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S.1 Technical Lemmas

Proof of Lemma 1. (Quasiconcavity) Consider a type i and a market maker k and let

us hereafter omit the indices i and k for the sake of clarity. Let (q, t) and (q′, t′) be two

trades and let Q− and Q−′ be the corresponding solutions to (3). For each λ ∈ [0, 1],

λQ−+ (1− λ)Q−′ is an admissible candidate in (3). Hence z−(λq+ (1− λ)q′, λt+ (1− λ)t′)

is at least

U(λq + (1− λ)q′ + λQ− + (1− λ)Q−′, λt+ (1− λ)t′ + T−(λQ− + (1− λ)Q−′)).

Because T− is convex and U is decreasing in transfers, this lower bound is itself at least

U(λ(q +Q−) + (1− λ)(q′ +Q−′), λ[t+ T−(Q−)] + (1− λ)[t′ + T−(Q−′)]),

and because U is quasiconcave this quantity is at least

min{U(q +Q−, t+ T−(Q−)), U(q′ +Q−′, t′ + T−(Q−′))},

which is min{z−(q, t), z−(q′, t′)} by construction. Notice that all these quantities may be

equal if the tariff T− is locally linear; hence this argument only shows that z− is weakly

quasiconcave.

(Property SC-z) Consider a market maker k and let us hereafter omit the index k for

the sake of clarity. Fix some q < q′, t, and t′. First, let T (Q) ≡ t + T−(Q − q), defined

for Q ≥ q. Similarly, let T ′(Q) ≡ t′ + T−(Q − q′), defined for Q ≥ q′. According to (3),

for each i, computing z−i (q, t) amounts to maximizing Ui(Q, T (Q)) with respect to Q ≥ q.

Let Qi ≥ q be the solution to this problem; it is unique as Ui is strictly quasiconcave and

strictly decreasing in transfers and T is convex. Similarly, computing z−i (q′, t′) amounts to

maximizing Ui(Q, T ′(Q)) with respect to Q ≥ q′. Let Q′i ≥ q′ be the unique solution to this

problem. The proof consists of two steps.

Step 1 We first prove (5). Suppose

z−i (q, t) < z−i (q′, t′)

for some i and let j > i. Because Qj ≥ q is an admissible candidate in the problem that

defines z−i (q, t), we have

Ui(Qj, T (Qj)) ≤ z−i (q, t) < z−i (q′, t′) = Ui(Q′i, T ′(Q′i)). (S.1)

Two cases may arise.
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(i) Suppose first Qj < Q′i. Then

z−j (q, t) = Uj(Qj, T (Qj)) < Uj(Q′i, T ′(Q′i)) ≤ z−j (q′, t′),

where the first inequality follows from (S.1), Assumption SC-U , and the assumptions

that i < j and Qj < Q′i, and the second inequality follows from the fact that Q′i ≥ q′

is an admissible candidate in the problem that defines z−j (q′, t′). This shows (5).

(ii) Suppose next Qj ≥ Q′i. Because Q′i ≥ q′ > q is an admissible candidate in the problem

that defines z−i (q, t), we have

Ui(Q′i, T (Q′i)) ≤ z−i (q, t) < z−i (q′, t′) = Ui(Q′i, T ′(Q′i)),

which implies T ′(Q′i) < T (Q′i). Moreover, as q < q′ and T− is convex, T ′(Q)− T (Q)

is nonincreasing in Q ≥ q′. Because Qj ≥ Q′i ≥ q′ and T ′(Q′i) < T (Q′i), it follows that

T ′(Qj) < T (Qj). Now, as Qj ≥ q′, Qj is an admissible candidate in the problem that

defines z−j (q′, t′) and thus

Uj(Qj, T ′(Qj)) ≤ z−j (q′, t′).

Hence, from T ′(Qj) < T (Qj), we directly obtain

z−j (q, t) = Uj(Qj, T (Qj)) < Uj(Qj, T ′(Qj)) ≤ z−j (q′, t′).

This shows (5).

