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Section 1 contains the omitted proofs of Lemma 5, Lemma 6 and Lemma 7. Subsection 1.1

shows that neither (A) nor (B) of Assumption 1 can be dispensed of in Theorem 1. Subsection

1.2 shows that all priority structures having at most a two-way tie at the top (and being

otherwise strict) is solvable.

1 Omitted proofs

Lemma 5. Fix a weak priority structure �.

(1) Let i, j, k ∈ I be three distinct agents and o, p ∈ O be two distinct objects such that

i ∼o j ∼o k and i �p k �p j. Let R be a preference profile such that

Ri Rj Rk

o o p
,

and such that for all z ∈ I \ {i, j, k} and all õ ∈ {o, p} for which z �õ ĩ for some

ĩ ∈ {i, j, k}, zPzõ. If f is constrained efficient and strategy-proof, then fi(R) = o.
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(2) Let i, j, k, l ∈ I be four distinct agents and o, p, q ∈ O be three distinct objects such that

i ∼o j ∼o k ∼o l, {i, j} �p k �p l, and i �q l �q j. Let R be a preference profile such

that

Ri Rj Rk Rl

o o p q
,

and such that for all z ∈ I \ {i, j, k, l} and all õ ∈ {o, p, q} for which z �õ ĩ for some

ĩ ∈ {i, j, k, l}, zPzõ. If f is constrained efficient and strategy-proof, then fi(R) = o.

(3) Let i, j, k, l ∈ I be four distinct agents and o, p, q ∈ O be three distinct objects such that

i ∼o j ∼o k, i �p l �p k, and k �q l �q j. Let R be a preference profile such that

Ri Rj Rk Rl

o o p q
,

and such that for all z ∈ I \ {i, j, k, l} and all õ ∈ {o, p, q} for which z �õ ĩ for some

ĩ ∈ {i, j, k, l}, zPzõ. If f is constrained efficient and strategy-proof, then fi(R) = o.

Proof. (1) By definition of R and stability, object o is assigned to agent i or agent j at R.

Assume to the contrary that fi(R) 6= o and fj(R) = o. The following diagram shows how we

derive a contradiction:

R Ri Rj Rk

o o p →
R1 R1

i Rj Rk

o o p

p

↓
R3 R1

i Rj R2
k

o o o

p p

←
R2 R1

i Rj R1
k

o o p

p o

In moving from R to R1, we have used strategy-proofness for agent i to infer fi(R
1) 6= o.

Since i �p k, stability then implies fk(R
1) = k. In moving from R1 to R2, we have used

strategy-proofness for agent k to infer fk(R
2) 6= p. This is compatible with stability only

when fi(R
2) = p. But then constrained efficiency requires that fk(R

2) 6= o, since i and j

would otherwise form a stable improvement cycle of f(R2) at R2. Finally, in moving from

R2 to R3 we have used strategy-proofness for k one more time to infer fk(R
3) = k. This is

compatible with constrained efficiency only when fi(R
3) = p and fj(R

3) = o. However, this

assignment at R3 contradicts Lemma 4 in Ehlers and Westkamp (2017) given that {i, k} �p j
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so that i→p j is an (i, j; o, p)-path which is compatible with the (k, j; o, p)-path k →p j and

i ∼o j ∼o k. Hence, fj(R) = o is impossible for any constrained efficient and strategy-proof

mechanism f .

(2) By definition of R and stability, object o is assigned at R to agent i or agent j. Assume

to the contrary that fi(R) 6= o and fj(R) = o.

If i �q l �q j, we obtain an immediate contradiction to the first part of Lemma 55. Hence,

we must have i ∼q l �q j.
Now consider the profile R1 that is obtained from R by letting i add q as her second most

preferred object:

R1 R1
i Rj Rk Rl

o o p q

q

.

By strategy-proofness, fi(R
1) 6= o. By individual rationality, we are left to consider two

possible cases.

Case 1: fi(R
1) = q.

The following diagram shows how to derive a contradiction to the assumed properties of f :

R1 R1
i Rj Rk Rl

o o p q

q

→
R2 R1

i Rj Rk R1
l

o o p q

q o

→
R3 R1

i Rj Rk R2
l

o o p o

q q

In moving from R1 to R2, we have used strategy-proofness for agent l to infer fl(R
2) 6= q.

By definition of R and R2, this is compatible with stability only when fi(R
2) = q. But then,

we must have fl(R
2) 6= o, as otherwise i and l would form a stable improvement cycle of

f(R2) at R2. In moving from R2 to R3, we have again used strategy-proofness for agent l

to infer fl(R
3) = l. This is compatible with constrained efficiency only when fi(R

3) = q

and fj(R
3) = o. But the latter is a contradiction to Lemma 4 in Ehlers and Westkamp

(2017) given that {i, l} �q j so that i →q j is a (i, j; o, q)-path which is compatible with

the (l, j; o, q)-path l→q j. Hence, fi(R
1) = q is impossible for any constrained efficient and

strategy-proof mechanism f .

Case 2: fi(R
1) = i.
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By the definition of R1 and stability, fi(R
1) = i implies fl(R

1) = q. The following diagram

shows how to derive a contradiction:

R1 R1
i Rj Rk Rl

o o p q

q

→
R4 R2

i Rj Rk Rl

q o p q →
R5 R2

i Rj Rk R2
l

q o p o

q

In moving from R1 to R4, we have used strategy-proofness for agent i to infer fi(R
4) = i.

This is compatible with stability only when fl(R
4) = q.

