Stochastic Games with Hidden States (Online Appendix)

Yuichi Yamamoto*

S. 1 Proof of Lemma B6

Pick an arbitrary belief μ. If

$$
\frac{\left(1-\delta^{2^{|\Omega|}}\right) 2 \bar{g}}{\delta^{2^{|\Omega|}} \bar{\pi}^{4^{|\Omega|}}} \geq \bar{g}
$$

then the result obviously holds because we have $\left|\boldsymbol{\lambda} \cdot v^{\omega}\left(\boldsymbol{\delta}, s^{\omega}\right)-\boldsymbol{\lambda} \cdot \nu^{\mu}\left(\boldsymbol{\delta}, \tilde{s}^{\mu}\right)\right| \leq \bar{g}$. So in what follows, we assume that

$$
\frac{\left(1-\delta^{2^{2 \Omega \mid}}\right) 2 \bar{g}}{\delta^{|\Omega|} \bar{\pi}^{4, \Omega \mid}}<\bar{g}
$$

Suppose that the initial prior is μ and players play the strategy profile \tilde{s}^{μ}. Let $\operatorname{Pr}\left(h^{t} \mid \mu, \tilde{s}^{\mu}\right)$ be the probability of h^{t} given the initial prior μ and the strategy profile \tilde{s}^{μ}, and let $\mu^{t+1}\left(h^{t} \mid \mu, \tilde{s}^{\mu}\right)$ denote the posterior belief in period $t+1$ given this history h^{t}. Let $H^{* t}$ be the set of histories h^{t} such that $t+1$ is the first period at which the support of the posterior belief μ^{t+1} is in the set Ω^{*}. Intuitively, $H^{* t}$ is the set of histories h^{t} such that players will switch their play to $s^{\mu^{t+1}}$ from period $t+1$ on, according to \tilde{s}^{μ}.

Note that the payoff $v^{\mu}\left(\delta, \tilde{s}^{\mu}\right)$ by the strategy profile \tilde{s}^{μ} can be represented as the sum of the two terms: The expected payoffs before the switch to $s^{\mu^{t}}$ occurs,

[^0]and the payoffs after the switch. That is, we have
\[

$$
\begin{aligned}
\lambda \cdot v^{\mu}\left(\delta, \tilde{s}^{\mu}\right)= & \sum_{t=1}^{\infty}\left(1-\sum_{t=0}^{t-1} \sum_{h^{i} \in H^{* \tilde{t}}} \operatorname{Pr}\left(h^{\tilde{t}} \mid \mu, \tilde{s}^{\mu}\right)\right)(1-\delta) \delta^{t-1} E\left[\lambda \cdot g^{\omega^{t}}\left(a^{t}\right) \mid \mu, \tilde{s}^{\mu}\right] \\
& +\sum_{t=0}^{\infty} \sum_{h^{t} \in H^{* t}} \operatorname{Pr}\left(h^{t} \mid \mu, \tilde{s}^{\mu}\right) \delta^{t} \lambda \cdot \nu^{\mu^{t+1}\left(h^{t} \mid \mu, \tilde{s}^{\mu}\right)}\left(\delta, s^{\mu^{t+1}\left(h^{t} \mid \mu, \tilde{s}^{\mu}\right)}\right)
\end{aligned}
$$
\]

where the expectation operator is taken conditional on that the switch has not happened yet. Note that the term $1-\sum_{\tilde{t}=0}^{t-1} \sum_{h^{\tilde{t}} \in H^{* \tau}} \operatorname{Pr}\left(h^{\tilde{t}} \mid \mu, \tilde{s}^{\mu}\right)$ is the probability that players still randomize all actions in period t because the switch has not happened by then. To simplify the notation, let ρ^{t} denote this probability. From Lemma B5, we know that

$$
\lambda \cdot v^{\mu^{t+1}\left(h^{t} \mid \mu, \bar{s}^{\mu}\right)}\left(\delta, s^{\mu^{t+1}\left(h^{t} \mid \mu, \tilde{s}^{\mu}\right)}\right) \geq v^{*}
$$

for each $h^{t} \in H^{* t}$, where

$$
v^{*}=\lambda \cdot v^{\omega}\left(\delta, s^{\omega}\right)-\frac{\left(1-\delta^{2^{|\Omega|}}\right) 2 \bar{g}}{\delta^{2^{|\Omega|}} \bar{\pi}^{4 \Omega \mid}}
$$

