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Appendix: Auxiliary technical lemmas

Lemma A.1. (i) When c < c, �C(·� c) on [x� x̄] is positive at first, then intersects zero at a
point, then is negative, then intersects zero at a point, and then is positive again.

(ii) The �C(·� c) is nonnegative on [x� x̄] if and only if c ≥ c.

(iii) The �A(·� ·� c) is nonnegative on [x� x̄]2 if and only if c ≥ c.

(iv) When c < c̄, �A(x1� ·� c) is quasi-convex on [x1� b
−1(x1)].

Proof. The proof proceeds in steps.

Step 1. Claim. We have 1 − c − a > 0 and 1 − c − a2 > 0 for any a ∈ [x� x̄].
Proof. We have

1 − c − a > 1 − c − x̄= 1 − 2c −
√

1 − 4c
2

= 4c2

2(1 − 2c +
√

1 − 4c)
> 0�

which, coupled with a2 < a, also implies that 1 − c − a2 > 0. �

Step 2. Claim. Define â = 1 − √
c. Then â ∈ (x� x̄), and a ∈ [x� â) ∪ (â� x̄] implies that

(a− â)(c − (1 − a)2) > 0.

Proof. The inequality follows by the definition of â and by inspection. It remains
to verify that â ∈ (x� x̄). Indeed,

â− x = 1 +
√

1 − 4c − 2
√
c

2
> 0�

x̄− â = 2
√
c +

√
1 − 4c − 1
2

> 0�
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where c < c̄. �

Step 3. Claim. If �C(a� c) < 0 for some a ∈ [x� x̄], then �C(·� c) is at first positive, then
intersects zero at a single point to the left of â, then is negative, then intersects zero
at a single point to the right of â, and then is again positive.

Proof. Because �C(x� c) = 1/(1 − x) > 0 and �C(x̄� c) = 1/(1 − x̄) > 0, then
�(a� c) ≤ 0 =⇒ a ∈ (x� x̄). Differentiating yields

�C
1 (a� c) = c

(
1 − c − a2)

(1 − a)(1 − c − a)2 + ln
c(1 − a)

a(1 − c − a)

= �C(a� c)

a
+

(
c − (1 − a)2)(1 − c − a2)
a(1 − a)(1 − a− c)2 �

If �C(a� c) = 0 for some a ∈ (x� x̄), then

�C
1 (a� c) =

(
c − (1 − a)2)(1 − c − a2)
a(1 − a)(1 − c − a)2 �

By Step 1, the sign of �C
1 (a� c) is the sign of c − (1 − a)2, which, by Step 2, switches

the sign from negative to positive at â ∈ (x� x̄). Hence, if a with �C(a� c) < 0 exists,
then �C(·� c) intersects zero twice: once from above and to the left of â, and once
from below and to the right of â. �

Step 4. Claim. If c < c, then �C(â� c) < 0; if c ≥ c, then �C(·� c) is nonnegative on
[x� x̄].

Proof. Note that, at a ∈ (x� x̄),

�C
2 (a� c) = a

c

(
1 − a

1 − c − a

)2
> 0�

Furthermore,

�C(â� c)= 2 − (1 − √
c) ln

(1 − √
c)2

c
= 0�

where the first equality is by â = 1 − √
c and the second equality is by (8). Combin-

ing the two displays above delivers �C(â� c) < 0 for any c < c and �C(â� c) ≥ 0 for
any c ≥ c.

For c < c, �C(â� c) < 0 and Step 3 imply part (i).
For c ≥ c, �C(â� c) ≥ 0 and Step 3 imply part (ii). �

Step 5. Claim. Subject to x2 ≥ x1, �A(·� ·� c) is minimized at x2 = x1.

Proof. The claim follows from

�A
2 (x1�x2� c) = (1 − x1)

(1 − x2)
2

(
ln

c(1 − x1)

x1(1 − c − x2)
+ (1 − x2)

(
1 − c − x2

2
)

(1 − c − x2)
2

)
> 0�
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where the inequality follows because 1 − c − x2
2 > 0 and 1 − c − x2 > 0 by Step 1.

Because �A(z� z� c) = �C(z� c), Step 5 implies that �A(·� ·� c) has the same mini-
mized value as �C(·� c) does. Hence, part (iii) is implied by part (ii). �

Step 6. Claim. Define κ(x1�x2� c) ≡ (1 − x2)(2c − 1 + x2 + x2
2 − x1x

2
2) − c2. Then, for

some yA ∈ (x� x̄) and for any x2 ∈ [x� y∗)∪ (y∗� x̄], (x2 − yA)κ(x1�x2� c) > 0.

Proof. First, we show that κ(x1� x̄� c) > 0. Indeed,

κ(x1� x̄� c) ≥ κ(x̄� x̄� c) = c − (1 −
√

1 − 4c)
(

1
2

− c

)
> 0�

where the first inequality is by ∂κ/∂x1 < 0, and the last inequality follows because
κ(x̄� x̄� ·) is zero at c ∈ {0� c̄} and is positive at the only critical point (c = 2/9) in
(0� c̄).