By strategy-proofness for agent l, fl(R
4) = q implies fl(R

5) ∈ {o, q}. Suppose first that

fl(R
5) = q. In this case, strategy-proofness for agent i would imply that, for R̃ defined by

R̃ R̃i Rj Rk R2
l

q o p o

o q

,

we must have fi(R̃) 6= q. Furthermore, if fi(R̃) = o, stability would require that fl(R̃) = q. But

then i and l would form a stable improvement cycle of f(R̃) at R̃, contradicting constrained

efficiency of f . Since fi(R̃) /∈ {q, o}, we must have fi(R̃) = i. But then strategy-proofness for

agent i implies that, for R̂ defined by

R̂ R1
i Rj Rk R2

l

o o p o

q q

,

we must have fi(R̂) = i. This is compatible with constrained efficiency only if fl(R̂) = q

and fj(R̂) = o. But fj(R̂) = o is a contradiction to Lemma 4 in Ehlers and Westkamp

(2017) given that {i, l} �q j so that i→q j is an (i, j; o, q)-path which is compatible with the

(l, j; o, q)-path l �q j (and i ∼o j ∼o l). Since fl(R
5) = q necessarily leads to a contradiction,

we must have fl(R
5) = o.

Strategy-proofness for agent l then requires that, for R6 defined by

R6 R2
i Rj Rk R3

l

q o p o
,
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we must have fl(R
6) = o. But since j ∼o k ∼o l and j �p k �p l, fl(R6) = o is a contradiction

to the first part of Lemma 55. This completes the proof.

(3) By the definition of R and non-wastefulness, object o is assigned to agent i or agent j at

the preference profile R. Assume that, contrary to what we want to show, fi(R) 6= o and

fj(R) = o. Given that i �p l �p k and k �q l, it is easy to see that strategy-proofness and

constrained efficiency imply

R1 R1
i Rj Rk Rl

o o p q

p

→

R2 R1
i Rj R1

k Rl

o o p q

p o

q

→

R3 R1
i Rj R1

k R1
l

o o p q

p o p

q

.

Next, consider

R4 R1
i Rj R1

k R2
l

o o p p

p o q

q

.

Strategy-proofness for agent l implies fl(R
4) = l. This is compatible with constrained

efficiency only if fi(R
4) = p, fj(R

4) = o, and fk(R
4) = q. Strategy-proofness for k implies

that

R5 R1
i Rj R2

k R2
l

o o o p

p p q

q

.

By constrained efficiency, fi(R
5) = o or fj(R

5) = o.

We argue first that fj(R
5) = o is impossible. Suppose the contrary. Note that i→p l →q j

is an (i, j; o, q)-path which is compatible with the (k, j; o, q)-path k →q j. Furthermore,

note that the fact that k ranks p as her second most preferred object is irrelevant since l

ranks p first and has strictly higher priority for it than k. Given these observations, it is

straightforward to modify the arguments in the proof of Lemma 4 in Ehlers and Westkamp

(2017) to show that fj(R
5) = o implies that f cannot be strategy-proof and constrained

efficient. Hence, fj(R
5) 6= o as was claimed above.
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Since fj(R
5) 6= o, we must have fi(R

5) = o. By constrained efficiency, this implies

fl(R
5) = p. Then

R5 R1
i Rj R2

k R2
l

o o o p

p p q

q

→

R6 R1
i Rj R2

k R1
l

o o o q

p p p

q

→

R7 R1
i Rj R2

k Rl

o o o q

p p

q

.

In moving from R5 to R6 we have used strategy-proofness for l to infer fl(R
6) 6= l. If

fl(R
6) = p, then stability implies fi(R

6) = o and fk(R
6) = q. But then l and k would form a

stable improvement cycle, thus contradicting constrained efficiency. Hence, we must have

fl(R
6) = q. By strategy-proofness, fl(R

7) = q. Since k �q l, fl(R7) = q is compatible with

stability only if fk(R
7) ∈ {o, p}. But given that fk(R

2) = q and k can unilaterally deviate

from R2 to obtain R7, fk(R
7) ∈ {o, p} implies that f cannot be strategy-proof. Hence, � is

unsolvable and this completes the proof.

Lemma 6. Fix a weak priority structure �.

(1) Let i, j ∈ I be two distinct agents and o ∈ O be an object such that i ∼o j. If there

is an (i, j; o)-path i →p1 i
1 · · · →pM iM →o j which is compatible with a (j, i; o)-path

j →q1 j
1 · · · →qN jN →o i, then � is unsolvable.

(2) Let i, j, k, l ∈ I be four distinct agents and o ∈ O be an object such that i ∼o j ∼o k ∼o l.
If there exist two objects p, q ∈ O such that i �p k �p j and j �q l �q i, then � is

unsolvable.

Proof. (1) Suppose to the contrary that there exists a constrained efficient and strategy-proof

mechanism f . Consider the following preference profile:

R Ri Rj Rim Rjn

o o pm qn

p1 q1 pm+1 qn+1

Lemma 3 in Ehlers and Westkamp (2017) implies fi(R) = p1 and fj(R) = q1.

Now assume that i deviates to R′i : o. By strategy-proofness, we must have fi(R
′
i, R−i) = i.

We claim fj(R
′
i, R−i) = o. Otherwise, the construction of R would imply that, for all
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n ∈ {0, . . . , N}, fjn(R′i, R−i) = qn+1. But then j = j0, j1, . . . , jN would form a stable

improvement cycle of f(R′i, R−i) at (R′i, R−i). Hence, we must have fj(R
′
i, R−i) = o.

Next, assume that, starting from R, j deviates to R′j : o. A completely symmetric argument

to the one used to establish that fj(R
′
i, R−i) = o shows that we must have fi(R

′
j, R−j) = o.

Finally, consider R′′ ≡ (R′i, R
′
j, R−i,j). Coming from the profile (R′j, R−j), strategy-

proofness for i implies fi(R
′′) = o. Coming from (R′i, R−i), strategy-proofness for j implies

fj(R
′′) = o. Since o cannot be allocated to more than one agent and i 6= j, we obtain a

contradiction. Hence, there cannot be a constrained efficient and strategy-proof mechanism.

