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In Section 1 we discuss the relationship between continuous and discrete type models. Sections

2, 3 and 4 provide the proofs excluded from the appendix in the main paper. Section 5 formally

states and solves the three types two period example introduced in the main text. And, finally

section 6 provides a numerical example of the approximate optimality of monotonic contracts.

Equations from the main text are referenced corresponding to the section they appear in the

paper: for example, equation (3.2) means equation (2) in Section 3 of the paper. Moreover, the

numbering of new Lemmata here starts off from where we left in the appendix in the main paper,

so the first new Lemma here is numbered Lemma A10, and so on.

1 From discrete to continuous types

In this section we formalize the statements made in Section 4.3 of the paper, and show that the

continuous case can be seen as the limit of the discrete case, so all problems of the FO-approach in

the discrete version are inherited by the continuous version and vice-versa. To keep the notation

simple, we assume two periods and  ( ) = . Consider a type set Θ =
£
 
¤ ⊂ R+, an

associated prior distribution Γ () at  = 1 and a conditional distribution  (0 | ) at  = 2 defined
on Θ. We assume Γ () is differentiable in  with density  () and  (0 | ) is differentiable in
both , with derivative (

0 | ), and 0, with density (0 | ). By standard methods we can

obtain the following envelope formula (3.4):1

 0() = ()− R
0(

0 | ) ·  (0|) 0

and then derive the FO-optimal contract:

(0 | ) = 0 +
1− Γ()
()

 (
0|)

 (0|) (1)

In the rest of this section, we refer to this as the continuous model.

We now explore the connection between the continuous model and the discrete model studied

in the previous sections. The continuous model can be derived as the limit of the discrete model

as follows. Define Θ = {0  } with 0 = ,  =  and  = +1 + ∆ ; and let

Γ () = Γ () and  ( | ) =  ( | ). Given this, the probability of a type  at  = 1

is  = Γ () − Γ (+1) and the probability of a type  at  = 2 after a type  at  = 1 is

 ( |) =  ( |)− (+1|).2 In the rest of the section, we refer to this as the discrete

model.

Consider a sequence of supports Θ for  → ∞ such that ∆ → 0 as  → ∞ and

Θ ⊆ Θ+1, so that along the sequence the finite approximation of Θ becomes increasingly fine.3

1 See Baron and Besanko [1984], Besanko [1985], Laffont and Tirole [1996], Courty and Li [2000], Eso and

Szentes [2007], and Pavan, Segal and Toikka [2014].

2 In both definitions, we are implicitly assuming a dummy “ + 1” type with mass 0.
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Figure 1:  and  for the Markov process (
0|) =  · −

(0−)2
() .

Using the formula (3.9) derived in the paper, we can write the FO-optimal contract along the

sequence as:

 ( |) =  − 1−Γ ()


( |)−( |−1)
 ( |) ∆ (2)

for any  ∈ Θ ,  ∈ Θ . Note that  can be written as:  =
Γ()−Γ(+1)

∆
· ∆ . and

 ( |) =  ( |)− (+1|)
∆

∆ . We can therefore rewrite (2) as:

 ( |) =  +
¡
1− Γ ()

¢ £
 ( |)−  ( |−1)

¤
∆h

Γ()−Γ(+1)
∆

i h
( |)− (+1|)

∆

i
This condition immediately implies that

lim
→∞

 ( |) =  +
1− Γ()
()

 ( |)
 ( |) =  ( |)

since  ∆ → () and  ( |) ∆ →  ( |) as  →∞. It follows that the limit of
the discrete FO-optimal contracts is equal to the continuous FO-optimal contract.4

This discussion makes it clear that there is a natural connection between discrete and continuos

types dynamic principal-agent models. In the light of this we can present two examples, discretized

versions of which are presented in Battaglini and Lamba [2015].

Examples. Consider a two period model. Assume and that types in the first period are dis-

tributed uniformly on [5 6] and consider the transition probabilities: (
0|) =  · −

(0−)2
() and

3 For example, consider the sequence (0    ) such that 

0 = ,  = ,  − −1 = ( − )2 and so

 = 2.

4 Since Θ ⊆ Θ+1, if  ∈ Θ ,  ∈ Θ , then  ∈ Θ ,  ∈ Θ for  ≥  , so lim→∞ ∗ (|) is well
defined. To extend the contract for points on the real line that do not appear in the sequence of approximations

we can consider, for example, the sequence of linear interpolations of the discrete contract. It is immediate to

verify that this is a sequence of equicontinuous curves that converges to (1).
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Figure 2:  and  for the Markov process (
0|) = 

1+()|0−| .

(
0|) = 

1+()|0−| with  =. Note that () is chosen so that the probabilities sum to

one. The larger is , the higher is the persistence of the types. Figures 1 and 2 show two sample

distributions and the associated quantities in period 2. The contract is non-monotonic in two

ways: first, for a given history, it is non-monotonic in 2. Because of this alone, the FO-optimal

contract is not implementable and violates a global constraint. In addition to this, the FO-optimal

contract is not monotonic with respect to 1; this can be seen from the fact that the contracts

with the two different histories cross each other.

2 Proof of Lemma A1

In the proof of Lemma 1 we use the following result:

Lemma A1. In a FO-relaxed problem:  (
−1) can be assumed to hold as equality for all

−1 ∈ −1; +1(
−1) can be assumed to hold as an equality for all −1 ∈ −1 and

 = 0 1   − 1.
Proof. We proceed in two steps:

Step 1. Suppose that ( |−1) =   0 for some −1. If  = 1, then decreasing (|0) by 
for all  does not violate any constraints and increases the monopolist’s profit. If   1, fix −1

and decrease (|−1) by  for all . This does not change any of the constraints and keeps

the profit of the monopolist the same.

