Stochastic Games with Hidden States
(Online Appendix)

Yuichi Yamamoto™

S.1 Proof of Lemma B6

Pick an arbitrary belief . If
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then the result obviously holds because we have [A -v®(3,s®) —A - v (0,5*)| <g.
So in what follows, we assume that
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Suppose that the initial prior is u and players play the strategy profile §*.
Let Pr(h'|u,5") be the probability of 4’ given the initial prior i and the strategy
profile §#, and let u/*!(h'|u,5*) denote the posterior belief in period # + 1 given
this history /’. Let H*' be the set of histories 4’ such that z + 1 is the first period at
which the support of the posterior belief u’*! is in the set Q*. Intuitively, H* is
the set of histories 4’ such that players will switch their play to s from period
t+ 1 on, according to §*.

Note that the payoff v (5,5") by the strategy profile §* can be represented as

the sum of the two terms: The expected payoffs before the switch to s*" occurs,
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and the payoffs after the switch. That is, we have
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where the expectation operator is taken conditional on that the switch has not hap-
pened yet. Note that the term 1 — ;;(1) Yich Pr(K'|,§*) is the probability that
players still randomize all actions in period ¢ because the switch has not happened
by then. To simplify the notation, let p’ denote this probability. From Lemma B35,

we know that
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for each ' € H*, where
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Applying this and A - g (a') > —23 to the above equation, we obtain
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Using Y7 o Xprep Pr(h’|p,5#)6" = X7 (1 — )51_1Z;;(I)theH*fPr(hi‘.uvﬁu) =
Y (1—8)81(1—p’), we obtain
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According to Lemma B4, the probability that the support reaches Q* within
4le| periods is at least *. This implies that the probability that players still ran-
domize all actions in period 4191 11 is at most 1 — 7*. Similarly, for each natural
number 7, the probability that players still randomize all actions in period n4lel 41
is at most (1 —7*)", that is, p”4lg‘+1 < (1—m*)". Then since p’ is weakly decreas-
ing in ¢, we obtain
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for eachn =0,1,--- and k € {1,---,4/€}. This inequality, together with —2g <
v*, implies that

P (28 + (1= p™ T 2 (1) (- 2) + {1 - (1 - 7)" v

for each n =0,1,--- and k € {1,--- 4%}, Plugging this inequality into (1), we

obtain
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Plugging Y7 {(1— )8} 1 = 1/{1 — (1 —7*)8*" } and xo_, (64! =
1/(1-84%),
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Subtracting both sides from A - v®(8,s?), we have
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Since A -v®(8,5?) > —3,
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Hence the result follows.

S.2 Proof of Lemma B11

Pick a belief u whose support is robustly accessible. Suppose that the initial prior
is u**, the opponents play §* ;» and player i plays a best reply. Let p’ denote the
probability that players —i still randomize actions in period ¢. Then as in the proof
of Lemma B6, we have
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because the stage-game payoff before the switch to s* ; is bounded from above by
g, and the continuation payoff after the switch is bounded from above by Kl-“ =
maxﬁeAu VZH (Slii).

As in the proof of Lemma B6, we have

pn4‘m+k < (1 - n*)n

foreachn=0,1,--- and k € {1,--- 419} This inequality, together with g > Ki“,
implies that
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for each n =0,1,--- and k € {1,---,4/%}. Plugging this inequality into the first

one, we obtain
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Then as in the proof of Lemma B6, the standard algebra shows

[\ — Q]
W (1-86*")g §*" k!
vi (82, < 49| 4ol
1—(1—7m*)6 1—(1—7m*)6
Since o o
s 1— 84
1—(1—71'*)54‘Q| 1—(1—71'*)54@’
we have

ok

pH (5”-)<K.“+(1_54Q)(§_K#).
i —i) =" 1—(1—71'*)64‘0‘

Since 1 — (1 —7%)64” > 1— (1 - 7*) = n* and K* > —3, the result follows.



