, w].

Proposition 1.18 The optimal lumpy consumption problem (14) is solved by some unique y(w) >
0, which is continuous, strictly positive and increasing in w > 0, with imy_ oo y(w) = limy, 00 w —
y(w) = 0o. Moreover, there exists some @ > 0 such that y(w) = w if w < @, and only if w < @
when p+m=0.

Proof. Given that U(y) satisfies Inada conditions but W (w) does not, it immediately follows
that y(w) > 0. Moreover, the first-order necessary and sufficient conditions for y(w) are:

alU' (y) —aW'(w—y) — (p+m)W'(w) >0, with “="if y < w.

Since this equation is strictly decreasing in y and increasing in w, it follows that y(w) is an increasing
function of w. Moreover, lim, .~ y(w) = co otherwise, given limy oo W/ (w) = 0, the first-order
condition would not be satisfied for w large. A similar argument shows that lim,_,cc w—y(w) = 400.
Finally, evaluating the first order condition at y = w we obtain that:

al' (w) — aW'(0) — (p+ )W (w) > aU'(w) — aW'(0) — (p + m)W'(0).

The right-side is equal to the left-hand side if p + 7 = 0, and is strictly positive if and only if
w<o=(U)""[(1+2T) W'(0)]. The result follows. m

Next, we show that the saving function is strictly positive near zero. This provides the basis for
establishing that there exists a monetary equilibrium since, according to Proposition .18, agents
only save in cash near w = 0.

Proposition 1.19 The saving function is strictly positive and decreasing for all w > 0 and close
enough to zero. It is strictly decreasing with SI preferences, and with linear preferences if m > 0.

Proof. From Lemma 1.12, we know that if the saving function is zero for some w > 0, then
W' (w) = aﬂgﬁg}. But W/(w) < W'(0) and U'(y) > U'(w). Therefore, we obtain that w >
uH [(1+ ™) W'(0)]. Hence, the saving function is non zero for all w > 0 close enough to
zero. Since W'(w) is strictly decreasing, we must have W/(w) # 1 for all w > 0 close enough to
zero. Hence, an application of Proposition 1.17 shows that the value function is twice continuously

differentiable for all w > 0 and close enough to zero. Moreover,

(r+a+mW(w)=al [yw)] +W"(w)s(w)
where s(w) is the saving function. Since U’'(y) > U'(w) and W' (w) < W'(0), we obtain that
W (w)s(w) < (r+a+mW(0) — al'(w) = —o0

as w — 0. Since W”(w) < 0 by concavity, this clearly implies that s(w) > 0 for all w > 0 and close
enough to zero.

From Proposition [.18 we know that y = w for all w close enough to zero. Therefore, the saving
function can be written:

s(w) =h [W'(w)] = c[W'(w)] — 7w+ T.
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Under SI preferences, the result follows because h(A\) —c(A) is strictly increasing, while by W' (w) is
strictly decreasing by Proposition 1.15. Under linear preference, the result follows because ¢(\) —
h(A) is weakly increasing. m

Finally we note that:

Corollary 1.20 lim,_,o0 W (w) = —c0.

Proof. This follows from the the upper bound derived above, given that thee saving function is
strictly positive near w =0 m
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II Continuity with respect to the lump sum transfer parameter

To establish equilibrium existence we need to establish that policy functions are continuous with

respect to the the lump sum transfer parameter, Y. As before, we consider h+Y > 0, i.e., we restrict

T to lie in (—h,00). In the remainder of this section, we depart from our notations and we are

explicit about the dependence with respect to (z, T) of the various functions under consideration.
We start with a continuity result for the value function:

Lemma II.1 The value function W is continuous and increasing in (z,Y) € [0,00) x (—h,0).

Proof. Consider the fixed point problem for the value function, W = T'[W] and note the following.

First, it is clear that any policy that is feasible for (z,Y) is also feasible for any (2, T’) such
that 2/ > z and Y/ > Y. Hence, T[W] is increasing in (z, T).

Second, let Th/[W] denote the value of the optimization problem (1) but assuming that the
horizon is finite and equal to H > 0. Then, since utilities are positive, Ty [W] < T[W].

Third, consider any £ > 0. Let M, be such that e~ "+OMe [||y|| 4+ o (|[W]| + |UD] /(r + @) < e.
The restriction over [0, H.| of any feasible policy over [0,00), is a feasible policy over [0, M,].
Therefore, T[W] < Ty [W] +e.

Fourth, by inspection of the proof of Lemma 1.2, one sees that the Lipchitz property derived
for the infinite horizon problem also holds for the finite horizon problem, with the same Lipchitz
constant.

Fifth, in the optimization problem (1) with finite horizon M., all the policies that are feasible
starting at z with lump sum transfer Y/ > Y are also feasible starting at z + A(Y' — Y) with lump
sum transfer T, where A(Y' —T) = (Y — T)/m (™= — 1). Indeed, the extra real balance allow
the household to mimic the lump sum transfer over the finite horizon [0, H.|: the household can
spend Y — T every period and run out of the extra real balance A(Y' — T) exactly at time M.
This shows that Ty [W](z,Y') < Tp [W](z + A(Y = T),T).

With these remarks in mind, consider any (z,T) and (2/,Y’). Let T = max{T,Y'}, T =
min{Y, Y}, Z = max{z, 2’} and z = min{z, z’}. We have

ITW](2, 1) = TW] (2, T < T[W

+e+TW|(ZX)-T[W](zX).

where the first inequality follows from monotonicity, and the second one from the above derived
inequalities between the value of the finite and the infinite horizon problems. Now, using the
Lipchitz properties of T'[W] and Ty [W], we obtain:

T+ ~—
(AT

IT[W](z,T) — TIW](Z,Y")| < —Y)+z-2z]+e

We obtain the continuity result by letting (2/,Y’) — (2, 1), and then e — 0. =
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Next, we consider the optimal lumpy consumption problem. Since W(z,T) is continuous in
(z,Y) and since the optimal lumpy consumption problem has a unique solution, an application of
the Theorem of the Maximum shows that:

Lemma I1.2 The optimal lumpy consumption, y(z,Y), is continuous in (z, ) € [0,00) x (—h, c0).

Next, we work on the first derivative of the value function, W’(z,T). To do so we first need
to prove an intermediate result. Let Z(Y) = sup{z > 0 : z —y(z,YT) = 0}. We know that, for
all z > z(7), the first-order condition for optimal lumpy consumption holds with equality, i.e.
U'ly(z,T) =W [z —y(z,T1),Y]. Given that, for fixed T, this first-order condition is continuous
in z, we obtain by letting z — Z(T) that:

U'[z(1)] = W'(0,7).

Hence, z(T) is continuous in T if and only if W/(0,T) is continuous in Y. We establish this in the
following Lemma

Lemma I1.3 The function W'(0,Y) is continuous in Y € (—h,o0).

Proof. We note that, for any T, W/(0,T) solves the HIB: W(0,T) = H(0,T,)\). Moreover, we
know from Proposition I1.19 that the saving function is strictly positive at zero, hence it follows from
Lemma 1.10 that the left-derivative of H with respect to \ is strictly positive, i.e., Hy(0,T,AT) > 0
when evaluated at A = W'(0,T). Together with the fact that H(0,Y,)\) is convex in A, this
implies that the equation W (0,Y) = H(0,Y,\) has at most one other solution, A, and for this
solution Hy(0,Y, A1) < 0. Hence, W’(0,T) is the unique solution of the HJB equation satisfying
H)\ (0,7, A7) > 0.

Now consider a sequence of T,, — Y, the associated sequence \, = W’(0,T,), and some
(cn, hn) € X(Ay). Since saving functions are strictly positive at z = 0, we have that h, —c¢,+7Y, > 0.
Since the sequence of A\, is bounded, it has at least one accumulation point, A*. By continuity, this
accumulation point satisfies the HJB equation. Corresponding to this accumulation point, there
is an accumulation point (c¢*, h*) of the sequence (cy, hy,) which is, by upper hemi continuity, an
element of X(\). By continuity, is satisfies h* — ¢* + Y > 0. Hence, by Lemma 1.10, we obtain
that H,(0,T,\*T) > 0. By the characterization of the previous paragraph, we conclude that
A* = W’(0,7), and the result follows. m

Next, we show:

Lemma I1.4 The function ¢(x,T) solving z—y(2,T) = x and 2 > Z(Y) is continuous in (z,T) €
[07 OO) X (_h7 OO)

Proof. By construction, this function is the unique function of the pair of equations z—y(z, ) = =
and z > Z(Y). To show continuity, consider some Y,, — Y, x,, — x, and the corresponding sequence
zn = @(Tpn, Tp). This sequence is bounded since z,, < z,, and z,, is convergent, hence it has at least
one accumulation point, z*. By continuity, we find that z* solves z* — y(2*,T) = 0 and 2* > z(T),
whose unique solution is p(z, ). =

Finally, we obtain
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Lemma IL.5 The first-derivative of the value function with respect to z, W'(z,7), is continuous
in (2,Y) € [0,00) x (—h,00).

Proof. The proof follows from the same reasoning as before. We start from the first-order condition
of the optimal lumpy consumption problem, at any z > Z(T):

U [y(= 1)) = W' [z = y(, 7). 1.
For any x > 0, evaluate this first order condition at ¢(x,Y). We obtain:
U’ [y(p(. 1), T)] = W'(z, 7).

Since y(z, T) and ¢(z, T) are both continuous, the result follows. m
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III Further results: SI preferences with © > 0

We now derive some additional properties of the solution under SI preferences. For simplicity we
assume here that m > 0. A non-negative inflation rate simplifies some proof because it implies that
the saving function is strictly decreasing, and that the target money balance is finite. But one may
expect results to extend beyond 7w > 0.

III.1 Target real balances

We first study the target real balances.

Lemma IIL.1 Under SI preferences, if m > 0, the saving function s(z,Y) = h[W'(z,Y)] —
c[W'(z,T)] — 7z + 7Y is continuous in (z,7).

Proof. We know that W/(z, T) is continuous and strictly decreasing. That the saving function is
continuous follows from X (\) being singled valued, and hence continuous. That the saving function
is strictly decreasing follows h'(A) < 0 and ¢(A\) >0and 7 > 0. m

Now we define the target real balance:

Lemma II1.2 Let the target real balance be
2*(T) = inf{z > 0| s(z,T) < 0}.
Under SI preferences, if m > 0, z*(1) is strictly positive, finite, and continuous in Y.