Step 2 The proof of (4) follows from (5) by continuity. Suppose z−i (q, t) = z−i (q′, t′) for

some i and let j > i. Then, because z−i is strictly decreasing in transfers, for any strictly

positive ε, we have z−i (q, t+ ε) < z−i (q′, t′) and thus z−j (q, t+ ε) < z−j (q′, t′) from (5). As z−j

is continuous, we can take limits as ε goes to zero to obtain (4). Notice that we may have

z−j (q, t) = z−j (q′, t′) if the tariff T− is locally linear; hence this argument only shows that the

family of functions z−i satisfies a weak single-crossing property. The result follows. �

Proof of Lemma 2. Consider a market maker k and let us hereafter omit the index k for

the sake of clarity. Let µ∗ ≡ {(q∗i , t∗i ) : i = 0, . . . , I} be a menu with nondecreasing quantities

such that (7) holds. The proof consists of two steps.

Step 1 We first show that there exists a menu µ ≡ {(qi, ti) : i = 0, . . . , I} that has

nondecreasing quantities and satisfies the following conditions:

(a)
∑

imivi(qi, ti) ≥
∑

imivi(q
∗
i , t
∗
i ).
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(b) For each i ≥ 1, z−i (qi, ti) ≥ z−i (qi−1, ti−1).

(c) For each i > 1, if qi > qi−1, then z−i−1(qi−1, ti−1) > z−i−1(qi, ti).

Notice that (b) is identical to (7), whereas (c) is a strict version of the upward local incentive-

compatibility constraints. Suppose, by way of contradiction, that there is no menu that

satisfies conditions (a), (b), and (c). Nevertheless, the set of menus with nondecreasing

quantities such that (a) and (b) hold is nonempty, as it contains µ∗. Therefore, we can

select in this set a menu µ that maximizes the index j > 1 of the first violation of (c). By

construction, for this index j, we must have qj > qj−1.

We can even require that (b) holds as an equality at i = j for µ. Indeed, if (b) holds

as a strict inequality at i = j, we can increase tj until reaching an equality: this is feasible

because z−j is weakly quasiconcave and strictly decreasing in transfers. This change in tj

defines a new menu that satisfies conditions (a), (b) for all i, with an equality at i = j, and

(c) for all i < j; but, according to our definition of µ, (c) must still be violated at i = j.

With a slight abuse of notation, denote this new menu again by µ.

Now, because (b) holds as an equality at i = j and qj > qj−1, the contraposition of (5) in

Property SC-z yields z−j−1(qj−1, tj−1) ≥ z−j−1(qj, tj). Recall, however, that (c) is violated at

i = j. Therefore, the only remaining possibility is that this inequality is in fact an equality.

As a result, (b) and (c) hold as equalities at i = j and we face a cycle of binding incentive-

compatibility constraints that we now eliminate by pooling types j − 1 and j on the same

trade. Two cases may arise.

(i) Suppose first vj(qj, tj) ≤ vj(qj−1, tj−1). We can then build a new menu µ′ that only

differs from µ in allocating (qj−1, tj−1) to type j. (a) is relaxed by construction. (b)

and (c) are unaffected for all i < j and trivially hold at i = j as types j − 1 and j are

pooled on the same trade. Finally, (b) still holds for all i > j because, by Property

SC-z, the downward incentive-compatibility constraints are satisfied as soon as the

downward local incentive-compatibility constraints are satisfied. But then µ′ satisfies

conditions (a) and (b), and any violation of (c) for µ′ must take place for a type strictly

higher than j, contradicting our definition of µ.

(ii) Suppose next vj(qj, tj) > vj(qj−1, tj−1). We can then build a new menu µ′ that only

differs from µ in allocating (qj, tj) to type j−1. (a) is relaxed because, from qj > qj−1,

the contraposition of Property SC-v yields vj−1(qj, tj) > vj−1(qj−1, tj−1). (b) and (c)

are unaffected for all i < j−1 and trivially hold at i = j as types j−1 and j are pooled

on the same trade. (b) is unaffected for all i > j. At i = j− 1, because (c) holds as an
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equality at i = j for µ, the change from µ to µ′ does not affect type j − 1’s utility and

so (b) still holds at i = j − 1. There remains to check that (c) still holds at i = j − 1,

in case j > 2. Because (c) holds as an equality at i = j for µ, the contraposition of (5)

in Property SC-z yields

z−j−2(qj−1, tj−1) ≥ z−j−2(qj, tj).

