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Section S 1 repeats Lemma 5, Lemma 6, and Lemma 7, and gives the omitted proofs.
Section S 1.1 shows that neither (A) nor (B) of Assumption 1 can be dispensed with in
Theorem 1. Section S 1.2 shows that all priority structures having at most a two-way tie
at the top (and being otherwise strict) are solvable.

S 1. Omitted proofs

Lemma 5. Fix a weak priority structure �.

(a) Let i� j�k ∈ I be three distinct agents and let o�p ∈ O be two distinct objects such
that i ∼o j ∼o k and i �p k�p j. Let R be a preference profile such that

Ri Rj Rk

o o p

and such that for all z ∈ I \ {i� j�k} and all õ ∈ {o�p} for which z �õ ĩ for some
ĩ ∈ {i� j�k}, z Pz õ. If f is constrained efficient and strategy-proof, then fi(R) = o.

(b) Let i� j�k� l ∈ I be four distinct agents and let o�p�q ∈ O be three distinct objects
such that i ∼o j ∼o k ∼o l, {i� j} �p k �p l, and i �q l �q j. Let R be a preference
profile such that

Ri Rj Rk Rl

o o p q

and such that for all z ∈ I \ {i� j�k� l} and all õ ∈ {o�p�q} for which z �õ ĩ for some
ĩ ∈ {i� j�k� l}, z Pz õ. If f is constrained efficient and strategy-proof, then fi(R) = o.

(c) Let i� j�k� l ∈ I be four distinct agents and let o�p�q ∈ O be three distinct objects
such that i ∼o j ∼o k, i �p l �p k, and k �q l �q j. Let R be a preference profile
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such that

Ri Rj Rk Rl

o o p q

and such that for all z ∈ I \ {i� j�k� l} and all õ ∈ {o�p�q} for which z �õ ĩ for some
ĩ ∈ {i� j�k� l}, z Pz õ. If f is constrained efficient and strategy-proof, then fi(R) = o.

Proof. (a) By definition of R and stability, object o is assigned to agent i or agent j at R.
Assume to the contrary that fi(R) �= o and fj(R) = o. The following diagram shows how
we derive a contradiction:

R Ri Rj Rk

o o p →
R1 R1

i Rj Rk

o o p

p

↓
R3 R1

i Rj R2
k

o o o

p p

←
R2 R1

i Rj R1
k

o o p

p o

In moving from R to R1, we have used strategy-proofness for agent i to infer fi(R1) �= o.
Since i �p k, stability then implies fk(R

1) = k. In moving from R1 to R2, we have used
strategy-proofness for agent k to infer fk(R2) �= p. This is compatible with stability only
when fi(R

2) = p. But then constrained efficiency requires that fk(R2) �= o, since i and j

would otherwise form a stable improvement cycle of f (R2) at R2. Finally, in moving from
R2 to R3 we have used strategy-proofness for k one more time to infer fk(R3) = k. This is
compatible with constrained efficiency only when fi(R

3) = p and fj(R
3) = o. However,

this assignment at R3 contradicts Lemma 4 (in the main paper) given that {i�k} �p j so
that i →p j is an (i� j;o�p) path that is compatible with the (k� j;o�p) path k →p j and
i ∼o j ∼o k. Hence, fj(R) = o is impossible for any constrained efficient and strategy-
proof mechanism f .

(b) By definition of R and stability, object o is assigned at R to agent i or agent j.
Assume to the contrary that fi(R) �= o and fj(R) = o.

If i �q l �q j, we obtain an immediate contradiction to the first part of Lemma 5.
Hence, we must have i ∼q l �q j.

Now consider the profile R1 that is obtained from R by letting i add q as her second
most preferred object:

R1 R1
i Rj Rk Rl

o o p q

q

By strategy-proofness, fi(R1) �= o. By individual rationality, we are left to consider two
possible cases.
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Case 1. fi(R
1) = q. The following diagram shows how to derive a contradiction to the

assumed properties of f :

R1 R1
i Rj Rk Rl

o o p q

q

→
R2 R1

i Rj Rk R1
l

o o p q

q o

→
R3 R1

i Rj Rk R2
l

o o p o

q q

In moving from R1 to R2, we have used strategy-proofness for agent l to infer
fl(R

2) �= q. By definition of R and R2, this is compatible with stability only when
fi(R

2) = q. But then we must have fl(R
2) �= o, as otherwise i and l would form a stable

improvement cycle of f (R2) at R2. In moving from R2 to R3, we have again used strategy-
proofness for agent l to infer fl(R3) = l. This is compatible with constrained efficiency
only when fi(R

3) = q and fj(R
3) = o. But the latter is a contradiction to Lemma 4 given

that {i� l} �q j so that i →q j is a (i� j;o�q) path that is compatible with the (l� j;o�q) path
l →q j. Hence, fi(R1) = q is impossible for any constrained efficient and strategy-proof
mechanism f .

Case 2. fi(R
1) = i. By the definition of R1 and stability, fi(R1) = i implies fl(R

1) = q.
The following diagram shows how to derive a contradiction:

R1 R1
i Rj Rk Rl

o o p q

q

→
R4 R2

i Rj Rk Rl

q o p q →
R5 R2

i Rj Rk R2
l

q o p o

q

In moving from R1 to R4, we have used strategy-proofness for agent i to infer fi(R4) = i.
This is compatible with stability only when fl(R

4) = q.
By strategy-proofness for agent l, fl(R4) = q implies fl(R5) ∈ {o�q}. Suppose first that

fl(R
5) = q. In this case, strategy-proofness for agent i would imply that, for R̃ defined by

R̃ R̃i Rj Rk R2
l

q o p o

o q

we must have fi(R̃) �= q. Furthermore, if fi(R̃)= o, stability would require that fl(R̃)= q.
But then i and l would form a stable improvement cycle of f (R̃) at R̃, contradicting con-
strained efficiency of f . Since fi(R̃) /∈ {q�o}, we must have fi(R̃) = i. But then strategy-
proofness for agent i implies that, for R̂ defined by

