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1. Proof of Lemma 6

Proof. Take a limit point x = (xg, x1) with vg(xp) > 0 and v1(x;) < 0. In the limit, agents

want their action to go against the state of the world. Now the simple strategy o' is as

follows:
(. 7 T _ wlE,r[Xo)) P r(§=1/6=0)
1 ifg=T1andl(s) <k* = —o1(E,r[Xi]) P_r(=1[6=1)
~T (% _ ex =T __ oo(E r[Xo]) P, r(&=0/6=0)
o <<§,S) {1 ifd=0andl(s) <k = “or(E,r X)) .1 (20/0—1) (1)
k0 otherwise

Given this simple strategy, the approximate improvement is given by:

AT = % Y [Bor (a=110) — E,r [X6]] - 09 (Egr [Xe])
6e{0,1}
1y e+ (1—2¢) |75 Go (k™) + (1 = 7 )Go(k") | — Eor [Xa]| - 00 (Eor [Xe])
2 6<{0,1}
=2 X oo (Er (X)) [+ (1 20) [ 1Go(T) — 1] + (1 — ) Go(K")]
2 6e{0,1}
+ 99 (E,r [Xo]) | (1= 2¢) 719 — Eor [Xo)|
=1 % o0 (B X)) [0 — 2706+ (1~ 2) [ (GalkT) — 1) + (1 ) Go(F")]|
0<{0,1}
ty L v (Eyr [Xe]) [ — Eor (o]
0<{0,1}
Thus,
AT =2 [ 2af)e+ (1~ 2¢) [af (1~ Go(k")] + (1 ) GolK")] | o0 (Egr [Xo])
o[a—2ndet @ -20) [-al - G + (1 - 7DGED]] o1 (Er [x)

Y. v (Epr [Xe]) 19 — Epr [Xo]]

L1
2 0e{0,1}

-1, —v (E;r[X1) A—nl) . -1
o) S ) (1= |20 (Fer P

=20 -200 - x])




+Ha-29a [j’gffg;jf;]j) z—?u ~Go(k™)] - [1- Gy w]] o1 (Egr [%1])
21— 2mf)e vy (Egr [Xo]) + 5 (1~ 2] e - 01 (Eyr [X0])
I I o0 Eor X)) [0~ Eor (X3

=202+ (1291 - ) [Go®") — (K61 ()]] o0 (Epr [Xo])

+s [<2n1 ~ e+ (1-20)] [1 - G (kD] — K71~ Gok)]] ] - (o1 (Bt [X41])
+ —96{201} v ( 1) [te — E, v [Xo]]

Thus,
lim AT = % [(1 — 2x)e + (1 — 2¢) (1 — xo) [GO(E) — (k)16 (E)H 00 (%0)
+aen—1et (1 -200 (1 - Gu®)] ~ K1 - Go(B)]]] - (o1 (x0))

Again, Corollary 2 leads directly to

(1-2)(1 = %0) | Go(K) — (F) ' G1(R)| — e(2x0 — 1)] - 0 (x0)
+ (1 =2e)0 [[1 = Gi(K)] = K[1 = Go(K)]] — ¢ (1 = 231) | - (—o1 (x1)) <O W

2. Proof of Lemma 7

Let NEs = {x c[0,1)%:4d (x, NE(”)> < (5} be the set of all points which are é—close to

elements of NE (L) and let L denote the set of limit points in a game with mistake prob-

ability ¢ > 0. I show first the following Lemma, which is analogous to Lemma 11 in the

paper.
LEMMA A.1. LIMIT SET APPROACHES NE ;). Foranyé >0,38>0:L¢ C NE; Ve < &

Proof. By contradiction. Assume that there exists 1) a sequence of mistake probabilities

{e"}> | with lim,_,. €" = 0, and 2) an associated sequence {x"}"_; with x" € L& for all

n, but 3) x" ¢ NEs for all n. Since x" € [0,1]2 for all 1, this sequence has a convergent
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subsequence {x"}>_, with limy, e ™ = % = (%o, %1). If vg(%o) = v1(%1) = 0, then
% € NE, so for m large enough, x"» € NEs. Then, it must be the case that vg(%g) # 0 for
some 6.

Assume that v (%) > 0. Pick 17 large enough so that v1(x]™) > 0 for all m > 7. For
all m with vg(xy™) > 0, Lemma 4 implies that x"» = (1 —¢",1 —¢"n). So if vo(xy") > 0
infinitely often, then ¥ = (1,1). As a result, ¥ € NE, so for m large enough, x" € Nf(g.