Proof. By Proposition 1.19 we have z* > 0. Moreover, z* is finite since lim, o, W/(z) = 0 and
limy_,g ¢(A) = 4+o00. To prove continuity, consider some T and some Z such that s(z,T) < 0.
Because the saving function is continuous, it is negative at z for all Y’ close enough to Y. Since
the saving function is decreasing in z, we conclude that 2*(T) < z for all T’ close enough to T.
Now consider a sequence T,, — Y, and the corresponding sequence z, = z*(T1,). By construction
$(zn, Yn) = 0 and so by continuity s(z,T) = 0 for any accumulation point of the sequence z,.
We conclude that all accumulation point of z, must equal z*(T), since it is the unique solution of
s(z,T). Because z, is bounded by z for n large enough, it follows that z, converges to z*(1). m

II1.2 Twice continuous differentiability

Next we study the second derivative of the value function over [0, z*]. By Proposition 1.17 we obtain
that W (z) is twice continuously differentiable over (0, 2*), and has an infinite second derivative at
z = 0. The difficulty lies in establishing that it is also twice continuously differentiable at the target
real balance, z*. Twice continuous differentiability at z* is a useful regularity property: it implies
that the system of ODE satisfied by optimal real balance is continuously differentiable, and so is
well behaved everywhere. We proceed in steps:

Lemma II1.3 Under SI preferences, if m > 0, V(2) is twice continuously differentiable over [0, 2),
where Z > z* solves 2 — y(2) = z*.
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Proof. Recall that y(z) solves: U’ [y(z)] > W' [z — y(2)], with an equality if z > z. If z < Z,
then y(z) = z and so is clearly continuously differentiable with y/(z) = 1. Since V'(z) = U [y(2)],
we obtain likewise that V'(z) is twice continuously differentiable with V" (z) = U”(z2).

If z > Zz, then the first-order condition holds with equality. Moreover, since we assume that
z < Z, we have that z — y(z) < z*. Since W (z) is twice continuously differentiable over [0, z*), this
implies that the first-order condition defines a continuously differentiable and strictly decreasing
implicit function for y(z). Hence, we can apply the implicit function theorem and assert that y(z)
is continuously differentiable, with derivative:

_ W[z —y(2)]
W[z —y(2)] + U [y(2)]

and, by implication, V" (z) = U" [y(2)] ¥/ (2).

Finally, consider z = Z in case zZ < 2. Since lim,_,o W (z) = —oo (Proposition 1.20), and since
lim,,zy(z) = Z it follows that lim,_,;+ ¢/(z) = 1. Since we already know that ¢/(z) = 1 for all
z < z, an application of the mean value theorem implies that y(z) is continuously differentiable at z
with ¢/(Z) = 1. By implication, V (z) is twice continuously differentiable at z with V" (z) = U"(z2).
[

y'(2)

Proposition I11.4 Assume SI preferences and m > 0. Then W (z) is twice continuously differ-
entiable over (0,00) except perhaps at z* where W"(z) has left- and right-limits at z* which are
negative solutions of the quadratic equations:

{0 [W(M)+] = W (z)+]}a? = (r+a+2m)z+aV"(z) =0
{0 W' ()-] = [W'(z")—]} 22— (r+a+2m)z+aV’(z*) =0.

In particular, if W'(2*) # X\, where X is the threshold below which h(\) = 0, then W(z) is twice

continuously differentiable at z*.

Proof. For z # z*, the result follows from Proposition 1.17. The only potential difficulty arises at
z = z*. To address it, consider the initial value problem:

Zt = h()\t) — C()\t) — T2 + T
A= (r+a+m)—aV(z),

starting with initial condition 2y # z* close enough to z*, and \g = W’(zp). From Lemma I.11,
we know that h(\) — ¢()\) is continuously differentiable for A\ # X and admits left- and right-limit
at A\. From Lemma II1.3, we know that V(z) is twice continuously differentiable near z*. Hence
the system satisfies Lipchitz conditions so that standard existence and uniqueness theorems for
ODEs apply. By Proposition 1.16, it is clear that the unique solution of this problem is obtained
by solving the initial value problem 2z, = h [W'(z)] — ¢ [W'(2¢)] — w2 + T, with initial condition zg,
and letting \(z;) = W'(z).

Note that we must have z; # z* at all times. Indeed, suppose towards a contradiction that
there is some finite time 7" at which zp = z*. Then Ay = W’(2*). But note that, by Lemma 1.12,
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[2*,W'(2*)] is a stationary point of the above system of differential equations. Since the above
system of ODE satisfies standard Lipchitz conditions, it admits a unique solution for any set of
initial condition, and so it follows that z; = z* at all times, which is a contradiction. Also, since
the saving function is strictly positive for all z < 2z* and strictly negative for all z > 2*, it follows
that (2, \r) converges towards [2*, W’ (2*)] as time goes to infinity.

Next, we study the asymptotic behavior of the above system of ODE near the stationary point.
Assume for now that W’(z*) # X so that the system is continuously differentiable at [z*, W'(z*)].
The Jacobian evaluated at [2*, W' (2*)] is:

J:< — Wmﬂfﬂ—ﬂwﬁﬂv

—aV"(z¥) 4o+ 7.

Clearly, the determinant of J is strictly negative, implying that J has two non-zero eigenvalues
of opposite sign. Therefore, the stationary point [2*, W/(z*)] is a saddle. By the stable manifold
theorem (see Perko, 2001, chapter 2.7), there is a unique trajectory solving the ODE converging
to [z*, W*(z*)], the “saddle path”. Moreover, this trajectory is tangent to the subspace associated
to the negative eigenvalue of J. Formally, let C'y and Cy denote eigenvectors associated with
the negative and positive eigenvalues of J. Let (y1,y2) denote the coordinates of any point x on
the basis formed by (C1,C3). These coordinates solve x = Cy, where C' = [C1,C5]. Then, any
solution of the ODE converging to [z*, W (z*)] must satisfy yo; = 1(y1¢), in a neighborhood of
the stationary point, for some continuously differentiable function. The tangency condition is that
V' (yr) = 0, where (yf,y3) denote the coordinate of the stationary point. Hence, z; and \; must
satisfy, C{llzt + 02_21 A= (C’l_llzt + Cl_Ql)\t), where C'Z-;l denote the elements of the matrix C 1.
Taking derivatives and rearranging we obtain that:
Zmy—cgw«h%+cg&ﬂ=—@f+qﬁyw5%+q;m,

where we used the fact that % # 0. Since Cyy' = det(C)~'Cy; # 0, and since ¢/ (y}) = 0, we obtain
that:

A Cy'  C
lim 5% = lim W"(z) = ——2 = 221
t—oo %y t—o0 Csy C11
where we used the fact that \, = W” (z¢)%: and that C’;ll = —det(C)'Cy;. Clearly, the same
result obtains starting from an initial condition zy > z*. Taken together, this gives us that:
Co
1- 1 — 4
zLHzl* W (Z) 011 ’

and so an application of the mean value theorem shows that W”(2*) = Cy1/Css. Finally, a straight-
forward eigenvector calculation leads to the formula of the proposition.

Finally, if W’(2*) = X the system of ODE is not continuously differentiable at z*, however the
Jacobian has left- and right- limits as z — z*. This allows us to solve for the saddle path separately
to left and the right of the stationary point, [z*, W’(2*)]. For example, to obtain the left- derivative,
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we extend h(\) —c(A) —mz+ 7 to the right of X so that it is continuously differentiable at A. We can
then apply the stable manifold theorem just as before, obtain a saddle path that converges to z*
from the left, which is clearly also a saddle path for the original ODE. The eigenvector calculation
provided the left-limit of W”(z) at z*. To obtain the right-derivative, we proceed similarly to the
right of \. m

I11.3 The time path of real balances starting at z =0

Next, consider the initial value problem of finding a differentiable function z(¢, ') such that:

2(Y) = s[z(7), T] (15)
20(Y) =0,

where s(z,T) = h[W/'(2,T)] — ¢[W'(2,Y)] — 7z + T is continuous in z > 0 and continuously
differentiable in z > 0. As a result, to construct the solution starting at z = 0, we cannot directly
use standard existence theorem because W”(0,T) = oo and so s(z,T) fails to be Lipchitz with
respect to z at z = 0. However, we can construct a solution by running the ODE forward and
backward starting at some 2 € (0, 2*).

The forward solution. The forward solution is defined as the solution of the initial value problem
2rt(T) = s[zre(Y), Y], with some arbitrary initial condition zpg = 2 € (0, 2*). From the proof of
Proposition I11.4, we already know that the forward solution remains less than z*(Y) at all times,
and converges towards z*(T) as time goes to infinity. Moreover, standard results about continuity
with respect to parameters (see, for example, Theorem 2.10 in Tikhonov et al., 1980) show that
zp(Y) is continuous, since we have shown that W/(z, T) is continuous in (z, T).

The backward solution. The backward solution is defined as the solution of the initial value
problem Zp(T) = —s [zp:(Y), Y] starting at zpg = 2 € (0, 2*), where we extend the saving function
to be s(z,T) = s(0,T) for all z < 0. Since the saving function is positive over [0, 2] and continuous,
it is bounded away from zero by some s > 0, so that the backwards solution, zp;(T) must reach
zero at some finite time Tp(Y) < Z/s. Clearly, standard results about continuity with respect to
parameters apply for all t < Tp(Y). We first establish:

Lemma IIL.5 The function Tp(Y) =inf{t > 0 : zp(Y) = 0} is continuous in Y € (—h,00).

Proof. Fix some ¢ > 0 and some Y € (—h,00). Since the function zp;(Y) is continuous at
t = Tp(Y) by construction, there exists n; such that |t — Tp(Y)| < m implies that |zp(Y)| < e.
Now set any ¢ # T(Y) such that [t — Tp(Y)| < min{e,n}. Since ¢t # Tr(T), the ODE satisfies
the regularity conditions required for the solution to be continuous with respect to the parameter
T. Namely, there is some 72 such that |Y/ — Y| < g implies that |zp,(Y) — z5:(Y')| < € and, as a
result,

28 (Y7)] < |2Be(Y') = 2Be(T)| + [28e(Y)] < 2e.
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Now since the saving function is bounded below by s we have s|t’ — t| < |zpy(Y') — z25:(Y’)] for
any t'. In particular, when ¢’ = T(Y’), zpy(Y') = 0 so that this inequality becomes:

[25:(X")]

ITa(Y) — 1] < <

o [ &

Taken together we obtain that
Tp(Y) = Tp(Y)| < |Tp(Y) —t|+ [t = Tp(Y)| <e(1+2/s),

for all |Y" — Y| < 12, since we chose ¢ such that |t — Tp(Y)| < e. The result follows. m

Putting the backward and the forward solution together. We now let

2(1) = {ZBTBm—t(T) £ < Tp(Y)
" pzpm)(Y) > Ti(Y).