Applying this and $\lambda \cdot g^{\omega^{t}}\left(a^{t}\right) \geq-2 \bar{g}$ to the above equation, we obtain

$$
\lambda \cdot v^{\mu}\left(\delta, \tilde{s}^{\mu}\right) \geq \sum_{t=1}^{\infty} \rho^{t}(1-\delta) \delta^{t-1}(-2 \bar{g})+\sum_{t=0}^{\infty} \sum_{h^{t} \in H^{* t}} \operatorname{Pr}\left(h^{t} \mid \mu, \tilde{s}^{\mu}\right) \delta^{t} v^{*} .
$$

Using $\sum_{t=0}^{\infty} \sum_{h^{t} \in H^{* t}} \operatorname{Pr}\left(h^{t} \mid \mu, \tilde{s}^{\mu}\right) \delta^{t}=\sum_{t=1}^{\infty}(1-\delta) \delta^{t-1} \sum_{\tilde{t}=0}^{t-1} \sum_{h^{\tilde{t}} \in H^{* i}} \operatorname{Pr}\left(h^{\tilde{t}} \mid \mu, \tilde{s}^{\mu}\right)=$ $\sum_{t=1}^{\infty}(1-\delta) \delta^{t-1}\left(1-\rho^{t}\right)$, we obtain

$$
\begin{equation*}
\lambda \cdot \nu^{\mu}\left(\delta, \tilde{s}^{\mu}\right) \geq(1-\delta) \sum_{t=1}^{\infty} \delta^{t-1}\left\{\rho^{t}(-2 \bar{g})+\left(1-\rho^{t}\right) \nu^{*}\right\} \tag{1}
\end{equation*}
$$

According to Lemma B4, the probability that the support reaches Ω^{*} within $4^{|\Omega|}$ periods is at least π^{*}. This implies that the probability that players still randomize all actions in period $4^{|\Omega|}+1$ is at most $1-\pi^{*}$. Similarly, for each natural number n, the probability that players still randomize all actions in period $n 4^{|\Omega|}+1$ is at most $\left(1-\pi^{*}\right)^{n}$, that is, $\rho^{n 4^{|\Omega|}+1} \leq\left(1-\pi^{*}\right)^{n}$. Then since ρ^{t} is weakly decreasing in t, we obtain

$$
\rho^{n 4^{|\Omega|}+k} \leq\left(1-\pi^{*}\right)^{n}
$$

for each $n=0,1, \cdots$ and $k \in\left\{1, \cdots, 4^{|\Omega|}\right\}$. This inequality, together with $-2 \bar{g} \leq$ v^{*}, implies that

$$
\rho^{n 4^{|\Omega|}+k}(-2 \bar{g})+\left(1-\rho^{n 4^{[\Omega \mid}+k}\right) v^{*} \geq\left(1-\pi^{*}\right)^{n}(-2 \bar{g})+\left\{1-\left(1-\pi^{*}\right)^{n}\right\} v^{*}
$$

for each $n=0,1, \cdots$ and $k \in\left\{1, \cdots, 4^{|\Omega|}\right\}$. Plugging this inequality into (1), we obtain

$$
\lambda \cdot \nu^{\mu}\left(\delta, \tilde{s}^{\mu}\right) \geq(1-\delta) \sum_{n=1}^{\infty} \sum_{k=1}^{4^{|\Omega|}} \delta^{(n-1) 4^{|\Omega|}+k-1}\left[\begin{array}{l}
-\left(1-\pi^{*}\right)^{n-1} 2 \bar{g} \\
+\left\{1-\left(1-\pi^{*}\right)^{n-1}\right\} v^{*}
\end{array}\right] .
$$