Take next all m with vg(xy™) < 0. By Lemma 5 equation (4) must hold:

-1 20 —0

Ve

w [(1 B 28”'"3’53"1 [Go (k™) — (")~ Gy (k””’)} —e(1— 2x0)]

Y ot )

(.
~\~

-1 0

— " (2xm —1)
—_——
-0

<0

Proposition 3 guarantees both that Hl -G (Enmﬂ — k™ [1 — Gy @M)H > 0 and that
[Go (K" — (") Gy (kn"’)] > 0. Then, as equation (2) shows, when &' — 0 only non-
negative terms may remain. Assume that k = —[vo(%o)(1 — %o)]/[v1(%1)(1 — %1)] < L.

Then, for & small enough, k" < I. Proposition 3 implies that

tm [ 6 ()] R - ()] o

To summarize, whenever k < 1, equation (2) is not satisfied for small enough &*. It must
be the case then that k > 1. Similarly, if k > [ then

lim [co (k™) — (k") 1 G (k”m)] >0

m—00

for small enough ¢". It must be the case then that k < [.
Analogous arguments (using also Lemma 6) lead to the same result for the case with
v1(%1) < 0. Asaresult, X € NE(IT)' so for m large enough, x"" ¢ I/\]\E/g.

The rest of the proof is identical to the proof of Proposition 2 in the paper. Bl
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3. Example 4. Standard Observational Learning with Mis-
takes

This corresponds to Example 4 in the paper. Utility is given by u(1, X,1) = u(0,X,0) =1
and u(1,X,0) = u(0,X,1) = 0. Each agent observes his immediate predecessor: M = 1.
The signal structure is described by v1[(0,s)] = s? and 1p[(0, s)] = 2s — s? with s € (0,1).

Proof.

Let t =Pr(¢ =16 =1). An agent who observes ¢ = 1 chooses action one if and
only if {7~ 1>~ > 1 < s > 1 — 7. Similarly, an agent who observes ¢ = 0 chooses action
one if and only if 1_7”% > 1 & s > 7. As a result, the likelihood that somebody who
observes a sample (that is, not agent one) will choose the right action is given by:

1 T

Pr(aizl|9:1,Q(i)7&1):ﬁ21’r(at:1’9: )

- (1 -7+ (-1 - ]

+( )
+ ( )

— e+ (1—2¢) :7T—7T(1—|—712—27t)—|—1—7r—712+7r3]
+( ):71—71—7T3+2712+1—7T—7T2+7r3]
+( )

Reordering,
T T—-1
Pr(ay=1[60=1)+) Pr(a;=1[0=1)=) Pr(a;=1|0=1)+Prlar=1|60=1)
t=2 t=1

Then,

Pr(ar =1|0=1)—Pr(a; =1|0 =1)
T—-1

e+ (1—2¢) (1—7T—|—7T2>—7T—A:0

=0

e+ (1—2¢) (1—7T—|—7T2>—7T—

(1-28)7* —2(1—e)mr+1—e—A=0



So

2(1—e) £ /4(1 —e)2 —4(1 —2¢)(1 —e— A)

T 2(1 — 2¢)
Cl-e—/(1-e?2—(1-2)(1—-e—A)
N 1—2¢

AsT — o0, A — 0, then

1—e—/(1—¢)2—(1-2¢)(1—¢)

T —

1—2¢
1—¢ 1—2¢ 1-—¢ e
= 1—4/1— = 1-—
1—28( 1—5) 1—28( 1—8)
Also, as T — oo, 1 —Pr(a; = 1 | ) — 0. Then, x; = limr,Pr(a; =1 | §) =

4. Example 8. Multiple Equilibria in a Coordination Game

Proof. Consider a sequence of symmetric strategy profiles {7 (s, &)} where 07 (s, &) =

o(s, &) does not change with T and is given by:

(

1 ifs=1
0(s,§) =350 ifs=0

¢ ifs=1/2

\

Lett=Pr(¢ =1|6=1). Under (s, ), the likelihood that somebody who observes

a sample (that is, not agent one) chooses action 1 is given by:

Pr(a; =16 =1,0() ﬁ):%im(ﬂt:ua:n
t=2

=¢e+ (1—2¢) [Pr(s=1)+Pr(s =1/2)n]
= e+ (1—2¢)[(1—7)/100 4 99/1007]



Reordering,

T T-1
Pr(a; =1[0=1)+) Pr(a;=1][0=1)=) Pr(ay;=1|0=1)+Prlar=1|60=1)
t=2 t=1
Then,
YioPr(a=1]0=1) Y/ 'Pra=1[6=1)
T—-1 T-1 N
Pr(ap =1]|0=1)—Pr(a; =1]|0=1)
T-1
So,

Prar =1|0=1)—Pr(a; =1|0=1)
T-1

Pr(a;=1160=1,Q() #1)—m =

e+ (1—2¢)[(1—7)/100+99/1007t] — Tt = A

Then,
e—2¢[(1—)/100+99/1007] + (1 —7)/100 — 1/1007r = A
e —2¢(1—)/100 — €198/1007t 4+ (1 — ) /100 — 1/1007r = A
+(1—)/100+ [1 — (1 —v)/50]e — (1/100 + 198/100¢) T = A
+(1 =)+ [100 — 2(1 — 7)]e — (1 4 198¢) T = 100A
Then,

_ (1=7)+[100 —2(1 — 7)Je — 100A

i 1+ 198¢

Proposition 1 guarantees that as the number of agents grows large, the average action
is close to its expectation. For low enough ¢ and large enough T, approximately Xo|o LN 0%

and X;|o 25 1 — . Then,

) 1=
) %

Pr(=1|¢=1
Pr(0=0¢=1

So the sample is informative about the state of the world. To sum up, there is € small and



T large such that ¢ is indeed an equilibrium.

5. Proof of Lemma 12

I illustrate first the effect of different values of v > 1 on sampling probabilities. Figure 1
presents an agent in position 21. The black line shows the probability of observing a
predecessor in position T < 21 when v = 8. With probability higher than 0.998, the
agent observes one of his three immediate predecessors. The distribution becomes flatter
as 7y decreases. The red line shows the distribution when ¢ = 1.05. In this case, the
agent in position 21 observes his immediate predecessor twice as often as he observes the
first agent in the sequence. As v — 1, sampling approaches uniform random sampling.

Instead, as y — oo sampling approaches observing the immediate predecessor.

Pr(Oz = 1)
1 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
0.5
0.0.50:1 1

1234567 891011121314151617181920 T
Figure 1: Probabilities of Different Predecessors Being Observed. Geometric Sampling

Next, I present the proof of Lemma 12.

Proof. A strategy o; induces pg(¢) = Ps.(a; | 6,C). For the rest of this section, I
fix the state of the world 6 and drop its index. Then, a strategy ¢; induces a vector
(p(2),p(0),0(1)). Because of mistakes, ¢ < p(§) <1—¢eforall € {0,1,2}.

Assume first that v > 1. The first agent in the sequence chooses action 1 with proba-



bility p(@). For t > 2,

Po(ar =1) =Pr(§ =0)Pr(a; =1[ & =0) + Pr(Gr = 1) Pr(ay =1 & = 1)
= Pr(¢r = 0)p(0) + Pr(¢: = 1)p(1)
= [1=Pr(& =1)]p(0) + Pr(¢: = 1)p(1)
= p(0) + [o(1) — p(0)] Pr(Z; = 1)
p(0) + [p(1) = p(0)] ZPT(Ot = 1)1 {ar =1}

’l'<i’
T

f)/
=p(0)+ [p ar
Define the weighted sum of the past history by p; = Zf[_:ll r= vf 4 1aT for t > 2. This
concept plays a key role in the model:
Po(ar=1) = p(0) +[p(1) — p(0)] p
This weighted sum has a recursive nature:
y-1 19" 2! v 7 y-1 o
= ar| + ———F——a
pren = 21 P T Tgvvtll y -1
t—1 t_ a1
_ry -l v

In expectation,

1 _
Epi | It]) = ’Yt—_lE [pe | 1] + y,yt—_lE [ar | I

=Elp: | 1]+ ﬁ [0(0) = [1+p(0) — p(1)] E [pt | 1]]



[ = |
= Elpe | 1]+ 2 [1+0(0) = p(D)] [o" ~ Elpr | 1]

