Supplement to "On Competitive Nonlinear Pricing"

Andrea Attar* Thomas Mariotti ${ }^{\dagger}$ François Salanié ${ }^{\ddagger}$

July 20, 2018

Abstract

This supplement contains the proofs of technical lemmas and auxiliary results not included in the main paper. Unless stated otherwise, all references to results and equations are to the main paper.

[^0]
S. 1 Technical Lemmas

Proof of Lemma 1. (Quasiconcavity) Consider a type i and a market maker k and let us hereafter omit the indices i and k for the sake of clarity. Let (q, t) and $\left(q^{\prime}, t^{\prime}\right)$ be two trades and let Q^{-}and Q^{-1} be the corresponding solutions to (3). For each $\lambda \in[0,1]$, $\lambda Q^{-}+(1-\lambda) Q^{-\prime}$ is an admissible candidate in (3). Hence $z^{-}\left(\lambda q+(1-\lambda) q^{\prime}, \lambda t+(1-\lambda) t^{\prime}\right)$ is at least

$$
U\left(\lambda q+(1-\lambda) q^{\prime}+\lambda Q^{-}+(1-\lambda) Q^{-\prime}, \lambda t+(1-\lambda) t^{\prime}+T^{-}\left(\lambda Q^{-}+(1-\lambda) Q^{-\prime}\right)\right)
$$

Because T^{-}is convex and U is decreasing in transfers, this lower bound is itself at least

$$
U\left(\lambda\left(q+Q^{-}\right)+(1-\lambda)\left(q^{\prime}+Q^{-\prime}\right), \lambda\left[t+T^{-}\left(Q^{-}\right)\right]+(1-\lambda)\left[t^{\prime}+T^{-}\left(Q^{-\prime}\right)\right]\right)
$$

and because U is quasiconcave this quantity is at least

$$
\min \left\{U\left(q+Q^{-}, t+T^{-}\left(Q^{-}\right)\right), U\left(q^{\prime}+Q^{-\prime}, t^{\prime}+T^{-}\left(Q^{-\prime}\right)\right)\right\}
$$

which is $\min \left\{z^{-}(q, t), z^{-}\left(q^{\prime}, t^{\prime}\right)\right\}$ by construction. Notice that all these quantities may be equal if the tariff T^{-}is locally linear; hence this argument only shows that z^{-}is weakly quasiconcave.
(Property SC-z) Consider a market maker k and let us hereafter omit the index k for the sake of clarity. Fix some $q<q^{\prime}$, t, and t^{\prime}. First, let $\mathcal{T}(Q) \equiv t+T^{-}(Q-q)$, defined for $Q \geq q$. Similarly, let $\mathcal{T}^{\prime}(Q) \equiv t^{\prime}+T^{-}\left(Q-q^{\prime}\right)$, defined for $Q \geq q^{\prime}$. According to (3), for each i, computing $z_{i}^{-}(q, t)$ amounts to maximizing $U_{i}(Q, \mathcal{T}(Q))$ with respect to $Q \geq q$. Let $\mathcal{Q}_{i} \geq q$ be the solution to this problem; it is unique as U_{i} is strictly quasiconcave and strictly decreasing in transfers and \mathcal{T} is convex. Similarly, computing $z_{i}^{-}\left(q^{\prime}, t^{\prime}\right)$ amounts to maximizing $U_{i}\left(Q, \mathcal{T}^{\prime}(Q)\right)$ with respect to $Q \geq q^{\prime}$. Let $\mathcal{Q}_{i}^{\prime} \geq q^{\prime}$ be the unique solution to this problem. The proof consists of two steps.

Step 1 We first prove (5). Suppose

$$
z_{i}^{-}(q, t)<z_{i}^{-}\left(q^{\prime}, t^{\prime}\right)
$$

for some i and let $j>i$. Because $\mathcal{Q}_{j} \geq q$ is an admissible candidate in the problem that defines $z_{i}^{-}(q, t)$, we have

$$
\begin{equation*}
U_{i}\left(\mathcal{Q}_{j}, \mathcal{T}\left(\mathcal{Q}_{j}\right)\right) \leq z_{i}^{-}(q, t)<z_{i}^{-}\left(q^{\prime}, t^{\prime}\right)=U_{i}\left(\mathcal{Q}_{i}^{\prime}, \mathcal{T}^{\prime}\left(\mathcal{Q}_{i}^{\prime}\right)\right) \tag{S.1}
\end{equation*}
$$

Two cases may arise.
(i) Suppose first $\mathcal{Q}_{j}<\mathcal{Q}_{i}^{\prime}$. Then

$$
z_{j}^{-}(q, t)=U_{j}\left(\mathcal{Q}_{j}, \mathcal{T}\left(\mathcal{Q}_{j}\right)\right)<U_{j}\left(\mathcal{Q}_{i}^{\prime}, \mathcal{T}^{\prime}\left(\mathcal{Q}_{i}^{\prime}\right)\right) \leq z_{j}^{-}\left(q^{\prime}, t^{\prime}\right)
$$

where the first inequality follows from (S.1), Assumption SC- U, and the assumptions that $i<j$ and $\mathcal{Q}_{j}<\mathcal{Q}_{i}^{\prime}$, and the second inequality follows from the fact that $\mathcal{Q}_{i}^{\prime} \geq q^{\prime}$ is an admissible candidate in the problem that defines $z_{j}^{-}\left(q^{\prime}, t^{\prime}\right)$. This shows (5).
(ii) Suppose next $\mathcal{Q}_{j} \geq \mathcal{Q}_{i}^{\prime}$. Because $\mathcal{Q}_{i}^{\prime} \geq q^{\prime}>q$ is an admissible candidate in the problem that defines $z_{i}^{-}(q, t)$, we have