(2) This follows immediately from the first part of Lemma 55, since it implies that at the

preference profile

R Ri Rj Rk Rl

o o p q,

a constrained efficient and strategy-proof mechanism would have to (A) assign o to i given

that i ∼o j ∼o k and i �p k �p j, and (B) assign o to j given that i ∼o j ∼o l and j �q l �q i.
Since there is only one copy of o and i 6= j, (A) and (B) imply that there is no constrained

efficient and strategy-proof mechanism.

Lemma 7. Let i1, i2, i3, i4, i5 be five distinct agents and o1, o2, o3, o4, o5 be five distinct objects.

Each of the following priority structures is unsolvable:

i1 ∼o1 i2 ∼o1 i3 ∼o1 i4

{i1, i2} �o2 i3 �o2 i4

{i1, i2} �o3 i3

i2 �o4 i4 �o4 i1

i1 �o5 i4 �o5 i2

(1)

i1 ∼o1 i2 ∼o1 i3 ∼o1 i4

{i1, i2} �o2 i3 �o2 i4

i4 �o3 {i2, i5}
i2 �o4 i5 �o4 i1

(2)
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i1 ∼o1 i2 ∼o1 i3

i1 ∼o2 i4 ∼o2 i5 �o2 i2 �o2 i3

i4 �o3 i5 �o3 i1

{i2, i3} �o4 i4

(3)

i1 ∼o1 i2 ∼o1 i3

{i2, i3} �o2 i4

i4 �o3 i1 �o3 {i2, i3}

(4)

i1 ∼o1 i2 ∼o1 i3

i1 �o2 i4

i2 �o3 i5

{i2, i4} �o4 i3 �o4 i1

{i1, i5} �o5 i3 �o5 i2

(5)

i1 ∼o1 i2 ∼o1 i3

{i1, i2} �o2 i5 �o2 i3

i2 �o3 i4

i3 �o4 i5 �o4 i1

{i3, i4} �o5 i5 �o5 i2

(6)

Proof. For each of the six priority structures defined in Lemma 77, we will use a proof

by contradiction. Throughout the proof, let f be an arbitrary constrained efficient and

strategy-proof mechanism.

1. The priority structure in Eq. (11) is unsolvable.

The proof revolves around the following preference profile:

R Ri1 Ri2 Ri3 Ri4

o1 o1 o3 o2
.

Claim 1: fi2(R) = o1.

We start by considering the following preference profile
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R̃ Ri1 Ri2 R̃i3 R̃i4

o1 o1 o2 o4
.

Since {i1, i2} �o2 i3 �o2 i4 and i2 �o4 i4 �o4 i1, the second part of Lemma 55 implies

that we must have fi2(R̃) = o1.

Next, note that strategy-proofness for agent i2 implies that i2 must still obtain object

o1 at the following profile:11

R1 Ri1 R1
i2

R̃i3 R̃i4

o1 o1 o2 o4

o4

.

Since i2 obtains o1 at R1, constrained efficiency requires fi4(R
1) = o4. Next, consider

the preference profile

R2 Ri1 R1
i2

R̃i3 R1
i4

o1 o1 o2 o2

o4 o4

.

By strategy-proofness for agent i4, we must have fi4(R
2) ∈ {o2, o4}. Since i3 ranks o2

first and i3 �o2 i4, stability implies fi4(R
2) 6= o2. Hence, we must have fi4(R

2) = o4.

We will now show that fi4(R
2) = o4 is only possible when fi2(R

2) = o1. If i2 �o4 i4,
then fi2(R

2) = o1 follows immediately from stability of f(R2). So suppose that i2 ∼o4 i4
and that, contrary to what we want to show, fi1(R

2) = o1. Since fi4(R
2) = o4 and

fi1(R
2) = o1, we must have fi2(R

2) = i2. We derive a contradiction to the assumed

properties of f using the following sequence of preference profiles:

1Recall that boxes indicate assigned objects.
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R2,1 Ri1 R2
i2

R̃i3 R1
i4

o1 o4 o2 o2

o4

→
R2,2 Ri1 R2

i2
R̃i3 R2

i4

o1 o4 o2 o1

o4

↓
R2,4 Ri1 R1

i2
R̃i3 R2

i4

o1 o1 o2 o1

o4 o4

←
R2,3 Ri1 R3

i2
R̃i3 R2

i4

o1 o4 o2 o1

o1 o4

Given that fi2(R
2) = i2, the indicated assignment at R2,1 follows immediately from

strategy-proofness and stability. Strategy-proofness implies that fi4(R
2,2) ∈ {o1, o4}

since fi4(R
2,1) = o4. If fi4(R

2,2) = o1, then i4 would still have to obtain o1 when she

unilaterally deviates to R3
i4

= o1. However, since i1 �o2 i3 �o2 i4 and i1 ∼o1 i3 ∼o1 i4,
fi4(R

3
i4
, R2,2
−i4) = o1 is incompatible with the tie-breaking rule in the first part of Lemma 55.

Hence, we must have fi4(R
2,2) = o4 and fi1(R

2,2) = o1. Strategy-proofness and non-

wastefulness imply fi2(R
2,3) 6= o4 and fi4(R

2,3) = o4. If fi2(R
2,3) = o1, then i2 and i4

would form a stable improvement cycle of f(R2,3) at R2,3, a contradiction. Hence, we

must have fi2(R
2,3) = i2. By strategy-proofness, we must also have fi2(R

2,4) = i2. Non-

wastefulness then implies that fi4(R
2,4) = o4 and fi1(R

2,4) = o1. Given that {i2, i4} �o4
i1, i2 →o4 i1 is an (i2, i1; o1, o4)-path which is compatible with the (i4, i1; o1, o4)-path

i4 →o4 i1. Since i2 ∼o1 i4 ∼o1 i1 , fi1(R
2,4) = o1 contradicts the tie-breaking rule

in Lemma 4 in Ehlers and Westkamp (2017). Hence, fi1(R
2) = o1 also leads to a

contradiction when i2 ∼o4 i4 and we must have fi2(R
2) = o1.