Let p* = HLJ Then,

p(0)—p(1)
t =1
Elpea [ 1) =p" = Elpr | 1= p" = =T (14 p(0) = p()] [E[pe | 1] = p7)
:[1_11;ﬁ;ﬁ1+ ©) = p(V)]] [Elpi 1]~
o o o pi o'
= [1 - 77‘17[{ 7 [1+0(0) —p(l)l] [Elpe [ 1] = p7]
—_— Y

(%)
I next provide bounds for the terms (x) and (**) in equation (3):

2¢ <1+ p(0) — p(1) <2 —2¢

_ _ t
r-1_7 1t’y <1
v v -1

With this bounds, I can also bound the whole term in brackets in equation (3):

t

7__128<,),__1 T [1+p(0) —p(1)] <2—2¢

y T -1
_ _ t
77128—1§7717;)/_1[1—}—p(0)—p(1)]—1§1—2€
—1 o ~1
1= T T p(0) - p(1)] <17 e

This leads to a simple bound over time:

t+n—1

* —1 f *
Elpeen | 1] =p' = TT 1= =g 1 p(0) — (D] IE [pr | 1] =]
T=t

n—1
< (1 _ 125)
y

3)

INote that p(0) > eand p(1) <1—¢,501+p(0) —p(1) > 1+e— (1 —¢€) =2¢. So 1+ p(0) —p(1) # 0.
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In particular,

So finally,

|E [ptan | It] = E [pran]| < |E[pran | ar = 1] — 0*| + |E [pr4n] — 0"

1 n—1 1 t+n—1
< (1 — LZS) + (1 — 7—28)
Y Y

n—1
§2(1—7 125)
/)/

And turning this into probabilities,

[Po(arin = 1] ar = 1) = Po(aren = 1)] = [p(0) + [o(1) — p(O)JE [prsn | ar = 1]
— [0(0) + [p(1) — p(O)IE [prr]
= |Ip(1) = p(O)] [E [prsn | as = 1] — E [prs]

< 2‘[15 [Pt+n | at = 1] — E [prin]]

n—1
§4<1—7 1zs>
Y

4 -1 "
< —— (1 N —— 28)
1—2122¢ Y

P

Next, assume that v = 1. Then,
1 t—1
Pu(ar = 1) = p(0) + [p(1) — p(0)] = L
=1

Define now p; = ﬁ Zt;:ll a, for t > 2, which leads to:

1 ¢ t—1 1t 1 t—1 1
Pt—&—l:?ZaT:TZar‘i‘?ﬂt: Pt A
=1 =1
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In expectation,

Elpet | B ="""E[p | 1]+ 1E o] 1]
=L RE | 0+ TE0(0) + [p(1) — p(0)] pr |

1 1
=t =1+p1) =p(O)]Elpt | ] + ;(0)
So in this case:

Elpet | 1] = p* = 1 [t 1+p(1) ~ p(O)] Elpe | 1]+ 10(0) —°
= 2 10(0) = [1+p(0) —p(W] E[ps | 1] + E[ps [ 1] = 7
[140(0) —p(V] [o" ~ Elpr | I} +Efpi | 1] -

= [1—-[1+4p(0)— p(l)]} [E [pt [ 1] = p7]
Then,

Elpren | Bl —p" = [Elps | p]H{l——Hp() o(1)

I present without proof the following remark:
REMARK 1. Let 0 < a, < 1 forall n. Then, [I72gan, >0 < Y2 (1 —ay,) < oco.
Then, it suffices to show that:

n n

(0) —p()] = [1+p(0

= =0

and follow the same steps as in the case with y > 1. B
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6. Proof of Lemma 13

Proof. I show Proposition 1 by proving that X|oT — E[X|cT] converges to zero in L? norm.

The variance V(o) as defined by equation (6) is bounded above by

V(oY) < % (1+4(125M>1 (12" ) .

1 (1—2eM)M

1

= 4 and lim7_ (1 — ZEM(T)> M=, Then,

Note that limy 4 (1—2eM(M)
1
the bound converges to zero whenever limy_,o, T [1 — <1 — ZsM(T)> Mm} — 0. I need to

1
show that for any K < oo, there exists a T < co such that: T {1 — (1 — ZeM(T)) M(T)} > K

for all T > T. This simplifies to

M(T) N
(1—?) >1-2MT)  yT>T.