We also know that (c) holds at i = j − 1 for µ, so that

z−j−2(qj−2, tj−2) > z−j−2(qj−1, tj−1).

These inequalities imply that (c) still holds at i = j − 1. Once more, µ′ satisfies

conditions (a) and (b), and any violation of (c) for µ′ has to take place for a type

strictly higher than j, contradicting our definition of µ.

Step 2 In Step 1, we have shown that, for any menu µ∗ with nondecreasing quantities such

that (7) holds, there exists a menu µ with nondecreasing quantities that yields an expected

profit at least as high as µ∗ and satisfies conditions (b) and (c). By continuity of the functions

z−i , we can then slightly decrease each transfer in the menu µ to obtain a menu µ′ in which

both (b) and (c) now hold as strict inequalities. Hence the local incentive-compatibility and

type 1’s individual-rationality constraint for µ′ are slack. Property SC-z together with the

fact that quantities in the menu µ′ are nondecreasing then ensure that the constraints (6)

hold as strict inequalities and thus that the insider has a unique best response to µ′. As the

decrease in transfers in µ′ relative to µ is arbitrarily small, we can approximate as closely as

we want the expected profit from µ and, a fortiori, from µ∗. The result follows. �

Proof of Lemma 3. We begin with some preliminary remarks on the insider’s best response

to an arbitrary profile of convex tariffs.

Step 0 Recall that, given a profile (t1, . . . , tK) of convex tariffs, the aggregate demand

Qi of type i is uniquely determined and nondecreasing in i. Given Qi, type i’s utility-

maximization problem (1) reduces to minimizing her total payment for Qi, T (Qi), as defined

by (2). This is a convex problem, so that, by the Kuhn–Tucker theorem (Rockafellar (1970,

Corollary 28.3.1)), we can associate to any of its solutions (q1i , . . . , q
K
i ) a Lagrange multiplier

pi such that pi ∈ ∂tk(qki ) for all k. If there were two different solutions (q1i , . . . , q
K
i ) and

(q′1i , . . . , q
′K
i ) to (2) with different multipliers pi < p′i, then, because each tariff is convex, we

would have qki ≤ q′ki for all k; but then, as both solutions must sum to Qi, they would be

identical, a contradiction. This shows that all the solutions to (2) must share the same pi.
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Hence we can associate to each type i a marginal price pi such that, whatever the solution

(q1i , . . . , q
K
i ) to (2), we have pi ∈ ∂tk(qki ) for all k. Finally, we can with no loss of generality

adopt the convention that pi is nondecreasing in i. Indeed, if pi−1 > pi for some i > 1, then,

because pi−1 ∈ ∂tk(qki−1) and pi ∈ ∂tk(qki ) for all k, we have qki−1 ≥ qki for all k. As these

quantities sum to Qi−1 and Qi, respectively, and as Qi−1 ≤ Qi, it follows that qki−1 = qki for

all k. Hence pi−1 ∈ ∂tk(qki ) for all k and we can replace pi by pi−1. Given this convention,

the lower and upper bounds sk(pi) and sk(pi) of the supply sk(pi) of market maker k at

marginal price pi, as defined by (9), are both nondecreasing in i for all k.

Now, suppose that (t1, . . . , tK) are equilibrium tariffs and that market maker k deviates

to some convex tariff t. Consider a nondecreasing family of quantities qi such that (10) holds

for all i; we know from Property SC-z that such a family exists. Denoting by pi ∈ ∂t(qi) a

Lagrange multiplier for type i’s problem of minimizing her total payment, we can, according

to Step 0, require that pi be nondecreasing in i. In fact, under Assumption QL-U , each type

i must purchase Di(pi) = (u′i)
−1(pi) in the aggregate, which uniquely pins down the value of

pi given the equilibrium tariffs t−k of the market makers other than k. The proof consists of

four steps.

