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B.1 Definition of a Strategy

We begin by defining the set of possible histories of play an agent can observe conditional
on her not having been served and not having exited—these are the only circumstances
under which she has to act. Recall that N0 is the set of non-negative integers.

On arrival at the queue the agent observes the position at which she arrives at the
queue, which is an element of

H0 := N0.

The agent then witnesses her first service stage, where she observes whether service
occurs or not. The number of agents remaining in the queue after that service stage is
sufficient information to determine whether service occurred. (The difference determines
the number who were served.) Thus the set of histories after the first service stage is:

H10 := N0 ×H0.

The agent then witnesses her first exit stage, where she observes which agents in the
queue choose to renege (E) on the queue and which continue (C) queuing. Recall that
at every exit stage we allow multiple rounds of exit. If the queue has length n at the
beginning of the first exit stage, the agent’s observation after the first round of exit is an
element of {E,C}n. Thus the set of histories after the first round of the first exit stage is:

H11 :=
∞⋃
n=0

{E,C}n ×H10.

By Lemma 1, M provides an upper bound on the possible queue lengths when agents
are rational. We therefore allow for a total ofM rounds of exit. This ensures that for any
rational queue length there are sufficient opportunities for all agents in the queue to exit
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at this stage, even if only one agent were to exit at each round.1 Thus the set of histories
after the mth round of the first exit stage is:

H1m :=

(
∞⋃
n=0

{E,C}n
)m

×H10, for m = 2, . . . ,M.

Finally, the agent witnesses her first arrival stage, at which one additional agent arrives
and decides whether to join the queue or balk. This determines a new number of agents
in the queue. Thus the set of histories after the first arrival stage is:

H1 := N0 ×H1M.

This is the set of all possible histories an agent could observe after being present in the
queue for one complete period of our game.

We now recursively define Ht, the set of histories an agent could have observed after
being present in the queue for t complete periods:

Ht := N0 ×

(
∞⋃
n=0

{E,C}n
)M
× N0 ×Ht−1.

We define the sets Htm for m = 0, . . . ,M and t > 1 analogously with the sets H1m defined
above.

A behavior strategy for an agent gives a probability distribution over her choices to
either exit (E) or continue in the queue (C) when she arrives at the queue, as well as at the
M exit rounds in each period after she joins the queue. Observe that before choosing her
action in the mth exit round of her tth exit stage, the agent observes a history in Ht(m−1).
Thus, the set of histories at which the agent is called upon to act is

H := H0 ∪

(
∞⋃
t=0

M−1⋃
m=0

Htm

)
,

and a behavior strategy for the agent is a mapping

σ : H → ∆({E,C}).
1 Observe that our restriction to M rounds of exit does not mean that we allow only for rational

queue lengths to arise. However, it does mean that, should queue lengths longer than M arise, then the
continuation play may be constrained by the M-rounds exit-stage protocol described here. To illustrate,
suppose the queue has length M+ k and only one agent exits at each exit round. Then k agents will not
have exited at the end of the current exit stage (even though they might have exited if there had been
M+ k rounds), and will therefore have to wait for the next period’s exit stage.
Allowing M rounds of exit ensures that the exit stage protocol imposes no restrictions on play whenever
the queue length is rational. In particular, observe that two rounds of exit would have been sufficient in
our equilibria. At the first round, the first in line chooses C or E. At the second round, all other agents
in the queue herd on the first in line’s chosen action.
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B.1.1 Definition of the Equilibrium Strategy

To formally define the strategy σ∗(q,N,M) given in Definition 1, we introduce the following
notation. Let nt denote the queue length at history ht ∈ Ht, and ntm denote the queue
length at history htm ∈ Htm. Let atm ∈ {E,C}nt(m−1) denote the action profile played
at the mth exit round of stage t, and let atm(i) denote its ith coordinate. Observe that
atm(1) = E indicates that at the mth exit round of stage t, the first agent in line reneges.
The strategy σ∗(q,N,M) is then defined as follows (for q = 1).

