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1 MPE Multiplicity

This short section presents an economy in which condition (2) in Proposition 3 holds, but in

which multiple MPE exist for all δ close to 1. Consider the 4-player economy in Figure 8 with

pa = pb = 4/10 and pc = pd = 1/10.
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Figure 8: A four-player complete network with surplus heterogeneity.

The economy clearly satisfies condition (2) since

σa + σd = σb + σc = 36 > 35.

Thus, an efficient MPE always exits for all δ close to 1. Consequently a strongly efficient

LMPE exists. However, for all δ close to 1, an inefficient MPE also exists with the following

proposal probabilities,

πad = πbc = πcd = πdc = 1.

By setting Va = Vb and Vd = Vc, value equations (1) for the inefficient equilibrium reduce to

Va =
4

10
(35− δVc) +

2

10
δVa(ab) +

4

10
δVa(ad),

Vd =
1

10
(36− δVd) +

1

2
δVd +

4

10
δVd(ad).

Solving for subgame values establishes that

Va =
2(350− 69δ − 25δ2)

5(5− δ)(2− δ)
and Vd =

36− 4δ

(5− δ)(2− δ)
.

Taking limits then implies that limδ→1 Va = 128/5 = 25.6 and limδ→1 Vd = 8. Limit values then

satisfy all the equilibrium incentive constraints, as

2Va > 36, 2Vd < 36,

Va + Vd < 35, 36− Vd > 35− Va.

Since incentive constraints are strict and value functions are continuous, players strictly prefer
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to comply with the strategy for all δ close to 1. Thus, the proposed strategy is an MPE for all

δ close to 1 and consequently an LMPE. Multiple equilibria may exist even when condition

(2) holds, and the core match is unique. Intuitively, multiplicity may arise because directed

search and partner selection bring about coordination problems as players’ bargaining powers

are jointly determined by the entire profile of agreement probabilities.

2 Multivalued Core

The complications that arise when the core is multivalued (that is, when multiple matches are

efficient) are closely related to those that occur when Rubinstein payoffs are on the boundary

of the core, as any core payoff must be on the boundary of the core in such instances. When

multiple matches are efficient, each efficient match is associated with a possibly different vector

of Rubinstein payoffs. For any efficient match η, let ση ∈ R|N | denote the vector of Rubinstein

payoffs associated with the efficient match η. Consider an alternative efficient match γ 6= η.

Shapley and Shubik (1972) establish that if the pair (η, ση) is a core outcome, then so is the

pair (γ, ση), in that for all players i, σηi + σηη(i) = siη(i) and σηi + σηγ(i) = siγ(i). As η(i) 6= γ(i) for

some player i, the core outcome (η, ση) must be on the boundary of the core as players i and

γ(i) have a weakly profitable pairwise deviation.

Scenarios in which Rubinstein payoffs lie on the boundary of the core lead to complications.

Our equilibrium construction can lead to payoffs that are outside the core for all δ < 1, such

that some player has a profitable deviation to offer inefficiently, even when limit payoffs belong

to the core. We illustrate this in the following example.

a

b

c

d

1 1 1 1

Figure 9: A four-player complete network with unit-surplus.

Consider the four player economy in which all matches are possible and generate a surplus of

1 depicted in Figure 9. Suppose first that all players move with equal probability. If so, the

match (ab, cd) is efficient, and for this match each player’s Rubinstein payoff is 1/2. These

payoffs belong to the boundary of the core. If we attempt the efficient MPE construction we

use when players’ payoffs are in the interior of the core, with certainty player a would offer

to b, b would offer to a, c would offer to d, and d would offer to c. In this example, as is the

case with core-interior Rubinstein payoffs, these offer strategies constitute an efficient MPE.
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For instance, given these strategies, continuation values for players b and d coincide whenever

player a is selected as the proposer. Thus, player a is indifferent between offering to b or d,

and offering to b is a best response for a as equilibrium play dictates.

Suppose now that players propose respectively with probabilities

pa = pb = 3/8 and pc = pd = 1/8.

The match (ab, cd) remains efficient, and for this match each player’s Rubinstein payoff is

1/2. Thus, as before, Rubinstein payoffs are on the boundary of the core. However, if we now

attempt the efficient MPE construction we use for interior Rubinstein payoffs, we no longer

find an equilibrium. By complying with these strategies, all player still receive limit payoffs of

1/2, but for all δ < 1 player a has a profitable deviation by offering to d. As d waits longer

than b to be matched in expectation, d’s continuation value is lower than b’s for δ < 1. Hence,

a prefers to deviate and to offer to d. In the other efficient match (ad, cb), Rubinstein payoffs

are 3/4 for a and b and 1/4 for c and d. These Rubinstein payoffs do not belong to the core as

c and d have a profitable pairwise deviation. If a were to offer to d, d were to offer to a, b were

to offer to c, and c were to offer to b with certainty, player c would have a profitable deviation

by offering to d.

This example is intended to illustrate the subtleties that may arise when Rubinstein payoffs

are on the boundary of the core. Although there are no strictly profitable deviations in the

limit as δ → 1, there may be strictly profitable deviations for all δ < 1. Whether this happens

or not depends on whether the sum of payoffs for each pair of efficiently matched players

converges from above or below to the surplus they generate, which in turn depends on the

fine details of the game. Nevertheless, there is one canonical case in which there always exists

an efficient MPE when Rubinstein payoffs are on the boundary of the core. An assignment

economy is said to be simple if sij ∈ {0, 1} for all i, j ∈ N .

Proposition 7 Consider a simple assignment economy in which all players are selected to

propose with equal probability. Then, there exists a strongly efficient MPE if the Rubinstein

payoffs associated with an efficient match belong to the core.

Symmetry in these settings suffices for the existence of strongly efficient MPE. In fact, since

all players on one side of the market receive the same payoff and since delay destroys surplus,

the sum of payoffs for each pair of efficiently matched players must converge from below to the

surplus they generate. In general though, core match multiplicity may lead to discontinuities

in equilibrium payoffs which would further complicate efficiency conclusions (as is the case in

Example 2 when y equals 200).
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To conclude the discussion, we show an example in which core match multiplicity leads

to MPE multiplicity and to additional delay frictions. Consider the six-player assignment

economy depicted in Panel I of Figure 10, in which agents a and f propose with probability

1/4, whereas all other players propose with probability 1/8. In such an example, the efficient

matches are pinned down by the value of parameter y. We consider values of y ∈ [2, 3].

a

b

c

d

e

f

2 y 2 2y

I

ca

b d

e

f

q

q

II

Figure 10: In Panel I the assignment economy; in Panel II agreement probabilities.