Step 1 Letting p ≡ (p1, . . . , pI) and q ≡ (q1, . . . , qI), consider the piecewise-linear tariff

tp,q recursively defined by tp,q(0) ≡ 0 and

tp,q(q) ≡ tp,q(qi−1) + pi(q − qi−1), i = 1, . . . , I, q ∈ (qi−1, qi],

with q0 ≡ 0 by convention. Because the families of marginal prices and quantities pi and qi

are nondecreasing, the tariff tp,q is convex. It is straightforward to check that tp,q(qi) ≥ t(qi)

for all i. Moreover, as pi = ∂−tp,q(qi), it remains a best response for each type i to purchase

qi from market maker k if the tariffs (tp,q, t
−k) are posted. In fact, under Assumption QL-U ,

tp,q is the highest convex tariff with the property that purchasing qi from market maker k is

a best response for each type i given the equilibrium tariffs t−k of the market makers other

than k (see Figure 2).

Step 2 According to Step 1, we can hereafter suppose that market maker k deviates to

the tariff tp,q. As in (9), let skp,q(pi) ≡ {q : pi ∈ ∂tp,q(q)} be the supply of market maker k

at marginal price pi when he posts the tariff tp,q, with lower and upper bounds skp,q(pi) and

skp,q(pi), respectively. Define a nondecreasing family of quantities qi as follows:

(i) If skp,q(pi) < skp,q(pi) and if I+i ≡ {j : pj = pi > cj} 6= ∅, let qi ≡ max{qj : j ∈ I+i }.

(ii) Otherwise, let qi ≡ skp,q(pi).
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Intuitively, there is a single value of q for each value of p in {p1, . . . , pI}: below q, we find

all the types such that ci < p who trade at marginal price p and to whom market maker

k would like to sell higher quantities. Above q, we find all the types such that p ≤ ci who

trade at marginal price p and to whom market maker k would like to sell lower quantities.

Step 3 A way for market maker k to achieve these objectives consists in decreasing

the slope of the tariff tp,q between sk(pi) and qi, and in increasing it between qi and sk(pi).

Consider accordingly a small strictly positive ε and let t̂ ≡ tp−ε1I ,q, with 1I ≡ (1, . . . , 1) ∈ RI

and q ≡ (q1, . . . , qI). Notice that, for each i, we have ∂−t̂(qi) ≤ pi − ε < pi < ∂+t̂(qi), so

that slopes are changed in the right directions (see Figure 3). Let (q̂1, . . . , q̂I) be any best

response of the insider to the tariff t̂ given the equilibrium tariffs t−k of the market makers

other than k. According to the definition of qi, two cases may arise.

(i) If pi > ci, then sk(pi) ≤ qi ≤ qi. Then, because for each q ≤ qi the tariff t̂ satisfies

∂−t̂(q) ≤ ∂−t̂(qi) ≤ pi − ε < pi

and type i has quasilinear utility, we must have q̂i ≥ qi.

(ii) If pi ≤ ci, then qi ≤ qi ≤ sk(pi). Then, because for each q ≥ qi the tariff t̂ satisfies

∂+t̂(q) ≥ ∂+t̂(qi) > pi

and type i has quasilinear utility, we must have q̂i ≤ qi.

Step 4 Finally, for any strictly positive ε, we have t̂(q) = tp−ε1I ,q(q) ≥ tp,q(q)−O(ε) for

all q (see Figure 3). Thus, for any best response (q̂1, . . . , q̂I) of the insider to the tariff t̂ given

the equilibrium tariffs t−k of the market makers other than k, we have∑
i

mi[t̂(q̂i)− ciq̂i] ≥
∑
i

mi[tp,q(q̂i)− ciq̂i]−O(ε)

≥
∑
i

mi[tp,q(qi)− ciqi]−O(ε)