The following diagram summarizes the remainder of the proof of Claim 1:

R2 Ri1 R1
i2

R̃i3 R1
i4

o1 o1 o2 o2

o4 o4

→
R3 R1

i1
R1

i2
R̃i3 R1

i4

o1 o1 o2 o2

o2 o4 o4

→
R4 R1

i1
R1

i2
R1

i3
R1

i4

o1 o1 o2 o2

o2 o4 o3 o4

↓
R7 R1

i1
R4

i2
Ri3 Ri4

o1 o1 o3 o2

o2 o3

←
R6 R1

i1
R4

i2
Ri3 R1

i4

o1 o1 o3 o2

o2 o3 o4

←
R5 R1

i1
R4

i2
R1

i3
R1

i4

o1 o1 o2 o2

o2 o3 o3 o4

By strategy-proofness, we must have fi1(R
3) 6= o1 given that fi1(R

2) = i1. Since
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i1 �o2 {i3, i4}, stability requires fi1(R
3) = o2 and fi3(R

3) = i3. Strategy-proofness

and stability then imply fi3(R
4) = o3 and fi1(R

4) = o2. Hence, fi2(R
4) = o1 and

another application of strategy-proofness yields fi2(R
5) = o1. Since fi3(R

5) = o3

if fi2(R
5) = o1, strategy-proofness requires that fi3(R

6) = o3 as well. Given that

i2 �o3 i3, fi3(R6) = o3 implies fi2(R
6) = o1. Finally, fi2(R

6) = o1 and i1 �o2 i4 imply

fi1(R
6) = o2 and fi4(R

6) 6= o2. Strategy-proofness allows us to infer fi4(R
7) = i4, which

is compatible with constrained efficiency only if fi1(R
7) = o2 and fi2(R

7) = o1. It is

now straightforward to see that two more applications of strategy-proofness from R7

yield the desired statement that fi2(R) = o1. This completes the proof of Claim 1. �

Claim 2: fi1(R) = o1.

Consider the following preference profile

R̂ Ri1 Ri2 Ri3 R′i4

o1 o1 o2 o5
.

Since {i1, i2} �o2 i3 �o2 i4 and i1 �o5 i4 �o5 i2, the second part of Lemma 55 implies

that we must have fi1(R̂) = o1. A completely analogous argument to that used in the

proof of Claim 1 shows that fi1(R̂) = o1 implies fi1(R) = o1.
22 �

Combining Claims 1 and 2, we find that a constrained efficient and strategy-proof

mechanism for � has to satisfy fi1(R) = fi2(R) = o1. Since there is only one copy of o1,

this is a contradiction. Hence, there exists no constrained efficient and strategy-proof

mechanism for priority structure in Eq. (11). �

2. The priority structure in Eq. (22) is unsolvable.

As usual, arrows indicate how we move between profiles and boxes indicate object

assignments.

2In the arguments so far, we have used that i2 �o4 i4 �o4 i1, i1 �o2 i3 �o2 i4, and i2 �o3 i3. Since
i1 �o5 i4 �o5 i2, i2 �o2 i3 �o2 i4, and i1 �o3 i3, one just has to switch the roles of i1 and i2 and the roles of
o4 and o5 in the proof of Claim 1 to establish that fi1(R̂) = o1 implies fi1(R) = o1. We omit the details.
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R Ri1 Ri2 Ri3 Ri4 Ri5

o4 o1 o2 o1 o3 →
R1 Ri1 Ri2 Ri3 R1

i4
Ri5

o4 o1 o2 o1 o3

o3

↓
R3 R1

i1
Ri2 Ri3 R1

i4
R1

i5

o4 o1 o2 o1 o3

o1 o3 o4

←
R2 Ri1 Ri2 Ri3 R1

i4
R1

i5

o4 o1 o2 o1 o3

o3 o4

↓
R4 R1

i1
R1

i2
Ri3 R1

i4
R1

i5

o4 o1 o2 o1 o3

o1 o4 o3 o4

→
R5 R2

i1
R1

i2
Ri3 R1

i4
R1

i5

o1 o1 o2 o1 o3

o4 o4 o3 o4

Note that fi2(R) = o1 follows from the first part of Lemma 55 since i2 �o2 i3 �o2 i4
and i2 ∼o1 i3 ∼o1 i4. By strategy-proofness for i4, we must have fi4(R

1) 6= o1. Since

i4 �o3 i5, stability then implies that fi4(R
1) = o3. By strategy-proofness for i5, we

must have fi5(R
2) 6= o3. Since i5 �o4 i1, stability then implies that fi5(R

2) = o4.

By strategy-proofness for i1, we must have fi1(R
3) 6= o4. If fi1(R

3) = o1, then non-

wastefulness would imply fi4(R
3) = o3 and fi5(R

3) = o4. But then i1, i4, and i5 would

form a stable improvement cycle at R3, thus contradicting constrained efficiency of

f(R3). Hence, fi1(R
3) = i1 (and the indicated assignments at R3 then follow from

constrained efficiency). Strategy-proofness for i2 implies fi2(R
4) = o1. The indicated

assignments then follow immediately from stability given that i4 �o3 i5 and i5 �o4 i1.
Strategy-proofness for i1 implies that fi1(R

5) = i1. We will now argue that we must have

fi2(R
5) = o1: Otherwise, strategy-proofness for i2 would imply that for the preference

profile

R5,1 R2
i1

Ri2 Ri3 R1
i4

R2
i5

o1 o1 o2 o1 o3

o4 o3 o4

,

we must have fi2(R
5,1) = i2. Since i1 can obtain R5,1 from R3 by a unilateral deviation

(from R1
i1

to R2
i1

) and since fi1(R
3) = i1, strategy-proofness for i1 would then imply

fi1(R
5,1) = i1. Now note that fi2(R

5,1) = i2 and fi1(R
5,1) = i1 could be compatible with

non-wastefulness only if fi4(R
5,1) = o1 and fi5(R

5,1) = o4. But then o3 would remain

unassigned even though o3Pi5(R
5,1)o4. Hence, f(R5,1) cannot be stable if fi2(R

5) 6= o1.
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Next, consider

R6 R2
i1

R1
i2

Ri3 R1
i4

R2
i5

o1 o1 o2 o1 o4

o4 o4 o3

Strategy-proofness and fi5(R
5) = o4 imply fi5(R

6) = o4. Since i2 �o4 i5, stability

implies fi2(R
6) = o1. Finally, consider the profile

R7 R2
i1

R2
i2

Ri3 R1
i4

R2
i5

o1 o3 o2 o1 o4

o4 o1 o3

.