R̂ R1
i Rj Rk R2

l

o o p o

q q

we must have fi(R̂) = i. This is compatible with constrained efficiency only if fl(R̂) = q

and fj(R̂) = o. But fj(R̂) = o is a contradiction to Lemma 4 given that {i� l} �q j so that
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i →q j is an (i� j;o�q) path that is compatible with the (l� j;o�q) path l �q j (and i ∼o

j ∼o l). Since fl(R
5)= q necessarily leads to a contradiction, we must have fl(R

5)= o.
Strategy-proofness for agent l then requires that, for R6 defined by

R6 R2
i Rj Rk R3

l

q o p o

we must have fl(R
6) = o. But since j ∼o k∼o l and j �p k�p l, fl(R6) = o is a contradic-

tion to the first part of Lemma 5. This completes the proof.

(c) By the definition of R and non-wastefulness, object o is assigned to agent i or
agent j at the preference profile R. Assume that, contrary to what we want to show,
fi(R) �= o and fj(R) = o. Given that i �p l �p k and k �q l, it is easy to see that strategy-
proofness and constrained efficiency imply

R1 R1
i Rj Rk Rl

o o p q

p

→

R2 R1
i Rj R1

k Rl

o o p q

p o

q

→

R3 R1
i Rj R1

k R1
l

o o p q

p o p

q

Next, consider

R4 R1
i Rj R1

k R2
l

o o p p

p o q

q

Strategy-proofness for agent l implies fl(R
4) = l. This is compatible with constrained

efficiency only if fi(R4) = p, fj(R4) = o, and fk(R
4)= q. Strategy-proofness for k implies

that

R5 R1
i Rj R2

k R2
l

o o o p

p p q

q

By constrained efficiency, fi(R5) = o or fj(R5) = o.
We argue first that fj(R

5) = o is impossible. Suppose to the contrary. Note that
i →p l →q j is an (i� j;o�q) path that is compatible with the (k� j;o�q) path k →q j.
Furthermore, note that the fact that k ranks p as her second most preferred object is
irrelevant since l ranks p first and has strictly higher priority for it than k. Given these
observations, it is straightforward to modify the arguments in the proof of Lemma 4 to
show that fj(R5) = o implies that f cannot be strategy-proof and constrained efficient.
Hence, fj(R5) �= o as was claimed above.
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Since fj(R
5) �= o, we must have fi(R

5) = o. By constrained efficiency, this implies
fl(R

5) = p. Then

R5 R1
i Rj R2

k R2
l

o o o p

p p q

q

→
R6 R1

i Rj R2
k R1

l

o o o q

p p p

q

→
R7 R1

i Rj R2
k Rl

o o o q

p p

q

In moving from R5 to R6 we have used strategy-proofness for l to infer fl(R
6) �= l. If

fl(R
6) = p, then stability implies fi(R6) = o and fk(R

6) = q. But then l and k would form
a stable improvement cycle, thus contradicting constrained efficiency. Hence, we must
have fl(R

6) = q. By strategy-proofness, fl(R7) = q. Since k�q l, fl(R7) = q is compatible
with stability only if fk(R7) ∈ {o�p}. But given that fk(R

2) = q and k can unilaterally
deviate from R2 to obtain R7, fk(R7) ∈ {o�p} implies that f cannot be strategy-proof.
Hence, � is unsolvable and this completes the proof. �

Lemma 6. Fix a weak priority structure �.

(a) Let i� j ∈ I be two distinct agents and let o ∈O be an object such that i ∼o j. If there
is an (i� j;o) path i →p1 i1 · · · →pM iM →o j that is compatible with a (j� i;o) path

j →q1 j1 · · · →qN jN →o i, then � is unsolvable.

(b) Let i� j�k� l ∈ I be four distinct agents and let o ∈O be an object such that i ∼o j ∼o

k ∼o l. If there exist two objects p�q ∈O such that i �p k�p j and j �q l �q i, then
� is unsolvable.

Proof. (a) Suppose to the contrary that there exists a constrained efficient and strategy-
proof mechanism f . Consider the following preference profile:

R Ri Rj Rim Rjn

o o pm qn

p1 q1 pm+1 qn+1

Lemma 3 implies fi(R) = p1 and fj(R) = q1.
Now assume that i deviates to R′

i : o. By strategy-proofness, we must have
fi(R

′
i�R−i) = i. We claim fj(R

′
i�R−i) = o. Otherwise, the construction of R would im-

ply that, for all n ∈ {0� � � � �N}, fjn(R
′
i�R−i) = qn+1. But then j = j0� j1� � � � � jN would

form a stable improvement cycle of f (R′
i�R−i) at (R′

i�R−i). Hence, we must have
fj(R

′
i�R−i) = o.

Next, assume that, starting from R, j deviates to R′
j : o. A completely symmet-

ric argument to that used to establish that fj(R
′
i�R−i) = o shows that we must have

fi(R
′
j�R−j) = o.

Finally, consider R′′ ≡ (R′
i�R

′
j�R−i�j). Coming from the profile (R′

j�R−j), strategy-
proofness for i implies fi(R

′′) = o. Coming from (R′
i�R−i), strategy-proofness for j im-

plies fj(R
′′) = o. Since o cannot be allocated to more than one agent and i �= j, we ob-

tain a contradiction. Hence, there cannot be a constrained efficient and strategy-proof
mechanism.