For all values of y ∈ [2, 3], Rubinstein payoffs do not belong to the core in any core match.

We consider whether there can be an equilibrium in which a and f delay making an offer.

Suppose that agents c and d agree with each other when proposing. If so, by delaying agent a

may end up bargaining bilaterally with agent b provided that players c or d are selected before

either b or e. As in this scenario a ends up in a strong position relative to b, player a could, in

principle, prefer delay. To explore this possibility, we assume that agents a and f delay with

probability 1− q, and we look for conditions on q and y under which there is an equilibrium

with the agreement probabilities shown in Panel II of Figure 10. Finding agents’ MPE values

in the relevant subgames and taking the limit yields

limδ→1 Va(N) = limδ→1 Vf (N) =
16 + q(17− 3y)

24 + 12q
,

limδ→1 Vb(N) = limδ→1 Ve(N) =
7 + 3y

12
,

limδ→1 Vc(N) = limδ→1 Vd(N) = 1.

All values are strictly positive for any y ∈ [2, 3] and any q ∈ [0, 1]. Moreover, ∂Va/∂q > 0

for y < 3, but ∂Va/∂q = 0 for y = 3. Thus, player a and f do not delay and set q = 1 for

y < 3. Yet, there might be equilibrium delay for y = 3. In fact, an equilibrium exists in

which q = 0 when y = 3. This discontinuity arises because multiple matches are efficient when

y = 3. Although agent a delays, there is an efficient match in which he is unmatched. With

heterogeneities, instances of multiple efficient matches are non-generic. When the core match

is unique, delay occurs only because of fundamental strategic reasons, as we documented in

Examples 3 and 4.
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3 Relationship to Okada (2011)

There are some similarities between Okada (2011) and our paper. Both papers relate the

existence of an efficient MPE in a non-cooperative bargaining game to whether different

statistics belong to the core of an associated cooperative game. Nevertheless, the models are

significantly different in a crucial dimension. Okada models coalitional bargaining, while we

allow only pairs of players to bargain. The models are geared towards different applications

(legislative bargaining for Okada, and decentralized markets in our case) and, in this section, we

argue that applying Okada’s model to decentralized markets may lead to strange predictions.

Consider the 4-player example shown in Figure 11. In terms of Okada’s notation, this is a

coalitional game with N = {a, b, c, d} where

1. v(N) = sab + scd;

2. v(a, b) = v(a, b, c) = v(a, b, d) = sab;

3. v(c, d) = v(a, c, d) = v(b, c, d) = scd;

4. v(S) = 0 for any other coalition S ⊂ N .

a

b

c

d

sab scd

Figure 11: A four-player economy.

For an efficient equilibrium as defined by Okada, each agent must make an acceptable proposal

to the grand coalition with probability 1 if selected to propose. Unlike in our model, this

option is available to agents, and by offering to the grand coalition all players can reach

agreement immediately thereby eliminating any losses from agents’ limited patience. By

Okada’s Proposition 3.1, in an efficient stationary equilibrium, the expected payoffs are given

by the solution to the following system of value equations

Vi = pi

[
v(N)− δ

∑
j∈N\iVj

]
+ δVi

∑
j∈N\ipj for all i ∈ N .

In the limit as δ → 1, this yields expected payoffs

limδ→1 Vi =

(
pi

pa + pb + pc + pd

)
v(N) for all i ∈ N .

Moreover, Okada shows that an efficient equilibrium only exists if these payoffs belong to the
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core of the associated cooperative game. In the limit, two necessary conditions for an efficient

equilibrium are

Vi + Vη(i) ≥ v(i, η(i)) ≥ siη(i) for all i ∈ N .

Substituting the efficient payoff characterization and rearranging, the conditions simplify to

(pa + pb)scd ≥ (pc + pd)sab and (pc + pd)sab ≥ (pa + pb)scd.

But if so, an efficient MPE only exists if (pa + pb)scd = (pc + pd)sab. This condition is a

knife-edge case. Indeed, even if the condition was satisfied, any perturbation to the surpluses

by some small independent noise terms (drawn from continuous distributions) would lead to

the condition being violated with probability 1. The knife-edge nature of the condition is not

an artifact of the example, but a general feature of Okada’s setting in the context of assignment

economies which implies that efficient outcomes are very unlikely to occur with multilateral

negotiations. Intuitively, having to agree with all players imposes further constraints on

agreeable outcomes and restricts the scope for efficient negotiations. In contrast, in our setting,

a strongly (and thus weakly) efficient MPE would exist for any values of (pa, pb, pc, pd, sab, scd),

as Rubinstein payoffs would belong to the core for any such parameter values. Intuitively,

with bilateral negotiations, non-core partners cannot affect bargaining outcomes and constrain

efficiency when they generate no surplus with their alternative partners.

The example highlights the differences in the approach and the conclusions relative to

Okada (2011). His model is most suitable for situations in which coalitions can jointly bargain.

In contrast, ours is intended to capture decentralized markets in which buyer-seller pairs

bargain in solitude. When this is the case, decentralized negotiations may actually lead to

more efficient and arguably more plausible outcomes.

4 Omitted Proofs

Proof of Remark 1. First, we establish part (a). By assumption, there is a unique preferred

match at any active player set. Thus, for all i ∈ A and all A ⊆ N , if maxj∈A sij > 0 then

argmaxj∈A sij is a singleton. Moreover, i’s continuation value when selected as the proposer

satisfies

limδ→0 vi(A) = limδ→0 max{δVi(A),maxj∈A\i {sij − δVj(A)}} = maxj∈A\i sij,

as Vj(A) < maxk∈A sjk < ∞ for all players j ∈ A and active player sets A ⊆ N . Hence,

in all MPEs for all δ close to 0, πij(A) = 1 if and only if j = arg maxj∈A sij. If we have

that maxk∈A sik > 0 at some active player set A ⊆ N , then there is a unique player j =
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arg maxk∈A sik and for all δ close to zero

maxk∈A(sij − sik) > δ
∑

k∈A
skη(k).