First, upon arriving at the queue, the agent joins the queue if and only if she is at most
M th in line. Thus,

σ(h0) =

{
E if n0 > M,
C if n0 ≤M.

For m = 0, . . . ,M− 1 and t ≥ 0, we now describe the agent’s strategy at a history
htm ∈ Htm. If there exists a date 0 < τ ≤ t such that nτ0 6= n(τ−1) then the agent chooses
C. Thus, once the agent observes service, she never reneges.

Conversely, if nτ0 = n(τ−1) for every 0 < τ ≤ t so that the agent has never observed
service, her behavior depends on the position at which she joined the queue, and on the
behavior of other agents in the queue.

If n0 = 1, so that the agent joined the queue at the first position, she reneges after
having observed the N th service failures, i.e. when t = N and m = 0. She continues for
every t < N (and m = 0, . . . ,M− 1).

If n0 > 1, so that there were agents ahead of her in the queue when she joined, then
she reneges on the queue if and only if the first in line does and in the same period as the
first in line. We distinguish two cases.

• If she observes the first in line renege at the mth round of the tth exit stage, for
m = 1, . . . ,M− 1, then the agent exits at the (m+ 1)th round of the tth exit stage.
That is, the agent plays E if htm is such that m = 1, . . . ,M− 1, and atm(1) = E.

• If she observes the first in line renege at the last (Mth) round of the (t − 1)th exit
stage, then the agent exits at the first round of the tth exit stage, provided there was
no service at the tth service stage. That is, the agent plays E if htm is such that
m = 0, a(t−1)M(1) = E, and n(t−1) = nt0 (no service at the tth service stage).

We can therefore partition the histories H\H0 into two subsets: HE, the set of histories
at which the agent reneges on the queue, and its complement, H \

(
H0 ∪HE

)
, the set of

histories at which the agent continues queuing. We then have

σ(htm) =

{
E if htm ∈ HE,
C otherwise,

where HE ⊆ H are the histories htm such that nτ0 = n(τ−1) for every 0 < τ ≤ t, and such
that any of the three conditions below is satisfied

• n0 = 1, t = N and m = 0;

• n0 > 1, m = 1, . . . ,M− 1, and atm(1) = E;

• n0 > 1, m = 0, a(t−1)M(1) = E, and n(t−1) = nt0.
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B.2 The Good State Stationary Measure on the Interval [1, φ∗
N ]

When 1 < φ < φ∗
N : For these values of φ, service is slower than arrivals so that,

unconditionally, longer queues are more likely than shorter ones. However the effect of slow
service is dominated by the renewal effect when M ≤ N , and for the values n = 1, . . . , N
when N < M . In these cases, conditional on the first in line being uninformed, shorter
queues are more likely than longer ones and the stationary distribution is declining with
n. In contrast, once the queue grows longer than N it tends to fill up to length M and
stay there for some time. So for N < M , the stationary measure is U-shaped. It jumps
down at N + 1 and N + 2 and then increases over the range N + 2 ≤ n ≤M , as illustrated
in Figure 1 below.
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Figure 1: The stationary measure of the queue length conditional on the server being in the good
state with 1 < φ < φ∗N under perfect revelation (left panel) and imperfect revelation (right panel).

Knife-edge cases: φ = 1 and φ = φ∗N : For φ = 1, service is exactly as fast as arrivals.
If agents never reneged, but waited in line until served, then every queue length would be
equally likely. For N < M , this is in fact the case when n ≥ N + 2, and the stationary
measure is uniform over these values. When 1 ≤ n ≤ N , the renewal effect is a force for
emptying the queue, and the stationary measure is linearly decreasing over these values.
The downward steps at n = N + 1 and n = N + 2 remain. For M ≤ N , the renewal effect
is always at play, and the stationary measure is linearly decreasing in n for 1 ≤ n ≤ M
and has a downward step at n = M + 1.