6 Ehlers and Westkamp Supplementary Material

(b) Part (b) follows immediately from the first part of Lemma 5, since it implies that
at the preference profile

R Ri Rj Rk Rl

o o p q

a constrained efficient and strategy-proof mechanism would have to (i) assign o to i

given that i ∼o j ∼o k and i �p k �p j, and (ii) assign o to j given that i ∼o j ∼o l and
j �q l �q i. Since there is only one copy of o and i �= j, (i) and (ii) imply that there is no
constrained efficient and strategy-proof mechanism. �

Lemma 7. Let i1, i2, i3, i4, and i5 be five distinct agents and let o1, o2, o3, o4, and o5 be five
distinct objects. Each of the following priority structures is unsolvable:

i1 ∼o1 i2 ∼o1 i3 ∼o1 i4
{i1� i2} �o2 i3 �o2 i4
{i1� i2} �o3 i3
i2 �o4 i4 �o4 i1
i1 �o5 i4 �o5 i2

(1∗)

i1 ∼o1 i2 ∼o1 i3 ∼o1 i4
{i1� i2} �o2 i3 �o2 i4
i4 �o3 {i2� i5}
i2 �o4 i5 �o4 i1

(2∗)

i1 ∼o1 i2 ∼o1 i3
i1 ∼o2 i4 ∼o2 i5 �o2 i2 �o2 i3
i4 �o3 i5 �o3 i1

{i2� i3} �o4 i4

(3∗)

i1 ∼o1 i2 ∼o1 i3
{i2� i3} �o2 i4
i4 �o3 i1 �o3 {i2� i3}

(4∗)

i1 ∼o1 i2 ∼o1 i3
i1 �o2 i4
i2 �o3 i5

{i2� i4} �o4 i3 �o4 i1
{i1� i5} �o5 i3 �o5 i2

(5∗)

i1 ∼o1 i2 ∼o1 i3
{i1� i2} �o2 i5 �o2 i3
i2 �o3 i4
i3 �o4 i5 �o4 i1

{i3� i4} �o5 i5 �o5 i2

(6∗)
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Proof. For each of the six priority structures defined in Lemma 7, we use a proof by
contradiction. Throughout the proof, let f be an arbitrary constrained efficient and
strategy-proof mechanism.

Step 1. The priority structure in (1∗) is unsolvable.

The priority structure in (1∗) is unsolvable.
The proof revolves around the preference profile

R Ri1 Ri2 Ri3 Ri4

o1 o1 o3 o2

Claim 1. fi2(R) = o1.

We start by considering the preference profile

R̃ Ri1 Ri2 R̃i3 R̃i4

o1 o1 o2 o4

Since {i1� i2} �o2 i3 �o2 i4 and i2 �o4 i4 �o4 i1, the second part of Lemma 5 implies that we
must have fi2(R̃)= o1.

Next, note that strategy-proofness for agent i2 implies that i2 must still obtain object
o1 at the profile1

R1 Ri1 R1
i2

R̃i3 R̃i4

o1 o1 o2 o4

o4

Since i2 obtains o1 at R1, constrained efficiency requires fi4(R
1) = o4. Next, consider the

preference profile

R2 Ri1 R1
i2

R̃i3 R1
i4

o1 o1 o2 o2

o4 o4

By strategy-proofness for agent i4, we must have fi4(R
2) ∈ {o2�o4}. Since i3 ranks o2 first

and i3 �o2 i4, stability implies fi4(R
2) �= o2. Hence, we must have fi4(R

2) = o4. We now
show that fi4(R

2) = o4 is only possible when fi2(R
2) = o1. If i2 �o4 i4, then fi2(R

2) = o1

follows immediately from stability of f (R2). So suppose that i2 ∼o4 i4 and that, contrary
to what we want to show, fi1(R

2) = o1. Since fi4(R
2) = o4 and fi1(R

2) = o1, we must
have fi2(R

2) = i2. We derive a contradiction to the assumed properties of f using the

1Recall that boxes indicate assigned objects.
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sequence of preference profiles

R2�1 Ri1 R2
i2

R̃i3 R1
i4

o1 o4 o2 o2

o4

→
R2�2 Ri1 R2

i2
R̃i3 R2

i4

o1 o4 o2 o1

o4

↓
R2�4 Ri1 R1

i2
R̃i3 R2

i4

o1 o1 o2 o1

o4 o4

←
R2�3 Ri1 R3

i2
R̃i3 R2

i4

o1 o4 o2 o1

o1 o4

Given that fi2(R
2) = i2, the indicated assignment at R2�1 follows immediately from

strategy-proofness and stability. Strategy-proofness implies that fi4(R
2�2) ∈ {o1�o4} since

fi4(R
2�1) = o4. If fi4(R

2�2) = o1, then i4 would still have to obtain o1 when she unilaterally

deviates to R3
i4

= o1. However, since i1 �o2 i3 �o2 i4 and i1 ∼o1 i3 ∼o1 i4, fi4(R
3
i4
�R2�2

−i4
) = o1

is incompatible with the tie-breaking rule in the first part of Lemma 5. Hence, we
must have fi4(R

2�2) = o4 and fi1(R
2�2) = o1. Strategy-proofness and non-wastefulness

imply fi2(R
2�3) �= o4 and fi4(R

2�3) = o4. If fi2(R
2�3) = o1, then i2 and i4 would form

a stable improvement cycle of f (R2�3) at R2�3, a contradiction. Hence, we must have
fi2(R

2�3) = i2. By strategy-proofness, we must also have fi2(R
2�4)= i2. Non-wastefulness

then implies that fi4(R
2�4) = o4 and fi1(R

2�4) = o1. Given that {i2� i4} �o4 i1, i2 →o4 i1
is an (i2� i1;o1�o4) path that is compatible with the (i4� i1;o1�o4) path i4 →o4 i1. Since
i2 ∼o1 i4 ∼o1 i1, fi1(R

2�4) = o1 contradicts the tie-breaking rule in Lemma 4. Hence,
fi1(R

2) = o1 also leads to a contradiction when i2 ∼o4 i4 and we must have fi2(R
2)= o1.