Thus, independently of the constraints imposed on subsequent matching, the expected social

surplus is maximized by matching agent i to agent j, if agent i is selected as the proposer.

Maximizing utilitarian welfare for δ all close to 0 simply amounts to setting πij(A) = 1 if and

only if j = arg maxj∈A sij. So, all MPEs maximize utilitarian welfare for all δ close to zero.1

Next, we establish part (b). Payoffs in any subgame A ∈ C(N) of an efficient MPE are pinned

down by Proposition 2 for any δ ∈ (0, 1). We show that, if siη(i) > sij for all i 6= j, complying

with efficient strategies is an equilibrium when δ is sufficiently low. Recall that any player

j ∈ A accepts any offer that is worth at least δVj(A). Suppose, by contradiction, that some

player i ∈ A at some subgame A ∈ C(N) has a profitable deviation which entails agreeing

with j 6= η(i) when all other agents play efficient strategies. For such an offer to be profitable

for player i, it must be that

sij − δVj(A) ≥ siη(i) − δVη(i)(A). (15)

By taking limits on both sides of the inequality as δ converges to 0, we obtain

sij ≥ siη(i).

But this cannot be as players strictly prefer their core match by assumption, and so sij < siη(i).

Thus, any player i ∈ A at any subgame A ∈ C(N) does not have a profitable deviation when

the discount factor is sufficiently low, which implies the existence of an efficient MPE for any δ

close to 0.

Finally, we establish part (c). By contradiction, assume that an efficient MPE exists for all

δ close to 0, but that sij > siη(i) for some j 6= η(i). If so, player i has a strictly profitable

deviation from an efficient equilibrium if condition (15) holds strictly. But, since δVi(A)→ 0

and δVj(A)→ 0, condition (15) must be strict for δ sufficiently low, and thus player i must

have a profitable deviation.

Proof of Remark 2. To establish part (a), let u be a vector of core payoffs associated to the

core match η. Consider two players i, j ∈ N such that η(i) = j, and set

pi
pj

=
ui

sij − ui
.

1If the preferred match is not unique, then a planner maximizing welfare may have preferences over preferred
partners that differ from those of the proposer. Thus, for all δ close 0 there may be no welfare maximizing
MPE.
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This condition ensures that i and j receive their core payoffs, ui and uj, if everyone plays

the strategies characterized in the proof of Proposition 2. This removes at most N/2 degrees

of freedom from the vector p. Thus, it is straightforward to find a probability vector p that

satisfies the above condition for all i ∈ N .

Part (b) is a trivial consequence of the Rubinstein payoffs not being affected by proportional

changes in probabilities. Part (c) is also straightforward. Let U(S) denote the set of core

payoffs when the surplus matrix is S. Observe that if the surplus changes from S to S ′, it

must be that siη(i) = s′iη(i) for any i ∈ N . This is because the core match cannot change when

S changes to S ′, and because siη(i) 6= s′iη(i) implies that any core payoff in S would not belong

to S ′ (since ui + uη(i) = siη(i) for any u ∈ U(S)). Thus, Rubinstein payoffs in the two markets

must coincide, implying that

σ = (σ1, ..., σn) = (σ′
1, ..., σ

′
n) = σ′.

The conclusion then follows immediately from these observations, since σ ∈ U(S) ⊆ U(S ′).

To prove part (d), it is useful to introduce the notions of an offer graph and a cyclical offer

graph. For any subgame with active player set A ⊆ N and any MPE, the offer graph (A,G)

consists of a directed graph with vertices in A and with edges satisfying

ij ∈ G ⇔ i ∈ A and j ∈ {k | πik(A) > 0} ∪ η(i).

We say that an offer graph is cyclical whenever there exists a subset of active players choosing

to make offers so as to exchange their respective core partners with one another. Formally, an

offer graph is cyclical if there exists a map ϕ : N → N and a set of players F ⊆ Pk ∩ A for

k ∈ {1, 2} such that:

• ϕ(i) = j ⇒ ij ∈ G;

• ϕ(i) 6= η(i) for some i ∈ F ;

• {ϕ(i)|i ∈ F} = {η(i)|i ∈ F}.

Next, we establish that MPE offer graphs are never cyclical. If offers were cyclical, a subset

of players who prefer offering to one another’s core matches instead of their own core match

would exist. These players would have to achieve a higher aggregate surplus by matching with

non-core partners, thereby violating the efficiency properties of the core. Formally, suppose

the offer graph is cyclical. By revealed preferences, for any player i ∈ F and ϕ(i) such that

πiϕ(i)(A) > 0, subgame perfection requires that

siϕ(i) − δVϕ(i) ≥ siη(i) − δVη(i).
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Furthermore, because of cyclicality, by summing over all players in F we would have that

∑
i∈F (siϕ(i) − δVϕ(i)) ≥

∑
i∈F (siη(i) − δVη(i)) ⇔

∑
i∈F siϕ(i) ≥

∑
i∈F siη(i).

However, this leads to a contradiction as the core match was assumed to be be unique.

Finally, we establish that the core match always obtains with positive probability in an

MPE without delay. The uniqueness of the core match and the non-negativity of surpluses

imply that all players on one side of the market are matched at the unique core allocation.2 Fix

an MPE without delay. No delay implies that every player with a positive value agrees with

probability 1 when selected to propose in every possible subgame. Without loss of generality,

suppose that P1 ∩ A ≥ P2 ∩ A. If for any A there exists i ∈ P1 ∩ A such that πiη(i)(A) > 0,

the conclusion obviously holds. Thus, assume that this is not the case. Then, for some A,

πiη(i)(A) = 0 for all i ∈ P1 ∩ A. Next, we show that this leads to a contradiction, as the offer

graph would necessarily be cyclical. Pick any match ϕ satisfying ϕ(i) = j for πij(A) > 0, and

ϕ(i) 6= η(i) for any i ∈ P1 ∩A. Such a match exists because players in P1 ∩A do not delay, and

because πiη(i)(A) = 0. Observe that, since the core match is unique, P2 = {η(i)|i ∈ P1 ∩ A}∩P2.