Since (1 — %)M(T) >1— %, it suffices to show that:
KM M(T) M K1
— > 1 - > — .
=7 =21-2 < M <2T

M(T) is 0 (log(T)). Then, for any constant ¢ > 0 there is T large enough such that
M(T) < clog(T). Pick ¢ = (—2log(e)) . Note next that the function €*/x is decreasing.

M(T) (—2log(e)) " log(T)
Then, for T'1 € €
en, 0T 1 1aT8e, M(T) = (Z2log(e) "og(T)

. As a result, it suffices to show that for T large

enough:

(—21log(e)) " log(T)
&

> K1
(—210g(e3))71 log(T) ~ 2T
8(,210g(5))7110g(T) > Ig% (—Zlog(«?))il 10g(T)
(~2log(e)) ' log(e) ! tog(T)
T . —410g(s)K T
L 1 log(T)
>
e —4log(£)K T



1
T2 1
>
log(T) — —4log(e) K

The left hand side goes to the infinity, and the right hand side is constant. Then, there
always exists a T such that this holds. This shows the first part of Proposition 1.
Next, I focus on the second part of Proposition 1. Equation (7) in the paper now be-

comes:
Pr (|Xlo" - X[57| = %) < {(1—2&4(”)%”]”,

which holds for all .
1
Letn = [(—2log(e)) log(T)T%] As (1 —2eM)M <1, then:

3
4

(7210g(£))71 log(T)T
€

< <1 _ 25(—210g(e))‘1log(T)> (~2log(e))~log(T)

where I have used the fact that M(T) is o (log(T)), so M(T) < (—2log(e)) 'log(T) for T
1
large enough. Moreover, I also used the fact that (1 — 2¢M) ™ is increasing in M.

I need to show that for all b > 0, there exists T, such that Pr (|XleT = X|oT| >b) < b
3
1

)T ~0.

N—=

forall T > T. Then, it suffices to show that lim7_,e 7 = 0and lim7_,« (1 — 2T~
So first, note that:

- (—2log(e) 'log(T)Ti +1 _ 1 log(T)

— 0,
T (—2log(e)) T1

n 1
T T

so imr_,e 7 = 0.

I

. T : 3 _1
Second, note that limp_, (1 —2T 2> = 0 & limr_, T4 log (1 —2T 2) = —oo.
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So using L'Hopital’s rule:

og(1-2rt) AT

li = li S —
Tgrc}o T—3 Tgrc}o _%T—% T—eo 31 _0T—3%

This finishes the proof of the second part of Proposition 1.
Lemma 10 also needs some adjustment to allow for M to grow with T. Equation (9)

from the paper becomes:

<1 <1
M(T)—-1 . [ TFM(T) =1 e

1 =
ng—EUT[Xg]:,T Y. Pyr(ar=1) Y ottt

=1 =T
r T—71
— Y Pu(ac=1) (1——)]
e U M)
<1
< 2M(T)
- T

Since M(T) is o(log(T)), then, 7t} — E,r — 0. This adapts Lemma 10 to the case with

growing M. The rest of Proposition 2 does not change. Bl

7. Many States of the World and Many Actions

7.1 The Model

States and Actions

There are Ny equally likely states of the world 6§ € ® = {1,2,...,Np}. Agents must
choose between N, possible actionsa € A = {1,2,...,N,}. Let X* = %Ejez]l {aj =a}
denote the proportion of agents who choose action 4, with realizations x? € [0, 1]. The vec-
tor X = (X!, X?,...,XNr) denotes the proportion of agents choosing each action. Agent i
obtains utility u (a;, X,0) : A x [0,1] x ® — R, where u (a;, X, 0) is a continuous function
in X.

Private Signals
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Conditional on the true state of the world, signals are i.i.d. across individuals and
distributed according to Fy. I assume that Fy and F; are mutually absolutely continuous
for any two 6,0 € ®. Then, no perfectly-revealing signals occur with positive probability,
and the following likelihood ratio (Radon-Nikodym derivative) exists l54(s) = Z—ig(s). I

also define a likelihood ratio that indicates how likely one state is, relative to all other

lo(s) = (x lg,9<s>)
040

Let Gg(l) = Pr(lp(S) <1|8). I modify the assumption of signals being of unbounded

states:

strength as follows:

DEFINITION. SIGNAL STRENGTH. Signal strength is unbounded if 0 < Gy(I) < 1 for all
likelihood ratios | € (0,00), and for all states 6 € ©.