Next, we show that κ(x1�x� c) < 0. Indeed,

κ(x1�x� c) ≤ κ(x�x� c) = c − (1 +
√

1 − 4c)
(

1
2

− c

)
< 0�

where the first inequality is by ∂κ/∂x1 < 0, and the last inequality follows because
κ(x�x� c̄)= 0 and because ∂κ(x�x� c)/∂c > 0.

Finally, ∂2κ(x1�x2� c)/x
2
2 = −6(1 − x1)x2 − 2x1 < 0. Hence, κ(x1�x� c) < 0 and

κ(x1� x̄� c) > 0 imply that, on (x� x̄), κ(x1� ·� c) crosses zero and—by ∂2κ(x1�x2� c)/

x2
2 < 0—just once, from below, at some yA ∈ (x� x̄). �

Step 7. Claim. The �A(x1� ·� c) can be negative on and only on an interval.

Proof. At any (x1�x2� c) with �A(x1�x2� c) = 0, by differentiation and substitu-
tion,

�A
2 (x1�x2�x) = κ(x1�x2� c)

(1 − x2)x2(1 − c − x2)
2 �

The sign of �A
2 (x1�x2� c) is the sign of κ(x1�x2� c), which, by Step 6, switches from

negative to positive at yA ∈ (x� x̄) as x2 rises; �A(x1�x2� c) is quasi-convex. Part (iv)
follows.

�

Lemma A.2. The function MC is uniquely maximized on [x� x̄] at x̄.

Proof. Recall from the proof of Lemma 3 that MC has two local maxima: at a and at x̄.
It remains to verify that MC(x̄) >MC(a).

Then

MC(x̄) = 2cσ(x̄)− 1 − V (x̄� x̄)

(1 − x̄)2 = 2cσ(x̄)− 1
1 − x̄

�
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where the last equality uses V (x̄� x̄)= x̄, by direct substitution. Furthermore,

MC(a) = 2cσ(a)− 1 − V (a�a)

(1 − a)2 = 2cσ(a)− c

a(1 − a)2 − 1 − a

1 − a− c
�

where the last equality follows by substituting �(a� c) = 0 into the expression for
1−V (a�a)

(1−a)2 .

As a result,

MC(x̄)−MC(a) = 2cσ(x̄)− 2cσ(a)+ c

a(1 − a)2 + 1 − a

1 − a− c
− 1

1 − x̄

= c

[
2σ(x̄)− 1

x̄(1 − x̄)2

]
− c

[
2σ(a)− 1

a(1 − a)2

]
+ 1 − a

1 − a− c
> 0�

where the last equality follows from x̄(1 − x̄) = c and by rearranging, and the in-
equality follows because the first bracket exceeds the second bracket, and the fraction
(1 − a)/(1 − a− c) is positive (by a < x̄). The ordering of the brackets follows from x̄ > a

and the observation

d
da

(
2σ(a)− 1

a(1 − a)

)
= 1

a2(1 − a)2 > 0� ∀a ∈ (0�1)�

To summarize, MC(x̄) >MC(a) and, so, MC has a unique maximand, x̄, on [x� x̄]. �

Lemma A.3. For MA defined in (18), arg maxa∈[x1�b−1(x1)]M
A(x1� a) = {b−1(x1)}, where

b−1 is the inverse of b defined in (11). As a result, on Â, u(x1) < b−1(x1) and F ⊂ A.

Proof. By Lemma 4, the only two local maxima of MA(x1� ·) are d(x1) and b−1(x1), so
it suffices to show that MA(x1� b

−1(x1)) >MA(x1� d(x1)). Write

MA
(
x1� b

−1(x1)
) = cη

(
b−1(x1)

) − 1 − V
(
x1� b

−1(x1)
)

1 − b−1(x1)
= cη

(
b−1(x1)

) − 1�

where the first equality is definitional and the second equality is by V (x1� b
−1(x1)) =

b−1(x1).
Evaluating V in (10) at (x1� d(x1)) and using �A(x1� d(x1)� c) = 0 (by (19)), one can

write

V
(
x1� d(x1)

) = (1 − x1)d(x1)−
(
1 − d(x1)

)
c
(
1 − c − x1d(x1)

)
d(x1)

(
1 − c − d(x1)

) − c + x1�

Then

MA
(
x1� d(x1)

) = cη
(
d(x1)

) − 1 − V
(
x1� d(x1)

)
1 − d(x1)

= c

[
η

(
d(x1)

) − 1
d(x1)

(
1 − d(x1)

)
]

+ x1 − c(1 − x1)

1 − c − d(x1)
− 1�
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where the first equality is definitional and the second equality follows by substituting
V (x1� d(x1)) and rearranging.