The following diagram summarizes the remainder of the proof of Claim 1:

R2 Ri1 R1
i2

R̃i3 R1
i4

o1 o1 o2 o2

o4 o4

→
R3 R1

i1
R1
i2

R̃i3 R1
i4

o1 o1 o2 o2

o2 o4 o4

→
R4 R1

i1
R1
i2

R1
i3

R1
i4

o1 o1 o2 o2

o2 o4 o3 o4

↓
R7 R1

i1
R4
i2

Ri3 Ri4

o1 o1 o3 o2

o2 o3

←
R6 R1

i1
R4
i2

Ri3 R1
i4

o1 o1 o3 o2

o2 o3 o4

←
R5 R1

i1
R4
i2

R1
i3

R1
i4

o1 o1 o2 o2

o2 o3 o3 o4

By strategy-proofness, we must have fi1(R
3) �= o1 given that fi1(R

2) = i1. Since i1 �o2

{i3� i4}, stability requires fi1(R
3) = o2 and fi3(R

3) = i3. Strategy-proofness and stability
then imply fi3(R

4) = o3 and fi1(R
4) = o2. Hence, fi2(R

4) = o1 and another application
of strategy-proofness yields fi2(R

5) = o1. Since fi3(R
5) = o3 if fi2(R

5) = o1, strategy-
proofness requires that fi3(R

6) = o3 as well. Given that i2 �o3 i3, fi3(R
6) = o3 implies

fi2(R
6) = o1. Finally, fi2(R

6) = o1 and i1 �o2 i4 imply fi1(R
6) = o2 and fi4(R

6) �= o2.
Strategy-proofness allows us to infer fi4(R

7) = i4, which is compatible with constrained
efficiency only if fi1(R

7) = o2 and fi2(R
7) = o1. It is now straightforward to see that

two more applications of strategy-proofness from R7 yield the desired statement that
fi2(R) = o1. This completes the proof of Claim 1. �
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Claim 2. fi1(R) = o1.

Consider the preference profile

R̂ Ri1 Ri2 Ri3 R′
i4

o1 o1 o2 o5

Since {i1� i2} �o2 i3 �o2 i4 and i1 �o5 i4 �o5 i2, the second part of Lemma 5 implies that
we must have fi1(R̂)= o1. A completely analogous argument to that used in the proof of
Claim 1 shows that fi1(R̂) = o1 implies fi1(R) = o1.2 �

Combining Claims 1 and 2, we find that a constrained efficient and strategy-proof
mechanism for � has to satisfy fi1(R) = fi2(R) = o1. Since there is only one copy of o1,
this is a contradiction. Hence, there exists no constrained efficient and strategy-proof
mechanism for priority structure in (1∗). �

Step 2. The priority structure in (2∗) is unsolvable.

As usual, arrows indicate how we move between profiles and boxes indicate object
assignments:

R Ri1 Ri2 Ri3 Ri4 Ri5

o4 o1 o2 o1 o3 →
R1 Ri1 Ri2 Ri3 R1

i4
Ri5

o4 o1 o2 o1 o3

o3

↓
R3 R1

i1
Ri2 Ri3 R1

i4
R1
i5

o4 o1 o2 o1 o3

o1 o3 o4

←
R2 Ri1 Ri2 Ri3 R1

i4
R1
i5

o4 o1 o2 o1 o3

o3 o4

↓
R4 R1

i1
R1
i2

Ri3 R1
i4

R1
i5

o4 o1 o2 o1 o3

o1 o4 o3 o4

→
R5 R2

i1
R1
i2

Ri3 R1
i4

R1
i5

o1 o1 o2 o1 o3

o4 o4 o3 o4

Note that fi2(R) = o1 follows from the first part of Lemma 5 since i2 �o2 i3 �o2 i4
and i2 ∼o1 i3 ∼o1 i4. By strategy-proofness for i4, we must have fi4(R

1) �= o1. Since
i4 �o3 i5, stability then implies that fi4(R

1) = o3. By strategy-proofness for i5, we must
have fi5(R

2) �= o3. Since i5 �o4 i1, stability then implies that fi5(R
2) = o4. By strategy-

proofness for i1, we must have fi1(R
3) �= o4. If fi1(R

3) = o1, then non-wastefulness would
imply fi4(R

3) = o3 and fi5(R
3) = o4. But then i1, i4, and i5 would form a stable improve-

ment cycle at R3, thus contradicting constrained efficiency of f (R3). Hence, fi1(R
3)= i1

2In the arguments so far, we have used that i2 �o4 i4 �o4 i1, i1 �o2 i3 �o2 i4, and i2 �o3 i3. Since i1 �o5

i4 �o5 i2, i2 �o2 i3 �o2 i4, and i1 �o3 i3, one just has to switch the roles of i1 and i2 and the roles of o4 and o5

in the proof of Claim 1 to establish that fi1(R̂) = o1 implies fi1(R) = o1. We omit the details.
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(and the indicated assignments at R3 then follow from constrained efficiency). Strategy-
proofness for i2 implies fi2(R

4) = o1. The indicated assignments then follow immedi-
ately from stability given that i4 �o3 i5 and i5 �o4 i1. Strategy-proofness for i1 implies that
fi1(R

5) = i1. We now argue that we must have fi2(R
5) = o1; otherwise, strategy-proofness

for i2 would imply that for the preference profile

R5�1 R2
i1

Ri2 Ri3 R1
i4

R2
i5

o1 o1 o2 o1 o3

o4 o3 o4

we must have fi2(R
5�1) = i2. Since i1 can obtain R5�1 from R3 by a unilateral devia-

tion (from R1
i1

to R2
i1

) and since fi1(R
3) = i1, strategy-proofness for i1 would then imply

fi1(R
5�1) = i1. Now note that fi2(R

5�1) = i2 and fi1(R
5�1) = i1 could be compatible with

non-wastefulness only if fi4(R
5�1) = o1 and fi5(R

5�1) = o4. But then o3 would remain
unassigned even though o3 Pi5(R

5�1) o4. Hence, f (R5�1) cannot be stable if fi2(R
5) �= o1.