$$
U_{i}\left(\mathcal{Q}_{i}^{\prime}, \mathcal{T}\left(\mathcal{Q}_{i}^{\prime}\right)\right) \leq z_{i}^{-}(q, t)<z_{i}^{-}\left(q^{\prime}, t^{\prime}\right)=U_{i}\left(\mathcal{Q}_{i}^{\prime}, \mathcal{T}^{\prime}\left(\mathcal{Q}_{i}^{\prime}\right)\right)
$$

which implies $\mathcal{T}^{\prime}\left(\mathcal{Q}_{i}^{\prime}\right)<\mathcal{T}\left(\mathcal{Q}_{i}^{\prime}\right)$. Moreover, as $q<q^{\prime}$ and T^{-}is convex, $\mathcal{T}^{\prime}(Q)-\mathcal{T}(Q)$ is nonincreasing in $Q \geq q^{\prime}$. Because $\mathcal{Q}_{j} \geq \mathcal{Q}_{i}^{\prime} \geq q^{\prime}$ and $\mathcal{T}^{\prime}\left(\mathcal{Q}_{i}^{\prime}\right)<\mathcal{T}\left(\mathcal{Q}_{i}^{\prime}\right)$, it follows that $\mathcal{T}^{\prime}\left(\mathcal{Q}_{j}\right)<\mathcal{T}\left(\mathcal{Q}_{j}\right)$. Now, as $\mathcal{Q}_{j} \geq q^{\prime}, \mathcal{Q}_{j}$ is an admissible candidate in the problem that defines $z_{j}^{-}\left(q^{\prime}, t^{\prime}\right)$ and thus

$$
U_{j}\left(\mathcal{Q}_{j}, \mathcal{T}^{\prime}\left(\mathcal{Q}_{j}\right)\right) \leq z_{j}^{-}\left(q^{\prime}, t^{\prime}\right)
$$

Hence, from $\mathcal{T}^{\prime}\left(\mathcal{Q}_{j}\right)<\mathcal{T}\left(\mathcal{Q}_{j}\right)$, we directly obtain

$$
z_{j}^{-}(q, t)=U_{j}\left(\mathcal{Q}_{j}, \mathcal{T}\left(\mathcal{Q}_{j}\right)\right)<U_{j}\left(\mathcal{Q}_{j}, \mathcal{T}^{\prime}\left(\mathcal{Q}_{j}\right)\right) \leq z_{j}^{-}\left(q^{\prime}, t^{\prime}\right)
$$

This shows (5).
Step 2 The proof of (4) follows from (5) by continuity. Suppose $z_{i}^{-}(q, t)=z_{i}^{-}\left(q^{\prime}, t^{\prime}\right)$ for some i and let $j>i$. Then, because z_{i}^{-}is strictly decreasing in transfers, for any strictly positive ε, we have $z_{i}^{-}(q, t+\varepsilon)<z_{i}^{-}\left(q^{\prime}, t^{\prime}\right)$ and thus $z_{j}^{-}(q, t+\varepsilon)<z_{j}^{-}\left(q^{\prime}, t^{\prime}\right)$ from (5). As z_{j}^{-} is continuous, we can take limits as ε goes to zero to obtain (4). Notice that we may have $z_{j}^{-}(q, t)=z_{j}^{-}\left(q^{\prime}, t^{\prime}\right)$ if the tariff T^{-}is locally linear; hence this argument only shows that the family of functions z_{i}^{-}satisfies a weak single-crossing property. The result follows.

Proof of Lemma 2. Consider a market maker k and let us hereafter omit the index k for the sake of clarity. Let $\mu^{*} \equiv\left\{\left(q_{i}^{*}, t_{i}^{*}\right): i=0, \ldots, I\right\}$ be a menu with nondecreasing quantities such that (7) holds. The proof consists of two steps.

Step 1 We first show that there exists a menu $\mu \equiv\left\{\left(q_{i}, t_{i}\right): i=0, \ldots, I\right\}$ that has nondecreasing quantities and satisfies the following conditions:
(a) $\sum_{i} m_{i} v_{i}\left(q_{i}, t_{i}\right) \geq \sum_{i} m_{i} v_{i}\left(q_{i}^{*}, t_{i}^{*}\right)$.
(b) For each $i \geq 1, z_{i}^{-}\left(q_{i}, t_{i}\right) \geq z_{i}^{-}\left(q_{i-1}, t_{i-1}\right)$.
(c) For each $i>1$, if $q_{i}>q_{i-1}$, then $z_{i-1}^{-}\left(q_{i-1}, t_{i-1}\right)>z_{i-1}^{-}\left(q_{i}, t_{i}\right)$.

Notice that (b) is identical to (7), whereas (c) is a strict version of the upward local incentivecompatibility constraints. Suppose, by way of contradiction, that there is no menu that satisfies conditions (a), (b), and (c). Nevertheless, the set of menus with nondecreasing quantities such that (a) and (b) hold is nonempty, as it contains μ^{*}. Therefore, we can select in this set a menu μ that maximizes the index $j>1$ of the first violation of (c). By construction, for this index j, we must have $q_{j}>q_{j-1}$.

We can even require that (b) holds as an equality at $i=j$ for μ. Indeed, if (b) holds as a strict inequality at $i=j$, we can increase t_{j} until reaching an equality: this is feasible because z_{j}^{-}is weakly quasiconcave and strictly decreasing in transfers. This change in t_{j} defines a new menu that satisfies conditions (a), (b) for all i, with an equality at $i=j$, and (c) for all $i<j$; but, according to our definition of μ, (c) must still be violated at $i=j$. With a slight abuse of notation, denote this new menu again by μ.