≥
∑
i

mi[t(qi)− ciqi]−O(ε),

where the second inequality follows from the fact that q̂i ≤ qi if pi ≤ ci and q̂i ≥ qi if pi > ci

by Step 3, and the third inequality follows from Step 1. Hence, by posting the tariff t̂,

market maker k can secure an expected profit within O(ε) of
∑

imi[t(qi)− ciqi], where ε is

arbitrarily small. The result follows. �
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Proof of Lemma 4. Consider a market maker k and let us hereafter omit the index k for

the sake of clarity. We prove the result for the more general case where the insider’s type is

distributed over some compact subset I of R according to an arbitrary distribution m. We

assume that the appropriate generalization of SC-v holds, that D ≡ sup{Di(p) : i ∈ I} <∞,

and that there exists anm-integrable function g such that |νi(q)| ≤ gi for all (i, q) ∈ I×[0, D],

where νi(q) ≡ vi(q, pq) for all i and q. Now, observe that, if the quantities qi satisfy the

constraints (13), then so do the quantities min{qi, q} for all q. Hence we can restrict our

quest for a solution to problem (12)–(13) to the set of nondecreasing families of quantities

qi such that (13) holds and∫
νi(q)1{qi≥q}m(di) ≤

∫
νi(qi)1{qi≥q}m(di), q ∈ [0, ‖q‖∞], (S.2)

where ‖q‖∞ ≡ inf {q : m[{i ∈ I : qi ≤ q}] = 1}. Notice that this set contains the null family

and is thus nonempty. We claim that any nondecreasing family of quantities qi in this set

yields an expected profit at most equal to that provided by the quantities min{Di(p), ‖q‖∞}.
This is obvious if ‖q‖∞ = 0. If ‖q‖∞ > 0, then, for each ε ∈ (0, ‖q‖∞], applying (S.2) to

q = ‖q‖∞ − ε implies that there exists j such that qj > ‖q‖∞ − ε and

νkj (‖q‖∞ − ε) ≤ νkj (qj).

The contraposition of SC-v then yields1

νi(‖q‖∞ − ε) ≤ νi(qj), i ≤ j.

Because the quantities qi are nondecreasing, this, in particular, holds for all i such that

qi < ‖q‖∞ − ε. As the functions νi are weakly quasiconcave, it follows that, for each i

such that qi < ‖q‖∞ − ε, the function νi is nondecreasing over [0, ‖q‖∞ − ε]. Because this

is true for all ε ∈ (0, ‖q‖∞], we obtain that, for each i such that qi < ‖q‖∞, the function

νi is nondecreasing over [0, ‖q‖∞]. Hence we can choose the quantities min{Di(p), ‖q‖∞}
instead of the quantities qi without reducing the expected profit, as claimed. This implies

that problem (12)–(13) reduces to

sup

{∫
νi(min{Di(p), q})m(di) : q ∈ [0, D]

}
. (S.3)

As the functions νi are continuous, Lebesgue’s dominated convergence theorem (Aliprantis

and Border (2006, Theorem 11.21)) ensures that the objective function in problem (S.3) is

1Strictly speaking, the contraposition of SC-v states that vkj (q′, t′) > vkj (q, t) implies vki (q′, t′) > vki (q, t).
However, because the profit functions are continuous and strictly decreasing in transfers, we can easily show
as in Step 2 of the proof of Property SC-z that vkj (q′, t′) ≥ vkj (q, t) implies vki (q′, t′) ≥ vki (q, t), which is the
implication we use here.
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continuous in q, and, hence, that this problem has a solution. Therefore, problem (12)–(13)

has a solution with limit-order quantities at price p. Finally, if the functions νi are strictly

quasiconcave, the above reasoning shows that they are strictly increasing over the relevant

ranges, so that any solution to problem (12)–(13) is of this form. The result follows. �

Proof of Lemma 5. Recall that, given a profile (t1, . . . , tK) of convex tariffs, the aggregate

trade (Qi, Ti) of type i is uniquely determined, and that we can associate to type i a Lagrange

multiplier pi as in Step 0 of the proof of Lemma 3. To find an efficient allocation, we first

solve for each i

max

{∑
k

vki (qki , t
k(qki )) : (q1i , . . . , q

K
i ) ∈ A1 × · · · × AK

}
,

subject to constraint i in (15). Because all market makers have identical quasilinear profit

functions, this problem reduces to

min

{∑
k

ci(q
k
i ) : (q1i , . . . , q

K
i ) ∈ A1 × · · · × AK

}
, (S.4)

subject to ∑
k

qki = Qi and sk(pi) ≤ qki ≤ sk(pi), k = 1, . . . , K, (S.5)

where the latter constraints ensure that (q1i , . . . , q
K
i ) is a best response of type i to the tariffs

(t1, . . . , tK). We now show that the family of problems (S.4)–(S.5) indexed by i admits a

family of solutions with nondecreasing individual quantities. Notice first that each of these

problems has a nonempty compact set of solutions. Hence there exists a family of solutions

(q11, . . . , q
K
1 , . . . , q

1
I , . . . , q

K
I ) to the family of problems (S.4)–(S.5) that minimizes the following

criterion for violations of monotonicity:∑
k

∑
i>1

max{qki−1 − qki , 0}. (S.6)

Suppose, by way of contradiction, that this minimum is strictly positive. Then, at the

minimum, we have

qki−1 > qki (S.7)

for some i > 1 and k. As sk(pi) and sk(pi) are nondecreasing in i, this implies

sk(pi−1) ≤ sk(pi) ≤ qki < qki−1 ≤ sk(pi−1) ≤ sk(pi). (S.8)
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The intervals [sk(pi−1), s
k(pi−1)] and [sk(pi), s

k(pi)] then have a nontrivial intersection, so

it must be that pi−1 = pi. Therefore, for each l, sl(pi−1) = sl(pi) and sl(pi−1) = sl(pi).

Moreover, because qki−1 > qki and Qi−1 ≤ Qi, there exists l 6= k such that

qli−1 < qli. (S.9)

Summing up, we have

sl(pi−1) = sl(pi) ≤ qli−1 < qli ≤ sl(pi−1) = sl(pi). (S.10)

Given (S.8) and (S.10), we can slightly decrease qki−1 and increase qli−1 by a strictly positive

amount ε, so that all constraints are still satisfied. This modification strictly decreases the

criterion (S.6), so that qki−1−ε and qli−1+ε cannot be part of a solution to problem (S.4)–(S.5)

for type i− 1. We thus obtain

ci−1(q
k
i−1 − ε) + ci−1(q

l
i−1 + ε) > ci−1(q

k
i−1) + ci−1(q

l
i−1).

As ci−1 is convex, this implies qki−1 − ε < qli−1 and, therefore, qki−1 ≤ qli−1 as ε is arbitrary.

Alternatively, we can slightly increase qki and decrease qli by the same strictly positive amount

ε. We similarly obtain

ci(q
k
i + ε) + ci(q

l
i − ε) > ci(q

k
i ) + ci(q

l
i),

which implies qli ≤ qki . Using (S.7) then yields qli ≤ qki < qki−1 ≤ qli−1, which contradicts (S.9).

The result follows. �

S.2 On the Riemann Approximation (34) of (29)–(30)

In this section, we prove that the Riemann approximation (34) of (29)–(30) is uniform in

χ. As a preliminary remark, observe that, when maximising (29)–(30), we can with no loss

of generality focus on nondecreasing quantity schedules χ in a uniformly bounded set: the

first requirement follows from the fact that the family of functions ζ∗−k(·, θ) satisfies the

strict single-crossing property, and the second requirement follows from the fact that, under

Biais, Martimort, and Rochet’s (2000) responsiveness assumption c′(θ) < 1, quantities in an

optimal schedule are bounded above by

χ̂(θ) ≡ arg max{ζ∗−k(q, θ)− c(θ)q : q ≥ 0} =
1

K
arg max{u(Q, θ)− c(θ)Q : Q ≥ 0},

that is, a fraction 1/K of the efficient quantity for type θ. Denote by

X ≡ {χ : [θ, θ]→ R : χ is nondecreasing and χ(θ) ∈ [0, χ̂(θ)] for all θ ∈ [θ, θ]}
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the corresponding set of quantity schedules.