Step 2. Suppose that +1(
−1) does not hold as an equality for some −1 ∈ −1 and

 = 0 1   − 1. Then, decrease (|−1) by  for each  ≤ . If  = 1, all the constraints are

still satisfied and the monopolist’s profit is strictly higher, giving a contradiction. If   1, this

change does not affect any constraint except −1(−2), where  is such that −1 =
¡
−2 

¢
.

The right hand side of −1(−2) is reduced by 
P

≤((−1) − ) = ∆ (+1|)  ≥ 0,
where the last inequality follows from first order stochastic dominance. Now, repeat the same
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procedure, decreasing (|−2) by ∆ (+1|)  for each  ≤  − 1. We can keep reducing

utility vectors backward till the first period, unless −1 contains 0, in which case the backward
iteration ends there, to deduce a strictly greater increase in the monopolist’s profit. Thus, the

changes do not violate any of the constraints and keep the profit of the monopolist larger than or

equal to before the change. ¥

3 Proof of Lemmata A2-A3

We now prove the lemmata used in the proof of Proposition 2. Recall that ∆(
¯̄
−1  ) =

(
¯̄
−1  ) − (

¯̄
−1 +1 ). For simplicity of exposition, we will write the proofs for the

special case where ( ) = , and hence ( ) = ; the arguments are easily generalizable.

We have:

Lemma A2. If (|−1) and ∆(
¯̄
−1 ) are non increasing in, respectively,  and k for any

−1, then (3.4) implies that local upward incentive compatibility constraints are satisfied.

Proof. Since +1(
−1) holds as an equality, we have for any  and −1:

(|−1) = (+1|−1) +∆(+1|−1) + 

X
=0

¡
 − (+1)

¢
(|−1 +1)

Thus,

(+1|−1)− (|−1) = −∆(+1|−1)− 

X
=0

¡
 − (+1)

¢
(|−1 +1))

= −∆(|−1) + 

X
=0

¡
(+1) − 

¢
(|−1 )

+∆
¡
(|−1)− (+1|−1)

¢
+ 

X
=0

¡
 − (+1)

¢
∆(|−1 )

≥ −∆(|−1) + 

X
=0

¡
(+1) − 

¢
(|−1 )

where the last inequality follows from the fact that (|−1) is non increasing in  and
P
=0

(−
(+1))∆(

¯̄
−1  ) ≥ 0. The second observation follows from the fact that ∆(

¯̄
−1  )

is non increasing in , and that α first-order stochastically dominates α+1. Thus, +1(
−1)

holds. ¥

Lemma A3. If (|−1) and ∆(
¯̄
−1 ) are non increasing in, respectively,  and  for any

−1 and (3.4) holds, then the local incentive compatibility constraints imply the global incentive
compatibility constraints.
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Proof. We show that +2(
−1) holds. Since +1(

−1) and +1+2(
−1) hold as

equalities, we have:

(|−1)− (+2|−1)
=
£
(|−1)− (+1|−1)

¤
+
£
(+1|−1)− (+2|−1)

¤
= ∆(+1|−1) + 

X
=0

¡
 − (+1)

¢
(|−1 +1)

+∆(+2|−1) + 

X
=0

¡
(+1) − (+2)

¢
(|−1 +2)

It follows that:

(|−1)− (+2|−1)

= 2∆(+2|−1) + 

X
=0

¡
 − (+2)

¢
(|−1 +2)

+∆
¡
(+1|−1)− (+2|−1)

¢
+ 

X
=0

¡
 − (+1)

¢
∆(|−1 +1)

≥ 2∆(+2|−1) + 

X
=0

¡
(+1) − (+2)

¢
(|−1 +2)

where the last inequality follows from the fact that (|−1) is non increasing in  and
P
=0

(−
(+1))∆(

¯̄
−1  ) ≥ 0. As in the previous lemma, the second observation follows from the

fact that ∆(
¯̄
−1  ) is non increasing in , and that α first-order stochastically dominates

α+1. Thus, +2(
−1) holds. Similarly we can show that +(

−1) holds for all  ≤ −.
Therefore, all global downward incentive constraints are satisfied. In an analogous fashion, we can

show that all upward global incentive constraints are satisfied. ¥

4 Proof of Lemma A9

Using  as a shorthand for the th element of  , we can write:

  = −
X∞

=0

h bi ()
!

= −
³
1= + b´+ −

X∞
=2

h bi ()
!

(3)

where 1= = 1 if  = . We first show that the second term in (3) is an (). Note thatP∞
=2

h bi ()

!
≥ 0 (that is the elements of this matrix are all nonegative) and

X∞
=2

h bi ()
!

=
()

2

(− 1)
X∞

=1

h bi ()−2
(− 2)!

≤ ()
2

(− 1)
X∞

=0

()


!
=

()
2

(− 1)
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It follows that
hP∞

=2 [ ]
 ()

!

i
→ 0 as → 0.

We can therefore write:

  = −
³
1= + b´+ ()

That is:

  = − (1 + (− ) ) + () (4)

 = − () + () (5)

Note that 

∈ [0 1] so there is a  ∈ [0 1] such that 


→  as  → 0. From the second

equation (equation (5)), setting  = 1, we have:




→ 

as  → 0. From the first equation (equation (4)), using a Taylor expansion, applied to the first

term with respect to  and  evaluated at (0 0), we have:

( ) =  (0 0 1) +
 (  )



¯̄̄̄
=0

· + (  )



¯̄̄̄
=0

·  + ()

= 1 +
¡−− (1 + (− )) + −

¢
=0

· − £−¤
=0

·  + ()

where note that in the last term we put all factors that converges to zero faster than  (so also

()). We have therefore:
1− 


→ 

as → 0. ¥

5 The solved example of Section 5

To characterize the optimal contract we first guess which constraints are relevant and then we

show that we can ignore the remaining constraints without loss of generality. We focus on a

weakly relaxed program (henceforthWR-program) that constitutes problem (3.3) with |Θ| = 3 and
 = 2, with the following subset of constraints:

     (6)

 () ()  ()  () ()  ()

where  is the individual rationality constraint of type  at  = 0,  is the incentive

constraint requiring that type  doesn’t want to misreport being type  in period 1, and () is

the incentive constraint requiring that type  doesn’t want to misreport being type  in period 2,

after the agent reports being type  in period 1. See Figure 3 for an illustration of the constraints.