Since

$$
\sum_{k=1}^{4^{|\Omega|}} \delta^{(n-1) 4^{|\Omega|}+k-1}=\frac{\delta^{(n-1) 4^{|\Omega|}}\left(1-\delta^{4^{|\Omega|}}\right)}{1-\delta}
$$

we have

$$
\begin{aligned}
\lambda \cdot v^{\mu}\left(\delta, \tilde{s}^{\mu}\right) \geq & \left(1-\delta^{4^{|\Omega|}}\right) \sum_{n=1}^{\infty} \delta^{(n-1) 4^{|\Omega|}}\left[\begin{array}{l}
-\left(1-\pi^{*}\right)^{n-1} 2 \bar{g} \\
+\left\{1-\left(1-\pi^{*}\right)^{n-1}\right\} v^{*}
\end{array}\right] \\
= & -\left(1-\delta^{4^{|\Omega|}}\right) \sum_{n=1}^{\infty}\left\{\left(1-\pi^{*}\right) \delta^{4^{|\Omega|}}\right\}^{n-1} 2 \bar{g} \\
& +\left(1-\delta^{4|\Omega|}\right) \sum_{n=1}^{\infty}\left[\left(\delta^{|\Omega \Omega|}\right)^{n-1}-\left\{\left(1-\pi^{*}\right) \delta^{\left.\left.4^{|\Omega|}\right\}^{n-1}\right] v^{*} .}\right.\right.
\end{aligned}
$$

Plugging $\sum_{n=1}^{\infty}\left\{\left(1-\pi^{*}\right) \delta^{4^{[\Omega \mid}}\right\}^{n-1}=1 /\left\{1-\left(1-\pi^{*}\right) \delta^{4^{[\Omega \mid}}\right\}$ and $\sum_{n=1}^{\infty}\left(\delta^{4^{|\Omega|}}\right)^{n-1}=$ $1 /\left(1-\delta^{4^{[\Omega]}}\right)$,

$$
\lambda \cdot v^{\mu}\left(\delta, \tilde{s}^{\mu}\right) \geq-\frac{\left(1-\delta^{4^{|\Omega|}}\right) 2 \bar{g}}{1-\left(1-\pi^{*}\right) \delta^{4^{\Omega \Omega}}}+\frac{\delta^{4^{|\Omega|}} \pi^{*}}{1-\left(1-\pi^{*}\right) \delta^{4^{|\Omega|}}} v^{*} .
$$

Subtracting both sides from $\lambda \cdot v^{\omega}\left(\boldsymbol{\delta}, s^{\omega}\right)$, we have

$$
\begin{aligned}
& \lambda \cdot v^{\omega}\left(\delta, s^{\omega}\right)-\lambda \cdot v^{\mu}\left(\delta, \tilde{s}^{\mu}\right) \\
& \leq \frac{\left(1-\delta^{4^{|\Omega|}}\right) 2 \bar{g}}{1-\left(1-\pi^{*}\right) \delta^{4^{|\Omega|}}}+\frac{\delta^{|\Omega|} \pi^{*}\left(1-\delta^{2^{|\Omega|}}\right) 2 \bar{g}}{\left\{1-\left(1-\pi^{*}\right) \delta^{4^{|\Omega|}}\right\} \delta^{|\Omega|} \bar{\pi}^{4 \Omega \mid}}-\frac{\left(1-\delta^{4^{|\Omega|}}\right) \lambda \cdot v^{\omega}\left(\delta, s^{\omega}\right)}{1-\left(1-\pi^{*}\right) \delta^{4 \Omega \mid}}
\end{aligned}
$$

Since $\lambda \cdot v^{\omega}\left(\delta, s^{\omega}\right) \geq-\bar{g}$,

$$
\begin{aligned}
& \lambda \cdot v^{\omega}\left(\delta, s^{\omega}\right)-\lambda \cdot v^{\mu}\left(\delta, \tilde{s}^{\mu}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \leq \frac{\left(1-\delta^{4}{ }^{[\Omega \mid}\right) 3 \bar{g}}{1-\left(1-\pi^{*}\right)}+\frac{\pi^{*}\left(1-\delta^{2^{|\Omega|}}\right) 2 \bar{g}}{\left\{1-\left(1-\pi^{*}\right)\right\} \delta^{2 \Omega \mid} \bar{\pi}^{4 \Omega \mid}} \\
& =\frac{\left(1-\delta^{4^{|\Omega|}}\right) 3 \bar{g}}{\pi^{*}}+\frac{\left(1-\delta^{2^{|\Omega|}}\right) 2 \bar{g}}{\delta^{2^{|\Omega|}} \bar{\pi}^{4 \Omega \mid}}
\end{aligned}
$$

Hence the result follows.