By strategy-proofness for i2, we must have fi2(R
7) ∈ {o1, o3}. If fi2(R

7) = o1, then

non-wastefulness would require fi4(R
7) = o3. But then i2 and i4 would form a stable

improvement cycle, thus contradicting the constrained efficiency of f(R7). Hence, we

must have fi2(R
7) = o3. Since i4 �o3 i2, this requires fi4(R

7) = o1. It is straightforward

to show that strategy-proofness implies that i4 must still obtain o1 when, starting from

R7, i2 first deletes o1 from her preferences (again since i4 �o3 i2), i1 then deletes o4 from

her preferences and, finally, i4 deletes o3 from her preferences. Since i1 �o2 i3 �o2 i4
and i1 ∼o1 i3 ∼o1 i4, we obtain a contradiction to the first part of Lemma 55.

3. The priority structure in Eq. (33) is unsolvable.

Consider the following preference profile

R Ri1 Ri2 Ri3 Ri4 Ri5

o1 o1 o1 o4 o3

o2 o4 o4 o2

.

Since, for k ∈ {2, 3} and l ∈ {2, 3} \ {k}, i1 →o2 ik and il →o4 i4 →o2 ik are two

compatible paths, Lemma 4 in Ehlers and Westkamp (2017) and constrained efficiency

immediately imply fi1(R) = o1. We will now complete the proof by showing that

fi1(R) = o1 is impossible as well. The proof relies on the following sequence of profiles:
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R1 R1
i1

Ri2 Ri3 Ri4 Ri5

o2 o1 o1 o4 o3

o1 o4 o4 o2

→
R2 R1

i1
Ri2 R1

i3
Ri4 Ri5

o2 o1 o1 o4 o3

o1 o4 o2

↓ ↓
R3 R1

i1
R1

i2
Ri3 Ri4 Ri5

o2 o1 o1 o4 o3

o1 o4 o2

→
R4 R1

i1
R1

i2
R2

i3
Ri4 Ri5

o2 o1 o1 o4 o3

o1 o2

By strategy-proofness for i1, we must have fi1(R
1) ∈ {o1, o2}. Assume first that

fi1(R
1) = o2. Given that {i2, i3} �o4 i4, stability would then imply fi4(R

1) = i4. It is

easy to see that two applications of strategy-proofness (for i4 and then for i1) yield

R̃1 R2
i1

Ri2 Ri3 R2
i4

Ri5

o2 o1 o1 o2 o3

o4 o4

.

Since i4 �o3 i5 �o3 i1 and i1 ∼o2 i4 ∼o2 i5, we obtain a contradiction to the first part

of Lemma 55. Hence, we must have fi1(R
1) = o1. By strategy-proofness for i3 and

constrained efficiency, fi1(R
1) = o1 implies fi2(R

2) = o1. Similarly, fi3(R
3) = o1. But

then strategy-proofness for i2 and i3 would imply that fi2(R
4) = fi3(R

4) = o1, which is

impossible. Since every possible allocation of o1 at R necessarily leads to a contradiction

of either strategy-proofness or constrained efficiency, the priority structure in Eq. (33) is

unsolvable.

4. The priority structure in Eq. (44) is unsolvable.

Consider the following preference profile

R Ri1 Ri2 Ri3 Ri4

o1 o1 o1 o2

o3 o2 o2 o3

.

Note that i2 →o2 i4 →o3 i1 is an (i2, i1; o1, o3)-path which is compatible with the

(i3, i1; o1, o3)-path i3 →o2 i4 →o3 i1, and Lemma 4 in Ehlers and Westkamp (2017)

implies fi1(R) 6= o1. Similarly, i1 →o3 i2 and i3 →o2 i4 →o3 i2 are compatible paths,
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so that Lemma 4 in Ehlers and Westkamp (2017) implies fi2(R) 6= o1, and i1 →o3 i3

and i2 →o2 i4 →o3 i3 are compatible paths, so that Lemma 4 in Ehlers and Westkamp

(2017) implies fi3(R) 6= o1. Thus, o1 must remain unallocated at R, contradicting

non-wastefulness of f(R).

5. The priority structure in Eq. (55) is unsolvable.

Consider the following preference profile

R Ri1 Ri2 Ri3 Ri4 Ri5

o1 o1 o4 o2 o3

o2 o3 o5 o4 o5

.

We claim that fi2(R) = o1. Consider first the preference profile

R′ R′i1 R′i2 R′i3 R′i4 R′i5

o1 o1 o4 o2 o3
.

Since i2 �o4 i3 �o4 i1, the first part of Lemma 55 implies fi2(R
′) = o1. Two applications

of strategy-proofness, once for i1 and once for i2, imply that fi2(Ri1 , Ri2 , R
′
−{i1,i2}) = o1.