Furthermore, by construction, it must be that P2 ⊇ {ϕ(i)|i ∈ P1 ∩ A} ∩ P2. Since η(i) 6= η(k)

for any i, k ∈ P1 ∩ A, there must exist a set F ⊆ P2 such that

{ϕ(i)|i ∈ F} = {η(i)|i ∈ F} ,

as otherwise, a player i ∈ P1 ∩ A would exist such that ϕ(i) = η(i). This in turn implies the

desired contradiction to the first part of the proposition, as the offer graph would necessarily

be cyclical.

Proof of Remark 3. For convenience, when A = N , value functions and proposal probabilities

omit the dependence on the active player set A. First observe that players on one of the two

core matches never delay in any weakly efficient LMPE for all δ close to 1. Delay on both core

matches would require

δVa + δVb ≥ sab and δVc + δVd ≥ scd, (16)

which violates feasibility since
∑

i∈NVi > sab + scd. Thus, in any weakly efficient LMPE, there

exists a core match in which no player delays. Call such a match iη(i) so that πii + πη(i)η(i) = 0.

Next observe that players agree on at most one of the two non-core matches with positive

probability in any weakly efficient LMPE for all δ close to one. Agreement on both non-core

2This is the only result in which the assumption on the non-negativity of the surplus is substantive.
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matches would require

δVa + δVd = sad and δVb + δVc = sbc.

But this would violate the weak efficiency of the limiting equilibrium as

lim
δ→1

∑
k∈NVk = sad + sbc < sab + scd.

Thus, in any weakly efficient LMPE, there exists a non-core match with disagreement. As this

link must involve either i or η(i) it is without loss of generality to call such a match ij, so

that πij = 0. This establishes that πiη(i) = 1 and that πjj = 1. Furthermore, there must be

agreement in match η(i)η(j). If, instead, we had that πη(i)η(j) + πη(j)η(i) = 0, value equation for

a player k ∈ {j, η(j)} would simplify to

Vk = (1− 2p)δVk + 2pδVk({j, η(j)}) = (1− 2p)δVk + 2pδσk.

Thus, δVj + δVη(j) < siη(j) and the equilibrium would be strongly efficient and not sequential.

Thus, πη(i)η(j) + πη(j)η(i) > 0. Finally, observe that πη(i)η(j) = 0. Otherwise,

siη(i) − δVi = sη(j)η(i) − δVη(j) = δVη(i),

where the first equality would hold by player η(i)’s indifference, while the latter by player η(j)’s

indifference. This implies that δVi + δVη(i) ≥ siη(i). But as j and η(j) delay, the condition (16)

would be satisfied and the values would be infeasible. Thus, we must have that πη(i)i = 1 for

all δ close to 1. This completely pins down the acceptance probabilities up to relabelling, and

consequently, for πη(j)η(i) = q, the value equations reduce to

sη(i)η(j) = δVη(i) + δVη(j)

Vη(i) = (1− p)δVη(i) + p(siη(i) − δVi)

Vη(j) = (1− 2p)δVη(j) + 2pδVη(j)({j, η(j)}) (17)

Vi = (1− p− pq)δVi + pqδVi({i, j}) + p(siη(i) − δVη(i))

Vj = (1− 2p− pq)δVj + pqδVj({i, j}) + 2pδVj({j, η(j)})

where, obviously, for any k, l ∈ N , we have that

Vk(kl) =
p

1− δ + 2pδ
skl.

First observe that η(j)’s value equation trivially implies that Vη(j) ≤ Vη(j)({j, η(j)}) for all δ ≤ 1.

As j delays when A = N , sjη(j)− δVj ≤ δVη(j). Thus sjη(j) ≤ δVj + δVη(j)({j, η(j)}). Towards a
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contradiction, suppose that δVj < δVj({j, η(j)}). Then sjη(j) < δVj({j, η(j)})+δVη(j)({j, η(j)})
and η(j) would have a profitable deviation delaying instead of offering to j in the subgame

where only j and η(j) are active. We therefore conclude that δVj ≥ δVj({j, η(j)}). From j’s

value function, this implies that Vj({i, j}) ≥ Vj({j, η(j)}). Moreover, with equal proposal

probabilities, this is equivalent to sij ≥ sjη(j). By adding this inequality to the inequality

defining the core match, siη(i) + sjη(j) > sη(i)η(j) + sij, we further obtain that siη(i) > sη(i)η(j).

In any sequential LMPE, limδ→1 q = 0. Taking limits of the value equations (17) as δ → 1,

immediately delivers that

limδ→1 Vη(i) = sη(i)η(j) − ση(j) limδ→1 Vη(j) = ση(j)

limδ→1 Vi = siη(i) − sη(i)η(j) + ση(j) limδ→1 Vj = σj

Observe that player η(i) always possesses a deviation that sets q = 0 (namely rejecting any

offer from η(j) when A = N). If so, i’s and η(i)’s value functions reduce to

V̂i = (1− p)δV̂i + p(siη(i) − δV̂η(i))

V̂η(i) = (1− p)δV̂η(i) + p(siη(i) − δV̂i)

and η(i) secures a payoff V̂η(i) = psiη(i)/(1− δ + 2pδ)→ ση(i). For q > 0 to be an equilibrium

for all δ close to 1 such a deviation cannot be profitable. Thus, Vη(i) ≥ V̂η(i) for all δ close to 1,

and

lim
δ→1

Vη(i) = sη(i)η(j) − ση(j) = sη(i)η(j) − (sjη(j)/2) ≥ siη(i)/2 = ση(i) = lim
δ→1

V̂η(i).

This implies that 2sη(i)η(j) ≥ sjη(j) + siη(i), which by efficiency and uniqueness of the core

immediately implies that sη(i)η(j) > sij. Thus, we conclude that

siη(i) > sη(i)η(j) > sij ≥ sjη(j),

and, invoking our labelling convention, we deduce that η(i) = a, i = b, j = c, and η(j) = d.

To establish the final part of the result, we first find necessary conditions for the existence

of a sequential LMPE, and then show that these conditions are also sufficient. Recall that the

previous part of the proof establishes that a sequential LMPE exists only if

sab > sad > sbc ≥ scd. (18)

For the proposed strategy profile to be an equilibrium, c and d must weakly prefer to delay

instead of offering to each other; and so, δVc + δVd ≥ scd for all δ sufficiently close to 1.