Now, each χ ∈ X, being nondecreasing, has at most countably many discontinuities.

Because it is a continuous function of (χ(θ), θ), the same holds for the integrand in (30);

it is thus Riemann-integrable (Aliprantis and Border (2006, Theorem 11.30)), so that the

Riemann sum in (34) converges to the integral in (30). What we need, however, is a stronger

result, namely, that (34) approximates (29)–(30) uniformly in χ ∈ X. The key observation

in that respect is that, if the functions f , u, and c are sufficiently regular, then the indirect

utility function ζ∗,−k is twice continuously differentiable. This property is notably satisfied

in the uniform-quadratic example studied by Biais, Martimort, and Rochet (2013), and we

hereafter assume this to be the case. In particular, the Taylor-Lagrange approximations in

(31)–(33) are valid.

A first implication of this is that the O(1/I) term in the approximation (34) of (29) is

uniform in χ ∈ X. Indeed, the difference between the sums in (29) and (34) can be uniformly

bounded as follows:∣∣∣∣∣
I∑
i=1

[
mi −

θ − θ
I

f(θi)

]
[ζ∗−k(χ(θi), θi)− c(θi)χ(θi)]

−
I∑
i=1

[1− F (θi)]

[
ζ∗−k(χ(θi), θi+1)− ζ∗−k(χ(θi), θi)−

θ − θ
I

∂ζ∗−k

∂θ
(χ(θi), θi)

]∣∣∣∣∣
≤

I∑
i=1

∣∣∣∣mi −
θ − θ
I

f(θi)

∣∣∣∣max{|ζ∗−k(q, θ)− c(θ)q| : (q, θ) ∈ [0, χ̂(θ)]× [θ, θ]}

+ I max

{∣∣∣∣ζ∗−k(q, θi+1)− ζ∗−k(q, θi)−
θ − θ
I

∂ζ∗−k

∂θ
(q, θi)

∣∣∣∣
: q ∈ [0, χ̂(θ)] and i = 1, . . . , I

}
≤ I O

(
1

I2

)
+

(θ − θ)2

2I

(
max

{∣∣∣∣∂2ζ∗−k∂θ2
(q, θ)

∣∣∣∣ : (q, θ) ∈ [0, χ̂(θ)]× [θ, θ]

}
+ o(1)

)
= O

(
1

I

)
.

To conclude the proof, we thus only need to check that the Riemann sum in (34) converges

to the integral in (30) at rate 1/I, uniformly in χ. Define

H∗(q, θ) ≡
[
ζ∗−k(q, θ)− c(θ)q − 1− F (θ)

f(θ)

∂ζ∗−k

∂θ
(q, θ)

]
f(θ),

which is continuously differentiable in (q, θ) under our regularity assumptions. Therefore,

for each χ ∈ X, H∗(χ(θ), θ) has finite total variation V ∗χ over [θ, θ]. In particular, letting

H∗q ≡ max

{∣∣∣∣∂H∗∂q
(q, θ)

∣∣∣∣ : (q, θ) ∈ [0, χ̂(θ)]× [θ, θ]

}
,

10



H∗θ ≡ max

{∣∣∣∣∂H∗∂θ
(q, θ)

∣∣∣∣ : (q, θ) ∈ [0, χ̂(θ)]× [θ, θ]

}
,

we obtain a uniform bound for V ∗χ ,

V ∗χ ≤ V ∗ ≡ H∗qχ̂(θ) +H∗θ(θ − θ), χ ∈ X.

Finally, using a standard inequality (Pólya and Szegö (1978, Part Two, Chapter 1, §2, 9)),

we obtain a uniform bound for the difference between the Riemann sum in (34) and the

integral in (30),∣∣∣∣∣ θ − θI
I∑
i=1

H∗(χ(θi), θi)−
∫ θ

θ

H∗(χ(θ), θ) dθ

∣∣∣∣∣ ≤ (θ − θ)V ∗χ
I

≤ (θ − θ)V ∗

I
.

The result follows. �
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