Next, consider

R6 R2
i1

R1
i2

Ri3 R1
i4

R2
i5

o1 o1 o2 o1 o4

o4 o4 o3

Strategy-proofness and fi5(R
5) = o4 imply fi5(R

6) = o4. Since i2 �o4 i5, stability implies
fi2(R

6) = o1. Finally, consider the profile

R7 R2
i1

R2
i2

Ri3 R1
i4

R2
i5

o1 o3 o2 o1 o4

o4 o1 o3

By strategy-proofness for i2, we must have fi2(R
7) ∈ {o1�o3}. If fi2(R

7) = o1, then
non-wastefulness would require fi4(R

7) = o3. But then i2 and i4 would form a stable
improvement cycle, thus contradicting the constrained efficiency of f (R7). Hence, we
must have fi2(R

7) = o3. Since i4 �o3 i2, this requires fi4(R
7) = o1. It is straightforward

to show that strategy-proofness implies that i4 must still obtain o1 when, starting from
R7, i2 first deletes o1 from her preferences (again since i4 �o3 i2), i1 then deletes o4 from
her preferences and, finally, i4 deletes o3 from her preferences. Since i1 �o2 i3 �o2 i4 and
i1 ∼o1 i3 ∼o1 i4, we obtain a contradiction to the first part of Lemma 5.

Step 3. The priority structure in (3∗) is unsolvable.

Consider the preference profile

R Ri1 Ri2 Ri3 Ri4 Ri5

o1 o1 o1 o4 o3

o2 o4 o4 o2
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Since, for k ∈ {2�3} and l ∈ {2�3} \ {k}, i1 →o2 ik and il →o4 i4 →o2 ik are two compat-
ible paths, Lemma 4 and constrained efficiency immediately imply fi1(R) = o1. We now
complete the proof by showing that fi1(R) = o1 is impossible as well. The proof relies on
the sequence of profiles

R1 R1
i1

Ri2 Ri3 Ri4 Ri5

o2 o1 o1 o4 o3

o1 o4 o4 o2

→
R2 R1

i1
Ri2 R1

i3
Ri4 Ri5

o2 o1 o1 o4 o3

o1 o4 o2

↓ ↓
R3 R1

i1
R1
i2

Ri3 Ri4 Ri5

o2 o1 o1 o4 o3

o1 o4 o2

→
R4 R1

i1
R1
i2

R2
i3

Ri4 Ri5

o2 o1 o1 o4 o3

o1 o2

By strategy-proofness for i1, we must have fi1(R
1) ∈ {o1�o2}. Assume first that

fi1(R
1) = o2. Given that {i2� i3} �o4 i4, stability would then imply fi4(R

1) = i4. It is easy to
see that two applications of strategy-proofness (for i4 and then for i1) yield

R̃1 R2
i1

Ri2 Ri3 R2
i4

Ri5

o2 o1 o1 o2 o3

o4 o4

Since i4 �o3 i5 �o3 i1 and i1 ∼o2 i4 ∼o2 i5, we obtain a contradiction to the first part of
Lemma 5. Hence, we must have fi1(R

1) = o1. By strategy-proofness for i3 and con-
strained efficiency, fi1(R

1) = o1 implies fi2(R
2) = o1. Similarly, fi3(R

3) = o1. But then
strategy-proofness for i2 and i3 would imply that fi2(R

4) = fi3(R
4) = o1, which is impos-

sible. Since every possible allocation of o1 at R necessarily leads to a contradiction of
either strategy-proofness or constrained efficiency, the priority structure in (3∗) is un-
solvable.

Step 4. The priority structure in (4∗) is unsolvable.

Consider the preference profile

R Ri1 Ri2 Ri3 Ri4

o1 o1 o1 o2

o3 o2 o2 o3

Note that i2 →o2 i4 →o3 i1 is an (i2� i1;o1�o3) path that is compatible with the (i3� i1;
o1�o3) path i3 →o2 i4 →o3 i1, and Lemma 4 implies fi1(R) �= o1. Similarly, i1 →o3 i2 and
i3 →o2 i4 →o3 i2 are compatible paths, so that Lemma 4 implies fi2(R) �= o1, and that
i1 →o3 i3 and i2 →o2 i4 →o3 i3 are compatible paths, so that Lemma 4 implies fi3(R) �= o1.
Thus, o1 must remain unallocated at R, contradicting non-wastefulness of f (R).

Step 5. The priority structure in (5∗) is unsolvable.
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Consider the preference profile

R Ri1 Ri2 Ri3 Ri4 Ri5

o1 o1 o4 o2 o3

o2 o3 o5 o4 o5

We claim that fi2(R) = o1. Consider first the preference profile

R′ R′
i1

R′
i2

R′
i3

R′
i4

R′
i5

o1 o1 o4 o2 o3

Since i2 �o4 i3 �o4 i1, the first part of Lemma 5 implies fi2(R
′) = o1. Two appli-

cations of strategy-proofness, once for i1 and once for i2, imply that fi2(Ri1�Ri2�

R′
−{i1�i2}) = o1. Non-wastefulness then implies that fi5(Ri1�Ri2�R

′
−{i1�i2}) = o3. By

strategy-proofness for i5, we must have fi5(Ri1�Ri2�Ri5�R
′
−{i1�i2�i5}) = o3. Since i2 �o3 i5

and i1 �o2 i4, stability implies that fi1(Ri1�Ri2�Ri5�R
′
−{i1�i2�i5}) = o2,

fi2(Ri1�Ri2�Ri5�R
′
−{i1�i2�i5}) = o1, and fi4(Ri1�Ri2�Ri5�R

′
−{i1�i2�i5}) = i4. By strategy-

proofness for i4, stability, and the assumption that i4 �o4 i3, we must have
fi4(Ri1�Ri2�R