The intuition for modifying the FO-approach to focus on the WR-program is as follows. It

is natural to ignore incentive constraints after history 1 =  , since the contract is typically

efficient after this history even in the FO-approach (see (3.7)). Similarly, it is natural to drop

6



First Order Approach WR‐program

Figure 3: The dashed arrows are the constraints in the WR-program that are ignored in the

first-order approach.

the individual rationality constraints at  = 2, since they are typically not binding even in the

FO-approach (any rent left to the lowest type at  = 2 can be extracted at  = 1, so there is no

reason to force these rents to be non-negative). There are, however, two reasons why we need

additional constraints. First, we must include  since we know from the previous analysis

that it may be violated if ignored. Second, since the second period is terminal, within history

monotonicity is a necessary condition; that is, ( |) is weakly increasing in  . Thus to allow

for pooling in period 2 we include  (
1) for 1 =.

In what follows we prove that there is no loss of generality in restricting attention to the

WR-program so we can focus on (6) to solve for the optimal contract. For a given  and , the

environment is fully described by two parameters,  and , and therefore it can be represented

in the two dimensional box (  ) ∈ () = (0 1− )× (13 1).5 In the rest of the analysis

we will fix  and  and study how the optimal contract changes as we change  and .

The following proposition provides a full characterization of the optimal contract. Table 2

details the exact formulas case by case; Figure 4 illustrates the possible cases in the (  ) space.

Proposition A1. There exist thresholds ∗() and ∗∗(), ∗()  ∗∗(), such that:

• Case A: For all  ≥ ∗(),  does not bind and there exists a threshold 0( ) such

that:

— Case A1: if   0( ), the optimal contract is fully separating and FO-optimal.

— Case A2: If  ≥ 0( ), the optimal contract is fully separating after all histories

except  ; after this history types M and L are pooled: ( | ) = (| ).
5 The thresholds defined below do not depend on the types .
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Figure 4: Fully characterized contract when  = 025 and  = 095.

• Case B: For all   ∗(),  binds and there exists a threshold 0() such that:

— Case B1: if  ∈ [∗∗() ∗()) ∩ (0() 1), then the optimal contract is fully
separating.

— Case B2: if  ∈ [∗∗() ∗()) ∩ (0 0()], then the optimal contract is fully
separating after all histories except  ; after this history types M and L are pooled:

( | ) = (| ).
— Case B3: if   ∗∗() the optimal contract pools types  and  in the first

period:  = . In the second period, after history  the contract is separating and

efficient; after histories  and , types  and  are pooled across both histories:

( |) = (|) and ( | ) = ( |) for   =

While the example solved in Proposition A1 is very special, it presents interesting features

that are reminiscent of the features of optimal contracts in multidimensional screening problems.

Multiple IC constraints can bind simultaneously to determine the optimal quantities, a fact that is

ruled out by assumption in FO-optimal contracts. For example, in regions 2 and 2 both 

and  are binding. Multiple binding  constraints have been observed in a multidimensional

screening problem by, for example, Armstrong and Rochet [1999]. The optimal contract also

features a strategic use of bunching in order to minimize the expected rent of the buyer. In

regions 2 and 2, we observe separation in period 1 followed by history-dependent pooling in

period 2, which we term dynamic pooling. In region 3, types are pooled in period 2 across the

pooled histories in period 1–it is as if we were in a two-type model following the pooled histories.
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An analogous use of bunching to screen types in multidimensional problems, even with a very

simple distribution of types, has been documented by Rochet and Chone’ [1997]. The similarities

between contracts in dynamic and multidimensional environments are not surprising. In a dy-

namic environment, the expected utility of a type at  is not only given by the time  realization

, but also by the conditional distribution of types (+1 | ), a multidimensional object. At

the same time, the optimal contract as stated in Proposition A1 features some distinctive charac-

teristics that depend on the dynamic structure of the problem, the most interesting perhaps being

the fact that pooling is state dependent and thus dynamic.

5.1 Proof of Proposition A1

To solve the example, we use a simplified notation. Let  be the expected utility of type  in the

first period and () be the expected utility of type  after history  in the second period. Note

that since the second period is the terminal period, the expected utility and stage utility are the

same. Similarly, we define  and () to be the first and second period allocations respectively.

In Section 5.1.1 we prove two preliminary results. In Section 5.1.2 we characterize the WR-

problem. In Section 5.1.3, we prove the the solution of the WR-problem is optimal.

5.1.1 Preliminary results

The Lemmas here are numbered The following lemma allows to simplify the constraint set (6):

Lemma A10. In the WR-program, constraints ,  ,  bind at the optimum.

Proof. First, we prove a useful lemma.

Lemma A10.1. The optimal solution satisfies:  ≤ , () ≤  and  () ≤  .

Proof. Suppose   . Then, decrease  by . Since it only appears on the RHS of incentive

constraints and has positive coefficients, this does not violate any of the constraints. Moreover,

the change in the monopolist’s profit is proportional toµ
 ( − )− 1

2
( − )

2

¶
−
µ
 − 1

2
2

¶
= ( − ) − 1

2
2

We can choose  small enough so that the above expression is positive, giving us a contradiction.

We can similarly show that () ≤ .