S. 2 Proof of Lemma B11

Pick a belief μ whose support is robustly accessible. Suppose that the initial prior is $\mu^{* *}$, the opponents play \tilde{s}_{-i}^{μ}, and player i plays a best reply. Let ρ^{t} denote the probability that players $-i$ still randomize actions in period t. Then as in the proof of Lemma B6, we have

$$
v_{i}^{\mu^{* *}}\left(\tilde{s}_{-i}^{\mu}\right) \leq \sum_{t=1}^{\infty} \delta^{t-1}\left\{\rho^{t} \bar{g}+\left(1-\rho^{t}\right) K_{i}^{\mu}\right\},
$$

because the stage-game payoff before the switch to s_{-i}^{μ} is bounded from above by \bar{g}, and the continuation payoff after the switch is bounded from above by $K_{i}^{\mu}=$ $\max _{\tilde{\mu} \in \Delta^{\mu}} v_{i}^{\tilde{\mu}}\left(s_{-i}^{\mu}\right)$.

As in the proof of Lemma B6, we have

$$
\rho^{n 4^{|\Omega|}+k} \leq\left(1-\pi^{*}\right)^{n}
$$

for each $n=0,1, \cdots$ and $k \in\left\{1, \cdots, 4^{|\Omega|}\right\}$. This inequality, together with $\bar{g} \geq K_{i}^{\mu}$, implies that

$$
\rho^{n 4^{|\Omega|}+k} \bar{g}+\left(1-\rho^{n 4^{|\Omega|}+k}\right) v_{i}^{*} \leq\left(1-\pi^{*}\right)^{n} \bar{g}+\left\{1-\left(1-\pi^{*}\right)^{n}\right\} K_{i}^{\mu}
$$

for each $n=0,1, \cdots$ and $k \in\left\{1, \cdots, 4^{|\Omega|}\right\}$. Plugging this inequality into the first one, we obtain

$$
v_{i}^{\mu^{* *}}\left(\tilde{s}_{-i}^{\mu}\right) \leq(1-\delta) \sum_{n=1}^{\infty} \sum_{k=1}^{4^{|\Omega|}} \delta^{(n-1) 4^{|\Omega|}+k-1}\left[\begin{array}{l}
\left(1-\pi^{*}\right)^{n-1} \bar{g} \\
+\left\{1-\left(1-\pi^{*}\right)^{n-1}\right\} K_{i}^{\mu}
\end{array}\right] .
$$

Then as in the proof of Lemma B6, the standard algebra shows

$$
v_{i}^{\mu^{* *}}\left(\tilde{s}_{-i}^{\mu}\right) \leq \frac{\left(1-\delta^{4^{|\Omega|}}\right) \bar{g}}{1-\left(1-\pi^{*}\right) \delta^{4 \Omega \mid}}+\frac{\delta^{|\Omega|} \pi^{*} K_{i}^{\mu}}{1-\left(1-\pi^{*}\right) \delta^{4^{|\Omega|}}}
$$

Since

$$
\frac{\delta^{4^{|\Omega|}} \pi^{*}}{1-\left(1-\pi^{*}\right) \delta^{|\Omega|}}=1-\frac{1-\delta^{4^{|\Omega|}}}{1-\left(1-\pi^{*}\right) \delta^{4^{\Omega \Omega \mid}}}
$$

we have

$$
v_{i}^{\mu^{* *}}\left(\tilde{s}_{-i}^{\mu}\right) \leq K_{i}^{\mu}+\frac{\left(1-\delta^{4 \Omega \mid}\right)\left(\bar{g}-K_{i}^{\mu}\right)}{1-\left(1-\pi^{*}\right) \delta^{4^{|\Omega|}}} .
$$

Since $1-\left(1-\pi^{*}\right) \delta^{4^{[\Omega \mid}}>1-\left(1-\pi^{*}\right)=\pi^{*}$ and $K_{i}^{\mu} \geq-\bar{g}$, the result follows.

[^0]: *Department of Economics, University of Pennsylvania. Email: yyam@sas.upenn.edu

