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B.1 Proofs for Section 4

Lemma 1. If ν > 0, there is an η such that, if N/M > η, a ν-robust state exists.

Proof. Since the game is finite it has a mixed strategy Nash equilibrium, and for any ν > 0

and any such Nash equilibrium α̂ ∈ ∆(A), there is an open neighborhood U of α̂ in which
every element is a ν/2 equilibrium. For N sufficiently large there is a grid point α ∈ ∆N(A)

in U , and consequently for large enough N/M if the learners are content with this grid point
it is ν-robust. We may choose N/M large enough that the behavior of the committed agents
does not move the grid point outside of U .

Lemma 2. There is a η such that if N/M > η and aj is a strict best response to a a−j ∈ A−j,
then aj is a strict best response to all α−j ∈ ∆N(A−j) satisfying α−j(a−j) > 1 −M/N . In
particular, if aj is the only ν-best response to a−j ∈ A−j and ν < g then it is a strict best
response to a−j, so the same conclusion obtains.

Proof. The hypothesis ν < g implies that ν-best responses are strict best responses,1 and
for each pure opponent’s action a−j for which some aj is the (unique) strict best response,
there is a γ ≥ 0 such that aj is also a best response to any mixed strategy α−j ∈ ∆N(A−j)

such that α−j(a−j) ≥ 1 − γ. Because A−j is finite, there is a γ such that for all γ ∈ (0, γ)

the previous conclusion holds for all such best responses aj, which proves the statement.
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1Note that this is true even for ν = 0.
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Lemma 3. In any 0-robust state, the action profile of the learners must be a pure strategy
Nash equilibrium, and any pure strategy Nash equilibrium corresponds to the play of learners
in some 0-robust state.

Proof. If z is 0-robust all learners are content and are playing a best response to the unique
α−j(z) ∈ Aj. By Assumption 1, content learners in each population j must be playing the
same best response âj and so z is pure. At z then αj(âj) > 1 −M/N for each j, so âj is a
strict best response to â−j and so â is a pure strategy Nash equilibrium. Conversely, suppose
that â is a pure equilibrium, and that all learners in each population j are playing âj and
are content. Since â is strict, by Lemma 2, there is a N/M sufficiently large such that for
each j the action âj is a strict best response to any α−j(â−j) > 1−N/M, and for such N/M
there is a 0-robust state for the learners to play â.

B.2 Auxiliary Result for Section 4

The following result was noted in Section 4.

Lemma B4. When ε > 0 the Markov process Pε generated by the low-information model is
irreducible and aperiodic.

Proof. Pick any state ẑ where Dj(ẑ) = N − #Ξj for each population j. Start with any
state zt and take any agent state xt ∈ X(zt). There is probability ε#T

j that all learners
tremble, and #T j = N − #Ξj, so Dj(zt+1) = N − #Ξj for j = 1, 2. Take αjt+1 ∈ Aj(ẑ)

and choose x̂t+1 ∈ X(ẑ) with an action assignment σ̂j consistent with αjt+1. Starting at x̂t+1

there is probability (1/#A1)N−#Ξ1
(1/#A2)N−#Ξ2 that all agents play σ̂. There is probability

(1 − p)2N−#Ξ1−#Ξ2 that all learners are inactive so they all stay discontent, hence entering
ẑ. Next, starting at x̂ ∈ X(ẑ) there is positive probability that no learner trembles and is
active, so that learners all remain discontent. Since starting at any state there is a positive
probability of reaching a single state ẑ where the system may rest for any length of time
with positive probability implies that the system is irreducible and aperiodic.

B.3 Proof of Lemma 7

Lemma 7. There is a χ > 0 and γ > 0 with N/M > γ and ν < χ such that for every pure
ν-robust state z we have for at least one j that rjz ≤ r1

z + r2
z and for both j that rjz ≥ 1.