Next, suppose  ()   . Note that the second period incentive constraints after history 

give

∆() ≤  ()− () ≤ ∆ ()
Without loss of generality, () can be assumed to hold as an equality. Suppose  () −
()  ∆(). Then, decrease  () so that () holds as an equality. This does not

violate any constraints and keeps the profit of the monopolist the same.

If  () holds as an equality, then we must have  () = () ≤    , giving a

contradiction. If  () does not hold as an equality, then we can decrease  () by  without
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disturbing any of the constraints. Moreover, the change in the monopolist’s profit is proportional

to the following expression:µ
 ( ()− )− 1

2
( ()− )

2

¶
−
µ
 ()− 1

2
 ()

2

¶
= ( ()−  ) − 1

2
2

We can choose  so small that the above expression is positive, giving us a contradiction. ¥

Now, we show that  binds. Suppose not. Decrease      by the same small amount.

The first period incentive compatibility constraints continue to hold and the second period con-

straints are unaffected. This increases the profit of the monopolist without disturbing any of the

constraints, giving us a contradiction. Thus,  = 0. Next, we show that  binds. Suppose

not. Decrease  by . Then, all the constraints are satisfied and we increase the monopolist’s

profit, giving us a contradiction. Using these two binding constraints we can eliminate  and

 from the maximization problem. In particular,  can now be written as

 ≥ ∆ ( + ) + 
3− 1
2

[(()−  ()) + ( ()− ())]

Also,  is given by

 ≥ 2∆ + 
3− 1
2

[()− ()]

First, note that at least one of  and  must bind. If not, then we can decrease

 and increase the monopolist’s profit. Suppose  does not bind. Then,  must bind.

Thus, we can eliminate  from the maximization problem. In particular,  can now be

written as

∆ + 
3− 1
2

[()−  ()] ≥ ∆ + 
3− 1
2

[()−  ()] (7)

Second, we claim that if  and  bind and  does not bind, then  () binds.

Suppose ()−  ()  ∆ (). Decrease () by  (and so  by ( − ) and

 by ( − )), thereby, increasing the profit of the monopolist without disturbing any

of the remaining constraints, giving us a contradiction. Thus,  () must bind.

Using  () and the binding  () we can rewrite (7) to obtain:

∆ + 
3− 1
2
∆ () ≥ ∆ + 

3− 1
2
∆ ()

Since  does not bind, it is easy to see that  =  and 

() =  for any . By

Lemma A10.1, we have  ≤  (and thus    ) and  () ≤  . These clearly contradict

the above inequality. Thus, we must have that  binds. ¥

5.1.2 Characterization of the optimal WR-contract

We can now use the equalities implied by Lemma A10 to reduce the number of free variables

in the optimization problem. In particular we can eliminate the period 1 utility vectors. Define

 () = () −  () and () =  () − () for  = . The variable () is the

net utility of reporting to be type  rather than a type  after history . Using this notation, we
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can rewrite the WR-program as a maximization problem in which the control variables are the

quantities q and second period marginal utilities ω:

max
hqi

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

P
=



"
 − 1

2
2 + 

P
=


¡
()− 1

2
()

2
¢#

−
£
∆ +  3−1

2
 ()

¤
−( +  )

£
∆ +  3−1

2
()

¤

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(8)

subject to:

[] : ∆ + 
3− 1
2

 () ≥ ∆ + 
3− 1
2

 ()

[ ()] :  () ≥ ∆ () | [ ()] :  () ≥ ∆ ()

[()] : () ≥ ∆() | [()] : () ≥ ∆()
[ ()] : () ≤ ∆ () | [ ()] : () ≤ ∆ ()

where the variables in the square brackets on the left are the Lagrange multipliers associated with

the constraints. Program (8) is a standard maximization problem, but it is complicated by a still

significantly large number of constraints. The key difference between (8) and the FO-approach

is the global constraint  and the presence of the local upward constraints  () and

 (). We cannot ignore any of these three constraints. Moreover now we cannot assume

without loss of generality that all local downward incentive constraints are binding at  = 2, so

the envelope formula (4) in Section 3 cannot be directly applied. Hence, we still have utilities in

the objective function.

We start the analysis of (8) with the first order conditions. It is easy to see that the  type

always gets the efficient quantity. After history , moreover, quantities are always efficient,

implying:  = () = () =  and () =    () =   () = . The

remaining first-order conditions are given by:

[ ] :  ( −  )− ∆ + ∆ = 0

[] :  ( − )− ( +  )∆ − ∆ = 0

[ ()] :  ( −  ())−  ()∆ +  ()∆ = 0

[()] : 
1− 

2
( − ())− ()∆ = 0

[ ()] : 
1− 

2
( −  ())−  ()∆ +  ()∆ = 0
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[()] :  ( − ())− ()∆ = 0

[ ()] : − 
3− 1
2

+ 
3− 1
2

+  () = 0

[()] : ()−  () = 0

[ ()] : − 
3− 1
2

+  () = 0

[()] : − ( +  ) 
3− 1
2

+ ()−  () = 0

The following result characterizes when we can ignore the  constraint:

Lemma A11. There exists a threshold ∗ () such that the global incentive constraint  can

be ignored if and only if  ≥ ∗ ().

Proof. We first characterize the optimal allocation assuming  = 0. We then derive the conditions

under which the assumption of  = 0 is admissible.

Assuming  = 0, we have

 =  − 


∆ and  =  −  + 


∆ (9)

Clearly,  = 0 implies  () = 0. Also, it is easy to show that  () = 0, else  ()   ,

which contradicts lemma A10.1. We therefore have () = ( +  ) 
3−1
2
, and the solution

after history  is given by:

 () =  and () =  −  + 



3− 1
2

∆ (10)

Next, note that we must have  () = 
3−1
2

and () =  (). We have two

possible cases:

Case A1. () =  () = 0. In this case:

 () =  − 



3− 1
2

∆ and () =  (11)

For this to be a solution, we must have  − 


3−1
2
∆ ≥ , so  ≤ 0( ) where

0( ) =


3 − 2 

We conclude that for  ≤ 0( ) the solution is given by  =  , () =  , () =  for

all  =  in addition to (9)-(11).