Our main result is:

Proposition II1.6 The function z(Y) is the unique solution of the initial value problem (15), is
strictly increasing in time, converges to z*(T) as t — oo, and is continuous in (t,Y).

Proof. By construction, z(¢, T) solves the initial value problem (15), is strictly increasing in ¢ and
converges to 2*(Y) as t — oo. To establish uniqueness, we note that any solution of (15) must be
strictly increasing, and so must be strictly positive for all ¢ > 0. Since the ODEs we consider are
continuously differentiable for all z > 0, their solution is unique given any initial condition, which
implies that any solution of the (15) must coincide with z(¢, T) for any ¢ > 0. That it also coincides
with z(¢,Y) for ¢ = 0 follows by continuity.

For continuity, the only potential difficulty arises at ¢ = 0, when the ODE fails to be Lipchitz
with respect to z. For this consider some ¢ > 0 and some neighborhood [Yi,Y2] of T. The
uniqueness result shows that the construction of z(t, T) does not depend on the particular initial
condition Z chosen for the backward and forward solution. Hence, we are free to pick 2 small enough
so that 2/s[s — s| < e, where s > 0 and 3 are, respectively, a lower and an upper bound on the
saving function over (z,T) € [0, 2] x [Y1, To]. Note that this implies that 0 < 2/5 < T(Y’). For
any t' > 2/3, we can write:

‘Z(t/,T/) — Z(O,T)| = |ZB [TB(T,) — t/,T/] — 2B [TB(T),T] ‘
< |ZB [TB(T,) — t,,T/] —ZB [TB(T/) — t/, T] | + ‘ZB [TB(T,) — t/,T] —ZB [TB(T), T] |

The first term is less than e by our choice of Z, given that the two backward solutions zp(¢,Y)
and zp(t,Y’) can differ by at most t[s — s| and given that 0 < Tp(Y') —t' < Tp(Y') < %/s.
Turning to the second term, recall that in Lemma III.5 we have shown that T5(Y) is continuous.
Hence, Tp(Y') —t' — Tp(Y) as (t',Y’) — (0,Y). Moreover, for fixed T, the backward solution is
continuous in time by construction. Hence, the second term is smaller than € in a neighborhood of
(0, 7). m
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IIT1.4 Time to accumulate balance

Consider some YT and some Z > z*(Y) such that Z — y(Z,T) < 2*(Y). Such Z exists since
y(z,T) > 0. By continuity, there is a neighborhood [Y1, Y] of Y such that Z — y(Z,Y’) < z*(Y’)
for all Y € [Y1,Y3]. Finally for any 2 € [0,Z] and T € [Y1,Y9], consider the time it takes a
household to accumulate a x real balance starting from zy = 0:

T(z,T)=1inf{t >0 : z(Y) =z},

where T'(z,T) = oo if this set is empty. For z < 2*(Y), T'(z,T) is the unique solution of the
equation z(Y) = z. For © > 2*(T), T(x,T) = oco. Since z(Y) is strictly increasing in ¢ and
continuous in (¢, T), we obtain:?

Lemma IIL.7 The time to accumulate balances, T(x,Y), is increasing in x, and continuous in
(z,T) € [0,00) X (—h,00).

Proof. For (z,T) such that x < z*(Y) this follows because the functions z*(Y) and z(Y) are
continuous, and because T (x, T) is the unique solution of z;(Y) = z. For (x,Y) such that z > z*(7),
this also follows because, for any (z/,Y’) close enough to (z,Y) we have that 2/ > 2*(Y’) by
continuity, and so T (z/,Y') = co. Finally, consider x = 2*(Y). We seek to show that, for any
sequence (x,, T,) converging to (z,Y), T (x,, Tp) — 0o. Suppose, towards a contradiction, that we
can find some sequence such that 7 (x,, ) is bounded by some M. Then, for all n, z(M, T,) > x,.
Letting n go to infinity we obtain that z(M,Y) > x = 2*(Y), which is a contradiction since z*(T)
is reached in infinite time. m

Finally, to establish existence and uniqueness of stationary distributions, as well as the existence
of equilibrium, we need to establish the following continuity property. For this paragraph, consider
some YT and some Z > z*(T) such that Z — y(Z,Y) < 2z*(T). Such Z exists since y(z,T) > 0.
By continuity, there is a neighborhood [Y1,Y2] of T such that Z — y(Z,Y') < z*(Y’) for all
T € [Tl,TQ]. Let

F(z,2/,7) =1—e &40 where Az, 2/, T) = max {T(.,T)—Tlz—y(z7),Y],0}.
It then follows directly from Lemma IIL.7 that:
Corollary IIL.8 The function F(z,z',T) is continuous in (z,z',Y) € [0, Z] x [0, Z] x [T1, T2].
I11.5 The marginal value of real balance is strictly decreasing in T

Our objective in this section is to show:

Proposition II1.9 The marginal value of real balances is strictly decreasing in lump-sum transfer:
for any Y > 7T and z € [0,00), W/(z|Y) < W(2|T).

®In the Lemma, if 7(z, ) = oo, then continuity means that lim, v/ (,v) 7 (2", T") = oo.
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To establish this Proposition, we go back to our basic dynamic programming problem: the
one-asset version of the contraction mapping operator we studied in Section I.1.

T[f)(z]Y) = supE UOOO e Luer b= he) + U ye) + fze = we | D]} dt|, (16)

with respect to time paths for ¢, ¢, %+ and z; and subject to:

Zt = ht—Ct—ﬂ'Zt—FT
0 < <=z
0 — 2,

The argument of our proof goes as follows. We first impose regularity conditions on the con-
tinuation value f(z|Y) in the contraction mapping optimization program (16): we assume that
f(z]T) € @, the set of functions f(z|Y) which are concave in z € [0, 00), continuously differen-
tiable in z € [0,00), twice continuously differentiable in z € (0,00) except perhaps at one point
where the second derivative admits left- and right-limits, such that lim,_,o f”(z|Y) = oo, and such
that f’(z|Y) is decreasing in Y. We let ®* C ® be the set of functions f(z|Y) € ® such that
/(2| Y) is strictly decreasing in Y.

In Section II1.5.1 and Section III.5.2 we use saddle path analysis to establish that T[®] C ®*.
That is: (i) the set ® of function is stable under the contraction mapping operator T' and (ii)
the contraction mapping operator maps a continuation value with weakly decreasing marginal
value of real balances, into a value with strictly decreasing marginal value of real balances. Since
monotonicity properties are preserved by taking limits, value function iteration then shows that the
marginal value of real balance, W/(z|T) is weakly decreasing in Y. Since we already know from
Proposition III.2 that W (z|7Y) is continuously differentiable over [0,00), and twice continuously
differentiable over (0,00) except perhaps at one point, this shows that W € ®. Applying the
contraction mapping once more then shows that T[W| = W € ®*. Therefore, the marginal value
of real balances is strictly decreasing in Y.

IT1.5.1 Analysis of the optimization program
We start with the following result:
Lemma IIL.10 If f € ®, then T|[f] is concave in z € [0,00), continuously differentiable in z €

[0, 00), twice continuously differentiable in z € (0,00) except perhaps at one point where the second
deriwative admits left- and right-limits, such that lim,_,o f"(z|Y) = co.

Concavity follows from Lemma I.1 we proved earlier. To obtain the smoothness properties, we

study the optimization program (16) using the saddle-path approach described in Section 9, Part
IT in Kamien and Schwartz (1991).
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Optimal lumpy consumption. Let Z denote the level of real balance at which W(z) is not
twice continuously differentiable, if any. We first study the optimal choice of lumpy consumption
given the continuation value W (z).

V(z|T) = OrgggzU(y) + f(z—y| )

y(z|T) = argoglyng(y) + fz—y| ).

The argument of Proposition 1.18 imply that V(y|Y) is concave and continuously differentiable
over (0,00) with V/(y|Y) = U’ [y(z]|T)]. One also sees from the first-order condition that optimal
lumpy consumption is strictly increasing in z. Repeating the the argument in the proof of Lemma
IT1.3 shows that V(2| T) is continuously differentiable over (0, c0) except at Z such that Z—y(2) = Z.

Since f'(z]7Y) is decreasing in T, one sees that y(z|Y) is weakly increasing in Y. Indeed if
y(z|T) = z, then U'(z) > f/(0|Y) > f'(0|Y’), implying that y(z|Y") = z. If y(z|Y) < z, then
U'ly(= | D) = £ [ — y(= | )| 1] = £ [2 — y(z | T)| T, implying that y(=| 1) = y(z| 7).

Optimal control via saddle path. The Hamiltonian for the optimization program (16) is
H(z,h,c) =u(c,h—h)+aV(z|T)+ A(h—c—mz+T). Following Kamien and Schwartz (1991),
the system of ODEs for the state and co-state variables is:

Zt = h()\t) — C()\t) — Tz + T
(r+a+mh = aV'(z|7) + X,

where

{c(N),h(N)} = argc(r)ri%)iﬁu(c, h—h)+ Ah—c).

The 2; = 0 isocline is the function A = I(z|Y) defined implicitly by:
h(A) —c¢(A) —mz+ T =0.

The function I(z|Y), shown in plain green on Figure 1, is strictly increasing in z, goes to infinity
as z — @ The A\ = 0 isocline is the function A = J(z|Y) defined implicitly by:

(r+a+mA=al [y(z]Y)].

This function J(z|Y) is strictly decreasing in z, goes to infinity as z — 0. One sees easily that the
two isoclines have a unique intersection z* > 0.

Using the arguments in the proof of Proposition II1.4 in this Supplementary appendix shows
that the system of ODEs defines a unique saddle path, illustrated as the orange curve in Figure 1.
This saddle path can be viewed as a strictly decreasing function z — A(z | T), which is continuously
differentiable over (0, c0) except perhaps at z* where it admits left- and right-limits.* Moreover, in
Section II1.5.4 one easily establishes the following properties:

“The lack of differentiability of A(2|T) arises because the system of ODEs is not continuously differentiable at
(2%, A¥) if either A = X or 2* = Z.

27



The saddle path is sandwiched between the isoclines, that is:

0<z<z" : I(z|]T)<A=|Y)
z>2z" ¢ Jz|T)<A=z|Y)

(]7) (17)

J(z
I(z|T), (18)

<
<

with strict inequalities for z # 2*.

The saddle path has a finite limit at z = 0: lim,_0 A(0]| ) < oo.