Proof. For each pure Nash equilibrium â = (âj, â−j) of the game G define ρj
â
(ν) for player j

to be the maximum probability α−j(â−j) such that âj is not the only ν-best response to â−j.
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Analogously, let ρjâ(ν) for player j be the supremum probability α−j(â−j) such that âj is not
a ν-best response to â−j. From Assumption 1 ρj

â
(0) = ρjâ(0) for j = 1, 2, and by Assumption

2 ρjâ(0) > 0 for j = 1, 2. By definition of equilibrium ρj
â
(0) < 1 for j = 1, 2. Then, since

ρj
â
(0) = ρjâ(0) it follows that for j = 1, 2 we have (1− ρjâ(0)) < (1− ρ1

â
(0)) + (1− ρ2

â
(0)) and

ρj
â
(0), ρjâ(0) < 1. Notice that ρj

â
(ν) is continuous at ν = 0 by Assumption 3, and that ρjâ(ν)

is continuous at ν = 0 by Assumption 2 and Assumption 3. Hence for sufficiently small
ν > 0 for each j we still have (1 − ρjâ(ν)) < (1 − ρ1

â
(ν)) + (1 − ρ2

â
(ν)) and ρj

â
(ν), ρjâ(ν) < 1.

Since there are finitely many pure equilibria, we may choose ν so that these conditions are
satisfied at all such equilibria for all ν ≤ ν.

Take any ν ≤ ν. Since (1 − ρjâ(ν)) < (1 − ρ1
â
(ν)) + (1 − ρ2

â
(ν)) and ρj

â
(ν), ρjâ(ν) < 1 it

must be that for sufficiently large N −M we have (N −M)(1− ρjâ(ν)) + 3 < (N −M)[(1−
ρ1
â
(ν)) + (1 − ρ2

â
(ν))]. Denote by dxe (resp. bxc) the smallest (resp. the largest) integer

greater than or equal to x (resp. not larger than x) so that rjz = d(N −M)(1 − ρjâ(ν))e
and rjz = b(N −M)(1− ρj

â
(ν))c. Since there are finitely many equilibria there is therefore a

constant Γ such that for N −M ≥ Γ we have rjz ≤ r1
z + r2

z. Since M ≥ 1 there is a γ such
that for N/M ≥ γ we have N −M ≥ Γ. Since ρjâ(ν) > 0, a similar argument establishes
that rjz ≥ 1 for j = 1, 2.

B.4 Absorbing States with Stochastic Best Response

with Inertia Dynamic

We next provide a proof that in acyclic games with a unique best response to each pure
action of the opponent, the support of the limit invariant distribution for the stochastic
best response dynamic with inertia contains only singleton absorbing sets, i.e. pure Nash
equilibria.

Lemma B5. Every state that does not correspond to a pure strategy Nash equilibrium is
transient under best response with inertia dynamic.

Proof. Fix a time t and suppose that the state does not correspond to a pure strategy
equilibrium. There is positive probability that this period all agents of one player, say j, do
not adjust their play while all agents of the other player −j play the best response to the
date-t state, and that at date t + 1 all agents of j play the best response to the date t + 1

state while all agents of player −j hold their actions fixed. Thus there is positive probability
that play in each population corresponds to a pure strategy from period t + 2 on. Because
the game is finite and acyclic, the best response path from this state converges to a pure
strategy Nash equilibrium in a number of steps no greater than J ≡ #A1 × #A2. There
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is positive probability that the populations will take turns adjusting, all of the −j agents
adjusting in periods t, t+2, t+4, . . ., and all of the j agents adjusting at t+1, t+3, t+5, . . .,
so this equilibrium has probability bounded away from 0 of being reached in 2 + J steps,
showing the initial time t state is transient.

B.5 Analysis of Example 1 (Continued)

We first show that the low information dynamic with T = 1 can also predict a different
equilibrium than best response with inertia even when the best response with inertia dynamic
has a singleton stochastically stable set. Suppose that a player obtains κ > 0 instead of 0

when choosing (B,B) against (C,C). To escape from (B,B) now about N/(11 − κ) of one
population needs to mutate so this is the radius of (B,B). Our dynamic selects (A,A) as
it continues to have the largest radius among pure strategy equilibria. The set S equal to
the union of (B,B), (C,C), (D,D) still contains all stochastically stable states. Let S ′ be
the union of (A,A), (B,B). The radius of S ′ is about N/(11 − κ) of one population since
escaping from S ′ requires this amounts of agents trembling to move to (C,C) or (D,D);
and the co-radius is about N/11. Because the radius of S ′ is larger than its co-radius the
stochastically stable states are in S ′. Combining this with the fact that they also lie in S

shows that the unique stable state is (B,B) although its radius is smaller than the radius of
(A,A).