Case A2. () =  ()  0. Then,  () and () are both equal to a constant .

From the first order condition with respect to  () and () we have:

 () = () =
2

1 + 
 +

1− 

1 + 
 − 



3− 1
1 + 

∆ (12)

We conclude that for   0( ) the solution is given by  =  , () =  , () =  for

all  = , (9)-(10) and (12).
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To characterize the necessary and sufficient condition for  = 0, we need to verify that given

the solution defined above,  is satisfied. Plugging in the values of Case A1, we obtain:

 − 


∆ + 

3− 1
2

µ
 − 



3− 1
2

∆

¶
≥  −  + 


∆ + 

3− 1
2

 

(13)

that is,

 ≥
 (1− )

³
1 + 



¡
3−1
2

¢2´
1 + 

³
1 + 



¡
3−1
2

¢2´ = ∗1 () (14)

Plugging in the values of Case A2, we obtain:

 − 


∆ + 

3− 1
2

µ
2

1 + 
 +

1− 

1 + 
 − 



3− 1
1 + 

∆

¶
≥  −  + 


∆ + 

3− 1
2

 

(15)

that is,

 ≥
(1− )

³
1 + 

(3−1)2
2(1+)

´
1 + 

³
1−  3−1

1+
(1− 2)

´ = ∗2 () (16)

Let us define ∗ () = min{∗1 ()  ∗2 ()}. We have the following result.
Lemma A11.1. If   is such that  ≥ ∗ () and  ≤ 0( ) then the optimal contract

is as described in Case A1 presented above. If  ≥ ∗ () and   0( ) then the optimal

contract is as described in Case A2 presented above.

Proof. We first prove that when  ≤ 0( ), then  ≥ ∗ () implies  ≥ ∗1 (). To this
end, we prove the counterpositive: when  ≤ 0( ),   ∗1 () implies   ∗ (). Note

that: 1. the left hand side of (13) and (15) are the same; 2. the right hand side of (13) is not

larger than the right hand side of (15) if and only if 

≤ 2

3−1 , that is if  ≤ 0( ). It follows

that if   ∗1 (), then neither (13) nor (15) hold, implying   ∗2 () as well: we therefore
conclude that   ∗ (). Given this, the conditions  ≥ ∗ () and  ≤ 0( ) imply the

conditions  ≥ ∗1 () and  ≤ 0( ), so by the discussion presented above, the allocation

described in Case A1 is an optimal solution of the WR-problem. By a similar argument, we can

prove that when   0( ), then  ≥ ∗ () implies  ≥ ∗2 (). This implies that when

we have  ≥ ∗ () and   0( ), then the allocation described in Case A2 is an optimal

solution of the WR-problem. ¥

Finally note that Cases A1 and A2 described above are the only possible allocations consistent

with  = 0. So, if   ∗ (), the Largrange multiplier of  must be binding. ¥
Cases A1 and A2 follow from Lemma A11.1. For the remaining cases we first prove a useful

lemma.
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Lemma A12. The optimal solution satisfies:  ≤ − +


∆, () ≤ − +


3−1
2
∆

and () ≤ .

Proof. We proceed in 3 steps.

Step 1. Suppose    − +


∆. Now, decrease  by . All the constraints are still

satisfied. The change in the monopolist’s profit is given by



∙
−− 1

2

¡
( − )2 − ()2

¢¸
+ ( +  )∆

= 

∙µ
 −

µ
 −  + 


∆

¶¶
− 1

2
2
¸


which is greater than zero for small enough , giving us a contradiction.

Step 2. Suppose ()   − +


3−1
2
∆. Now, decrease () by  and () by ∆.

All the constraints are still satisfied. The change in the monopolist’s profit is given by



∙
−− 1

2

¡
(()− )2 − (())2

¢¸
+ ( +  )

3− 1
2
∆

= 

∙µ
()−

µ
 −  + 



3− 1
2

∆

¶¶
− 1

2
2
¸


which is greater than zero for small enough , giving us a contradiction.

Step 3. Suppose ()  . Now, decrease () by  and () by ∆. All the

constraints are still satisfied. The change in the monopolist’s profit is given by


1− 

2

∙
−− 1

2

¡
(()− )2 − (())2

¢¸
= 

1− 

2

∙
[(()− ) − 1

2
2
¸


which is greater than zero for small enough , giving us a contradiction. ¥

Keep in mind that   0⇒  ()  0. It follows from the first order condition with respect

to  (). Next, in order to characterize the quantities after history  , we prove a useful

lemma.

Lemma A13.   0⇒  ()  0.

Proof. Assume by contradiction that  () = 0. Then, we must have () =  () =

0. Assuming them strictly positive gives us  () = (). Also, from the first order condition

for  (), we obtain  ()   , implying ()    , a contradiction to Lemma A12.

Thus,  =  and  =  () =  .

Next, we note that if   0, then  ()   . To see this point, consider the first-order

condition with respect to  (). Since,  ()  0, if  () = 0 then it follows immediately

that  ()   . If  ()  0, then  () = ()     , where the first inequality

follows from Lemma A12.
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Using these facts, we can now write:

∆+
3− 1
2

 () = ∆ ·  + 
3− 1
2

 () ≥ ∆ ·  + 
3− 1
2
∆ ()

(17)

= ∆ ·  + 
3− 1
2
∆ ·   ∆ + 

3− 1
2
∆ () = ∆ + 

3− 1
2

 ()

The strict inequality proven in (17) contradicts   0. Thus, we must have  ()  0 as

requested. This completes the proof of Lemma A13. ¥

We divide the reminder of the proof of proposition A1 into two steps. First we assume that

 () is not binding and we characterize the parameter region in which this assumption is

correct. This will allow us to define the regions B1 and B2 described in the statement of the

proposition. Then we characterize the optimal contract when  () is binding, region B3.