The derivative of the saddle path is infinite at zero: lim,_,o N (2| T) = —c0

The saddle path is the derivative of the maximum attainable utility, that is:

z

T(|T) = TUE|T) + / A | ) da

u(c*, h — h*) + aV(z*)
r+a '

where T[f](z* | T)

IT11.5.2 The saddle path shifts down with T
Next we establish:

Lemma III.11 Given any continuation value f € ® in the optimization program 16, the marginal
value of real balances is strictly decreasing in Y. That is, for any X' > T and z € [0,00), A\(z|T/) <
Az T).

Graphically, in the phase diagram show in Figure 1, this means that the saddle path shifts down

when T increases. Our proof goes in two steps.

Step 1: the saddle path for T is strictly above that for T’ at z*(T). Indeed suppose that
2*(T) < 2*(Y’). Using (17), we obtain:

A0 [Y] < T[0T
< J[XM1)[T]
Alz*(1) 7],

where the inequality on the second line follows because J(z|Y) is decreasing in Y, and the equality
on the third line follows by definition of 2*(Y). Next suppose that z*(T) > 2*(T’). Using (18), we
obtain

A0 1] I[25(0)| Y]
Iz5(7) [ 7]

Az (0) 1]

<
<

where the inequality on the second line follows because I(z|Y) is strictly decreasing in YT, and the
equality on the third line follows by definition of z*(Y).
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I(z]T): z = O-isocline

saddle

: A =0 - isocline

Figure 1: The Phase Diagram
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Step 2: the saddle path for Y is uniformly and strictly above that for Y/. We already
know that this property holds at z*(T), the saddle path for Y is above that for T'. Now assume,
towards a contradiction, that they cross to the left of z*(T). Then consider largest crossing point
less than 2*(T), 2 . Clearly, since this is the last point at which the sadde path cross before
2*(Y), it has to be the case that the saddle path for Y’ must cross that for T from above, that is
MZ|Y) = AZ|Y) and N(2|T) > N(2|Y'). Letting A = A(2| T) and using the expression for the
derivative of A(z|Y), this can be written:

(rtat+mi—al'yE|T)] _ (r+a+mi—al’ (|1
h\) —e(A) =72+ T - h(A) — c¢(A) —mz 4+ Y’
(r+a+ mi U’ [y(2]7)] |

h(X\) — c¢(A) — T2+ 1
where the inequality on the second line uses that y(2|Y') > y(2|T) and that, to the left of 2*(T),

we have that Z; > 0 which can be written as 0 < h(X) — ¢(\) — 72 + T < h(A) — ¢(\) — w2 + 1.
Now, to the left of z*(Y), we also have that A; < 0, i.e. (r+a+m)A—al’[y(2]T)] < 0. Therefore,
the above inequality implies that T/ < Y, which is a contradiction.

Next, suppose, towards a contradiction, that the two saddle paths cross to the right of 2*(7).
Consider the smallest crossing point larger thant z*(Y), 2. Clearly, since this is the first point at
which the saddle path cross to the right of 2*(T), it must be that the saddle path for T/ must cross

that for T from below. Letting as before A = A(2| Y), this can be written:

(rta+mA—al'yE|T)] _ (r+atmi—al[y(z|T)]
h(\) — ¢(A) — w2 + X - () —c(A) — w2+ T
(r+a-+m)A —al'[y(2| )] |

h(A) —c¢(\) =72+ 7T

where the inequality on the second line follows because y(2|T) < y(2|Y’) and because, to the

right of 2*(Y), £ < 0 so that h(\) — ¢(A) — 24+ T < 0. Now, to the right of z*(T), we also have

~

that Ay > 0, which can be written (r + a« + m)A — aU’ [y(2]| )] > 0. Since y(2|T) < y(2|Y’), this

implies that (r + o 4+ 7)A — aU’ [y(2|Y’)] > 0. Combining with the above we find that Y/ < 7T,
another contradiction.

I11.5.3 Finishing up the proof
Taking stock of Lemma III1.10 and III.11, we obtain the stability result:
Lemma IIL.12 If W (z|Y) € ®, then T[W](z|Y) € ®*.

Now start the value function iteration with some guess W (z|T) that belongs to ® and let
WO (z|T) = T*[WO](z|T) denote the n-th interate. Then, it follows from Lemma II1.12 that,
W) e & so that for any z; < 2z and any T < Y':

W) (2 | 1) = WO (2| 1) < W (29| 1) = W (2| T)
29 — 21 - 29 — 21 '

(19)
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We already know from the analysis of Section I that value function iteration converges to the value
of the original optimization problem, i.e. lim, oo W) (2| Y) = W(z|Y). Therefore, going to the
limit in the above equation, we obtain:

W |T) =W |T) _ W(e|T) = W(a|Y)

(20)

22— 2 22—z

We also know from the analysis of Section I that the value function is continuously differentiable.
This allows us to go to the zo — z; limit in the above equation, and obtain:

W (21| T) < W(z | 7).

Hence, the marginal value of real balance is decreasing in Y. But it follows from Proposition II1.2
that W € @, so applying Lemma II1.12 once again find that T[W] € ®*. Since T[W] = W, this
means that the marginal value of real balances is strictly decreasing in Y.

I11.5.4 Omitted proofs

The saddle path is sandwiched between the isoclines. Consider the saddle path to the left
of z* — the proof for for the saddle path to the right of z* is symmetric and is therefore ommitted.
Since the saddle path is a strictly decreasing function of z, while the Z = 0-isocline, I(z|Y), is
strictly increasing, it is clear that, the the saddle path is always strictly above the isocline for
z < 2% XM(z|Y) > I(z]|T). Now turn to the A = 0 isocline, J(z|T). From Proposition II1.4, we
know that the slope of the saddle path near z* is given by the negative root of

{W M)+ = N4 2? — (r+a+2m)z+aV (") = 0. (21)

The slope of the A= 0-isocline, on the other hand, is:

(0}

— — V"(z*-) <.
r+a+m

It is clear that the second order polynomial of (21) is strictly positive when evaluated at — - V' (z*=),
which establishes that the slope of the saddle path is strictly larger than the slope of the isocline.
Hence, in a neighborhood of z*, the saddle path is below the A = 0-osocline. Next assume that the
saddle path crosses the A = O-isocline at some z < z*, and consider the last intersection before z*, 2.
Then, it must be that the isocline crosses the saddle path from below, i.e. J'(z|Y) > A*(z|T). But

this leads to a contradiction because, J/'(2|Y) < 0 and, since Z belongs to the isocline, N'(2] Y1) = 0.

The saddle path is bounded away from infinity at z = 0. Integrating the ODE for \; from
some t < 0 to t =0 gives:

0

N\ = )\Oe(r+a+7r)t + a/ U’ [y(zs | T)] e—(r+a+7r)(s—t) ds.
t
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The value of the saddle path at z = 0 is lim;_,_ o A;. The limit as ¢ — —oo of the first term is
evidently zero. The second term is bounded away from infinity. Indeed, since Z; is positive and
decreasing over time, we can write

0 0 .
0<a / U'[y(zs | 1) e UFetmE=0 gs < o / U’ [y(zs | 1)) 2 ds
t t 20

a [0
< | U'ly(zs| M) 25 ds
20 Jt

o
< %{U[y(ZolT)] —Uly(z| Y]},
which is bounded away from infinity because U(y) is bounded below.

The derivative of the saddle path is infinity as z — 0. Finally, from the ODE for A, it is
clear that lim¢, oo Ay = —00. The ODE for 2 shows that lim¢ o0 2 = h[A(0]T)] — c[A(0[ )] +
T € (0,00). Therefore lim, o X' (2| T) = lim;—, o 27 = —00.

The saddle path is the derivative of the maximum attainable utility. The HJB associated
with the control problem is

T[fl(z) = r;l}%{{u(c,f_z— h)+aV(z) + T[f)'(z) [h — c — 7z + Y]},

where we omit the T argument to simplify notations. Given the saddle path, A(z), we consider the
function:

U [c()\(z*)), h— h()\(z*))] + aV(z%)
r+a '

(r+a)T(2)=T(z") + /j A(z) dz where T (2*) =

The function 7 (z) is continuously differentiable. Using that 7'(z) = A(z), the right-side of the
HJB evaluated at 77(z) is

u[e(A(2)),h — h(A(2))] + aV (2) + A(2) [R(A(2)) — c(A(2)) — 72 + T].

It is equal to (r + «)7T (2*) at z = z*. Using the envelope condition, one sees that the derivative of
the right-side of the HJB is equal to:

aV'(z) = 7A(z) + N(2) [M(A(2)) — c(A(2)) =7z + Y] = (r + o)A (2) = (r + )T (2),

where the first equality follows from the ODE for the saddle path. Hence, we obtain that the
right-side of the HJB is equal to (r + )7 (2), establishing that 7 (z) satisfies the HJB. A standard
optimality verification argument then establishes that 7 (z) = T[f](z).
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IV  Further results: linear preference with 7 > 0
IV.1 The target level of real balance
With linear preferences preferences, we define the following three critical levels of real balances:linear
z1(Y) = inf {z >0: Wi(z,T) < 1}
o (T) = h+7Y
T

—c+ 7T
zC(T):maX{ et ,O}.
T

Lemma IV.1 The critical levels z1(Y), zx(Y) and z.(YX) are continuous in Y € (—h,00).

Proof. This is obvious for z,(Y) and z.(Y), and the only potential difficulty concerns z1(7T).
Consider any sequence T,, — T and the associated sequence z, = z1(T,). Recall that, by concavity
2W'(z,T) < ||W|| implying that z, is bounded and so it has at least one accumulation point, z. If
this accumulation point is strictly positive, then W’(z,, T,,) = 1 for all z, close to the accumulation
point, implying by continuity that W/(z,T) = 1, hence z = z;(T). If the accumulation point is
zero, then by continuity we obtain that W’(0,T) < 1, hence z = z1(T). Thus, all accumulation
point of z, are equal to z;(Y), implying that z, — z1(Y). m

At the first critical level, z1(T), the marginal value of real balance reaches 1. Note that the
upper bound of Corollary 1.4 implies that 2z;(Y) = 0 when T is large enough: that is, if the lump
transfer is very large, then a household will never find it optimal to supply labor (which, of course,
cannot be the basis of an equilibrium otherwise no output would be produced). The second critical
level, z,(Y), is the stationary point of real balance of a hypothetical household who always works
full time. The third critical level, z.(T), is the stationary point of real balance of a hypothetical
household who always consume up to its satiation point, ¢. If the satiation point is very large, then
of course z.(T) = 0. Finally, note that z,(T) > z.(T).