Non-wastefulness then implies that fi5(Ri1 , Ri2 , R
′
−{i1,i2}) = o3. By strategy-proofness

for i5, we must have fi5(Ri1 , Ri2 , Ri5 , R
′
−{i1,i2,i5}) = o3. Since i2 �o3 i5 and i1 �o2 i4,

stability implies that fi1(Ri1 , Ri2 , Ri5 , R
′
−{i1,i2,i5}) = o2, fi2(Ri1 , Ri2 , Ri5 , R

′
−{i1,i2,i5}) =

o1, and fi4(Ri1 , Ri2 , Ri5 , R
′
−{i1,i2,i5}) = i4. By strategy-proofness for i4, stability,

and the assumption that i4 �o4 i3, we must have fi4(Ri1 , Ri2 , R
′
i3
, Ri4 , Ri5) = o4

and fi3(Ri1 , Ri2 , R
′
i3
, Ri4 , Ri5) = i3. By strategy-proofness for i3, we must have

fi3(Ri1 , Ri2 , Ri3 , Ri4 , Ri5) 6= o4. Stability is easily seen to imply fi4(Ri1 , Ri2 , Ri3 , Ri4 , Ri5) =

o4, fi1(Ri1 , Ri2 , Ri3 , Ri4 , Ri5) = o2, and, as we claimed above, fi2(Ri1 , Ri2 , Ri3 , Ri4 , Ri5) =

o1.

Next, consider the following preference profile

R̃ Ri1 Ri2 R̃i3 Ri4 Ri5

o1 o1 o5 o2 o3

o2 o3 o4 o5

.
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We claim that fi1(R̃) = o1. The proof of the claim proceeds from the preference profile

R̃′ R′i1 R′i2 R̃i3 R′i4 R′i5

o1 o1 o5 o2 o3
.

and is similar to the proof that fi2(R) = o1.

Given that fi1(R̃) = o1, i2 �o3 i5, and i5 �o5 i3, stability implies fi3(R̃) = i3. Further-

more, given that fi2(R) = o1, i1 �o2 i4, and i4 �o4 i3, stability implies fi3(R) = o5. But

then, since i3 can obtain R from R̃ by a unilateral deviation from R̃i3 to Ri3 , f cannot

be strategy-proof.

6. The priority structure in Eq. (66) is unsolvable.

Consider first the following preference profile

R1 Ri1 Ri2 Ri3 Ri4 Ri5

o1 o1 o2 o3 o5
.

Because i1 ∼o1 i2 ∼o1 i3, i1 �o2 i5 �o2 i3 and i3 �o5 i5 �o5 i2, the third part of

Lemma 55 implies fi1(R
1) = o1. It is straightforward to verify that strategy-proofness

and constrained efficiency imply

R̃1 R1
i1

R1
i2

R1
i3

R1
i4

Ri5

o1 o1 o2 o3 o5

o2 o3 o4 o5

.

Next, consider first the following preference profile

R2 Ri1 Ri2 Ri3 Ri4 R1
i5

o1 o1 o2 o3 o4
.

Because i1 ∼o1 i2 ∼o1 i3, i2 �o2 i5 �o2 i3 and i3 �o4 i5 �o4 i1, the third part of

Lemma 55 implies fi2(R
2) = o1. It is straightforward to verify that strategy-proofness
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and constrained efficiency imply

R̃2 R1
i1

R1
i2

R1
i3

R1
i4

R2
i5

o1 o1 o2 o3 o4

o2 o3 o4 o5 o5

.

Since i5 can obtain R̃2 from R̃1 by a unilateral deviation (from Ri5 to R2
i5

), we obtain

that f cannot be strategy-proof. This shows that f cannot be constrained efficient and

strategy-proof.

1.1 Necessity of Assumption 1 in Ehlers and Westkamp (2017)

In this section, we present two examples: in the first example, the priority structure satisfies

Assumption 1 (B) in Ehlers and Westkamp (2017) but violates Assumption 1 (A) in Ehlers

and Westkamp (2017); in the second example, the priority structure satisfies Assumption 1

(A) in Ehlers and Westkamp (2017) but violates Assumption 1 (B) in Ehlers and Westkamp

(2017). For both examples, we show that a constrained efficient and strategy-proof mechanism

exists even though the priority structures are not strict, HET, or TAU. This shows that both

parts of Assumption 1 in Ehlers and Westkamp (2017) are necessary for Theorem 1 in Ehlers

and Westkamp (2017) to hold.

Example 1. Let I = {1, . . . , 6} and O = {o, p1, p2}. Priorities are as follows:

� �o �p1 �p2
1, 2, 3 6 6

4 5 5

5 4 4

6 3 1

2 2

1 3

This priority structure violates Assumption 1 (A) (because � is not strict and � does

not contain any four-way tie), but satisfies in Assumption 1 (B) in Ehlers and Westkamp
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(2017). We will show below that � is solvable by constructing a variant of the DA that yields

a constrained efficient and strategy-proof mechanism.33

Example 2. Let I = {1, . . . , 6} and O = {o, p1, p2, p3, p4}. Priorities are as follows:

� �o �p1 �p2 �p3 �p4
1, 2, 3, 4, 5, 6 6 5 6 6

5 6 4 5

4 4 5 2

3 1 2 4

2 2 1 1

1 3 3 3

Note that this priority structure violates Assumption 1 (B) (since, e.g., 6 �p1 1 and 6 �q 1

for all q ∈ O) but satisfies Assumption 1 (A) in Ehlers and Westkamp (2017) (because there

is a four-way tie at �o).44,55

We will now proceed to construct a deferred acceptance algorithm with tie-breaking (DAT)

that, as we will show below, is constrained efficient and strategy-proof mechanism for both

examples. Let R be an arbitrary preference profile for the six agents in one of the above

examples.

Step 1: Exogenous tie-breaking

For Example 11, define the weak priority structure �′ by setting 1 ∼′o 3 �′o 2 �′o 4 �′o
5 �′o 6 and �′p=�p for p ∈ {p1, p2}.

For Example 22, define the weak priority structure �′ by setting 6 �′o 5 �′o 4 �′o 2 �′o
1 ∼′o 3 and �′p=�p for p ∈ {p1, p2, p3, p4}.