Now, because (b) holds as an equality at $i=j$ and $q_{j}>q_{j-1}$, the contraposition of (5) in Property SC- z yields $z_{j-1}^{-}\left(q_{j-1}, t_{j-1}\right) \geq z_{j-1}^{-}\left(q_{j}, t_{j}\right)$. Recall, however, that (c) is violated at $i=j$. Therefore, the only remaining possibility is that this inequality is in fact an equality. As a result, (b) and (c) hold as equalities at $i=j$ and we face a cycle of binding incentivecompatibility constraints that we now eliminate by pooling types $j-1$ and j on the same trade. Two cases may arise.
(i) Suppose first $v_{j}\left(q_{j}, t_{j}\right) \leq v_{j}\left(q_{j-1}, t_{j-1}\right)$. We can then build a new menu μ^{\prime} that only differs from μ in allocating $\left(q_{j-1}, t_{j-1}\right)$ to type j. (a) is relaxed by construction. (b) and (c) are unaffected for all $i<j$ and trivially hold at $i=j$ as types $j-1$ and j are pooled on the same trade. Finally, (b) still holds for all $i>j$ because, by Property SC- z, the downward incentive-compatibility constraints are satisfied as soon as the downward local incentive-compatibility constraints are satisfied. But then μ^{\prime} satisfies conditions (a) and (b), and any violation of (c) for μ^{\prime} must take place for a type strictly higher than j, contradicting our definition of μ.
(ii) Suppose next $v_{j}\left(q_{j}, t_{j}\right)>v_{j}\left(q_{j-1}, t_{j-1}\right)$. We can then build a new menu μ^{\prime} that only differs from μ in allocating $\left(q_{j}, t_{j}\right)$ to type $j-1$. (a) is relaxed because, from $q_{j}>q_{j-1}$, the contraposition of Property SC-v yields $v_{j-1}\left(q_{j}, t_{j}\right)>v_{j-1}\left(q_{j-1}, t_{j-1}\right)$. (b) and (c) are unaffected for all $i<j-1$ and trivially hold at $i=j$ as types $j-1$ and j are pooled on the same trade. (b) is unaffected for all $i>j$. At $i=j-1$, because (c) holds as an
equality at $i=j$ for μ, the change from μ to μ^{\prime} does not affect type $j-1$'s utility and so (b) still holds at $i=j-1$. There remains to check that (c) still holds at $i=j-1$, in case $j>2$. Because (c) holds as an equality at $i=j$ for μ, the contraposition of (5) in Property SC- z yields

$$
z_{j-2}^{-}\left(q_{j-1}, t_{j-1}\right) \geq z_{j-2}^{-}\left(q_{j}, t_{j}\right)
$$

We also know that (c) holds at $i=j-1$ for μ, so that

$$
z_{j-2}^{-}\left(q_{j-2}, t_{j-2}\right)>z_{j-2}^{-}\left(q_{j-1}, t_{j-1}\right)
$$

These inequalities imply that (c) still holds at $i=j-1$. Once more, μ^{\prime} satisfies conditions (a) and (b), and any violation of (c) for μ^{\prime} has to take place for a type strictly higher than j, contradicting our definition of μ.

Step 2 In Step 1, we have shown that, for any menu μ^{*} with nondecreasing quantities such that (7) holds, there exists a menu μ with nondecreasing quantities that yields an expected profit at least as high as μ^{*} and satisfies conditions (b) and (c). By continuity of the functions z_{i}^{-}, we can then slightly decrease each transfer in the menu μ to obtain a menu μ^{\prime} in which both (b) and (c) now hold as strict inequalities. Hence the local incentive-compatibility and type 1's individual-rationality constraint for μ^{\prime} are slack. Property SC- z together with the fact that quantities in the menu μ^{\prime} are nondecreasing then ensure that the constraints (6) hold as strict inequalities and thus that the insider has a unique best response to μ^{\prime}. As the decrease in transfers in μ^{\prime} relative to μ is arbitrarily small, we can approximate as closely as we want the expected profit from μ and, a fortiori, from μ^{*}. The result follows.

Proof of Lemma 3. We begin with some preliminary remarks on the insider's best response to an arbitrary profile of convex tariffs.

Step 0 Recall that, given a profile $\left(t^{1}, \ldots, t^{K}\right)$ of convex tariffs, the aggregate demand Q_{i} of type i is uniquely determined and nondecreasing in i. Given Q_{i}, type i 's utilitymaximization problem (1) reduces to minimizing her total payment for $Q_{i}, T\left(Q_{i}\right)$, as defined by (2). This is a convex problem, so that, by the Kuhn-Tucker theorem (Rockafellar (1970, Corollary 28.3.1)), we can associate to any of its solutions ($q_{i}^{1}, \ldots, q_{i}^{K}$) a Lagrange multiplier p_{i} such that $p_{i} \in \partial t^{k}\left(q_{i}^{k}\right)$ for all k. If there were two different solutions $\left(q_{i}^{1}, \ldots, q_{i}^{K}\right)$ and $\left(q_{i}^{\prime 1}, \ldots, q_{i}^{\prime K}\right)$ to (2) with different multipliers $p_{i}<p_{i}^{\prime}$, then, because each tariff is convex, we would have $q_{i}^{k} \leq q_{i}^{\prime k}$ for all k; but then, as both solutions must sum to Q_{i}, they would be identical, a contradiction. This shows that all the solutions to (2) must share the same p_{i}.

Hence we can associate to each type i a marginal price p_{i} such that, whatever the solution $\left(q_{i}^{1}, \ldots, q_{i}^{K}\right)$ to (2), we have $p_{i} \in \partial t^{k}\left(q_{i}^{k}\right)$ for all k. Finally, we can with no loss of generality adopt the convention that p_{i} is nondecreasing in i. Indeed, if $p_{i-1}>p_{i}$ for some $i>1$, then, because $p_{i-1} \in \partial t^{k}\left(q_{i-1}^{k}\right)$ and $p_{i} \in \partial t^{k}\left(q_{i}^{k}\right)$ for all k, we have $q_{i-1}^{k} \geq q_{i}^{k}$ for all k. As these quantities sum to Q_{i-1} and Q_{i}, respectively, and as $Q_{i-1} \leq Q_{i}$, it follows that $q_{i-1}^{k}=q_{i}^{k}$ for all k. Hence $p_{i-1} \in \partial t^{k}\left(q_{i}^{k}\right)$ for all k and we can replace p_{i} by p_{i-1}. Given this convention, the lower and upper bounds $\underline{s}^{k}\left(p_{i}\right)$ and $\bar{s}^{k}\left(p_{i}\right)$ of the supply $s^{k}\left(p_{i}\right)$ of market maker k at marginal price p_{i}, as defined by (9), are both nondecreasing in i for all k.