′
i3
�Ri4�Ri5) = o4 and fi3(Ri1�Ri2�R

′
i3
�Ri4�Ri5) = i3. By strategy-proofness

for i3, we must have fi3(Ri1�Ri2�Ri3�Ri4�Ri5) �= o4. Stability is easily seen to imply
fi4(Ri1�Ri2�Ri3�Ri4�Ri5) = o4, fi1(Ri1�Ri2�Ri3�Ri4�Ri5) = o2, and, as we claimed above,
fi2(Ri1�Ri2�Ri3�Ri4�Ri5) = o1.

Next, consider the preference profile

R̃ Ri1 Ri2 R̃i3 Ri4 Ri5

o1 o1 o5 o2 o3

o2 o3 o4 o5

We claim that fi1(R̃) = o1. The proof of the claim proceeds from the preference pro-
file

R̃′ R′
i1

R′
i2

R̃i3 R′
i4

R′
i5

o1 o1 o5 o2 o3

and is similar to the proof that fi2(R) = o1.
Given that fi1(R̃) = o1, i2 �o3 i5, and i5 �o5 i3, stability implies fi3(R̃) = i3. Further-

more, given that fi2(R) = o1, i1 �o2 i4, and i4 �o4 i3, stability implies fi3(R) = o5. But
then, since i3 can obtain R from R̃ by a unilateral deviation from R̃i3 to Ri3 , f cannot be
strategy-proof.

Step 6. The priority structure in (6∗) is unsolvable.

Consider first the preference profile

R1 Ri1 Ri2 Ri3 Ri4 Ri5

o1 o1 o2 o3 o5
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Because i1 ∼o1 i2 ∼o1 i3, i1 �o2 i5 �o2 i3 and i3 �o5 i5 �o5 i2, the third part of Lemma 5 im-
plies fi1(R

1) = o1. It is straightforward to verify that strategy-proofness and constrained
efficiency imply

R̃1 R1
i1

R1
i2

R1
i3

R1
i4

Ri5

o1 o1 o2 o3 o5

o2 o3 o4 o5

Next, consider first the preference profile

R2 Ri1 Ri2 Ri3 Ri4 R1
i5

o1 o1 o2 o3 o4

Because i1 ∼o1 i2 ∼o1 i3, i2 �o2 i5 �o2 i3, and i3 �o4 i5 �o4 i1, the third part of Lemma 5 im-
plies fi2(R

2) = o1. It is straightforward to verify that strategy-proofness and constrained
efficiency imply

R̃2 R1
i1

R1
i2

R1
i3

R1
i4

R2
i5

o1 o1 o2 o3 o4

o2 o3 o4 o5 o5

Since i5 can obtain R̃2 from R̃1 by a unilateral deviation (from Ri5 to R2
i5

), we obtain
that f cannot be strategy-proof. This shows that f cannot be constrained efficient and
strategy-proof. �

S 1.1 Necessity of Assumption 1

In this section, we present two examples. In the first example, the priority structure sat-
isfies Assumption 1(B), but violates Assumption 1(A). In the second example, the priority
structure satisfies Assumption 1(A), but violates Assumption 1(B). For both examples, we
show that a constrained efficient and strategy-proof mechanism exists even though the
priority structures are not strict, HET, or TAU. This shows that both parts of Assumption
1 are necessary for Theorem 1 to hold.

Example S1. Let I = {1� � � � �6} and O = {o�p1�p2}. Priorities are

� �o �p1 �p2

1�2�3 6 6
4 5 5
5 4 4
6 3 1

2 2
1 3

This priority structure violates Assumption 1(A) (because � is not strict and � does
not contain any four-way tie), but satisfies in Assumption 1(B). We show below that �
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is solvable by constructing a variant of the DA that yields a constrained efficient and
strategy-proof mechanism.3 ♦

Example S2. Let I = {1� � � � �6} and O = {o�p1�p2�p3�p4}. Priorities are

� �o �p1 �p2 �p3 �p4

1�2�3�4�5�6 6 5 6 6
5 6 4 5
4 4 5 2
3 1 2 4
2 2 1 1
1 3 3 3

Note that this priority structure violates Assumption 1(B) (since, e.g., 6 �p1 1 and
6 �q 1 for all q ∈ O) but satisfies Assumption 1(A) (because there is a four-way tie
at �o).4,5 ♦

We now proceed to construct a deferred acceptance algorithm with tie-breaking
(DAT) that, as we show below, is constrained efficient and strategy-proof mechanism
for both examples. Let R be an arbitrary preference profile for the six agents in one of
the above examples.

Step 7. Exogenous tie-breaking. For Example S1, define the weak priority structure �′
by setting 1 ∼′

o 3 �′
o 2 �′

o 4 �′
o 5 �′

o 6 and �′
p = �p for p ∈ {p1�p2}. For Example S2,

define the weak priority structure �′ by setting 6 �′
o 5 �′

o 4 �′
o 2 �′

o 1 ∼′
o 3 and �′

p = �p

for p ∈ {p1�p2�p3�p4}.

Step 8. DA without tie-breaking. Run a DA in which rejections are determined by �′
and let μ1 be the temporary assignment at the end of this algorithm.6

Stop if μ1 is a matching; proceed to Step 3 otherwise. Note that, given our construc-
tion of �′, the only possibility for the procedure to proceed to Step 3 is that μ1(1) =
μ1(3) = o.