Moreover, limδ→1 δ(Vc + Vd) = scd. Thus the strategy is consistent with equilibrium behavior
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only if δ(Vc + Vd) to converges to scd from above. By solving value equations (17) it is possible

to show that

lim
δ→1

δ(Vc + Vd)− scd
1− δ

=
scd(sbc − scd) + 2sad(sbc + scd)− sab(sbc + 3scd)

2p[2(sab − sad)− (sbc − scd)]
. (19)

If sbc = scd then the right hand side of equation (19) reduces to −scd/p < 0 which is not

consistent with equilibrium behavior. Thus, sbc > scd. Next observe that the denominator in

equation (19) must be positive since sab − sad > 0 by (18) and since sab − sad > sbc − scd by

definition of the core. Thus, as the denominator is always positive, equation (19) is satisfied if

and only if the numerator is also positive. This requires that

sbc − scd
sab − sad

≥ 2
sbc + scd
sab + scd

. (20)

The first part of the proof also establishes that a strategy is consistent with weak efficiency

only if 2sad ≥ sab + scd. However, if sad = (sab + scd)/2, by substituting sad in (20) one obtains

sbc − scd
sab − scd

≥ 4
sbc + scd
sab + scd

,

which, with some rearrangements, in turn implies that

0 ≥ 3 (sab − scd) (sbc + scd) + 2scd (sab − sbc) ,

which cannot hold by (18). Hence, 2sad > sab+scd. Combining the above inequalities establishes

that

sab > sad > (sab + scd)/2 > sbc > scd.

This establishes why the above condition is necessary for the existence of a sequential LMPE.

To show that this condition is also sufficient, we verify that no player can have a profitable

deviation given the agreement probabilities pinned down in the first part of the proof. First,

observe that c and b prefer delaying to offering to each other as

lim
δ→1

δ(Vb + Vc) = sab − sad + σd + σc = sab + scd − sad > sbc,

where the last inequality holds by the uniqueness of the efficient match. By construction, d

is indifferent between offering to a and delaying. Players c and d weakly prefer delaying to

offering to each other as argued earlier in the proof. Players a and b weakly prefer offering to
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each other than delaying as

lim
δ→1

δ(Va + Vb)− sab
1− δ

=
scd − 2sad

2p
< 0,

which implies that δVa + δVb ≤ sab for all δ close to 1. Thus, for sufficiently high δ, a and

b prefer offering to each other over delaying. As we have already established that b prefers

delaying to offering to c, b’s optimal offer strategy is to offer to a with probability 1 for all δ

close to 1. Player a prefers offering to b than offering to d as

lim
δ→1

sab − δVb − sad − δVd
1− δ

=
2sad − scd

2p
> 0.

Thus, it is optimal for a to offer to d with probability 1. Finally, mixing probabilities are

consistent with a weakly efficient LMPE as the probability that d and a agree converges to

zero from above by

lim
δ→1

q

1− δ
=

2(2sad − sab − scd)
p(2sab − 2sad − sbc + scd)

> 0,

where the inequality holds because the numerator is positive by 2sad > sab + scd, while the

denominator is positive by sab− sad > 0 and sab− sad > sbc− scd. All players thus best respond

for δ close to 1, and so the condition we needed to show is sufficient for the existence of a

sequential LMPE is indeed sufficient.

Proof of Proposition 7. Any simple assignment economy S can be represented by an

unweighted bipartite network L ⊆ P1 × P2 in which links capture the opportunity to generate

a unit surplus. For any component of the network L̂ ⊆ L, let L̂k ⊆ Pk denote the projection of

L̂ on Pk. The components of any such network must be of two types: (i) balanced components

with the same number of players on both sides,
∣∣∣L̂1

∣∣∣ =
∣∣∣L̂2

∣∣∣; (ii) unbalanced components with

more players on one side k ∈ {1, 2},
∣∣∣L̂k∣∣∣ > ∣∣∣L̂r∣∣∣. We begin by invoking a result implied by

conclusions from Corominas-Bosch (2004).

Remark (Corominas-Bosh 2004): Any unweighted bipartite network L ⊆ P1 × P2 possesses a

sub-network L′ ⊆ L such that:

(a) any efficient match in L belongs to L′;

(b) in unbalanced components of L′, the unique core payoff of all players on the long side is 0

and that of all players on the short side is 1;

(c) in balanced components of L′, all players on one side receiving payoff β ∈ [0, 1] and all the

remaining players receiving payoff 1− β is a core outcome.

By the assumptions imposed on the economy, observe that Rubinstein payoffs are 1/2 in any

efficient match. Thus, by the Corominas-Bosh Remark, these payoffs are in the core if and
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only if all players who have a neighbor in L belong to balanced components in the resulting

sub-network L′. If so, pick any efficient match η. Suppose that any player i ∈ N agrees with

η(i) with probability 1 when proposing in any equilibrium path active player set A ∈ Cη(N).

As in the proof of Proposition 2, these strategies imply that, in any equilibrium-path subgames

A ∈ Cη(N), the continuation value of any player i ∈ A satisfies

Vi(A) =
p

1− δ + 2δp
,

where p denotes the proposal probability of the representative player. If so, player i has no

strictly profitable deviation when proposing, since all other players have the same continuation

value as η(i) and since

2Vi(A) =
2p

1− δ(1− 2p)
< 1 for all δ < 1.

Thus, the constructed strategies are an MPE.

Proof of Remark 4. By Proposition 3 in the main document, a sufficient condition for the

existence of an efficient MPE is that there exist no worker i and firm j who have a weakly

profitable pairwise deviation when receiving their Rubinstein payoffs. As the efficient match is

assortative, the core match of worker i is firm i. Thus, there is an assortative MPE if, for all

i 6= j,
qi

pi + qi
S(i, i) +

pj
pj + qj

S(j, j) > S(i, j),

where S(k, k) = 0 for all k > min{w, f}.
If w = f , no agent is unmatched in the efficient match. Along with the condition that

pi = qi = p, the above expression simplifies to

S(i, i) + S(j, j) > 2S(i, j) = S(i, j) + S(j, i), (21)

where the equality follows from the condition that S(i, j) = S(j, i). The existence of an efficient

MPE then follows, as condition (21) holds by the increasing differences assumption (A3).3

To prove the second part of the remark, we show that there exist vertically differentiated

markets for which there is no weakly efficiently LMPE whenever we relax one of three conditions

in the statement of the result: (i) w = f ; (ii) pi = qi = p for all i; and (iii) S(i, j) = S(j, i) for

all i, j ≤ min{w, f}. We do so by relying on the earlier results as well as the following two

lemmas (which are proven below).