For φ = φ∗N , service is exactly slow enough to offset the renewal effect. Consequently,
for M ≤ N the stationary measure is uniform for 1 ≤ n ≤ N . Without the renewal effect,
the queue tends to fill up, so that the stationary measure is increasing for n ≥ N + 2.
The downward steps at n = N + 1 and n = N + 2 remain. For M ≤ N the stationary
measure is uniform for 1 ≤ n ≤ M and has a downward step at n = M + 1. These cases
are illustrated below.
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Figure 2: The stationary measure of the queue length conditional on the server being in the good
state when φ takes the values 1 and φ∗N under perfect revelation (upper two panels) and imperfect
revelation (lower two panels).

B.3 Stationary Measure for α = 1/2.

Lemma B.1 Let α = 1/2. For N < M , the stationary measure of queue lengths in the
good state is

yn =


2(2N+1−(n−1)(1+q))

(M+1)2N+2−(1+q)N(2M−N+1)−4(M−N+q)
, n ≤ N,

2(2N+1−N(1+q))−4q

(M+1)2N+2−(1+q)N(2M−N+1)−4(M−N+q)
, n = N + 1,

2(2N+1−N(1+q))−4

(M+1)2N+2−(1+q)N(2M−N+1)−4(M−N+q)
, n ≥ N + 2.

For N ≥M , the stationary measure of queue lengths in the good state is

yn =


2(2N+1−(n−1)(1+q))

(M+1)2N+2−(1+q)((M+1)M+2)
, n ≤M,

2(2N+1−(M+1)(1+q))
(M+1)2N+2−(1+q)((M+1)M+2)

, n = M + 1.

Proof: We now derive the stationary distribution of queue lengths n = 1, . . . ,M + 1
for the case where N < M , by solving the system of difference equations in (A.10) for
the case where α = 1/2. For n = 1, 2, . . . , N , yn solves the difference equation 0 =
(1−α)yn−1− yn +αyn+1, whose characteristic polynomial, (x− 1)(x− (1−α)/α), admits
a unique root when α = 1/2. We therefore obtain the general solution:

yn = K + nH.

Imposing the initial condition, given by the expression for y1 in (A.10), on this equation,
we solve for H and obtain:

yn = K − n zN
1

4
(1 + q), n = 1, 2, . . . , N.
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Substituting into the expressions for yN , yN+1 and yN+2 in (A.10) respectively, we obtain:

yN+1 =K − (N + 1)zN
1

4
(1 + q)− zN

1

2
q,

yN+2 =K − (N + 2)zN
1

4
(1 + q)− zN

1

4
(1− q),

yN+3 =K − (N + 3)zN
1

4
(1 + q) + zN

1

2
q.

The terminal condition, given by the expression for yM+1 in (A.10), gives yM = yM+1, and
from the expression for yn when N + 2 < n < M + 1 in (A.10) we obtain that:

yM+1 = yM = · · · = yN+3.

Substituting the expression for y1 into zN = (1− α)N−1y1 gives:

zN = ζK, ζ :=
4

2N+1 + 1 + q
.

Imposing that the yn sum to unity:

1 =
N∑
n=1

yn + yN+1 + yN+2 +
M+1∑
n=N+3

yN+3,

and solving for K we obtain:

K−1 = M + 1− ζ 1

8
(N + 3)(2M −N)(1 + q) + ζ

1

2
(M −N − 2)q − ζ 1

4
(1− q).

The resulting stationary distribution of queue lengths when N < M is described in the
above lemma. (The case N ≥M can be analyzed in a similar fashion.) �

B.4 Equilibria with Multiple Herding Leaders

We begin by giving a formal definition of a herding strategy σ̆, that is, a pure strategy with
multiple herding leaders. In this strategy, the individuals at positions 1, `2, . . . , `C in the
queue are the herding leaders. Only herding leaders may autonomously leave the queue.
As under σ∗, under σ̆ the first in line autonomously reneges after L1 = N periods without
service. The herding leader at position `c in the line autonomously reneges after observing
Lc ∈ N periods without service, or reneges if someone ahead of her does. All remaining
agents are herding followers. They renege if and only if they observe someone ahead of
them renege, but stay in line if they ever observe service.