Now, suppose that $\left(t^{1}, \ldots, t^{K}\right)$ are equilibrium tariffs and that market maker k deviates to some convex tariff t. Consider a nondecreasing family of quantities q_{i} such that (10) holds for all i; we know from Property SC- z that such a family exists. Denoting by $p_{i} \in \partial t\left(q_{i}\right)$ a Lagrange multiplier for type i 's problem of minimizing her total payment, we can, according to Step 0, require that p_{i} be nondecreasing in i. In fact, under Assumption QL- U, each type i must purchase $D_{i}\left(p_{i}\right)=\left(u_{i}^{\prime}\right)^{-1}\left(p_{i}\right)$ in the aggregate, which uniquely pins down the value of p_{i} given the equilibrium tariffs t^{-k} of the market makers other than k. The proof consists of four steps.

Step 1 Letting $\boldsymbol{p} \equiv\left(p_{1}, \ldots, p_{I}\right)$ and $\boldsymbol{q} \equiv\left(q_{1}, \ldots, q_{I}\right)$, consider the piecewise-linear tariff $t_{\boldsymbol{p}, \boldsymbol{q}}$ recursively defined by $t_{\boldsymbol{p}, \boldsymbol{q}}(0) \equiv 0$ and

$$
t_{\boldsymbol{p}, \boldsymbol{q}}(q) \equiv t_{\boldsymbol{p}, \boldsymbol{q}}\left(q_{i-1}\right)+p_{i}\left(q-q_{i-1}\right), \quad i=1, \ldots, I, \quad q \in\left(q_{i-1}, q_{i}\right],
$$

with $q_{0} \equiv 0$ by convention. Because the families of marginal prices and quantities p_{i} and q_{i} are nondecreasing, the tariff $t_{\boldsymbol{p}, \boldsymbol{q}}$ is convex. It is straightforward to check that $t_{\boldsymbol{p}, \boldsymbol{q}}\left(q_{i}\right) \geq t\left(q_{i}\right)$ for all i. Moreover, as $p_{i}=\partial^{-} t_{\boldsymbol{p}, \boldsymbol{q}}\left(q_{i}\right)$, it remains a best response for each type i to purchase q_{i} from market maker k if the tariffs $\left(t_{\boldsymbol{p}, \boldsymbol{q}}, t^{-k}\right)$ are posted. In fact, under Assumption QL- U, $t_{p, \boldsymbol{q}}$ is the highest convex tariff with the property that purchasing q_{i} from market maker k is a best response for each type i given the equilibrium tariffs t^{-k} of the market makers other than k (see Figure 2).

Step 2 According to Step 1, we can hereafter suppose that market maker k deviates to the tariff $t_{\boldsymbol{p}, \boldsymbol{q}}$. As in (9), let $s_{\boldsymbol{p}, \boldsymbol{q}}^{k}\left(p_{i}\right) \equiv\left\{q: p_{i} \in \partial t_{\boldsymbol{p}, \boldsymbol{q}}(q)\right\}$ be the supply of market maker k at marginal price p_{i} when he posts the tariff $t_{\boldsymbol{p}, \boldsymbol{q}}$, with lower and upper bounds $\underline{s}_{\boldsymbol{p}, \boldsymbol{q}}^{k}\left(p_{i}\right)$ and $\bar{s}_{\boldsymbol{p}, \boldsymbol{q}}^{k}\left(p_{i}\right)$, respectively. Define a nondecreasing family of quantities \bar{q}_{i} as follows:
(i) If $\underline{p}_{\boldsymbol{p}, \boldsymbol{q}}^{k}\left(p_{i}\right)<\bar{s}_{\boldsymbol{p}, \boldsymbol{q}}^{k}\left(p_{i}\right)$ and if $I_{i}^{+} \equiv\left\{j: p_{j}=p_{i}>c_{j}\right\} \neq \emptyset$, let $\bar{q}_{i} \equiv \max \left\{q_{j}: j \in I_{i}^{+}\right\}$.
(ii) Otherwise, let $\bar{q}_{i} \equiv \underline{s}_{\boldsymbol{p}, \boldsymbol{q}}^{k}\left(p_{i}\right)$.

Intuitively, there is a single value of \bar{q} for each value of p in $\left\{p_{1}, \ldots, p_{I}\right\}$: below \bar{q}, we find all the types such that $c_{i}<p$ who trade at marginal price p and to whom market maker k would like to sell higher quantities. Above \bar{q}, we find all the types such that $p \leq c_{i}$ who trade at marginal price p and to whom market maker k would like to sell lower quantities.