We next show that when T > 16 and ν > 0 in the high information dynamic the
stochastically stable set consists exactly of the three equilibria (B,B), (C,C) and (D,D).

The block game GBCD
1 has seven Nash equilibria: the pure equilibria (B,B), (C,C)

and (D,D), the binary mixed equilibria ((10
11
C, 1

11
D),(10

11
C, 1

11
D)), ((10

11
B, 1

11
D),(10

11
B, 1

11
D)),

((10
11
B, 1

11
C),(10

11
B, 1

11
C)); and a mixed equilibrium in which players randomize uniformly

across B, C and D.2 Since all ν-robust states of this dynamic do not belong to the same
circuit, we have to analyze circuits of circuits, but first we must establish what the structure
of the circuits is.3

First, the three pure ν-robust states corresponding to the equilibria (B,B), (C,C) and
(D,D) form a circuit since we can move from one of these equilibria to the next with resistance
equal to the common radius of these equilibria, which is about N/11.

The mixed ν-robust states corresponding to a binary mixed equilibrium have a simple
structure. Consider a binary mixed equilibrium. As weight shifts from one of the two actions

2Notice that when analyzing ν-robust states there is a subset of ν-robust states in a neighborhood of each
mixed equilibrium.

3Recall that a circuit is a set of ν-robust states such that for any pair of states z, z′ there exists a least
resistance chain from z to z′.

4



for one of the players to the other until we reach an extremal point at which a further shift
causes the other player no longer to be playing a ν-best response for both of his actions.
The structure of these equilibria is that of a square: for each player there is a sequence of
consecutive grid points between the two actions for which the opponent’s two actions are
a ν-best response. The complete collection of mixed ν-robust states corresponding to the
binary mixed equilibrium is then the Cartesian product of these two sets. Each of these
collections form a circuit, but these collections are also in a common circuit with the pure
equilibria that we call the “pure/binary” circuit.4

The structure of the mixed ν-robust states corresponding to the mixed equilibrium over
B, C and D is more complicated, since shifts are no longer one-dimensional for each player.
However, the least resistance from a ν-robust state in the pure/binary circuit to some ν-
robust state corresponding to the completely mixed equilibrium is about N/2.5 Since this
is greater than N/11 none of the ν-robust states corresponding to the completely mixed
equilibrium are in the pure/binary circuit. Moreover, transitions from these mixed ν-robust
states to the pure/binary circuit all have resistance 1.

Finally, (A,A) lies also in a separate circuit. This is because the least resistance from a
ν-robust state in the pure/binary circuit to (A,A) is about N/2.6 Being greater than N/11

implies that (A,A) does not belong to the pure/binary circuit. We can move from (A,A) to
any ν-robust state in the pure/binary circuit with resistance N/3.

We next need to compute the modified resistance of going from one circuit to the next
circuit, which is the least resistance from one circuit to the next circuit minus the least
resistance path out of the circuit. We can then define circuits of circuits, which are collections
of circuits such that for any pair of circuits in the collection we have a route from one to the
other such that at each step the modified resistance of moving from one circuit to the next
is the least resistance of moving from the one circuit to any other.

Although the structure of ν-robust states corresponding to the mixed equilibrium over
B, C, D involves several circuits, note that transitions from the pure/binary circuit to any
circuit containing such ν-robust states have a modified resistance of N/2−N/11.7 Moving

4Because they can be reached from the corresponding pure equilibria with resistance equal to about N/11,
while within each collection corresponding to a binary mixed equilibrium there is always a ν-robust state
from which we can move to either of the two pure equilibria in the support of the mixed equilibrium with
resistance one.

5As half of one population may play the remaining action to make it a ν-best response and be in the
memory set.

6Since if 1/2 of one population is playing in the block BCD one of those strategies must earn at least
19/6 while playing (A,A) yields no more than 5/2.

7Transitions from a pure ν-robust state to any ν-robust state corresponding to the mixed equilibrium
over B, C and D have resistance of about N/2 while the radius of such a pure ν-robust state is about N/11.
Moving on the other direction requires a modified resistance of no more than 1.
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on the other direction requires a modified resistance of no more than 1. Hence from Theorem
10 of Levine and Modica (2016) we know that the stochastically stable set belongs to the
pure/binary circuit, and within that circuit we look for the largest radii: the three pure
equilibria.
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