Characterization of Regions B1 and B2 Let us assume  () = 0. Since   ∗(),
we have   0. From the first order conditions, we obtain:

 =  −  − 


∆,  =  −  +  + 


∆ (18)

 () =  − 



3− 1
1− 

∆, () =  −  + 



3− 1
2

∆ (19)

Since   0, we have  ()  0 and  ()  0. Thus,

 + 
3− 1
2

 () =  + 
3− 1
2

 () (20)

There are two relevant cases. We use 1 to denote  from Case B1 and 2 from Case B2.

Case B1. () =  () = 0. Then, from the first-order conditions:

 () =  −  − 1



3− 1
2

∆ and () =  (21)

Substituting, the values from (18)-(19) and (21) in equation (20) we obtain:

1 + 1


+ 

3− 1
2

1



3− 1
1− 

=
 − 1


+ 

3− 1
2

 − 1



3− 1
2

(22)

which gives:

1 = 1 () =




¡
1 +  3−1

2
3−1
2

¢− 1


1


¡
1 +  3−1

2
3−1
2

¢
+ 1



³
1 +  3−1

2
3−1
1−

´ (23)

Clearly, for this case to be valid, we must justify the assumption that () =  () = 0.

A necessary and sufficient condition for this is  () ≥ (). Given (21), this condition can

be rewritten as: −1


3−1
2
≤ 1, where 1 is given by (23). This condition is implied by:

 ≥ 1 + (1− )0()− 0()0()

0() (1 + 0())
= 0()
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where

0() = 1 + 
3− 1
2

3− 1
2

 0() = 1 + 
3− 1
2

3− 1
1− 

 and 0() =
2

3− 1
It follows that (under the assumption that  () = 0) the solution is given by (18)-(19), (21)

and (23) when when  ≥ 0().

Case B2. For   0() we must have () =  ()  0. In this case, we must have:

 () = () =
2

1 + 
 +

1− 

1 + 
 −  − 2



3− 1
1 + 

∆ (24)

Substituting  () and  () equation (20) we obtain:

1 + 2


+ 

3− 1
2

µ
2



3− 1
1− 

− 1− 

1 + 

¶
=

 − 2


+ 

3− 1
2

 − 2



3− 1
1 + 

(25)

which gives

2 =




³
1 +  3−1

2
3−1
1+

´
−
³
1

−  3−1

2
1−
1+

´
1


³
1 +  3−1

2
3−1
1+

´
+ 1



³
1 +  3−1

2
3−1
1−

´ (26)

It follows that (under the assumption that  () = 0) the solution is given by (18)-(19), (24)

and (26) when   0().

We now complete the analysis of this section by characterizing the conditions under which we

can ignore the  () constraint and so  () = 0. It is easy to see that  () is satisfied

if and only if  () ≥ (). We have  () ≥ () if and only if:

 ≤
µ
1



3− 1
1− 

¶−1µ
1 +

1− 



3− 1
2

¶
(27)

Thus, for Case B1 we have,




¡
1 +  3−1

2
3−1
2

¢− 1


1


¡
1 +  3−1

2
3−1
2

¢
+ 1



³
1 +  3−1

2
3−1
1−

´ ≤ µ 1



3− 1
1− 

¶−1µ
1 +

1− 



3− 1
2

¶
Define

1 ( ) = 1 + 
3− 1
2

3− 1
2

 1 ( ) = 1 + 
3− 1
2

3− 1
1− 

 and

1 ( ) =

µ
1



3− 1
1− 

¶−1µ
1 +

1− 



3− 1
2

¶
We can then write the previous inequality as:

 ≥ 1 ( ) [1−  − 1 ( )]

1 + 1 ( ) + 1 ( ) 1 ( )
= ∗∗1 ()

Next, for Case B2, we have  () ≥ () iff,




³
1 +  3−1

2
3−1
1+

´
−
³
1

−  3−1

2
1−
1+

´
1


³
1 +  3−1

2
3−1
1+

´
+ 1



³
1 +  3−1

2
3−1
1−

´ ≤ µ 1



3− 1
1− 

¶−1µ
1 +

1− 



3− 1
2

¶
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Define

2 ( ) = 1 + 
3− 1
2

3− 1
1 + 

 2 () =
1


− 

3− 1
2

1− 

1 + 

2 () =

µ
1



3− 1
1− 

¶−1µ
1 +

1− 



3− 1
2

¶
 2 ( ) = 1 + 

3− 1
2

3− 1
1− 

Rearranging, we obtain:

 ≥ 2 ( ) [1−  − 2 ( )]

 (2 () + 2 ( )) + 2 ( ) 2 ( )
= ∗∗2 ()

Let us define ∗∗ () = min {∗ ()  ∗∗1 ()  ∗∗2 ()}  We have:
Lemma 14. If  ∈ [∗∗ ()  ∗ ()] and  ≥ 0(), then the solution of the WR-problem is

given by the solution in Case B1 presented above. If  ∈ [∗∗ ()  ∗ ()] and   0(),

then the solution of the WR-problem is given by the solution in Case B2 presented above.