Step 3 A way for market maker k to achieve these objectives consists in decreasing the slope of the tariff $t_{\boldsymbol{p}, \boldsymbol{q}}$ between $\underline{s}^{k}\left(p_{i}\right)$ and \bar{q}_{i}, and in increasing it between \bar{q}_{i} and $\bar{s}^{k}\left(p_{i}\right)$. Consider accordingly a small strictly positive ε and let $\hat{t} \equiv t_{\boldsymbol{p}-\varepsilon \mathbf{1}_{I}, \overline{\boldsymbol{q}}}$, with $\mathbf{1}_{I} \equiv(1, \ldots, 1) \in \mathbb{R}^{I}$ and $\overline{\boldsymbol{q}} \equiv\left(\bar{q}_{1}, \ldots, \bar{q}_{I}\right)$. Notice that, for each i, we have $\partial^{-} \hat{t}\left(\bar{q}_{i}\right) \leq p_{i}-\varepsilon<p_{i}<\partial^{+} \hat{t}\left(\bar{q}_{i}\right)$, so that slopes are changed in the right directions (see Figure 3). Let $\left(\hat{q}_{1}, \ldots, \hat{q}_{I}\right)$ be any best response of the insider to the tariff \hat{t} given the equilibrium tariffs t^{-k} of the market makers other than k. According to the definition of \bar{q}_{i}, two cases may arise.
(i) If $p_{i}>c_{i}$, then $\underline{s}^{k}\left(p_{i}\right) \leq q_{i} \leq \bar{q}_{i}$. Then, because for each $q \leq q_{i}$ the tariff \hat{t} satisfies

$$
\partial^{-} \hat{t}(q) \leq \partial^{-} \hat{t}\left(\bar{q}_{i}\right) \leq p_{i}-\varepsilon<p_{i}
$$

and type i has quasilinear utility, we must have $\hat{q}_{i} \geq q_{i}$.
(ii) If $p_{i} \leq c_{i}$, then $\bar{q}_{i} \leq q_{i} \leq \bar{s}^{k}\left(p_{i}\right)$. Then, because for each $q \geq q_{i}$ the tariff \hat{t} satisfies

$$
\partial^{+} \hat{t}(q) \geq \partial^{+} \hat{t}\left(\bar{q}_{i}\right)>p_{i}
$$

and type i has quasilinear utility, we must have $\hat{q}_{i} \leq q_{i}$.
Step 4 Finally, for any strictly positive ε, we have $\hat{t}(q)=t_{\boldsymbol{p}-\varepsilon \mathbf{1}_{I}, \overline{\boldsymbol{q}}}(q) \geq t_{\boldsymbol{p}, \boldsymbol{q}}(q)-O(\varepsilon)$ for all q (see Figure 3). Thus, for any best response ($\hat{q}_{1}, \ldots, \hat{q}_{I}$) of the insider to the tariff \hat{t} given the equilibrium tariffs t^{-k} of the market makers other than k, we have

$$
\begin{aligned}
\sum_{i} m_{i}\left[\hat{t}\left(\hat{q}_{i}\right)-c_{i} \hat{q}_{i}\right] & \geq \sum_{i} m_{i}\left[t_{\boldsymbol{p}, \boldsymbol{q}}\left(\hat{q}_{i}\right)-c_{i} \hat{q}_{i}\right]-O(\varepsilon) \\
& \geq \sum_{i} m_{i}\left[t_{\boldsymbol{p}, \boldsymbol{q}}\left(q_{i}\right)-c_{i} q_{i}\right]-O(\varepsilon) \\
& \geq \sum_{i} m_{i}\left[t\left(q_{i}\right)-c_{i} q_{i}\right]-O(\varepsilon)
\end{aligned}
$$

where the second inequality follows from the fact that $\hat{q}_{i} \leq q_{i}$ if $p_{i} \leq c_{i}$ and $\hat{q}_{i} \geq q_{i}$ if $p_{i}>c_{i}$ by Step 3, and the third inequality follows from Step 1. Hence, by posting the tariff \hat{t}, market maker k can secure an expected profit within $O(\varepsilon)$ of $\sum_{i} m_{i}\left[t\left(q_{i}\right)-c_{i} q_{i}\right]$, where ε is arbitrarily small. The result follows.

Proof of Lemma 4. Consider a market maker k and let us hereafter omit the index k for the sake of clarity. We prove the result for the more general case where the insider's type is distributed over some compact subset \mathcal{I} of \mathbb{R} according to an arbitrary distribution \boldsymbol{m}. We assume that the appropriate generalization of SC- v holds, that $\bar{D} \equiv \sup \left\{D_{i}(p): i \in \mathcal{I}\right\}<\infty$, and that there exists an \boldsymbol{m}-integrable function g such that $\left|\nu_{i}(q)\right| \leq g_{i}$ for all $(i, q) \in \mathcal{I} \times[0, \bar{D}]$, where $\nu_{i}(q) \equiv v_{i}(q, p q)$ for all i and q. Now, observe that, if the quantities q_{i} satisfy the constraints (13), then so do the quantities $\min \left\{q_{i}, \bar{q}\right\}$ for all \bar{q}. Hence we can restrict our quest for a solution to problem (12)-(13) to the set of nondecreasing families of quantities q_{i} such that (13) holds and

$$
\begin{equation*}
\int \nu_{i}(\bar{q}) 1_{\left\{q_{i} \geq \bar{q}\right\}} \boldsymbol{m}(\mathrm{d} i) \leq \int \nu_{i}\left(q_{i}\right) 1_{\left\{q_{i} \geq \bar{q}\right\}} \boldsymbol{m}(\mathrm{d} i), \quad \bar{q} \in\left[0,\|q\|_{\infty}\right], \tag{S.2}
\end{equation*}
$$

where $\|q\|_{\infty} \equiv \inf \left\{q: \boldsymbol{m}\left[\left\{i \in \mathcal{I}: q_{i} \leq q\right\}\right]=1\right\}$. Notice that this set contains the null family and is thus nonempty. We claim that any nondecreasing family of quantities q_{i} in this set yields an expected profit at most equal to that provided by the quantities min $\left\{D_{i}(p),\|q\|_{\infty}\right\}$. This is obvious if $\|q\|_{\infty}=0$. If $\|q\|_{\infty}>0$, then, for each $\varepsilon \in\left(0,\|q\|_{\infty}\right.$, applying (S.2) to $\bar{q}=\|q\|_{\infty}-\varepsilon$ implies that there exists j such that $q_{j}>\|q\|_{\infty}-\varepsilon$ and

$$
\nu_{j}^{k}\left(\|q\|_{\infty}-\varepsilon\right) \leq \nu_{j}^{k}\left(q_{j}\right)
$$