3This example can be extended to an arbitrary number of agents 1� � � � �N as follows. Let 1 ∼o 2 ∼o 3 �o

4 �o � � � �o N , N �p1 � � � �p1 4 �p1 3 �p1 2 �p1 1, and N �p2 � � � �p2 4 �p2 1 �p2 2 �p2 3. It is easy to see that
all arguments below continue to hold for this extended example.

4The priority structure does, however, satisfy the weaker requirement that the priority structure is con-
nected in the sense that there is no subset of agents J � I such that J �o I \ J for all o.

5To extend this type of example to an arbitrary number of agents 1� � � � �N , let there be N − 1 objects
o�p1� � � � �pN−2 such that N ∼o � � � ∼o 1, N �p1 � � � �p1 1, N − 1 �p2 N �p2 N − 2 �p2 � � � �p2 4 �p2 1 �p2

2 �p2 3, N �p3 N − 2 �p3 N − 1 �p3 N − 3 �p3 � � � �p3 4 �p3 2 �p3 1 �p3 3, � � � , N �pN−2 � � � �pN−2 5 �pN−2

2 �pN−2 4 �pN−2 1 �pN−2 3. As shown in our earlier working paper paper Ehlers and Westkamp (2011), the
just described construction can be used to characterize all solvable priority structures within the class of
priority structures where ties are restricted to occur only at the bottom of priority rankings.

6Formally, in each round, let (A) each agent apply to the most preferred object that has not rejected him
yet, (B) each object p reject all but the highest priority agents according to �′

p, and (C) stop, if there were
no new proposals in (A).
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Step 9. Endogenous tie-breaking. If there is an object p such that μ1(2) = p and 3 �p

2 �p 1, let o reject 1. If there is an object q ∈ O that is acceptable to agent 1 and most
preferred among those who have not received any proposals in Step 2, match 1 to q and
stop; otherwise, leave 1 unmatched and stop.

In any other case, let o reject 3. If there is an object q ∈O that is acceptable to agent 3
and most preferred among those who have not received any proposals in Step 2, match
3 to q and stop; otherwise, leave 3 unmatched and stop.

Given a preference profile R, let DAT(R) denote the outcome of the above
procedure.

Claim 1. For any R, DAT(R) is constrained efficient.

Fix a preference profile R and let μ ≡ DAT(R). We argue first that μ is stable. Note
that all rejections in Step 2 respect all strict priority rankings for the priority structures
in Example S1 and Example S2. Hence, the only possibility for μ to violate the stability
condition is that the algorithm reaches Step 3 and there is an object p ∈ O \ {o} and an
agent j �= i such that p Pi μ(i), μ(j) = p, and i �p j for some i ∈ {1�3}, say for i = 1. But
by the rules of Step 3, 1 is only rejected by o if μ(2) = p for some p such that 3 �p 2 �p 1.
For both examples, the last observation implies that j �μ1(j) 1 for all j ∈ I \ {1} such that

μ1(j) �= j. Hence, μ must be stable.
Next, we show that μ is also constrained efficient. Suppose to the contrary that there

is a stable improvement cycle i1� � � � � im. Assume w.l.o.g. that i1 is among the first (in
the course of the above algorithm) agents in the stable improvement cycle to be rejected
by the object he is pointing to in the cycle. There has to be an agent j who causes the
rejection of i1, i.e., an agent j who was rejected by all objects he prefers to o2 when he
applied to o2 in the DA with tie-breaking and for whom j �o2 i1. By our assumption that
i1 was among the first agents to be rejected by the object he is pointing to in the sta-
ble improvement cycle, we must have j �= i2 and, hence, μ(j) �= o2. Furthermore, since
the welfare of agents is weakly decreasing during the course of the above algorithm, we
must have o2Pjμ(j). These arguments imply that j ∼o2 i1 and, consequently, that o2 = o;
otherwise, we would have i2 �o2 j �o2 i1 and i1 could not be among the highest priority
agents who desire o2 = p at μ, thus contradicting the definition of a stable improve-
ment cycle. Next, we show that {i1� i2� j} = {1�2�3}. For Example S1, we can immediately
infer the just mentioned statement from the original priority ranking �o. For Exam-
ple S2, it is easy to see that if {i1� i2� j} �= {1�2�3}, then the form of �′

o implies i1 = 4, j = 5,
and i2 = 6. However, by our previous arguments, 6 was temporarily matched to an ob-
ject p ∈ O \ {o} such that p R6 o3 when 4 was rejected by o. Since the only agent who
can displace j at o is 6 and the only agent who can displace 6 at p is 5, 6 cannot be re-
jected by o3 during the DA with tie-breaking. Hence, for both examples, we must have
{i1� i2� j} = {1�2�3}. Now assume first that i1 = 2. This is possible only in Example S1
and we can assume w.l.o.g. that j = 1 and i2 = 3. Since each object can appear at most
once in a stable improvement cycle and since no agent in {1�2�3} can displace an agent
in {4�5�6} at either p1 or p2 in Example S1, we must have {i1� � � � � im} ⊆ {1�2�3}. This is



16 Ehlers and Westkamp Supplementary Material

easily seen to imply that m = 2 and 1 �o1 2 �o1 3. But then the rules of Step 3 of the DA
with tie-breaking immediately imply that 3 could not have displaced 1 at o2 = o subse-
quent to being rejected by o1. Hence, we must have, w.l.o.g., i1 = 1. In Example S1, the
only agent who can displace 1 at o is agent 3. Hence, it would have to be the case that
j = 3. But then 3 could not have subsequently been displaced by i2 = 2, thus contradict-
ing μ(i2) = o2 = o. We are left to consider the case of i1 = 1 for Example S2. Here we
must have j = 3 and i2 = 2 given that 2 �′

o 1 �′
o 3. But by the rules of Step 3, 1 cannot dis-

place 2 subsequent to losing a tie-breaking decision against 3. This completes the proof
of constrained efficiency.