3This also follows by applying results from Eeckhaut (2006).
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Lemma 8 There is no weakly efficient LMPE in any market S ∈ S̄ satisfying (ii) and (iii) if

w = 2, f = 3, and

max{S(1, 1)/2, S(1, 3)}+ S(2, 2)− S(2, 3) < S(1, 2), S(1, 2)/2 < S(2, 3).

Lemma 9 There is no weakly efficient LMPE if w = f = 2, S(1, 1) = 9, S(1, 2) = S(2, 1) = 6,

S(2, 2) = 4, p1 = q2 = 1/16 and p2 = q1 = 7/16.

Unbalanced Market: Lemma 8 identifies conditions on market S ∈ S̄ for the non-existence of

weakly efficient LMPE in markets satisfying (ii) and (iii), but violating (i). What remains

to be shown is that these conditions are not vacuous and can be satisfied for some S ∈ S̄.

Consider the economy

S(1, 1) = 25; S(2, 1) = S(1, 2) = 20; S(2, 2) = 16; S(1, 3) = 12.

The economy trivially fulfills (A1), (A2) and (A3), implying that S ∈ S̄. Moreover, we have

that S(1, 2)/2 = 10 < S(2, 3) = 12 and

max{S(1, 1)/2, S(1, 3)}+ S(2, 2)− S(2, 3) = 19 < S(1, 2) = 20.

Thus the economy S satisfies the conditions of Lemma 8 and no weakly efficient LMPE exists.

Heterogeneous Probabilities: Lemma 9 provides an example in which conditions (i) and (iii)

are satisfied, while condition (ii) is violated, and where there does not exist a weakly efficient

LMPE.

Asymmetric Surpluses: Finally, consider the case in which S(i, j) 6= S(j, i). Setting w = f = 2,

we appeal directly to Remark 3 for a characterization of instances where there is no weakly

efficient LMPE. To do so, it suffices to observe that the surpluses can satisfy (A1)-(A3) (and

thus belong to S̄), while violating conditions for weak efficient LMPE existence identified in

this result.

For convenience, in the proof of the next two lemmas, whenever A = N , we omit the dependence

on the active player set A from value functions and proposal probabilities.

Proof of Lemma 8. By Proposition 3, an efficient MPE exists only if, for no worker-firm

pair such that i 6= j, we have that

qi
pi + qi

S(i, i) +
pj

pj + qj
S(j, j) < S(i, j),
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where S(k, k) = 0 for k > min{f, w}. But (ii) implies that this condition must be violated as

S(2, 2)/2 < S(1, 2)/2 < S(2, 3).

The first inequality holds by (A1), and the second one by assumption. By Proposition 4, there

is no strongly efficient LMPE if shifted Rubinstein payoffs are not in the core. In this case, the

profile of shifted Rubinstein payoffs are

σ̄w1 = max{S(1, 1)/2, S(1, 3)} and σ̄w2 = S(2, 3);

σ̄f1 = S(1, 1)− σ̄w1 , σ̄f2 = S(2, 2)− σ̄w2 and σ̄f3 = 0.

Thus, no strongly efficient LMPE exists as S(1, 2) > σ̄w1 + σ̄f2 .

By Proposition 5, any weakly efficient LMPE that is not strongly efficient must be a

sequential LMPE. Next, we focus on ruling out the existence of a sequential LMPE. Recall

that, by the proof of Proposition 2, we have that, at any active player set A ∈ C(N), a player

i ∈ A\E agrees with positive probability in any weakly efficient LMPE for all sufficiently high

δ. So, if only one worker is active at A, any weakly efficient LMPE is strongly efficient. So for

the LMPE to be sequential, one core match must delay in th limit when A = N .

Let A = N . Suppose that worker 1 and firm 1 delay with probability 1 in the limit,

βw1 = βf1 = 0. If so, with probability 1, worker 1 and firm 1 end up in the subgame B1 ⊂ N in

which worker 2 and firm 2 exit. In this subgame, there is a unique MPE with limit payoffs

V̄ w
1 (B1) = max{S(1, 3), S(1, 1)/2} and V̄ f

1 (B1) = S(1, 1)− V̄ w
1 (B1).

As this subgame is reached with probability 1, V̄ w
1 = V̄ w

1 (B1) and V̄ f
1 = V̄ f

1 (B1). In a weakly

efficient LMPE, the probability that worker 2 and firm 3 agree must converge to zero. For

worker 2 not to benefit by offering to firm 3 requires V̄ w
2 ≥ S(2, 3). By Proposition 2, we also

know that a weakly efficient LMPE would further require that V̄ w
2 + V̄ f

2 = S(2, 2). But for

these conditions to hold at once, we would have that

S(2, 2)− S(2, 3) ≥ V̄ f
2 .

Finally, in a weakly efficient LMPE, worker 1 must prefer delaying than offering to firm 2 for δ

sufficiently high, which requires

V̄ w
1 + V̄ f

2 ≥ S(1, 2).
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Combining these observations, we find that

max{S(1, 3), S(1, 1)/2}+ S(2, 2)− S(2, 3) ≥ V̄ w
1 + V̄ f

2 ≥ S(1, 2),

which contradicts the assumption in the statement of our result. Thus, there is no sequential

LMPE in which worker and firm 1 delay.

Next, suppose instead that worker 2 and firm 2 delay with probability 1 in the limit,

βw2 = βf2 = 0. If so, with probability 1, worker 2 and firm 2 end up in the subgame B2 ⊂ N in

which worker 1 and firm 1 exit. In this subgame, there is a unique MPE with limit payoffs

V̄ w
2 (B2) = S(2, 3) and V̄ f

2 (B2) = S(2, 2)− V̄ w
2 (B2).

As firm 3 delays with positive probability, V f
3 (B2) = 0 for all δ sufficiently high. As this

subgame is reached with probability 1, V̄ w
2 = V̄ w

2 (B2), V̄
f
2 = V̄ f

2 (B2), and V̄ f
3 = V̄ f

3 (B2).