The contraposition of SC-v then yields ${ }^{1}$

$$
\nu_{i}\left(\|q\|_{\infty}-\varepsilon\right) \leq \nu_{i}\left(q_{j}\right), \quad i \leq j
$$

Because the quantities q_{i} are nondecreasing, this, in particular, holds for all i such that $q_{i}<\|q\|_{\infty}-\varepsilon$. As the functions ν_{i} are weakly quasiconcave, it follows that, for each i such that $q_{i}<\|q\|_{\infty}-\varepsilon$, the function ν_{i} is nondecreasing over $\left[0,\|q\|_{\infty}-\varepsilon\right]$. Because this is true for all $\varepsilon \in\left(0,\|q\|_{\infty}\right]$, we obtain that, for each i such that $q_{i}<\|q\|_{\infty}$, the function ν_{i} is nondecreasing over $\left[0,\|q\|_{\infty}\right]$. Hence we can choose the quantities $\min \left\{D_{i}(p),\|q\|_{\infty}\right\}$ instead of the quantities q_{i} without reducing the expected profit, as claimed. This implies that problem (12)-(13) reduces to

$$
\begin{equation*}
\sup \left\{\int \nu_{i}\left(\min \left\{D_{i}(p), \bar{q}\right\}\right) \boldsymbol{m}(\mathrm{d} i): \bar{q} \in[0, \bar{D}]\right\} . \tag{S.3}
\end{equation*}
$$

As the functions ν_{i} are continuous, Lebesgue's dominated convergence theorem (Aliprantis and Border (2006, Theorem 11.21)) ensures that the objective function in problem (S.3) is

[^1]continuous in \bar{q}, and, hence, that this problem has a solution. Therefore, problem (12)-(13) has a solution with limit-order quantities at price p. Finally, if the functions ν_{i} are strictly quasiconcave, the above reasoning shows that they are strictly increasing over the relevant ranges, so that any solution to problem (12)-(13) is of this form. The result follows.

Proof of Lemma 5. Recall that, given a profile $\left(t^{1}, \ldots, t^{K}\right)$ of convex tariffs, the aggregate trade $\left(Q_{i}, T_{i}\right)$ of type i is uniquely determined, and that we can associate to type i a Lagrange multiplier p_{i} as in Step 0 of the proof of Lemma 3. To find an efficient allocation, we first solve for each i

$$
\max \left\{\sum_{k} v_{i}^{k}\left(q_{i}^{k}, t^{k}\left(q_{i}^{k}\right)\right):\left(q_{i}^{1}, \ldots, q_{i}^{K}\right) \in A^{1} \times \cdots \times A^{K}\right\},
$$

subject to constraint i in (15). Because all market makers have identical quasilinear profit functions, this problem reduces to

$$
\begin{equation*}
\min \left\{\sum_{k} c_{i}\left(q_{i}^{k}\right):\left(q_{i}^{1}, \ldots, q_{i}^{K}\right) \in A^{1} \times \cdots \times A^{K}\right\} \tag{S.4}
\end{equation*}
$$

subject to

$$
\begin{equation*}
\sum_{k} q_{i}^{k}=Q_{i} \text { and } \underline{s}^{k}\left(p_{i}\right) \leq q_{i}^{k} \leq \bar{s}^{k}\left(p_{i}\right), \quad k=1, \ldots, K, \tag{S.5}
\end{equation*}
$$

where the latter constraints ensure that $\left(q_{i}^{1}, \ldots, q_{i}^{K}\right)$ is a best response of type i to the tariffs $\left(t^{1}, \ldots, t^{K}\right)$. We now show that the family of problems (S.4)-(S.5) indexed by i admits a family of solutions with nondecreasing individual quantities. Notice first that each of these problems has a nonempty compact set of solutions. Hence there exists a family of solutions $\left(q_{1}^{1}, \ldots, q_{1}^{K}, \ldots, q_{I}^{1}, \ldots, q_{I}^{K}\right)$ to the family of problems (S.4)-(S.5) that minimizes the following criterion for violations of monotonicity:

$$
\begin{equation*}
\sum_{k} \sum_{i>1} \max \left\{q_{i-1}^{k}-q_{i}^{k}, 0\right\} . \tag{S.6}
\end{equation*}
$$

Suppose, by way of contradiction, that this minimum is strictly positive. Then, at the minimum, we have

$$
\begin{equation*}
q_{i-1}^{k}>q_{i}^{k} \tag{S.7}
\end{equation*}
$$

for some $i>1$ and k. As $\underline{s}^{k}\left(p_{i}\right)$ and $\bar{s}^{k}\left(p_{i}\right)$ are nondecreasing in i, this implies

$$
\begin{equation*}
\underline{s}^{k}\left(p_{i-1}\right) \leq \underline{s}^{k}\left(p_{i}\right) \leq q_{i}^{k}<q_{i-1}^{k} \leq \bar{s}^{k}\left(p_{i-1}\right) \leq \bar{s}^{k}\left(p_{i}\right) . \tag{S.8}
\end{equation*}
$$