With these critical levels in mind, there are two cases to consider. First, if z1(Y) > z.(Y),
then a household works full time until its real balance reaches the target min{z;(Y), z,(Y)}. If
21(T) < 2.(Y), then when the household works full time until its real balance reaches z1(Y), and
then consume up to its satiation point until its real balances reach the target z.(Y). Therefore, in
this economy with linear preferences, the target level of real balances is:

2*(T) = max {z.(Y), min{z,(T), 21 ()} } (22)

IV.2 An explicit calculation of times to accumulate real balance

We need to consider two cases.
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Case 1: if z;(T) > z.(T). Inthis case the target level of real balance is z*(Y) = min{z1(Y), 2z, (1)} >
2¢(Y). Then, the ODE of real balance is:

) h—mz (V) 4+ 7T if 2(T) < 2%(Y)
() = . .
0 if z(Y) = z*(7).
In particular, if z;(T) < 21(Y), then the saving function is Lipchitz in real balance, and vanishes
as real balances approach their target, implying that the target is reached in infinite time. If
2p(T) > 21(7), then the saving function remains bounded away from zero as real balance approach

their target, and the target is reached in finite time. The time path of real balance has the explicit
solution:

z(T) = min {z*(Y), z,(Y) (1 —e ™)},

and the time it takes to reach any z is:

~Liog (1- 5%5) ifz<24(T)

+o0 if x > 2*(7). (#3)

T(z,Y) = {

Case 2: if 21(T) < 2z.(Y). In this case, when z = 2z1(T), the saving function is strictly positive
even when household consume up to their satiation point, ¢. Hence, household continue to accu-
mulate balances until they reach the stationary point z.(Y) = z*(T). In this case, 2*(T) = z.(T)
and the ODE of real balance is:

£(T) = h—mz(T)+ T if z:(T) < z1(7Y)
! —e—mn(T)+ T if 21(T) < 2(T) < 2(T).

Note that, in this case, the stationary point, 2*(Y), is reached in infinite time. Solving for the time
path of real balance as before, we obtain that the time to reach any x is:

1 min{z,z1 ()} 1 max{z—2z1(Y),0} .
—1liog (1 _ T) — Llog (1 - W) if 2 < 2*(T)

+o0 if x > 2*(7). @4

7-(37, T) = {
IV.3 A continuity property

To establish existence and uniqueness of stationary distributions, as well as the existence of equilib-
rium, we need to establish the following continuity property. For this subsection, consider some T
and some Z > z*(T) such that Z—y(Z,T) < z*(T). Such Z exists since y(z, ) > 0. By continuity,
there is a neighborhood [Y1, T2 of T such that Z — y(Z,Y’) < z*(Y’) for all Y' € [T, To]. Let

F(z,2,T)=1- e A(2,2T)

where A(z,2/,Y) = max {7 (2, T) — T[z — y(z,Y),Y],0}. Notice that A(z,2/,T) = 4oo for all
z > 2*(T). We have:
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Lemma IV.2 Consider some (z,2',T) € [0, Z] x [0, Z] x [Y1, Y2] such that 2’ is a continuity point
of 2/ v~ F(z,2',Y). Then, for any sequence (zp, Tn) — (2,Y), F(zp,2',Ty) = F(z,2/,7).

Proof. One sees easily that the function 2z’ — F(z,2’,T) is continuous at 2’ except at the target
when it is reached in finite time, i.e., except at 2z’ = 2*(T) when 7[z*(Y), Y] < co. With this in
mind we proceed to analyze three cases.

Case 1: if 2/ > z*(T). Then F(z,2',T) = 1. Moreover, by Lemma IV.1, we obtain by continuity
that 2z’ > 2*(7,,) for n large enough. Since z,, — y(zn, Tr) < 2*(T},) by our choice of Z, this implies
that F(zy,2",Y,) =1, hence that F(z,, 2, T,) = F(z,,2,T).

Case 2: if 2/ = 2*(T) and T[2*(Y), Y] = co. Consider first that z1(T) > 2.(T), then it must be
the case that 2*(Y) = 2z,(YT) > 2.(Y), since otherwise, z*(T) would be equal to z.(T) and would
be reached in finite time. Moreover, from (22), it must also be the case that z1(Y) > z,(T).
Taken together, this implies that z1(Y) > 2.(Y), a strict inequality that must be satisfied for n
large enough, by the continuity result of Lemma IV.1. It then follows that, for n large enough,
A(zp, 2, Ty) is either equal to oo, or to:

_%log <1 — zih((TT,j)> + %log (1 - w> :

keeping in mind that z, — y(2p, Yn) < Z —y(Z,Yn) = Z —y(Z,T) < z,(T), one sees that this
expression goes to infinity as n goes to infinity. Hence, F (2,2, T)) — 1 = F(z,2/, 7).

Second, consider that z1(Y) < 2.(Y). Then, by (22), 2*(Y) = 2.(T). In this case the same
reasoning as above, but based on the formula (24), shows that F(z,,2",Y,) = F(z,2,T).

Case 3: if 2/ < z*(7). If 21(T) # 2.(T), the result follows by continuity using the explicit for-
mula (23) and (24). If z1(T) = 2.(T) then 2*(T) = 2z1(T) = 2.(Y), and so our maintained
assumption implies that 2/ < 2*(T) = z1(T). By construction, we also have that z — y(z,T) <
2*(T) = z1 (7). By the continuity result of Lemma IV.1, these inequalities hold for n large enough.
Hence, for n large enough, 7 (z, T},) is given by formula (23), both for z = 2’ and x = 2, —y(2zp, Th)-
It then follows by continuity that F(z,,2’,Y,) = F(z,2,T). =
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V  Equilibrium

V.1 Stationary distribution

Fix some T and some Z > z*(T) such that Z — y(Z,T) < z*(Y). Such Z exists since y(z,T) > 0.
By continuity, there is a neighborhood [Y1,Y2] of T such that Z — y(Z,Y') < z*(Y’) for all
T € [Tl,TQ]. Let

A(z,2,T) =max {T(2/,,T) = T(z — y(2,T),T),0}

that we introduced before. In words, the function A(z,2’,T) gives the time it takes to accumu-
late strictly more than 2z’ after receiving a lumpy consumption opportunity with real balance z.
Equipped with the function A(z,2’,T), we define the transition probability between money bal-
ances prior to the last consumption opportunity and current money balances. Namely, consider a
household at time u and let 7, € (—o0,u) denote its last lumpy consumption opportunity. Then,
consider the probability that the current money balance is less than 2/, conditional on having z
money balance at the last last lumpy consumption opportunity:

Z Z fr { < p |Z Tu _ Z} -1 —aA(Z,z’,T).

Notice that F(z,2/,T) = 1 for all z € [2*(Y), Z]. Collecting the results of Corollary III.8 and
Lemma IV.2, we obtain:

Proposition V.1 With SI and linear preferences, the function F(z,z',Y) has the following prop-
erties:

e it is continuous in 2’ except if 2/ = z*(T) and T[2'(Y), Y] < oo when it is right-continuous;
e it is decreasing in z and increasing in z';

e forany (z,2',T) € [0, Z]x[0, Z] x[Y1, 3] such that 2’ is a continuity point of 2’ — F(z,2',T),
and for any sequence (zn, Tpn) — (2, 1), F(zn, 2, Tp) — F(z,2',T).

For fixed z and Y, the function 2’ — F(z,2’,T) is increasing, right-continuous, equal to zero
at 2/ = z — y(2,T) and equal to one for z > 2’ = z*. By Theorem 12.7 in SLP, it thus defines a
unique probability measure Q(z, -,YT) on [0, Z] equipped with the Borel o-algebra, B([0, Z]). To
apply the results of Chapter 12 in SLP, we first show that:

Lemma V.2 For any A € B([0,Z2]), z — Q(z, A, T) is measurable.

Proof. Clearly, the property holds for all sets of the form [0,b) and (a,b], for 0 < a < b < Z, and
for the union of any finite and disjoint collection of such sets, the family of which is by Exercise 7.6
in SLP, an algebra generating B([0, Z]). By an application of the monotone convergence theorem
(Theorem 7.8) one sees that the collection of sets A such that Q(z, A, T) is measurable is a monotone
class. Thus, by the monotone class Lemma (Lemma 7.15), it follows that Q(z, A, T) is measurable
for any A € B([0,Z]). m
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A stationary distribution of money holding is a solution of the fixed point problem:
z
A= T* [\, ] where T* [\, Y] (4) = / Q(z, A, T)\(d2), for all A€ B([0,2]). (25
0

The transition probability function Q(z, -, T) has one key property: it is monotone, in the sense
that a higher z leads to a higher distribution of current money balance, in the sense of first-order
stochastic dominance. This follows directly from the observation that F'(z,2’,T) is decreasing in
z: a household with higher money balance at its last consumption opportunity will tend to have a
higher current money balance. Then a direct application of results in SLP delivers:

Proposition V.3 The fized point problem (25) has a unique solution, \*(Y), with the following
properties:

e its support is included in [0, z*(Y)];
e it does not depend on Z;
e it is continuous in Y in the sense of weak convergence.

Proof. Monotonicity is shown in the paragraph above. The Feller property follows from the
third point of Proposition V.1 , together with point b in exercise 12.7, and Theorem 12.8. Next,
we verify the mixing condition, Assumption 12.1. For this we let a = 0, b = z*(Y), and ¢ =
[2*(T) + 2*(T) — y(2*,7)] /2. Then, Q (2*,[0,¢], T) = F(z*,¢,T) > 0since ¢ > z*(T)—y[z*(Y), Y].
Moreover, and Q (0, [¢, 2*(T)], T) = 1-F(0,¢,YT) > 0since ¢ < z*(T). It thus follows from Theorem
12.12, that there exists a unique stationary distribution, A\(Y). That the support is included in
[0, z*(T)] follows because Q(z, A, T) = 0 for any A C (2*(T), Z]. Given that the support of \* and
Q(z, -, T) are all included in [0, 2*(Y)], it is clear that the stationary distribution does not depend
on the particular Z used for its construction: a fixed point for some Z remains a fixed point for
7' # 7, and so must coincide with the fixed point for Z’ by uniqueness. Finally, continuity in Y
follows from the third point of Proposition V.1, together with Theorem 12.13 in SLP. m

V.2 Existence of Equilibrium

We proceed to establish that an equilibrium exists. The equilibrium equation can be written as a
fixed point problem in the space of real lump-sum transfers, Y.