Claim 2. DAT is strategy-proof.

Suppose that, contrary to what we want to show, there is a preference profile R, an
agent i, and a misreport R̂i such that DATi(R̂i�R−i) Pi DATi(R). Let μ ≡ DAT(R) and
μ̂ ≡ DAT(R̂i�R−i), and let μ1 and μ̂1 be the temporary assignments at the end of Step 2
of the DAT under R and R̂ ≡ (R̂i�R−i), respectively.

Note first that the DA with tie-breaking has to reach Step 3 for R and R̂, and that
the tie-breaking decision in Step 3 has to be different for R and R̂: if, say, 1 wins the tie-
breaking decision at R and R̂, the DA with tie-breaking would be equivalent to a DA with
strict priorities in which 1 has strictly higher priority for o than 3. Since the DA with strict
priorities is strategy-proof, there cannot be an agent who can profitably manipulate at R.

Next, we argue that i /∈ {2�4�5�6}. Note first that all agents apart from 1 and 3 re-
ceive their final allocation in the second step of DAT. Now consider first Example S1.
Here the temporary assignment at the end of Step 2 of the DAT under R and R̂ is equiv-
alent to the final outcome of a DA in which the “priority ranking” of object o is given by
{1�3} �′′

o {1} �′′
o {3} �′′

o {2} �′′
o {4} �′′

o {5} �′′
o {6} and the priority ranking for all other ob-

jects is as in �. Since these “priorities” induce substitutable preferences that satisfy the
law of aggregate demand, such a DA is strategy-proof Hatfield and Milgrom (2005). This
implies that no agent in {2�4�5�6} can manipulate DAT for Example S1. Next, consider
Example S2. By our construction of �′

o for Example S2, we can infer that no agent in
{2�4�5�6} could have applied to o under R and R̂. But then the temporary assignment
at the end of Step 2 of the DAT is equivalent to a DA in which the priorities of o are given
by {1�3} �′′

o {1} �′′
o {3} �′′

o {2} �′′
o {4} �′′

o {5} �′′
o {6} and the priority ranking for all other ob-

jects is as in �. By the same arguments as above, this implies that no agent in {2�4�5�6}
can profitably manipulate DAT.

To complete the proof, we now show that i = 1 is impossible (the arguments in the
case of i = 3 are completely symmetric). Assume first that μ(1) = o and μ̂(1) �= o. For
both examples, we must have μ̂1(2) = p1 by the rules of Step 3. Furthermore, since the
tie-breaking decision between 1 and 3 is different at R and R̂, we must have μ1(2) �=
μ̂1(2). It is easy to see that for both examples, we must have μ1(2) = p2 since otherwise,
1 would either fail to win the tie-breaking decision against 3 at R (if μ1(2) = p1) or would
not be able to affect the pre-tie-breaking assignment (if μ1(2) ∈ O \ {o�p1�p2}). We im-
mediately obtain that oP1p2 and p2P̂1o. But then, for the deviation to R̂1 to be profitable
for 1, it would have to be the case that, subsequent to displacing 2 at p2, 1 is rejected by
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p2 and 2 ends up temporarily assigned to p1 at the end of Step 2. It is straightforward
to check that the just mentioned configuration is impossible for both types of examples.
Next, assume that μ(1) �= o and μ̂(1) = o. By the rules of Step 3, we must have μ1(2) = p1

and μ̂1(2) �= p1. It is easy to see that for 1 to be able to influence the pre-tie-breaking as-
signment, we must have μ̂1(2) = p2. But then it has to be the case that 1 displaced 2
at p2 during Step 2 of the DAT for profile R. For Example S1, this immediately implies
μ(1) = p2 and we obtain a contradiction to the assumption that 1 and 3 compete for o in
Step 3. For Example S2, 1 must have been displaced at some point of Step 2 of the DAT
under profile R. But this is possible only if μ1(2) = p3 and μ1(4) = p2, thus contradicting
our assumption that μ1(2) = p1. This completes the proof.

S 1.2 Two-way ties at the top

We say that � is a two-way ties at the top (TWT) priority structure, if, for all o ∈ O, there
exist i(o)� j(o) ∈ I such that (a) i(o) �o j(o), (b) for all k ∈ I \ {i(o)� j(o)}, j(o) �o k,
and (c) �o |I\{i(o)} is strict. We now argue that if � is a TWT priority structure, then
the following two-step procedure induces a constrained efficient and strategy-proof
mechanism:

Step 1. Let �′ be a strict priority structure that respects all strict priority rankings in �,
i.e., assume that i �′

o j whenever i �o j.

Step 2. For any preference profile R, choose the outcome of the DA algorithm with
respect to R and �′.

Note that the mechanism induced by the procedure just described is strategy-proof
since the DA mechanism for strict priority structures is strategy-proof and since the
same strict priority ranking �′ is used for all preference profiles. To see that the outcome
of the above procedure is always constrained efficient, let R be a preference profile and
let μ be the matching chosen by the above procedure. If μ is not constrained efficient,
then μ contains a SIC, say i1� � � � � im. Note that il desires μ(il+1) and il ∈ Dμ(il+1)(μ) for
all l ∈ {1� � � � �m} (where m + 1 := 1). Choose an agent from i1� � � � � im who is among the
first ones rejected in DA by the object he desires, say i1. But then i1 is rejected by μ(i2)

because some other agent j ∈ I \ {i1� i2} applied to μ(i2). Note that μ(j) �= μ(i2) and
μ(i2) Pj μ(j). If j �μ(i2) i1, then μ(i2)Pjμ(j) implies i1 /∈Dμ(i2)(μ), a contradiction. Thus,
we must have j ∼μ(i2) i1, and i1 and j are tied at the top of �μ(i2). But then j is never
rejected by μ(i2) and we must have μ(j) = μ(i2), again a contradiction.
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