3This example can be extended to an arbitrary number of agents 1, . . . , N as follows: Let 1 ∼o 2 ∼o 3 �o

4 �o . . . �o N , N �p1
. . . �p1

4 �p1
3 �p1

2 �p1
1, and N �p2

. . . �p2
4 �p2

1 �p2
2 �p2

3. It is easy to see
that all arguments below continue to hold for this extended example.

4The priority structure does, however, satisfy the weaker requirement that the priority structure is
connected in the sense that there is no subset of agents J ( I such that J �o I \ J for all o.

5In order to extend this type of example to an arbitrary number of agents 1, . . . , N , let there be N − 1
objects o, p1, . . . , pN−2 such that N ∼o . . . ∼o 1, N �p1

. . . �p1
1, N − 1 �p2

N �p2
N − 2 �p2

. . . �p2

4 �p2 1 �p2 2 �p2 3, N �p3 N − 2 �p3 N − 1 �p3 N − 3 �p3 . . . �p3 4 �p3 2 �p3 1 �p3 3, . . .,
N �pN−2

. . . �pN−2
5 �pN−2

2 �pN−2
4 �pN−2

1 �pN−2
3. As shown in our earlier working paper, Ehlers and

Westkamp (2011), the just described construction can be used to characterize all solvable priority structures
within the class of priority structures where ties are restricted to occur only at the bottom of priority rankings.

18



Step 2: DA without tie-breaking

Run a DA in which rejections are determined by �′ and let µ1 be the temporary

assignment at the end of this algorithm.66

Stop, if µ1 is a matching and proceed to Step 3 otherwise. Note that, given our

construction of �′, the only possibility for the procedure to proceed to Step 3 is that

µ1(1) = µ1(3) = o.

Step 3: Endogenous tie-breaking

If there is an object p such that µ1(2) = p and 3 �p 2 �p 1, let o reject 1. If there is an

object q ∈ O that is acceptable to agent 1 and most preferred among the ones which

have not received any proposals in Step 2, match 1 to q and stop. Otherwise, leave 1

unmatched and stop.

In any other case, let o reject 3. If there is an object q ∈ O that is acceptable to agent

3 and most preferred among the ones which have not received any proposals in Step 2,

match 3 to q and stop. Otherwise, leave 3 unmatched and stop.

Given a preference profile R, let DAT (R) denote the outcome of the above procedure.

Claim 1: For any R, DAT (R) is constrained efficient.

Fix a preference profile R and let µ ≡ DAT (R).

We argue first that µ is stable. Note that all rejections in Step 2 respect all strict priority

rankings for the priority structures in Example 11 and Example 22. Hence, the only possibility

for µ to violate the stability condition is that the algorithm reaches Step 3 and there is an

object p ∈ O \ {o} and an agent j 6= i s.t. pPiµ(i), µ(j) = p, and i �p j for some i ∈ {1, 3},
say for i = 1. But by the rules of Step 3, 1 will only be rejected by o if µ(2) = p for some p

such that 3 �p 2 �p 1. For both examples, the last observation implies that j �µ1(j) 1 for all

j ∈ I\{1} such that µ1(j) 6= j. Hence, µ must be stable.

Next, we will show that µ is also constrained efficient. Suppose to the contrary that there

is a stable improvement cycle i1, . . . , im. Assume w.l.o.g. that i1 is among the first (in the

6Formally, in each round, let (A) each agent apply to the most preferred object that has not rejected him
yet, (B) each object p reject all but the highest priority agents according to �′p, and (C) stop, if there were
no new proposals in (A).
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course of above algorithm) agents in the stable improvement cycle to be rejected by the object

he is pointing to in the cycle. There has to be an agent j who causes the rejection of i1, i.e. an

agent j who was rejected by all objects he prefers to o2 when he applied to o2 in the DA with

tie-breaking and for whom j �o2 i1. By our assumption that i1 was among the first agents to

be rejected by the object he is pointing to in the stable improvement cycle, we must have

j 6= i2 and hence µ(j) 6= o2. Furthermore, since the welfare of agents is weakly decreasing

during the course of the above algorithm, we must have o2Pjµ(j). These arguments imply

that j ∼o2 i1 and, consequently, that o2 = o: otherwise, we would have i2 �o2 j �o2 i1 and i1

could not be among the highest priority agents who desires o2 = p at µ, thus contradicting

the definition of a stable improvement cycle. Next, we will show that {i1, i2, j} = {1, 2, 3}.
For Example 11, we can immediately infer the just mentioned statement from the original

priority ranking �o. For Example 22, it is easy to see that if {i1, i2, j} 6= {1, 2, 3}, then the

form of �′o implies i1 = 4, j = 5, and i2 = 6. However, by our previous arguments, 6 was

temporarily matched to an object p ∈ O \ {o} s.t. pR6o3 when 4 was rejected by o. Since the

only agent who can displace j at o is 6 and the only agent who can displace 6 at p is 5, 6

can’t be rejected by o3 during the DA with tie-breaking. Hence, for both examples, we must

have {i1, i2, j} = {1, 2, 3}. Now assume first that i1 = 2. This is possible only in Example 11

and we can assume w.l.o.g. that j = 1 and i2 = 3. Since each object can appear at most

once in a stable improvement cycle and since no no agent in {1, 2, 3} can displace an agent in

{4, 5, 6} at either p1 or p2 in Example 11, we must have {i1, . . . , im} ⊆ {1, 2, 3}. This is easily

seen to imply that m = 2 and 1 �o1 2 �o1 3. But then, the rules of Step 3 of the DA with

tie-breaking immediately imply that 3 could not have displaced 1 at o2 = o subsequently to

being rejected by o1. Hence, we must have, w.l.o.g., i1 = 1. In Example 11, the only agent

who can displace 1 at o is agent 3. Hence, it would have to be the case that j = 3. But then,

3 could not have subsequently been displaced by i2 = 2, thus contradicting µ(i2) = o2 = o.

We are left to consider the case of i1 = 1 for Example 22. Here, we must have j = 3 and i2 = 2

given that 2 �′o 1 �′o 3. But by the rules of Step 3, 1 cannot displace 2 subsequently to losing

a tie-breaking decision against 3. This completes the proof of constrained efficiency.