T = 7r/0 zd\*(z,T), (26)

where A*(-,T) is the stationary distribution of real balance. We obtain:

Proposition V.4 Under SI or linear preference, if m > 0, the equilibrium fixed point equation has
at least one solution.
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Proof. First, we note that the stationary distribution cannot be concentrated at z = 0, since
Q(z,{0},T) = 0 for all z. Hence, when T = 0, the left-hand side of (26) is zero and so is less
than the right-hand side, which is strictly positive. When T — oo, we have that W/(z,Y) — 0
for all z € [0,00). This implies that labor supply is zero and consumption is strictly positive for
all z € [0,2*(Y)], hence the saving function is s(z) < —mz + Y. Plugging s [2*(T)] = 0, it follows
that z < 2*(T) < YT /7 for all real balance z in the support of the stationary distribution, A*(T),
implying that the right-hand side of (26) is less than the left-hand side. Finally, note that (26)
is continuous because, by Proposition V.3, the stationary distribution A*(Y) is continuous in the
sense of weak convergence. The result then follows by an application of the intermediate value
theorem. m

V.3 Further results about the equilibrium with linear preferences

We start with the following observation:
Lemma V.5 In equilibrium, with linear preferences, z. < z1.

Proof. Since it takes time to accumulate money balance, we must have A*({z*}) < 1. Together
with the market-clearing condition, T = 7 [ zdA*(z), this implies that T < 7z*. Since T > 7z, we
obtain that z. < z*. Next, note that, since z* is a stationary level of money balance, there must
be some (¢*, h*) € X [W'(z*)] such that 0 = h* — ¢* —wz* + Y. Given that T > 7z*, it follows that
h* — ¢* > 0. With linear preferences, this implies that W/(z*) > 1 and so that z; > 2*. The result
follows. m

From this observation it follows that:

Lemma V.6 In equilibrium, with linear preferences, there exists some 2 > z* such that the value
function W (z) is twice continuously differentiable over (0, 2], with second derivative

Crotm W) aV'C) e, s

h—mz+Y
W"(z) =<0 if z=2" and z* = 2
aV' (z*) . X x
P if z= 2" and z* = z,.

Proof. There are two cases to consider. First, suppose that z* = z; < z,. From Proposition 77,
we already know that W(z) is twice continuously differentiable over (0, z1) and (z1, z5) and that
its second derivative satisfies:

h—mz+7Y  ifz€(0,2)

_ . (27)
—c—mz+ Y if z € (21, 2n).

(r+a+mW'(z)=aV'(z) + W(z) x {

The only potential difficulty arises at z;. From Lemma ??, we know that (r + a + m)W'(z1) =
aV'(z). Given that z; # {zc, 25}, both h — 721 + ¥ # 0 and —¢ — w21 + Y # 0, and so it follows
by taking the limit 2 — 27 and z — 2; in (27) that W”(27) = W”(2{") = 0. An application of the
mean value theorem then implies that W/ (z) is continuously differentiable at z; with W”(21) = 0.
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The second case is when z* = z;, < z1. As in the previous case, we know from Proposition 1.17
that W (z) is twice continuously differentiable over (0, z*). Then, one can apply the same saddle-
path arguments as in Lemma II1.3 and Proposition III.4 and obtain that W (z) is twice continuously
differentiable over (0, 2), for some 2 > z*, with the claimed second derivative. m

Lemma V.7 In equilibrium, with linear preferences, W (z) is independent of ¢ over [0, z*].

Proof. Consider the value functions W(z, ¢;) obtained for some ¢;. By direct integration of the
HJB, one easily that in the optimization program (1), the maximum is achieved by setting ¢; = 0
for all ¢, hy = h until z; = 2*(¢1), hy = 72*(¢1) — Y when z; = 2*, and y; = y [2].

Now consider any ¢2 > ¢;, and suppose that the optimization program (1) attains a strictly
higher value than under ¢, given W(z, ¢ ). That is, there exists a feasible plan {¢, by, G, Z1} such
that:

W(z,&) < / e~ Imin{éy, &} + h — hy + o {U [ + W [ — 1,1} } dt. (28)
0

Note that we can without loss of generality assume that é < ¢;. Indeed, replacing é by min{é;, ¢}
and keeping h; and ¢; the same remains feasible and achieves a higher value. Because the constraint
set is linear, any convex combination of the two plans, zg = fxy + (1 — )Z¢, © € {c, h, 2,3}, is
feasible. Moreover, since ¢ < co, (1 — )¢ + 8¢ < ¢ as long as 8 > 0 is small enough. Therefore,
for small 8 > 0:

min{cg, €1} = g = (1 — B) min{c, 1} + S min{é, é2}.
Using the concavity of the objective, together with the strict inequality (28), we obtain that:

0 —

W(z,c1) < / et fmin{egr, &1} + h— hg + o {U [Gae] + W [z — ypr, 1]} } et
0

which is a contradiction. This shows that

W(z,e) > Sup/ e~ Imin{éy, o} + h — hy + o {U [5e) + W [ — 1, 1]} ) dt,
0

over the set of feasible plans. Since the upper bound is clearly achieved for {ct, b, y, 2: }, we obtain
Wi(z,¢1) = W(z,¢2), as claimed. m
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VI Optimality verification in pure currency economies

In this section, we provide an optimality verification proposition: we show that the value function
solving the Hamilton-Jacobi-Bellman equation is a solution of the sequential optimization problem
of the a household. The proposition covers all the inter-temporal optimization problems considered
in the paper: with linear and SI preferences and lump-sum transfers, with linear preferences and
non-linear and possibly discontinuous transfers, and with quadratic preferences. While the general
method of proof is standard, it requires some extra work (adapted from Bressan and Hong, 2008)
because in the case of discontinuous transfers the value function is not differentiable at the target.
See Aguiar, Amador, Farhi and Gopinath (2013) for an earlier application of these methods in a
model of sovereign debt crises.

VI.1 The intertemporal household’s problem

We start by stating the problem of the household in sequence. Let {F;, t > 0} denote the filtration
generated by the process for lumpy consumption opportunities. Let the successive arrival times
of lumpy consumption opportunities be denoted by 71 < T> < .... Consider a household starting
with real balance zy > 0. For this household, a feasible plan is a collection of stochastic processes,
{¢, h,y, z}, with the following properties. First, these processes must satisfy regularity and mea-
surability restrictions: we constrain them to be adapted and left continuous. Second, at each time,
these processes must satisfy inequality constraints:

>0, 0<h <h, 0<wy <z, andz >0.

Third, consumption is assumed to remain bounded over finite horizons, i.e. supycpp )¢ < oo for
all T. Fourth, the real balance process must solve:

Zr=h—cy — 7z + Y (2¢), almost everywhere over (T),, T),41)

ZT,T - ZTn - yTn

Finally, the real balance process must satisfy the initial condition zg = z. The household problem
is, then, to choose a feasible plan in order to maximize the inter-temporal utility:

oo oo
E[/ e "u (e, b — hy) dt + Z U (yr,,) eTT"} :
0 n=1
An optimal plan is a feasible plan achieving the maximum attainable utility. To analyze all the
cases considered in the paper, we maintain the following assumptions:

Assumption VI.1 The utility function u(c,h — h) is continuous, concave, positive and bounded.
The wutility function U(y) is continuous, concave, positive and satisifes U(y) < ky + Kyy for some
ky,Ky > 0. The transfer is positive, increasing, and satisfies Y(z) < ky + (Ky + m)z for some
ky, Ky + 71> 0 and Ky <.

The condition Ky < r implies that real balances grow at a rate smaller than the discount rate,
which provides an appropriate “transversality condition” for completing the standard optimality
verification argument.
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VI.2 The optimality verification argument

We proceed by showing that the value function that is obtained via the Hamilton-Jacobi-Bellman
equation is the maximum attainable utility for the household’s problem. To cover all the cases
analyzed in the paper, we maintain the following assumptions:

Assumption V1.2 There exists some value function W(z) with the following properties. It is
Lipchitz continuous and positive and satisfies W(z) < kw + Kwz for some ky,Kw > 0. It is
continuously differentiable over [0,00) except perhaps at some z* > 0. It satisfies, for z # z*:

(r+ a)W(z) = max {u(c, h—h)+alU(y)+W(Ez—y)]+W (2)[h—c—mz+ T(z)]} (29)
with respect to ¢ > 0, h € [0, B] and y € [0, z]. For z = z*, it satisfies:
(r+ a)W(z) = max {u(c,h —h) + a[U(y) + W(z —y)]} (30)
with respect to ¢ >0, h € [0,h], y € [0, 2], and subject to h — ¢ — 7z + Y (z) = 0.

To apply the standard optimality verification argument, we will need the following result, which
provides an estimate of the changes in discounted value along any feasible path. The main difficulty
in establishing this estimate, and for which we adapt arguments from Bressan and Hong (2008), is
that the value function may not be continuously differentiable at z*.

Lemma VI.1 For any T, < t; <t < Th11 and any feasible plan,

W (2t )e™"" = Wz, )e "™ > 2 {ulee,h — he) + a[U(ye) + Wz — ye) — Wiz)] } e " dt.

t1

Proof. Since consumption flows are bounded over finite horizons, labor flows are bounded, and
Y(z) < ky + (Ky + m) z, one easily verifies that z; and Z; remains bounded over [t,t2]. Hence,
the path for real balance is Lipchitz continuous. Since the value function is Lipchitz continuous
as well, it follows that W(z;) and W(z)e " are also Lipchitz continuous. Therefore W (z;) and
W (z)e™" are absolutely continuous and thus differentiable almost everywhere (see, for example,
Theorem 7.18 in Rudin, 1966). Moreover, their derivative is integrable, that is:

to
Wa)e ™ = We)e ™ = [ L W] a
t

1

_ /: {TW(%) - % [W(zt)]} et dt (31)

Now consider the set {t > 0 : z; # z*}. This set is open, because it is the inverse image of an open
set by the continuous function z;. Therefore, it can be covered by a countable union of disjoint
open intervals, i.e. it is equal to U;er(aj, b;). By continuity, it must be the case that z; < z* for all
t € (a;,b;), or zz > z* for all t € (a;,b;). Hence for all t € (a;, b;), W is continuously differentiable at
z¢. In addition, since z; is differentiable almost everywhere in (a;, b;), with 2y = hy —c, —mze+ T (2),
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we obtain that % [W(zt)] = W'(2¢)% almost everywhere in (a;, b;). Since z; # 2z*, we obtain from
the HJB equation (29):
d _

(W (z)] > ulee, b — he) + «[U(ye) + W(ze — ye) — W(z)] -

rWi(z) — a7 >

After integrating over the closed interval [a;, b;] and adding up over i € I:

d
/teuiel[%bi] {rW(zt) T [W(zt)]} dt
> /teu. (ae ] {ulc, h—he) + a[U(ye) + Wz —y) — W(z)]} dt. )

Next consider any ¢ € [t1,to] \ Ujer[ai, b;] such that 2, = hy — ¢, — w2 + Y(2). By construction,
for any € > 0, (¢,t + €) cannot be a subset of any (a;,b;). Therefore, for any € > 0, there must
exists some t' € (t,t + ¢) such that zy = 2*. This implies by continuity that z; = 2*, and also that
% = 0. Given that W is Lipchitz, this also implies that % [W(z¢)] = 0 even though W may not be
differentiable at z; = z*. Using (30) we therefore obtain that:

% (W (z0)] = 7W (z) > u(ce, h—he) + «[U(ye) + Wiz —ye) — W(z)]

for any t € [t1, ta]\User|a;, b;] such that 2y = hy—c; — 7wz + Y (2). But since 2, = hy—cy— 7z + Y (2)
almost everywhere, we can integrate this inequality and obtain:

{T’W(zt) - % [W(zt)]} dt

rWi(z) —

/tE [t1,t2]\Uier[ai,bs]

> {u(ce,h — he) + a[U(ye) + W (2t — ye) — W(20)]} dt. (33)

/tE [t1,t2\Uier[ai,bs]

The desired result obtains by combining (32) and (33) and using equality (31). =
We then obtain the following optimality verification argument.