Definition 1 The strategy with C ≥ 2 herding leaders: σ̆(N, (`c)
C
c=2, (Lc)

C
c=2,M) with 1 <

`c < `c+1 for all c ≥ 2; L2 < N − `2 + 1; and Lc < Lc−1 − `c + 1 for all c ≥ 3:
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• Upon arriving at the queue, an individual joins the queue if and only if she is at most
M th in line.

• Once in the queue, if she observes service, she never reneges.

• Conditional on not observing service:

– If she joined the queue at the first position then she is the first herding leader.
She does not renege for the first N − 1 periods, and reneges at the exit stage of
the N th period.

– For each c = 2, . . . , C, if she joined the queue at the `c
th position, then she is

the cth herding leader. If at any point she observes an agent ahead of her renege,
she reneges in the same period as that agent. Otherwise, she does not renege
for the first Lc − 1 periods, and reneges at the exit stage of the Lth

c period.

– If she joined the queue at any of the remaining positions, the she is a herding
follower. She reneges if and only if an agent ahead of her does, and in the same
period as that agent.

As one might expect, the stationary distributions under these strategies are quite com-
plex. Figure 3 illustrates the behavior of the queue at a bad server when all agents follow
the strategy σ̆(N, (`c)

C
c=2, (Lc)

C
c=2,M). In the first panel, C = 2 and there are two herding

leaders: the first in line, who autonomously reneges on the queue if the twenty-one first ser-
vice opportunities she observes are unsuccessful, and the third in line, who autonomously
reneges on the queue if the eight first service opportunities she observes are unsuccessful.
Thus, the strategy in the first panel has (N, `2, L2) = (21, 3, 8) (and M ≥ 10). In the second
panel, C = 3 and there is an additional herding leader: the fifth in line, who autonomously
reneges on the queue if the first four service opportunities she observes are unsuccessful.
Thus, the strategy in the second panel has (N, (`2, `3), (L2, L3)) = (21, (3, 5), (8, 4)) (and
M ≥ 8). Observe that in both examples, there are three individuals joining the queue at
the third position in line behind a given first in line, and that in the second example there
are five individuals joining the queue at the third position behind a given first in line.

Under the strategy σ̆, we will assume that at a bad server there are always at least
two2 instances of the `c

th in line behind a given first in line, for every c = 2, . . . , C. At a
good server, there is no upper bound on the possible number of instances of the `c

th in line
behind a given first in line. Crucially, an individual joining the queue at the `c

th position
does not know whether she is the first, second, . . . , instance of the `c

th in line behind a
given first in line. She learns both about this and the server state while waiting in line.

The next lemma provides conditions under which a strategy with more than one herding
leader cannot be an equilibrium. The proof is given in Section B.5.

Lemma B.2 Consider the strategy σ̆(N, (`c)
C
c=2, (Lc)

C
c=2,M), with C ≥ 2. If α ≥ 1/2,

there exists a δ̆ < 1 such that for every δ > δ̆, this strategy does not constitute an equilib-
rium.

2 If that’s not the case, then the herding learner in question reneges on the queue when another agent
ahead of her does. She is then effectively a herding follower.
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Figure 3: The behavior of the queue at a bad server under the strategy σ̆(21, 3, 8,M) for M > 10 (first
panel) and σ̆(21, (3, 5), (8, 4),M) for M > 8 (second panel). (These strategies need not be equilibrium
strategies.)

Lemma B.2, together with Lemma 6, imply that for α ≥ 1/2, there exist values of δ
sufficiently close to one at which any given strategy with more than one herding leader
cannot be an equilibrium, but at which there exists an equilibrium with perfect revelation
at which the first in line is the unique herding leader.