Proof. We first show that if  ∈ [∗∗ ()  ∗ ()] and  ≥ 0(), then  ∈ [∗∗1 ()  ∗ ()]
and  ≥ 0(). This implies that the solution is given by Case B1. Assume   ∗∗1 ().
In this case, (27) does not hold with 1. This implies that (27) does not hold with 2 as well if

2 ≥ 1. Subtracting equation (25) from equation (22), we get

(1 − 2)

∙
1


+

1


+ 

3− 1
2

µ
1



3− 1
1− 

+
1



3− 1
1 + 

¶¸
= 

3− 1
2

1− 

1 + 

∙
 − 1



3− 1
2

− 1
¸

(28)

So, we have that 2 ≥ 1 if:
 − 1



3− 1
2

− 1 ≤ 0

which is implied by  ≥ 0(). It follows that if   ∗∗1 (), then   ∗∗ (), a
contradiction. We conclude that it must be  ≥ ∗∗1 ().
We now show that if  ∈ [∗∗ ()  ∗ ()] and   0(), then  ∈ [∗∗2 ()  ∗ ()] and

  0(). This implies that the solution is given by Case B2. Assume   ∗∗2 (). In this
case, (27) does not hold with 2 . This implies that (27) does not hold with 1 as well if 1 ≥ 2.

From (28) we have that this always true if   0(). It follows that if   ∗∗2 (), then
  ∗∗ (), a contradiction. We conclude that it must be  ≥ ∗∗2 (). ¥

Characterization of Region B3 Finally, we characterize the contract when   ∗∗() and
so both   0 and  ()  0. This is region B3. In this case:

 =  −  − 


∆ and  =  −  +  + 


∆ (29)

We also have that  ()  0 implies  () = (), so:

 () = () =
1− 

1 + 
 +

2

1 + 
 −  +  + 



3− 1
1 + 

∆ (30)
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From Lemma A12, we have () ≤  − +


3−1
2
∆. Also, when  ()  0, the above

inequality is strict. Thus, substituting the optimal value of (), we obtain:

1− 



3− 1
1− 

+
 + 



3− 1
2

 0 (31)

Note that as  () converges to zero, (31) is the exact violation of  ≥ ∗∗(), that is,
inequality (27).

To characterize the quantities after history  , we now show that () =  ()  0.

Lemma A15.   ()  0⇒ () =  ()  0.

Proof. Suppose () =  () = 0. Then,

 () =  −  − 



3− 1
2

∆ and () = 

From  − −


3−1
2
∆ ≥ , we have:

2

3− 1 −
 − 


≥ 0 (32)

Since   ()  0, using  () ≥ () =   () =  (), we get    . This

implies µ
1−  − 


+

 +  + 



¶
 0

Using equation (32). we get

 +  + 



3− 1
1− 

 1 (33)

Now, inequality (31) can be written as

1 
 +  + 



3− 1
1− 

−  + 


(3− 1)

µ
1

1− 
+
1

2

¶
=

 +  + 



3− 1
1− 

−  + 



3− 1
2

1 + 

2

which contradicts condition (33). ¥

It follows that

 () = () =
2

1 + 
 +

1− 

1 + 
 −  − 



3− 1
1 + 

∆

Finally, substituting the optimal values in  as equality, we obtain:µ
1−  − 


+

 +  + 



¶
= 0 (34)

that implies  = . Note that equation (34) gives the value of , which uniquely defines the

solution at the optimum. In particular note that type  and  are treated as one, that is,

 =  and  () = () =  () = () (35)
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We conclude that the solution of the WR-problem in region B3 (  ∗∗()) is given by:
(29),(30), (35) and (34).

This concludes the complete characterization of the optimal allocations in the WR-problem.

Table 2 summarizes the solution of the describing the optimal allocation for each possible case.

¥

5.1.3 The optimal WR-contract is the optimal contract

We prove the lemma as follows. Let U = () be the vector of expected utilities, mapping an

history  to the corresponding agent’s expected utility. First, we construct a vector of utilities U

using the solution of the WR-problem, hωqi. We then show that the solution hUqi satisfies all
the constraints of the seller’s profit maximization problem and it maximizes profits. We proceed

in two steps:

Step 1. We set () (), () all equal to zero. We also define:

 () = ()  () = ()  () = ∆()

() = () +  () () = () +  () () = ∆ (() +  ())

Since ,  and  hold as an equality, we must have:

 = 0

 = ∆ + 
3− 1
2

() and

 =  +∆ + 
3− 1
2

 ()

Step 2. We now show that hUqi satisfies all the constraints of the profit maximizing problem.
By construction it is immediate that hUqi satisfies all the constraints in the WR-problem. It

remains to be shown that it also satisfies the other constraints,

          (36)

 () () () () ()

()  () () ()) ()

() () () () ()

First, we show that  is satisfied. From  we have

 =  +∆ + 
3− 1
2

[ ()− ()]

= ∆ + 
3− 1
2

[ ()− ()] [Using ]

≥ ∆ + 
3− 1
2
∆()  0 [Using ()]

Similarly, we can show that  is satisfied. To prove the remaining constraints we need the

following properties of the solution of the WR-problem.
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Lemma A16. For all parameter configurations, in the solution to the WR-problem we have: 1.

() =  for  = ,  ()    () ≤  and () ≥ () 2.  () =

∆ () and, without loss of generality, () = ∆()  () = ∆ (); 3. quan-

tities at  = 2 are nondecreasing in type after any history; 4.  ≥  ≥ .