Then, suppressing the argument x1 in b−1(x1) and in d(x1), for compactness,

MA
(
x1� b

−1) −MA(x1� d)= c

[
η

(
b−1) − 1

b−1(1 − b−1) −
(
η(d)− 1

d(1 − d)

)]

+ b(d)
(
b−1 − x1

) + x1
(
1 − b−1)

b−1(1 − b(d)
) > 0�

where the first equality follows by using the definitions of b and b−1 and rearranging,
and the inequality uses b−1(x1) > d(x1) and

d
dy

(
η(y)− 1

y(1 − y)

)
= 1

y2(1 − y)
> 0

to conclude that the bracket in the first line is positive; and uses x1 < b−1(x1) < 1 to
conclude that the fraction in the second line is positive too. That is, MA(x1� b

−1(x1)) >

MA(x1� d(x1)), as desired.
The conclusion that, on Â, u(x1) < b−1(x1) and F ⊂ A follows by inspection of

Lemma’s 4 Figure 7 (just validated by showing that MA(x1� b
−1(x1)) >MA(x1� d(x1))). �

Lemma A.4. On B̂, w(x1) < b−1(x1) and F ⊂ B.

Proof. To conclude that w(x1) < b−1(x1), we show that V (x1� b
−1(x1)) > B(x1�

b−1(x1)).
Note that V (x1� b

−1(x1)) = b−1(x1) and, from the definition of B in (22),

B
(
x1� b

−1(x1)
) = 1 − (

1 − b−1(x1)
)(1 −C(x1)

1 − x1
+ cη

(
b−1(x1)

) − cη(x1)

)
�

Then

V
(
x1� b

−1(x1)
)−B

(
x1� b

−1(x1)
) = (

1 −b−1(x1)
)(1 −C(x1)

1 − x1
− 1 + cη

(
b−1(x1)

)− cη(x1)

)
�

where

1 −C(x1)

1 − x1
= (1 − x1)

(
1 − V (a�a)

(1 − a)2 + 2c
[
σ(x1)− σ(a)

])

= (1 − x1)

(
1

1 − b(a)
+ c

a(1 − a)2 + 2c
[
σ(x1)− σ(a)

])
�

The first equality in the display above uses the definition of C in (13). The second equal-
ity uses the definitions of V in (10) and b in (11), and the condition �C(a� c) = 0 in (15),
which characterizes a.
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Then, substituting the display above into its precursor display gives

V
(
x1� b

−1(x1)
) −B

(
x1� b

−1(x1)
)

1 − b−1(x1)

= (1 − x1)

(
1

1 − b(a)
+ c

a(1 − a)2 + 2c
[
σ(x1)− σ(a)

])

+ c
[
η

(
b−1(x1)

) −η(x1)
] − 1

=
(
(1 − x1)

1 − b(a)
+ c

b−1(x1)
(
1 − b−1(x1)

) − 1

+ (1 − x1)c

[
2σ(x1)− 1

x1(1 − x1)
2 −

(
2σ(a)− 1

a(1 − a)2

)]

+ c

[
η

(
b−1(x1)

) − 1

b−1(x1)
(
1 − b−1(x1)

) −
(
η(x1)− 1

x1(1 − x1)

)])
�

Note that, using the definition of b in (11),

(1 − x1)

1 − b(a)
+ c

b−1(x1)
(
1 − b−1(x1)

) − 1

= (1 − x1)

1 − b(a)
+ x1

b−1(x1)
− 1

= x1
[
1 − b−1(x1)

] + b(a)
[
b−1(x1)− x1

]
b−1(x1)

(
1 − b(a)

) > 0�

where the inequality follows from x1 < b−1(x1) < 1. Moreover,

2σ(x1)− 1

x1(1 − x1)
2 −

(
2σ(a)− 1

a(1 − a)2

)
> 0

by x1 > a and by

d
dy

(
2σ(y)− 1

y(1 − y)2

)
= 1

y2(1 − y)2 > 0

for any y ∈ (0�1). Finally,

η
(
b−1(x1)

) − 1

b−1(x1)
(
1 − b−1(x1)

) −
(
η(x1)− 1

x1(1 − x1)

)
> 0

by b−1(x1) > x1 and by

d
dy

(
η(y)− 1

y(1 − y)

)
= 1

y2(1 − y)
> 0

for y ∈ (0�1). Thus, V (x1� b
−1(x1))−B(x1� b

−1(x1)) > 0, as required.
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To show that (F ∩ B̂)⊂ B, from (22) and (10), write

B(x)− V (x)

1 − x2
= (1 − x1)

(
1

1 − b(x2)
+ c

1 − x2

[
η(x1)−η

(
b(x2)

)])

− 1 −C(x1)

1 − x1
− c

[
η(x2)−η(x1)

]
�

Differentiating and then simplifying gives

d
dx2

(
B(x)− V (x)

1 − x2

)
= − c�A(x� c)

x2(1 − x2)
�

As a result, because �A(x� c) < 0 implies that B(x) > V (x), B covers F , the failure region,
on B̂. That is, F ∩ B̂ ⊂ B. �
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