The intuition for Lemma B.2 is as follows. Let N̆ denote the optimal duration of
experimentation for the first in line, and L̆c denote the optimal duration of experimentation
for the `c

th in line, when agents’ beliefs are consistent with the stationary distributions
generated by the strategy σ̆(N̆, (`c)

C
c=2, (L̆c)

C
c=2,M). Consider the second herding leader,

the `2
th in line, and the individual just ahead of her, the `2 − 1th in line. In equilibrium,

the `2 − 1th in line finds it optimal to herd on the first in line. Given the posterior belief
she forms upon arriving at the queue at the `2 − 1th position (based on the stationary
probabilities of arriving at that position in each state), she must find it optimal to remain
in line for at least N̆ − `2 periods, giving the first in line enough time to complete her
N̆ periods of experimentation. In contrast, the `2

th in line must find it optimal to renege
autonomously after only L̆2 < N̆−`2−1 periods, conditional on not observing service. The
proof of the lemma argues that these two requirements contradict each other when α ≥ 1/2
and δ is sufficiently close to 1. The reason is that the individual arriving at position `2 is
too optimistic to leave the queue so much earlier than the individual at position `2 − 1.
Our proof does not require calculating the stationary distribution explicitly. Instead we
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use bounds on the stationary distribution that arise under the strategy σ̆.
This follows from the peculiar aspect social learning takes for the `2

th in line. If she
were the kth instance of the `2

th in line behind a given first in line who is as yet uninformed,
then after N̆ − (k − 1)L̆2 − `2 + 1 service failures she should observe the uninformed first
in line renege. Thus, if the first in line does not renege at that point, the `2

th in line learns
that she is not the kth instance of the `2

th in line behind an uninformed first in line. As
a result, her posterior belief that the server is good does not fall commensurately in that
period with that of the `2 − 1th in line. (For some parameter values her posterior may
even jump up.) This increase in the `2

th in line’s optimism relative to that of the `2 − 1th

in line’s implies that the `2
th in line cannot find it optimal to renege after observing only

L̆2 service failures if the `2 − 1th in line accepts to observe N̆ − `2 service failures without
reneging.

B.5 Proof of Lemma B.2

Proof: Assume, by way of contradiction, that the strategy σ̆(N̆, (`c)
C
c=2, (L̆c)

C
c=2,M) with

C ≥ 2 herding leaders constitutes a symmetric equilibrium. We concentrate on the first
two herding leaders: the first in line and the `2

th in line. So as to lighten notation, in this
appendix we will use ` and L̆ for `2 and L̆2 respectively.

In addition we define the following notation. Let j = 1, . . . , L̆ and k = 2, 3, . . . satisfy

(B.1) N̆ = (k − 1)L̆+ `+ j − 1.

The variables k and j admit the following interpretation. At a bad server, or at a good
server at which the first in line is uninformed, there are k instances of the `th in line for
every instance of the first in line. Furthermore, the kth instance of the `th in line will learn
the first in line’s information after observing j unsuccessful service events, as this coincides
with the first in line completing her N̆ periods of experimentation.

Finally, we let y̆n denote the stationary probability of arriving at the queue at the nth

position in line when the server is good under, σ̆, our candidate equilibrium strategy with
multiple herding leaders.

We show that, for certain parameter values, if it is optimal for the first in line to
experiment for N̆ periods, and it is optimal for the ` − 1th to herd on the first in line,
then it cannot be optimal for the `th in line to experiment for L̆ periods. Our argument is
invariant to the presence of further herding leaders.

Begin by considering the first in line. Under σ̆, the stationary probability of arriving
at the first position at a bad server is 1/N̆ . At a good server, it is y̆1. In equilibrium,
the first in line finds it optimal to experiment for N̆ periods. Furthermore, she does not
learn anything from observing the behavior of others in the queue. Therefore, using the
individual threshold defined in (10), N̆ is determined by the relationship:

(B.2)
µN̆y̆1(1− α)N̆−1

1− µ
≥

µ
1

1− µ
1

>
µN̆y̆1(1− α)N̆

1− µ
.