Proposition V1.2 Assume that Assumptions VI.1 and VI.2 hold. Then, if the policy functions
solving the HJB generate a feasible plan:

e The mazimum attainable utility of a household starting with zy is W (zp);
e The policy functions solving the HJB generate a optimal plan.

Proof. We adapt arguments from Theorem VII, T1 in Brémaud [1981]. We consider any
feasible plan and write:

W () =W (20) + Y {eT"W (erq) — e W (2(Ta1p) )
0<Tp<t

+ e W (z) — e W (27,4)
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where 7, = sup{T,, : T,, < t}. Further:

e"W (2) =W (20) + Y e {W (21,4) = W (21,)}
0<T, <t
+ Z [e_rTnW (ZTn) - e_trTn71W (ZT’IL71+)1|
0<Th<t
+e "W (z) — e W (27,4 ) -

The second term on the first line collects jump in the value function when lumpy consumption
opportunities arrive, so zr,+ = 27, — y1,- 1he terms on the second and the third lines collects
changes in the value function in between lumpy consumption opportunities. Using Lemma VI.1 we
have

Th+1 B

e W (2, ) — e W (21,) > /T {ulcs,h—hs) + a[U(ys) + W(zs — ys) — W(zs)]} ds,

with an equality if the feasible plan under consideration is generated by the candidate optimal
policy functions. Taken together, we obtain:

W) e ™ < W)+ /O eTIW (24 — o) — W (24)] dN,

- {U(CS, h— hs) + o [U(ys) + W(zs - ys) - W(zs)]} ds

0
< / e [W (22— y2) + Ulys) — W ()] (dNs — avds) (34)
0
_ /O [u(ce, b — ha) ds + al (ys) dN] (35)

with an equality if the feasible plan under consideration is generated by the candidate optimal
policy functions. Note that we have

e_rs‘W (zs —ys) + U (ys) — W (z5) ‘ < e_TS‘W (z5) = W (25 — vs) ‘ +e U (ys)
<e " (kw + Kwzs) +e " [ky + kuy(s))
<e " lkw + ky + (Kw + Ky)z,

where the last inequality follows because ys < zs. Given our maintained assumptions, it is clear
that ze™"* is bounded over [0,¢], and so it follows that e™"|W (25 — ys) + U (ys) — W (2s) | is
bounded as well. Since, in addition, it is a predictable process, it follows by Theorem II, T8 in
Brémaud [1981] that

/0 e "W (25 — ys) + U (ys) — W (25) | [dNs — ads]
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is a martingale, and therefore its time-zero expected value is equal to zero. Taking time-zero
expected value on both sides of (35), we obtain after rearranging that

E{ /Ot e " [u(cs,h — hs) ds + U (ys) dNy) } +E[e™™W (2¢) ] < W (20).

with an equality if the feasible plan is generated by the candidate optimal policy functions.
The last step is, as usual, to argue that ]E[e_”W (zt)] — 0 ast— oco. Since 2, < h —mzs +
Y(zs) < h+ ky + Kyz, we obtain by direct calculations that:

h+k
e, < e—(r—KT)sZO + + Ry (e—(r—K’r)t _ e—rt) ‘ (36)
K

Given our maintained assumptions that Ky < r and that W(z) < k,, + Ky z, the result follows.
]
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VII Numerical methods

VII.1 Construction of a Stationary Equilibrium

In this section we outline a numerical algorithm to construct a stationary equilibrium. We guess
and verify a stationary equilibrium with a numerical method, where the target real balances is
finite and the value function is strictly concave, increasing and twice differentiable.
As shown in the mathematical appendix, the value function W (z) solves the following HJB
equation:
(r+a)W(z)= max _{u(c,h—h)+aV (z)+W (2)[h—c—7mz+ 7]} (37)
¢>0,h€[0,h]
where V' (2) = maxycj ) {U (y) + W (2 —y)}. Denote A = W’ (z), and c()\) and h()) are the
maximizers to the above. Let y (z) denote the solution of y to V. Then V' (z) and 3’ (z) are given
by
Vi(z) = U'ly(2)] (38)
1if U (z) > W’ (0)
y'(2) = { (39)

S U [y (2)) = W [z~ y (2)]

Under the premise that W is twice differentiable, the equilibrium dynamics of household’s state
and co-state is given by the following system of differential equations:

z2 = h(A)—c(\)—7mz+T7, (40)
A= (r+at+m)A—aV (2). (41)

The stationary point (z*, \*), which is given by

h(XN) = c¢(N)+nmz"=T1,
rta+mw o= vV (2%).
!

Our novel, recursive method to solve this problem involves two key elements: first rewrite
the equilibrium as a system of delay differential equations (DDE), and second modify the time-
elimination method (Mulligan and Sala-i-Martin 1993) to solve this system of DDE. The time-
elimination method allows us to change the state variable from ¢ to ( = — A, and then the equilibrium
dynamics is fully characterized by the ”stable arm” function z (¢) with initial condition z ({y) =0
and boundary condition z (¢*) = z*. The stable arm, z((), is well-defined and unique under
the premise that the value function is strictly concave, increasing and twice differentiable (see
mathematical appendix for details).

VII.1.1 Computing the Stable Arm: DDE

To compute the system with time-elimination method, we first formulate z (¢; A\g, ) given A\g and
T. By eliminating the time in (40) and (41), the slope of the stable arm is
z h(=¢)—c(—=¢)—mz+17T

Z/(C):j: (r+a+m)C+a2(C)

(42)
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where Q (¢) = V' [2(¢)] is differentiable. We suppress the dependence on Ag, YT in z and €2 unless
confusion could arise. We formulate € ({) in a recursive way by decomposing z into y and z — y as
follows:

2= (U)7(Q) + A" [min {Q, Ao}]. (43)
y z—y
Notice that Il )
—a - 2 (—9Q).

Differentiate (43) with respect to ¢ to obtain €2 (¢) as the solution to the following DDE:

-1 -1

o (0= |v" [@) 0] #1100 <2 -] (a4)

where (2 < Ag) is the indicator function that is equal to 1 if Q@ < A¢ and 0 otherwise. Equation
(44) is a DDE since (44) depends on the ”current time” ¢ and the ”lag time” —Q (¢) < ¢. Now the
equilibrium is characterized by the system of DDE (42) and (44).

To solve the system of z () and Q ({), given YT and (p = Ao we start integrating (42) and (44)
from the boundary condition z (—\g) = 0 and Q (=)o) = U’ (0), which is well-defined by assuming
that either U’ (0) is bounded or we start with some arbitrarily large value. The integration will
result in two functions z (¢) and €2 (¢) given \p and Y. For later use, define (* (g, T) and z* (Ao, T)
as the solution to h (—C*) — c(—¢*) — 7 (2* = T) = 0 and z* = 2z ({*).

VII.1.2 Computing the Distribution

Having computed z (¢) and €2 (¢), we invert the system back to A (z) and €2 (z) using the definition
¢ = =X (z2). It is invertible since W’ (z) is monotone. Notice that by definition we have y (z) =
(U [ (2)]. Define ¢ (z) as the solution to

p—y(p) =z (45)

In other words, ¢ (z) is the level of real balances before the preference shock such that the household
will deplete the real balances up to z after the shock. Notice that since y (z) > 0 for all z > 0, we
have ¢ (z) > z. Differentiating (45) we have for all z > 0

o (2) = W'z —y ()] + U" ¢ (2)]

> 0.

U [y (2)]

50 ¢ (z) is strictly increasing for all z > 0. Define z4y = z* — y (2*), then we have ¢ (z) < z* if and
only if z < z4. Define s(z) = h[\(z)] — ¢[A(2)] — 7z + Y. which is differentiability continuous,
bounded and positive for all z € [0, 2*). The equilibrium density for the distribution of real balances
f (2) solves the Kolmogorov forward equation (hereafter KFE, which is derived later):

—af(z), if 2> 24,

O:ls () f ()] = { —af (2) + 0B f o ()], i 2 < 2, (46)
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where 0, is the differential functional. The equilibrium density f (z) has a jump at z = z4, which
captures the extra flow of the influx of the mass of agents with z = z* after a preference shock.
The jump is given by

o) = F _s(zi)

Consider two regions of z: [z4, 2*] and [0, z4). In the first region [z4, 2*], the KFE (46) is just a
standard ODE:

f(zr), if 2= zq (47)

roy L ats(2)
Fix some arbitrary initial value, says f (z4) = 1 (we will normalize the density function later), we
can compute f (z) in this region by integrating the ODE (46) from the initial condition f (z4) =1
up to the boundary z = z* (A, Y). If s (zi) = 0, then there is also a boundary condition for the
KFE, which is given by

f(z), for all z € (z4,2%). (48)

lims(z) f(z) =0. (49)

zTz*
On the other hand, if s (zﬁ) > 0, then there is a probability mass F' (z*) — F (zi) at z = z*, which
is pinned down by a boundary condition

F(z¥)—F (%) = M (50)

Now consider the second region [0, z4). Transform z = z; — t. and define ¢ (t) = f (24 —1).
Using (46), ¢ (t) also solves the following DDE

¢/(t>: I: S[SO(Zd_t)]

s(zg—1)

a—s(zg—1t)
s(zqg —t)

We compute ¢ (t) by integrating the DDE (51) from ¢ = 0 to ¢ = z4 given the initial value from
(47)

] o (t) — ¢ lza — @ (zq—1t)], forall t € (0, zq) (51)

s=1-" 0y (52)

s(zq)
The (unnormalized) density function in this region can be obtained by having f (z) = ¢ (24 — 2)
for all z € [0, z4).