Proof. Point 1 follow from the solution characterized in Section 5.1.2 of this appendix (for

convenience the quantities are reported in Table 2). The first part of Point 2 ( () always

binds) follows from the first-order condition for  () (when  = 0) and Lemma 13 (when

  0). The second part follows from the fact that () can be assumed to hold as an

equality. Suppose ()  ∆(). Then can decrease () so that this holds as an

equality. No constraint is violated and the profit of the monopolist is unaffected. Similarly, we

show that  () can be assumed to hold as an equality, implying  () = ∆ (). Point

3 follows from incentive compatibility constraints for the second (terminal) period. We now turn

to Point 4. From the fact that in the solution to the WR-problem,  =  and the fact that (as

shown in Section 5.1.2 of this appendix)  ≤  for  = , we have  ≥   =. We,

therefore, only need to prove that  ≥ . We will show this result case by case for all regions

A1, A2, B1, B2 and B3. In cases 1 and 2, from (9) we have  ≥  if and only if

1− 


+

 + 


≥ 0

that is, 1

≥ 


. In regions A1 and A2 we have  ≥ ∗ (), as defined in Lemma 5.2. This

condition can be written as

1


≥ 


+ 

3− 1
2





3− 1
2

and
1


≥ 


+ 

3− 1
2

µ
1− 

1 + 
+





3− 1
1 + 

¶


clearly implying 1

≥ 


. For case 3, we show in Section 4.1.2 of this appendix that  = .

We now show that in regions 1 and 2 we have  ≥  as well. In these region we have

 ∈ [∗∗ ()  ∗ ()]. We have  ≥  if and only if 1− −


+ ++


≥ 0 . It is clear from
the first-order condition for  () that   0 implies  ()  0, thus,  () = ∆ ().

Therefore, we have in regions B1 and B2,

 + 
3− 1
2

 () =  + 
3− 1
2

 ()

When  ≥ 0 (), substituting optimal values (summarized in Table 2) we have

1−  − 1


+

 +  + 1


+ 

3− 1
2

∙
1



3− 1
1− 

−  − 1



3− 1
2

¸
= 0

That can be re written as:µ
1−  − 1


+

 +  + 1



¶Ã
1 + 

(3− 1)2
4

!
= 

(3− 1)2
4

∙
1 +

 + 


− 1



3− 1
1− 

¸


We know from (27) that right hand side of the above equation is non-negative. Thus, 1− −1


+
++1


≥ 0.
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When   0 (), substituting optimal values again (see Table 1) we have

1−  − 2


+

 +  + 2


+ 

3− 1
2

∙
2



3− 1
1− 

−  − 2



3− 1
1 + 

− 1− 

1 + 

¸
= 0

That can be rewritten as:

µ
1−  − 2


+

 +  + 2



¶Ã
1 + 

(3− 1)2
2 (1 + )

!
= 

 (3− 1)
1 + 

⎡⎢⎢⎣ 1 + +


3−1
2

− 2


3−1
1−

⎤⎥⎥⎦ 
We know that (27) is always verified in the relevant range. Using this condition we can see that

right hand side of the above equation is non-negative. Thus, we we have 1− −2


+ ++2


≥
0. ¥

Consider the first period constraints. To show that  holds it is sufficient to prove:

0 =  ≥  + 

∙
() +

1− 

2
 () +

1− 

2
()

¸
(37)

=  −∆ − 
3− 1
2

()

=  −∆ − 
3− 1
2

()

Since  = ∆ +  3−1
2

(), (37) can be written as:

 + 
3− 1
2

() ≥  + 
3− 1
2

()

The fact that this inequality is satisfied follows from Point 1 and 4 in Lemma A16. (In the

following, when we mention a point, we refer to the points of Lemma A16.)

Next, we show that  holds. From  we have:

 =  +∆ + 
3− 1
2

[()−  ()]

Thus,

 =  −∆ − 
3− 1
2

[()−  ()]

=  −∆ − 
3− 1
2

[()−  ()]

+∆( −  ) + 
3− 1
2

[(()−  ())− (()−  ())]

  −∆ − 
3− 1
2

[()−  ()] 

The last inequality follows from the observation that:

()−  () ≥ ∆ () = ∆  ∆ () = ()−  () (38)
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where the first inequality follows from the definition of (), the first equality and the second

inequality follow from Point 1. From (38) and the fact that    (Point 4), it follows that

 holds. We now turn to  . Using  first and then  , we have:

 ≥  −∆ − 
3− 1
2

[ ()− ()]

≥  −∆ − 
3− 1
2

[()−  ()]−∆ − 
3− 1
2

[ ()− ()]

=  − 2∆ − 
3− 1
2

[()− ()]

+∆ ( −  ) + 
3− 1
2

[( ()− ())− ( ()− ())]

  − 2∆ − 
3− 1
2

[()− ()] 

The last inequality follows from the observation that:

 ()− () ≥ ∆() = ∆ ≥ ∆() =  ()− () (39)

where the first inequality follows from the definition of (), the first equality and the second

inequality follow from Point 1. From (39) and    (Point 4), it follows that  holds.

Consider now the second period constraints. The constraints (), () (),

(), and  ()) follow immediately by the definition of the utilities at  = 2. The

proof that hUqi solves the seller’s problem is therefore completed if we prove that it satisfies the

constraints in the last two lines of (36). This result follows from the fact that the local downward

incentive constraints are satisfied in period 2 and quantities are weakly monotonic after any history

(Point 3). Finally, to see that the contract is optimal, we note that it maximizes expected profits

in the less restricted WR-problem, so it must be optimal in the seller’s problem. Note moreover

that since the original problem is concave in  this is in fact the unique solution (in quantities).

¥

6 Numerical solution of the example in Section 6

We consider a three-type, three-period model with a uniform prior and the Markov process:

( | ) = , (|0) = (1−)2 for  6= 
0
, and calculate the loss in expected profit from using (i)

the optimal monotonic contract and (ii) the repeated optimal static contract. The loss is expressed

as a percentage of the profit in the optimal contract in the Table 1 in Figure 5. As can be seen,

the approximation by the optimal monotonic contract is quite good for all cases, with a loss of

profit that is never higher than 0.06%.
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Figure 5: Percentage loss of optimal objective (monopolist’s profit) by using monotonic contracts

(in bold) and repetition of the static optimum.
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Table 2: The optimal contract when N=3 and T=2. 