9



Now consider an individual arriving at the nth position in line, for n = 2, . . . , `−1. The
probability of arriving at that position is y̆n at a good server and 1/N̆ at a bad server. The
nth in line cannot learn anything from the behavior of others except the first in line. Thus,
as long as the first in line does not renege and conditional on no service, the likelihood
ratio of the nth in line’s posterior belief follows the path:

µN̆y̆n
1− µ

>
µN̆y̆n(1− α)

1− µ
> · · · > µN̆y̆n(1− α)N̆−n+1

1− µ
.

Equilibrium requires that the nth in line does not want to renege before the first in line
has completed her N̆ periods of experimentation. Equivalently3 , for all n = 1, . . . , `− 1,

(B.3)
µN̆y̆n(1− α)N̆−n

1− µ
≥

µ
n

1− µ
n

.

Let us now consider an individual’s inference upon arriving at the queue at the `th

position. That individual does not know whether, nor how many, other individuals have
already arrived at the `th position behind the current first in line. In particular, conditional
on the server being bad, the individual believes she could equiprobably be the first, second,
. . . , kth instance of the `th in line behind a given first in line. Thus, the probability she
attaches to arriving at the `th position at a bad server is k/N̆ .

Similarly at a good server if the first in line is uninformed. Consequently, the stationary
probability of arriving at the queue at the `th position in line is

y̆` = b0 + b1 + · · ·+ bk,

where b0 is the stationary probability of arriving at the `th position at a good server when
the first in line has already observed service, and bm for m = 1, . . . , k is the stationary
probability of arriving as the mth instance of the `th in line at a good server when the
first in line is uninformed. Equivalently, bm is the probability that the current first in line
joined the queue at the first position and has since observed `− 1 + (m− 1)L̆ unsuccessful

service events: bm = y̆1(1− α)`−1+(m−1)L̆ for m = 1, . . . , k.
Now suppose that an individual knew that she joined the queue as the kth instance of

the `th in line (this is not the case in equilibrium). She would only need to wait j periods to
obtain the first in line’s information. If at that point the first in line reneges, all individuals
in the queue learn that she has observed N̆ consecutive service failures. If she does not
renege, an individual who knew she was the kth instance of the `th in line would learn that
the first in line is informed, and hence that the server is good.

Likewise, the first in line’s behavior is also informative for an individual who joins the
queue at the `th position, but does not know which instance of the `th in line she is. If she
observes j failures and the first in line not reneging, the `th in line learns that, (1) she is

3 If µN̆y̆n(1−α)N̆−n+1

1−µ <
µ
n

1−µ
n

, i.e. if, based on her private learning alone, the nth in line would like to

renege at the exit stage following the (N∗ − n+ 1)th failure, we assume that she still waits to observe the
first in line’s behavior.

10



not the kth instance of the `th in line behind an uninformed first in line at a good server
(probability bk), and (2) she is not the kth instance of the `th in line behind the first in line
at a bad server (probability 1/N̆).

Thus, for the first j − 1 failures, the likelihood ratio of the `th in line’s posterior belief
follows the path:

µN̆y̆`
(1− µ)k

>
µN̆y̆`(1− α)

(1− µ)k
> · · · > µN̆y̆`(1− α)j−1

(1− µ)k
,

and at the jth failure, if the first in line does not renege, the `th in line updates the likelihood
ratio of her posterior belief to

µN̆ (y̆` − bk) (1− α)j

(1− µ)(k − 1)
.

We conclude that in equilibrium, since she must find it optimal to autonomously exit
the queue after L̆ periods without service, the likelihood ratio of the `th in line’s posterior
belief must satisfy:

µN̆ (y̆` − bk) (1− α)L̆−1

(1− µ)(k − 1)
≥

µ
`

1− µ
`

>
µN̆ (y̆` − bk) (1− α)L̆

(1− µ)(k − 1)
.