VII.1.3 Computing the Stationary Equilibrium and Welfare Cost

Finally, we use the transversality condition and government’s balanced budget condition to solve
Ao and Y. The transversality condition implies another boundary condition:

(r+a+m)¢" (Ao, T) +a2[¢" (Ao, T)] = 0. (53)
The lump-sum transfer is defined as T = 7E (z), which implies
ﬂfoz*()‘O’T) 2dF (z)
T = 00T (54)
fo dF (z)

47



where F' (z) = [; f (z) dz is the cumulative density function. So we have two equations to solve for
the two unknown A\g and 7.
Recall that the welfare under inflation 7 is given by

Wi = / {u[er (2),h = he (2)] + QU [y (2)]} dFy (2) .
0

Define the welfare cost of inflation A, as the solution to

Wy = /O {u[(1=Ax)co(2) 7= ho (2)] + U [(1 = Ax)yo (2)] } dFp (2).

In other words, the welfare cost of inflation is defined as the percentage of households’ consumption
that a social planner would be willing to give up in order to have inflation zero instead of .

VII.1.4 Special Case: Laissez-Faire

The time-elimination method is also convenient to construct the equilibrium under the special case
of zero money growth and full depletion, which does not involve any fixed-point problem. The
stationary point (z*, \*) is given by

h(V) = c(\) (55)

= (U’)1[<T+a) /\*], (56)

(07

The Jacobian of (40) and (41) at z = 2* and A = \* is then given by

J_ 0 R (A*) — ¢ (W)
—\ —aU” (%) r+ o ’
where we have used that V" (2*) = U” (2*). Then the negative eigenvalue of J (corresponding to

the stable arm) is given by

T+ «
2

é‘:_

A G Y L
[1 1o (R (%) = (A )]] 1]. (57)

Define p as the slope of the stable arm at z = z* and A = A\*, which is given by

_ €

NASELAS)
In the model with linear preferences, (55) is replaced with h (A*) = ¢ (A*) = 0, \* = 1 in (56), and
p = -2U"(z*). These equations solve \* and z*. Under full depletion and zero money growth,

r+o
the dynamic system is reduced to the following ODEs of A (z) and f (2):

(r+a)X—al’(z)
h(A)—c(A)

re = Il (60

p (58)

X (2)
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A convenient way to construct the stable arm is to: first, integrate (59) backward from z = z* to
z = 0 with initial value A (z*) = A* and X' (2*) = p°. Then we solve for the stable arm \ (z). We
integrate (60) forward from z = 0 to z = z* with initial value f(0) = 1, so we cannot integrate
backward like A (z)). If s (2*) > 0 then we construct the probability mass 1 — F (2% ) by the KFE
boundary condition (50). After that we solve f(z) (unnormalized). The initial values of Ay and T
are set to Ag = A (0) and T = Wfoz* 2f (2)dz/ foz* f(2)d=.

VII.1.5 Special Case: Linear Preferences

So far we need to solve a system of two DDE and one KFE. The system can be further simplified
under linear preferences. Eliminating the time in (40) and (41), then using the fact that A = W’ (z)
and V' (z) = U’ [y (2)], we have

w” (2) = g _ (7“—1—04—!—72 ?/;TF:—)F_TO(U/ [y (Z)]

Shifting the state variable to z — y (z), we have for all z > (U’)~" (\o)

W (s -y (2)] = (r+a+ W})filfry[izz] y—(j)UL[%(z -y (2))] ’ (61)

where we have used the fact that U’ [y (2)] = V' (2) = W' [z — y (z)]. Substituting (61) into (39),
we have

(62)

, { 1if 2 < (U)™! (\o)
y =

h—m(z—y—" -1 -1
[1 +U” (y) (r+a+7r)U’((y)—yaU’%y(z—y)]i| ifz> (U/) ()\0)

The equilibrium features full depletion if and only if ¢’ (2) = 1 for all z € [0, 2*]. Notice that (39)
is also a DDE but no longer depending on A\. Then now z* is simply given by

h _
z*:min{—i—T,y_lo(U’) 1<1+7’—;7r>}' (63)
T

The equilibrium features binding labor if z* takes the first term on the right hand side of (63),
otherwise the equilibrium features slack labor. Under linear preferences we have s (z) = h—7mz+7,
which is again independent to A. Thus, the KFE (46) now is also independent to A. In sum, the
stationary equilibrium can be reduced to the system of 1 DDE (62) and 1 KFE (46).

The KFE can be further simplified under linear preferences. Notice that given s (z) = h—7mz+7,
the KFE (48) with initial value f (z4) = 1 admits the following closed-form solution (unnormalized):

£(z) = [S(Z) r_l, for all 2 € (24, 2") (64)

s (za)

5)\ (2*) involves zero dividing zero so it is pinned down by the eigenvector associated with the negative eigenvalue,
which corresponds to the stable arm.
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If s (zi) > 0, then there is a probability mass at z = z* given by the KFE boundary condition
(50), which is simply
1-2 *\ 5
s(z Ts(zX)T
F() = F (%) = Ga) 7 5 (22)" (65)

«
Finally, using the closed-form (64), the KFE (51) is reduced to an ODE given by

o
T

Py aFT s (aime slela =t s
AU s LA C) P , for all ¢ € [0, zg] . (66)

The initial condition from (52) becomes

$(0)=1— [8(2*)]ﬂ. (67)

s (zq)

VII.2 Derivation of Kolmogorov Forward Equation

In this section we derive the KFE (46) used in the previous section. The law of motion of real
balances is given by

2=s(z)=h[A(2)]—c[A(2)] —7mz+ T, where z € [0, 2],

and agent’s real balances reduces by y (z) after a preference shock, which arrives at the Poisson rate
a. Suppose s (z) is continuous, bounded and positive for all z € [0, 2*). Recall that z; = fg s(zs)ds,

and let T denote the solution to z* = fOT s (zs) ds.

We use a discrete time, discrete state-space model to obtain the Kolmogorov forward equation
and the boundary conditions for the density f (z). Fix any integer n, then there exist A,, > 0 and
a sequence {z;};_, such that zo = 0, 2z, = 2" and 2z; = z;_1 + 5 (zi—1) A, for any i > 0. To see it, fix
any n and A,, > 0 and construct z; = z;—1 + s(z;—1) Ay, since s (z) is bounded, we have z, — oo
if Ay, — 00; 2z, = 01if A, — 0. So there must exist A,, such that z, = z*. Divide [0, z*] into n + 1
discrete states {z;};—,. Let I (z) be the interval function such that I (2) = [z;—1, 2] and z € (zj—1, 2.
Let D (z) be the correspondence such that D (z) C {2}, and D (z) —y [D (2)] C I (z). As n goes
to infinity, A, converges to zero, {z;};"_, converges to the continuous time process z; = fot s (zy) dr,
I (2) converges to z, and D (z) converges to ¢ (2).

Now let f,, (z;,t) denote the fraction of agents with real balances z; at time ¢ for fixed n. With a
slight abuse of notation, let f,, (z) be the stationary distribution. We are interested in characterizing

the density f(z) = lim ;00 S{Z)(Z)”. For any i # n, the dynamics of z implies

o (zit 4 Ap) = (1= aln) fo (zio,t) + @y Y fu(2,1). (68)
z€D(z;)

In any period of length A,, a fraction aA, of agents are hit by a preference shock. Thus the
fraction of agent with z = z; at t + A, are a fraction 1 — aA,, of those who were agents with
z = z;—1 at t but not hit by a preference shock, plus the sum of fraction oA, of those who were
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agents with z € D (z;) at t and hit by a preference shock. Now impose stationarity of f,,. Dividing
both side by A,, and rearrange terms, we have:

fn (21) fn (2i-1)

N _Jn\<) _Jn\%i—-1) fn (zi—l)
s (i) s(z) Ay s(zim1) Ay

=—as(zi-1) Ap————+« Z fn (2).

—-S(fol)
5 (zz—l) An z€D(z;)

Suppose ¢ (z) has probability mass at some z > 0. Since D (z) converges to ¢ (2), >_.icp(.) fn (")
converges to F [ (2)] — F [¢ (z)_]. Taking the limit as n goes to infinity and eliminating the term
with A,,, we have:

s(2)f ()= fE)=a{Flp@)]-Fle(2)]}, (69)
which implies (47) by taking z = z*. Suppose ¢ (z) does not have probability mass (atomless) at
some z > 0. Dividing both side by s (z;—1) A, we have

N _fn(zi) A In(zi-1)
el G ol 11 ) BN y (2) ful2)
s(zie1) Ay s(zi—1) Ay W s(zi—1) s (2) Ay

Taking the limit as n converges to infinity, D (z) converges to a function ¢ (z) and 3. p ., % %

converges to S[:E(Zz))}f [¢ ()] if ¢ (2) < 2* (corresponding to D (z;) # (), and 0 otherwise. Then we
obtain Kolmogorov forward equations for all z € (0, 2*)

9. 1s () f (2)] = { ~af () + a5 G e ()] o () < 27, -

—af (z), otherwise. ’

where 0, is the differential functional defined as 0,G (z) = lima_;o W It implies (46).
To obtain boundary conditions, the dynamics of z = z* = z, imply

I Gyt +Ap) = (1 — @) fo (2n—1,t) + (1 — @) fn (20, t).

In any period of length A,, a fraction aA, of agents are hit by a preference shock. Thus the
fraction of agent with z = z, at t + A, are a fraction 1 — aA,, of those who were agents with
z = zp—1 at t but not hit by a preference shock, plus the sum of fraction 1 — aA,, of those with
z = z, at t not hit by a preference shock. Now impose stationarity of f,. Rearranging terms we

have £ )
n (Zn—1
n(zn) =1 — An n—1) 7 N A
i (20) = (1= 08 s (300) 7
If s (zi) = 0, then we have the boundary condition
lim s (z) f(2) =0, (71)

zTz*

which implies (49). If s (zi) # 0, then there is probability mass at z = z*, and f,, (z,) converges
to F (z*) — F (2*). The boundary condition becomes

s(2%) f(z5) =aF(z") - F(24)], (72)
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which implies (50). Finally, for another boundary z = zy = 0, the discrete time, discrete state-space
KFE is given by

Fa (0,64 Ap) = (1= alpn) fn (0,8) +aly > fulz,t). (73)
z€D(0)

Taking A,, to zero then we have both sides of (73) equal to f(0), which does not impose any
condition on f (0).
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