Suppose that there is a weakly efficient LMPE in which firm 3 and worker 1 agree with positive

probability for all sufficiently high δ < 1. If so, S(1, 3) ≥ δ(V w
1 + V f

3 ). But in the limit, this

implies that V̄ w
1 = S(1, 3). If so however, worker 1 would benefit by offering to firm 2 with

strictly positive probability in the limit by (A3) as

S(1, 2)− V̄ f
2 = S(1, 2)− S(2, 2) + S(2, 3) > S(1, 3) = V̄ w

1 .

This contradicts the premise that this is a weakly efficient LMPE. Thus, firm 3 and worker 1

must reach agreement with probability 0 when all players are active for all sufficiently high δ.

Consider now the subgame in which worker 1 and firm 2 are not active. If so, for all δ

sufficiently high, we have that worker 2’s continuation value is S(2, 3)/δ. The latter follows

because we have that S(2, 3) > S(2, 1)/2 by assumption, and because in the unique MPE of

this subgame firm 3 must mix between delaying and agreeing with worker 2 for all sufficiently

high δ (as in Example 2 in the main document). Similarly, in the subgame in which worker

1 and firm 1 are not active, worker 2’s continuation value is S(2, 3)/δ. Next, consider the

value equation of worker 2 when all players are active, and recall that πw13 = πf31 = 0 for all

sufficiently high δ. As we have characterized the value equation of worker 2 in every other

subgame, the value equation at N simplifies to

V w
2 = p(πf11 + πf21 + πw11 + πw12)S(2, 3) + (1− p(πf11 + πf21 + πw11 + πw12))δV

w
2

From this, we conclude that for all sufficiently high δ < 1, V̄ w
2 < S(2, 3). However, for worker
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2 to delay with positive probability in the limit, it must be that for all sufficiently high δ < 1

δ(V̄ f
3 + V̄ w

2 ) ≥ δV̄ w
2 ≥ S(2, 3)

which is a contradiction. So, there can be no sequential LMPE.

Proof of Lemma 9. As w = f = 2, shifted Rubinstein payoffs are the same as their

Rubinstein payoffs. Moreover, these payoffs do not belong to the core as, by the previous

inequalities, pS(1, 1) + pS(2, 2) < S(1, 2). So, there are no efficient MPEs by Propositions 3,

and no strongly efficient LMPEs by Proposition 4. If so, any weakly efficient LMPE must

be sequential by Proposition 5. Thus, we establish that there is no sequential LMPE. For

notational ease, denote unconditional link-agreement probabilities as

υij = piπ
w
ij + pjπ

f
ji for any (i, j) ∈ W × F .

First observe that in any weakly efficient LMPE that is not a (weakly) efficient MPE, we

must have max{υ21, υ12} > 0 for all δ < 1 sufficiently high. Moreover, min{υ21, υ12} = 0 for all

δ < 1 sufficiently high. If υ21 > 0, then one of the following two conditions would hold:

(a1) S(1, 2)− δV w
2 ≥ S(1, 1)− δV w

1 ; (a2) S(1, 2)− δV f
1 ≥ S(2, 2)− V w

2 .

If υ12 > 0, then one of the following two conditions would hold:

(b1) S(1, 2)− δV w
1 ≥ S(2, 2)− δV w

2 ; (b2) S(1, 2)− δV f
2 ≥ S(1, 1)− δV f

1 .

If (a1) and (b1) held at once, then summing inequalities would yield a contradiction, as

2S(1, 2) ≥ S(1, 1) + S(2, 2).

But as the same argument applies when (a1) and (b2) hold, or when (a2) and (b1) hold, or

when (a2) and (b2) hold, it must be that min{υ21, υ12} = 0.

Define the following two-player active player sets, where the first entry denotes the active

buyer and the second entry the active seller:

B1 = {2, 2}, B2 = {2, 1}, B3 = {1, 1}, B4 = {1, 2}.
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In the unique MPE of each of these subgames, we have that

V w
2 (B1) =

S(2, 2)

8(2− δ)
→ 1

2
= V̄ w

2 (B1) & V f
2 (B1) =

7S(2, 2)

8(2− δ)
→ 7

2
= V̄ f

2 (B1);

V w
2 (B2) =

S(1, 2)

2(8− 7δ)
→ 3 = V̄ w

2 (B2) & V f
1 (B2) =

S(1, 2)

2(8− 7δ)
→ 3 = V̄ f

1 (B2);

V w
1 (B3) =

7S(1, 1)

8(2− δ)
→ 63

8
= V̄ w

1 (B3) & V f
1 (B3) =

S(1, 1)

8(2− δ)
→ 9

8
= V̄ f

1 (B3);

V w
1 (B4) =

7S(2, 1)

2(8− δ)
→ 3 = V̄ w

1 (B4) & V f
2 (B4) =

7S(2, 1)

2(8− δ)
→ 3 = V̄ f

2 (B4).

In any sequential LMPE, one of the two core pairs agrees in the limit, while the other does not

by Propositions 2 and 5. Thus, four possible cases must be considered for δ sufficiently high:

(A) πf21 + πf22 < 1, πw21 + πw22 < 1, and πf21 + πw12 = 0.

(B) πf11 + πf12 < 1, πw11 + πw12 < 1, and πf21 + πw12 = 0.

(C) πf21 + πf22 < 1, πw21 + πw22 < 1, and πf12 + πw21 = 0.

(D) πf11 + πf12 < 1, πw11 + πw12 < 1, and πf12 + πw21 = 0.

Case A: For sufficiently high δ < 1, the value equations of worker 2 and firm 2 amount to

V w
2 = (1− υ11) δV w

2 + υ11δV
w
2 (B1),

V f
2 = (1− υ11 − υ21) δV f

2 + υ11δV
w
2 (B1) + υ21δV

w
2 (B4).

Rearranging the first of these equations implies that V w
2 < δV w

2 (B1), while the second equation

implies that V f
2 < δV f

2 (B1) where the latter holds for δ high enough as V̄ f
2 (B1) > V̄ f

2 (B4). We

therefore have that for all sufficiently high δ < 1,

V w
2 + V f

2 < δ(V w
2 (B1) + V f

2 (B1)) < S(2, 2).