Using (10) to rewrite the right inequality above, we obtain

(B.4)
µ
`−1

1− µ
`−1

>
µN̆y̆`−1(1− α)N̆−`+1

(1− µ)

[
(1− α)L̆ (y̆` − bk) (ψ`δw − 1)

(1− α)N̆−`+1 y̆`−1(k − 1)(ψ`−1δw − 1)

]
.

We will show that the term in square brackets is greater than one and that consequently
the expression above contradicts condition (B.3) for the (` − 1)th in line (and for ` = 2,
the first inequality in (B.2)).

We begin by deriving a lower bound on y̆`−bk. If her predecessor arrived at the (`−1)th

position in line and the next service opportunity was unsuccessful, an individual could be
either the first instance of the `th in line behind an uninformed first in line, or any `th in
line behind and informed first in line. Thus:

b0 + b1 ≥ y̆`−1(1− α).

Another way of arriving at the `th position in line behind and informed first in line is if the
previous individual arrived at the `th position and the next service opportunity produced
exactly one service event:

b0 ≥ y̆`α(1− α) > (y̆` − bk)α(1− α).

From the two inequalities above, and since the events of one service and no service are
mutually exclusive, we obtain the following bound:

y̆` − bk ≥ b0 + b1 ≥ y̆`−1(1− α) + (y̆` − bk)α(1− α).

11



(The first inequality follows from the fact that k ≥ 2.) Rearranging:

y̆` − bk
y̆`−1

≥ 1− α
1− α(1− α)

.

Substituting, be obtain the following lower bound on the terms in square brackets in
(B.4):[

(1− α)L̆ (y̆` − bk) (ψ`δw − 1)

(1− α)N̆−`+1 y̆`−1(k − 1)(ψ`−1δw − 1)

]
≥ (1− α)L̆−N̆+`

(k − 1)︸ ︷︷ ︸
K1

ψ`δw − 1

(1− α(1− α))(ψ`−1δw − 1)︸ ︷︷ ︸
K2

.

We now show that both K1 ≥ 1 and K2 ≥ 1. We begin with K1. Observe that, from
(B.1), we have kL̆ ≥ N̆ − ` ≥ (k − 1)L̆, so that

K1 ≥
L̆(1− α)L̆

(N̆ − `)(1− α)N̆−`
= ρ(1− α)(ρ−1)(N̆−`) =: r(ρ),

where ρ := L̆/(N̆ − `). The function r(.) is log concave in ρ. Moreover r(0) = 0 and
r(1) = 1. Since 0 < 1/(N̆ − `) < ρ ≤ 1, we have that

r(ρ) ≥ min

{
r

(
1

N̆ − `

)
, r(1)

}
.

Thus, it is sufficient to show that r(1/(N̆ − `)) ≥ 1 for all N̆ − ` ≥ 2 (we have already
excluded the case N̆ − ` = 1). This is ensured by the condition α ≥ 1/2.

Finally,

K2 ≥ 1 ⇔ V` >
α2

α2 − ψ(1− δ)
> 0.

In other words, K2 ≥ 1 is equivalent to the sufficient condition from Lemma 5 applied to
the `th in line. By Lemma 6 this condition is satisfied when δ → 1.

Combing all the intermediate inequalities, we have shown that the term in square
brackets in (B.4) is greater than 1. Therefore (B.4) implies

µ
`−1

1− µ
`−1

>
µN̆y̆`−1(1− α)N̆−`+1

(1− µ)
.

This contradicts (B.3) for n = `−1: the assumption that the `th in line is a herding leader
contradicts the assumption that agents 2, . . . , ` − 1 do not wish to renege before the first
in line has completed her N̆ periods of experimentation. (For ` = 2, the above contradicts
the first inequality in (B.2): the assumption that the second in line is a herding leader
contradicts the result that the first in line experiments for N̆ periods.)

�
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