The intervals $\left[\underline{s}^{k}\left(p_{i-1}\right), \bar{s}^{k}\left(p_{i-1}\right)\right]$ and $\left[\underline{s}^{k}\left(p_{i}\right), \bar{s}^{k}\left(p_{i}\right)\right]$ then have a nontrivial intersection, so it must be that $p_{i-1}=p_{i}$. Therefore, for each $l, \underline{s}^{l}\left(p_{i-1}\right)=\underline{s}^{l}\left(p_{i}\right)$ and $\bar{s}^{l}\left(p_{i-1}\right)=\bar{s}^{l}\left(p_{i}\right)$. Moreover, because $q_{i-1}^{k}>q_{i}^{k}$ and $Q_{i-1} \leq Q_{i}$, there exists $l \neq k$ such that

$$
\begin{equation*}
q_{i-1}^{l}<q_{i}^{l} \tag{S.9}
\end{equation*}
$$

Summing up, we have

$$
\begin{equation*}
\underline{s}^{l}\left(p_{i-1}\right)=\underline{s}^{l}\left(p_{i}\right) \leq q_{i-1}^{l}<q_{i}^{l} \leq \bar{s}^{l}\left(p_{i-1}\right)=\bar{s}^{l}\left(p_{i}\right) . \tag{S.10}
\end{equation*}
$$

Given (S.8) and (S.10), we can slightly decrease q_{i-1}^{k} and increase q_{i-1}^{l} by a strictly positive amount ε, so that all constraints are still satisfied. This modification strictly decreases the criterion (S.6), so that $q_{i-1}^{k}-\varepsilon$ and $q_{i-1}^{l}+\varepsilon$ cannot be part of a solution to problem (S.4)-(S.5) for type $i-1$. We thus obtain

$$
c_{i-1}\left(q_{i-1}^{k}-\varepsilon\right)+c_{i-1}\left(q_{i-1}^{l}+\varepsilon\right)>c_{i-1}\left(q_{i-1}^{k}\right)+c_{i-1}\left(q_{i-1}^{l}\right) .
$$

As c_{i-1} is convex, this implies $q_{i-1}^{k}-\varepsilon<q_{i-1}^{l}$ and, therefore, $q_{i-1}^{k} \leq q_{i-1}^{l}$ as ε is arbitrary. Alternatively, we can slightly increase q_{i}^{k} and decrease q_{i}^{l} by the same strictly positive amount ε. We similarly obtain

$$
c_{i}\left(q_{i}^{k}+\varepsilon\right)+c_{i}\left(q_{i}^{l}-\varepsilon\right)>c_{i}\left(q_{i}^{k}\right)+c_{i}\left(q_{i}^{l}\right),
$$

which implies $q_{i}^{l} \leq q_{i}^{k}$. Using (S.7) then yields $q_{i}^{l} \leq q_{i}^{k}<q_{i-1}^{k} \leq q_{i-1}^{l}$, which contradicts (S.9). The result follows.

S. 2 On the Riemann Approximation (34) of (29)-(30)

In this section, we prove that the Riemann approximation (34) of (29)-(30) is uniform in $\boldsymbol{\chi}$. As a preliminary remark, observe that, when maximising (29)-(30), we can with no loss of generality focus on nondecreasing quantity schedules χ in a uniformly bounded set: the first requirement follows from the fact that the family of functions $\zeta^{*-k}(\cdot, \theta)$ satisfies the strict single-crossing property, and the second requirement follows from the fact that, under Biais, Martimort, and Rochet's (2000) responsiveness assumption $c^{\prime}(\theta)<1$, quantities in an optimal schedule are bounded above by

$$
\hat{\chi}(\bar{\theta}) \equiv \arg \max \left\{\zeta^{*-k}(q, \bar{\theta})-c(\bar{\theta}) q: q \geq 0\right\}=\frac{1}{K} \arg \max \{u(Q, \bar{\theta})-c(\bar{\theta}) Q: Q \geq 0\}
$$

that is, a fraction $1 / K$ of the efficient quantity for type $\bar{\theta}$. Denote by

$$
X \equiv\{\chi:[\underline{\theta}, \bar{\theta}] \rightarrow \mathbb{R}: \chi \text { is nondecreasing and } \chi(\theta) \in[0, \hat{\chi}(\bar{\theta})] \text { for all } \theta \in[\underline{\theta}, \bar{\theta}]\}
$$

the corresponding set of quantity schedules.
Now, each $\chi \in X$, being nondecreasing, has at most countably many discontinuities. Because it is a continuous function of $(\chi(\theta), \theta)$, the same holds for the integrand in (30); it is thus Riemann-integrable (Aliprantis and Border (2006, Theorem 11.30)), so that the Riemann sum in (34) converges to the integral in (30). What we need, however, is a stronger result, namely, that (34) approximates (29)-(30) uniformly in $\chi \in X$. The key observation in that respect is that, if the functions f, u, and c are sufficiently regular, then the indirect utility function $\zeta^{*,-k}$ is twice continuously differentiable. This property is notably satisfied in the uniform-quadratic example studied by Biais, Martimort, and Rochet (2013), and we hereafter assume this to be the case. In particular, the Taylor-Lagrange approximations in (31)-(33) are valid.

A first implication of this is that the $O(1 / I)$ term in the approximation (34) of (29) is uniform in $\chi \in X$. Indeed, the difference between the sums in (29) and (34) can be uniformly bounded as follows:

$$
\begin{aligned}
\begin{aligned}
\sum_{i=1}^{I} & {\left[m_{i}-\frac{\bar{\theta}-\underline{\theta}}{I} f\left(\theta_{i}\right)\right]\left[\zeta^{*-k}\left(\chi\left(\theta_{i}\right), \theta_{i}\right)-c\left(\theta_{i}\right) \chi\left(\theta_{i}\right)\right] } \\
& \left.\quad-\sum_{i=1}^{I}\left[1-F\left(\theta_{i}\right)\right]\left[\zeta^{*-k}\left(\chi\left(\theta_{i}\right), \theta_{i+1}\right)-\zeta^{*-k}\left(\chi\left(\theta_{i}\right), \theta_{i}\right)-\frac{\bar{\theta}-\underline{\theta}}{I} \frac{\partial \zeta^{*-k}}{\partial \theta}\left(\chi\left(\theta_{i}\right), \theta_{i}\right)\right] \right\rvert\, \\
\leq & \sum_{i=1}^{I}\left|m_{i}-\frac{\bar{\theta}-\underline{\theta}}{I} f\left(\theta_{i}\right)\right| \max \left\{\left|\zeta^{*-k}(q, \theta)-c(\theta) q\right|:(q, \theta) \in[0, \hat{\chi}(\bar{\theta})] \times[\underline{\theta}, \bar{\theta}]\right\} \\
& +I \max \left\{\left|\zeta^{*-k}\left(q, \theta_{i+1}\right)-\zeta^{*-k}\left(q, \theta_{i}\right)-\frac{\bar{\theta}-\underline{\theta}}{I} \frac{\partial \zeta^{*-k}}{\partial \theta}\left(q, \theta_{i}\right)\right|\right. \\
& : q \in[0, \hat{\chi}(\bar{\theta})] \text { and } i=1, \ldots, I\} \\
\leq & I O\left(\frac{1}{I^{2}}\right)+\frac{(\bar{\theta}-\underline{\theta})^{2}}{2 I}\left(\max \left\{\left|\frac{\partial^{2} \zeta^{*-k}}{\partial \theta^{2}}(q, \theta)\right|:(q, \theta) \in[0, \hat{\chi}(\bar{\theta})] \times[\underline{\theta}, \bar{\theta}]\right\}+o(1)\right) \\
= & O\left(\frac{1}{I}\right) .
\end{aligned}
\end{aligned}
$$

To conclude the proof, we thus only need to check that the Riemann sum in (34) converges to the integral in (30) at rate $1 / I$, uniformly in χ. Define

$$
H^{*}(q, \theta) \equiv\left[\zeta^{*-k}(q, \theta)-c(\theta) q-\frac{1-F(\theta)}{f(\theta)} \frac{\partial \zeta^{*-k}}{\partial \theta}(q, \theta)\right] f(\theta),
$$

which is continuously differentiable in (q, θ) under our regularity assumptions. Therefore, for each $\chi \in X, H^{*}(\chi(\theta), \theta)$ has finite total variation V_{χ}^{*} over $[\underline{\theta}, \bar{\theta}]$. In particular, letting

$$
\bar{H}_{q}^{*} \equiv \max \left\{\left|\frac{\partial H^{*}}{\partial q}(q, \theta)\right|:(q, \theta) \in[0, \hat{\chi}(\bar{\theta})] \times[\underline{\theta}, \bar{\theta}]\right\}
$$

$$
\bar{H}_{\theta}^{*} \equiv \max \left\{\left|\frac{\partial H^{*}}{\partial \theta}(q, \theta)\right|:(q, \theta) \in[0, \hat{\chi}(\bar{\theta})] \times[\underline{\theta}, \bar{\theta}]\right\}
$$

we obtain a uniform bound for V_{χ}^{*},

$$
V_{\chi}^{*} \leq \bar{V}^{*} \equiv \bar{H}_{q}^{*} \hat{\chi}(\bar{\theta})+\bar{H}_{\theta}^{*}(\bar{\theta}-\underline{\theta}), \quad \chi \in X .
$$

Finally, using a standard inequality (Pólya and Szegö (1978, Part Two, Chapter 1, §2, 9)), we obtain a uniform bound for the difference between the Riemann sum in (34) and the integral in (30),

$$
\left|\frac{\bar{\theta}-\underline{\theta}}{I} \sum_{i=1}^{I} H^{*}\left(\chi\left(\theta_{i}\right), \theta_{i}\right)-\int_{\underline{\theta}}^{\bar{\theta}} H^{*}(\chi(\theta), \theta) \mathrm{d} \theta\right| \leq \frac{(\bar{\theta}-\underline{\theta}) V_{\chi}^{*}}{I} \leq \frac{(\bar{\theta}-\underline{\theta}) \bar{V}^{*}}{I} .
$$

The result follows.

References

[1] Aliprantis, Charalambos D., and Kim C. Border (2006): Infinite Dimensional Analysis: A Hitchhiker's Guide, Berlin, Heidelberg, New York: Springer.
[2] Biais, Bruno, David Martimort, and Jean-Charles Rochet (2000): "Competing Mechanisms in a Common Value Environment," Econometrica, 68(4), 799-837.
[3] Biais, Bruno, David Martimort, and Jean-Charles Rochet (2013): "Corrigendum to "Competing Mechanisms in a Common Value Environment"," Econometrica, 81(1), 393406.
[4] Pólya, George, and Gabor Szegö (1978): Problems and Theorems in Analysis, I. Series. Integral Calculus. Theory of Functions, Berlin, Heidelberg, New York: Springer.
[5] Rockafellar, Ralph T. (1970): Convex Analysis, Princeton, NJ: Princeton University Press.

[^0]: *Toulouse School of Economics, CNRS, University of Toulouse Capitole, Toulouse, France, and Università degli Studi di Roma"Tor Vergata," Roma, Italy.
 ${ }^{\dagger}$ Toulouse School of Economics, CNRS, University of Toulouse Capitole, Toulouse, France.
 ${ }^{\ddagger}$ Toulouse School of Economics, INRA, University of Toulouse Capitole, Toulouse, France.

[^1]: ${ }^{1}$ Strictly speaking, the contraposition of SC- v states that $v_{j}^{k}\left(q^{\prime}, t^{\prime}\right)>v_{j}^{k}(q, t)$ implies $v_{i}^{k}\left(q^{\prime}, t^{\prime}\right)>v_{i}^{k}(q, t)$. However, because the profit functions are continuous and strictly decreasing in transfers, we can easily show as in Step 2 of the proof of Property SC- z that $v_{j}^{k}\left(q^{\prime}, t^{\prime}\right) \geq v_{j}^{k}(q, t)$ implies $v_{i}^{k}\left(q^{\prime}, t^{\prime}\right) \geq v_{i}^{k}(q, t)$, which is the implication we use here.