But as worker 2 and firm 2 delay in the limit, we must have δ(V w
2 + V f

2 ) ≥ S(2, 2) for all

sufficiently high δ < 1, which is a contradiction. Hence, there is no such weakly efficient LMPE.

Case B : The argument here is identical to that for Case A. Writing out the value equations

for firm 1 and worker 1 and rearranging them shows that V f
1 < δV f

1 (B3) and V w
1 < δV w

1 (B3).

Combining these equations yields

V f
1 + V w

1 < δ(V f
1 (B3) + V w

1 (B3)) < S(1, 1).

But as firm 1 and worker 1 delay in the limit, δ(V f
1 + V w

1 ) ≥ S(1, 1), which is a contradiction.

19



So, there is no such weakly efficient LMPE.

Case C: Writing out the value equations, we get

V w
1 = q1(S(1, 1)− δV f

1 ) + υ22δV
w
1 (B3) + (1− q1 − υ22)δV w

1 , (22)

V f
1 = p1 (S(1, 1)− δV w

1 ) + υ22δV
f
1 (B3) + υ12δV

f
1 (B2) + (1− p1 − υ22 − υ12) δV f

1 , (23)

V w
2 = υ12δV

w
2 (B2) + υ11δV

w
2 (B1) + (1− υ11 − υ12) δV w

2 , (24)

V f
2 = υ11δV

f
2 (B1) + (1− υ11)δV f

2 , (25)

In any sequential LMPE, it must be that either υ22 = 0 for all δ < 1 sufficiently large, or

limδ→1 υ22 = 0. Allowing for these possibilities, there are three subcases to be considered. For

all δ < 1 sufficiently high, we could have (a) πw11 < 1 and πf21 > 0; (b) πw11 < 1 and πf21 = 0; or

(c) πw11 = 1 and πf21 > 0. Furthermore, if πw11 < 1, then

S(1, 2)− δV f
2 = S(1, 1)− δV f

1 , (26)

while if πf21 > 0, then

S(1, 2)− δV w
1 = δV f

2 . (27)

In subcase (a), both worker 1 and firm 2 play a mixed strategy. If so, the conjectured

equilibrium is pinned down by a system of value equations that includes (22)-(27). Substituting

equations (24) and (25) into (26) and (27) eliminates V f
2 and V w

2 . Rearranging these new

equations creates expressions for V w
1 and V f

1 in terms of the mixing probability πw11 only.

Substituting these expressions into equations (22) and (23) to eliminate V w
1 and V f

1 then gives

a system of two equations that depend only on the mixing probabilities (πw11, π
f
21, π

f
22 and πw22).

Using these equations to eliminate πf21, we get an expression for πw11 in terms of the parameters,

δ, πf22 and πw22. Taking limits, and using that in a sequential LMPE we must have π̄f22 + π̄w22 = 0,

we get that π̄w11 = −1
7
. As mixing probabilities cannot be negative, this implies that we cannot

have both worker 1 and firm 2 offering to each other with positive probability.

In subcase (b), worker 1 plays a mixed strategy but firm 2 does not. If so, the conjectured

equilibrium is pinned down by a system of value equations that includes (22)-(26). Equation

(25) identifies V f
2 in terms of parameters only and V̄ f

2 = 7/2. Manipulating equations (24),

(22) and (23), we get an expression for V f
1 in terms of the mixing probabilities πw11, π

f
22 and πw22

only. Moreover, using that π̄f22 + π̄w22 = 0 and π̄w11 = 1, we get that V̄ f
1 = 3. Combining these

values with equation (26) yields a contradiction. So, we cannot have that worker 1 offers to

firm 2, but firm 2 does not offer to worker 1.

In subcase (c), firm 2 plays a mixed strategy, but worker 1 does not. If so, the conjectured

equilibrium is pinned down by a system of value equations that includes (22)-(25) and (27).
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Combining equations (22) and (23) to eliminate V f
1 gives an expression for V w

1 in terms of

mixing probabilities only. Substituting equation (25) into equation (27) to eliminate V f
2 gives

a second expression for V w
1 just in terms of mixing probabilities. Using these two expression to

eliminate V w
1 gives

πf21= −
(7δ − 8)(δ(83δ − 318) + 192)(δ(7πf22 + πw22 − 16) + 16)(δ(7πf22 + πw22 − 8) + 16)

7δ(δ(δ(δΦ + 16(1701πf22 + 243πw22 − 5056))− 768(14πf22 + 2πw22 − 99))− 24576)
, (28)

for Φ = 7δ(581πf22 + 83πw22 − 708)− 20230πf22 − 2890πw22 + 34592.

If so, there are two further possibilities to consider: either υ22 > 0, or υ22 = 0. If υ22 > 0,

we have that δ(V w
2 + V f

2 ) = S(2, 2) as worker 2 and firm 2 must delay with positive probability

for all sufficiently high δ < 1 in any sequential LMPE. Substituting equations (25) and (24)

into this expression to eliminate V f
2 and V w

2 , we get a second expression for πf21 in terms of

parameters only. Eliminating πf21 by combining this equation with equation (28) yields an

expression for πw22 which is linear in πf22,

πw22 = Ψ(δ)− 7πf22.

Clearly, πw22 ≤ Ψ(δ) as πf22 ≥ 0. Minor manipulations then establish that limδ→1 Ψ(δ) = 0 and

limδ→1 ∂Ψ(δ)/∂δ > 0.

This implies that Ψ(δ) < 0 for all sufficiently high δ < 1, and thus that πw22 < 0 for all

sufficiently high δ < 1. But this is a contradiction, and so υ22 = 0.

Lastly, setting υ22 = 0, equation (28) simplifies to

πf21 =
32(δ − 2)(δ − 1)(7δ − 8)(δ(83δ − 318) + 192)

7δ(δ(δ(δ(1239δ − 8648) + 20224)− 19008) + 6144)
.

This implies that π̄f21 = 0 and that

limδ→1 ∂π
f
21/∂δ > 0.

Hence, for all sufficiently high values of δ < 1, we would have πf21 < 0. But again, this is a

contradiction as πf21 is a probability, and so there is no sequential LMPE consistent with the

proposal probabilities.

Case D: The argument is identical to that for Case C, but with worker 1 swapping roles with

firm 2 and worker 2 swapping roles with firm 1.
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