Claim 2: DAT is strategy-proof.

Suppose that, contrary to what we want to show, there are a preference profile R, an

agent i, and a misreport R̂i such that DATi(R̂i, R−i)PiDATi(R). Let µ ≡ DAT (R) and
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µ̂ ≡ DAT (R̂i, R−i), and let µ1 and µ̂1 be the temporary assignments at the end of Step 2 of

the DAT under R and R̂ ≡ (R̂i, R−i), respectively.

Note first that the DA with tie-breaking has to reach Step 3 for R and R̂, and that the

tie-breaking decision in Step 3 has to be different for R and R̂: if, say, 1 wins the tie-breaking

decision at R and R̂, the DA with tie-breaking would be equivalent to a DA with strict

priorities in which 1 has strictly higher priority for o than 3. Since the DA with strict priorities

is strategy-proof, there cannot be a an agent who can profitably manipulate at R.

Next, we will argue that i /∈ {2, 4, 5, 6}. Note first that all agents apart from 1 and 3

receive their final allocation in the second step of DAT. Now consider first Example 11. Here,

the temporary assignment at the end of Step 2 of the DAT under R and R̂ is equivalent to

the final outcome of a DA in which the “priority-ranking” of object o is given by {1, 3} �′′o
{1} �′′o {3} �′′o {2} �′′o {4} �′′o {5} �′′o {6} and the priority ranking for all other objects

is as in �. Since these “priorities” induce substitutable preferences that satisfy the law

of aggregate demand, such a DA is strategy-proof (Hatfield and Milgrom, 2005). This

implies that no agent in {2, 4, 5, 6} can manipulate DAT for Example 11. Next, consider

Example 22. By our construction of �′o for Example 22, we can infer that no agent in {2, 4, 5, 6}
could have applied to o under R and R̂. But then the temporary assignment at the end

of Step 2 of the DAT is equivalent to a DA in which the “priorities” of o are given by

{1, 3} �′′o {1} �′′o {3} �′′o {2} �′′o {4} �′′o {5} �′′o {6} and the priority ranking for all other

objects is as in �. By the same arguments as above, this implies that no agent in {2, 4, 5, 6}
can profitably manipulate DAT.

To complete the proof, we will now show that i = 1 is impossible (the arguments in the

case of i = 3 are completely symmetric). Assume first that µ(1) = o and µ̂(1) 6= o. For

both examples, we must have µ̂1(2) = p1 by the rules of Step 3. Furthermore, since the

tie-breaking decision between 1 and 3 is different at R and R̂, we must have µ1(2) 6= µ̂1(2).

It is easy to see that for both examples, we must have µ1(2) = p2 since otherwise, 1 would

either fail to win the tie-breaking decision against 3 at R (if µ1(2) = p1) or would not be able

to affect the pre tie-breaking assignment (if µ1(2) ∈ O \ {o, p1, p2}). We immediately obtain

that oP1p2 and p2P̂1o. But then, in order for the deviation to R̂1 to be profitable for 1, it

would have to be the case that, subsequently to displacing 2 at p2, 1 is rejected by p2 and 2

ends up temporarily assigned to p1 at the end of Step 2. It is straightforward to check that

the just mentioned configuration is impossible for both types of examples. Next, assume that
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µ(1) 6= o and µ̂(1) = o. By the rules of Step 3, we must have µ1(2) = p1 and µ̂1(2) 6= p1. It is

easy to see that in order for 1 to be able to influence the pre tie-breaking assignment, we

must have µ̂1(2) = p2. But then, it has to be the case that 1 displaced 2 at p2 during Step 2

of the DAT for profile R. For Example 11, this immediately implies µ(1) = p2 and we obtain a

contradiction to the assumption that 1 and 3 compete for o in Step 3. For Example 22, 1 must

have been displaced at some point of Step 2 of the DAT under profile R. But this is possible

only if µ1(2) = p3 and µ1(4) = p2, thus contradicting our assumption that µ1(2) = p1. This

completes the proof.

1.2 Two-way ties at the top

We say that � is a two-way ties at the top (TWT) priority structure, if, for all o ∈ O, there

exist i(o), j(o) ∈ I such that (A) i(o) �o j(o), (B) for all k ∈ I \ {i(o), j(o)}, j(o) �o k, and

(C) �o |I\{i(o)} is strict. We will now argue that if � is a TWT priority structure, then the

following two-step procedure induces a constrained efficient and strategy-proof mechanism:

1. Let �′ be a strict priority structure that respects all strict priority rankings in �, i.e.

assume that i �′o j whenever i �o j.

2. For any preference profile R, choose the outcome of the DA-algorithm with respect to

R and �′.

Note that the mechanism induced by the procedure just described is strategy-proof since

the DA mechanism for strict priority structures is strategy-proof and since the same strict

priority ranking �′ is used for all preference profiles. To see that the outcome of above

procedure is always constrained efficient, let R be a preference profile and µ be the matching

chosen by the above procedure. If µ is not constrained efficient, then µ contains a SIC,

say i1, . . . , im. Note that il desires µ(il+1) and il ∈ Dµ(il+1)(µ) for all l ∈ {1, . . . ,m} (where

m + 1 := 1). Choose an agent from i1, . . . , im who is among the first ones rejected in DA

by the object he desires, say i1. But then i1 is rejected by µ(i2) because some other agent

j ∈ I\{i1, i2} applied to µ(i2). Note that µ(j) 6= µ(i2) and µ(i2)Pjµ(j). If j �µ(i2) i1, then

µ(i2)Pjµ(j) implies i1 /∈ Dµ(i2)(µ), a contradiction. Thus, we must have j ∼µ(i2) i1 and i1

and j are tied at the top of �µ(i2). But then j is never rejected by µ(i2) and we must have

µ(j) = µ(i2), again a contradiction.
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