Sampling, Strategies and Mistakes

The sampling rule does not change. A strategy is now a function 0; : S X & —
[e,1— (N, — 1)e]™ that specifies a probability vector 0;(s,&) for choosing each action
given the information available. For example, 0/ (s, {) indicates the probability of choos-
ing action a € A, after receiving signal s and sample ¢.
Definition of Social Learning

I modify the definition of NE to allow for many states and actions. I say that xg corre-
sponds to a Nash Equilibrium of the stage game (and denote it by x4 € NE?) whenever
u(a, xq,0) > u(a*, xq,0) for some a,a* € A= x§ = 0. Then, x € NE whenever x, € NE?
forall 6 € ©.

7.2 Results

Existence and Convergence of Average Action

The proofs of Lemma 1 and Proposition 1 extend directly to a context with many
actions and many states. I need to adapt the notation. The random variable X|c is now
a matrix. Each element X{|o is a random variable that denotes the proportion of agents

choosing action a in state . So the random variable X|o = (Xi|o, Xs|c, ..., Xn,|o) has

16



realizations x = (x1,xp, ..., xn,), Where each xj is itself a vector: xy = (xé, xg, .. xé\]").
Utility Convergence

In what follows, I provide modified expressions for the expected utility, the utility of
the expected average action, and the approximate utility of a deviation. These expressions
apply to contexts with many actions and many states.

Agents’ expected utility under symmetric profile o7 is simply

u(ol) = Eyr[u(a;, X,0)] = Y X§-u(a,Xe,0)

aceA

Define the utility of the expected average action i’ by

E Z Z EU-T XG (Z, EUT [Xg] ,9) .

Ne €@ acA

Define the approximate utility of the deviation i’ by

L Y Y Pr(ai=a|0) u(aEyr[Xe],0).

Ne 0@ ac A

The proofs of Lemmas 2 and 3, as well as Corollary 1, extend directly to a context with
many actions and many states.
Corollary 2: The Approximate Improvement

Let the approximate improvement AT be given now by

AT =aT — Z Y [Pyr(a;=a|0) — E,r [X§]] - u(a, E;r [Xe],0)
No 46 sen

The proof of Corollary 2 extends directly to a context with many actions and many

states.
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7.3 Alternative Strategy 1: Always Follow a Given Action
I present next a version of Lemma 4 that applies to many actions and many states. Let

action a* € A be weakly dominant if

u(a*,xg,0) > u(a,xg,0) forall a € Aandforall 6 € Q.

Let action a* € A be strictly dominant if

u(a*,xg,0) > u(a,x9,0) forall a € Aandforall 0 € ®.

LEMMA A4. DOMINANCE. Ifaction a* € A s strictly dominant, then x§ =1— (N, — 1)e
forall 0 € ®. Assume instead that action a* € A is weakly dominant. If there exists state § € ©
with u(a*, xe,0) > u(d, x,0), then x5 = e.

Proof. Consider the alternative strategy of always choosing action a*. Because of mis-

takes this means a* is chosen with probability 1 — (N, — 1)¢. Then the improvement is as

follows:
1 [ . 1
A = No > [1 — (Na —1)e — x } u(a*,xg,0)+ Y (e—x5)-u(a xp,0)
o fc® | 117511* ]
= = Z [1 — (Na—1)e - x?)*} u(a*,xe,0) — 2 (xg—e)-u(a,xg,0)
N9 USC) | a#a* ]

Note, that xj — & > 0 for all 4, 6. Then,

[1 — (Ng —1)e— x‘é*] u(a*,xg,0)— Y (x§—e)-u(axg6)>
ata*

[1 — (Ng —1)e— xg*} u(a*,xp,0) — Y (x§—e)-u(a*,xp0) =
a#a*

[[1 — (N, —1)e — xg*] — ; (x§ — e)] -u(a*,xq,0) =

[1 — (Na—1)e— Y x5+ (N; — l)e] -u(a*,x9,0) =0
acA

=0

N
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Recall that AT < 0, by Corollary 2. Moreover, AT > 0. Then, AT = 0. Also, as each term

in AT is weakly positive, then all terms in AT must be zero:

[1 — (N, —1)e — xg*} u(a*,xg,0)— Y (x§—¢€)-u(axp60)=0
aFa*

Assume next that for some action 4 € A in some state 0 € ©, u(a*, xq,0) > u(d, xy,6).

Then,

= [1 — (N —1)e— x‘é*] u(a*,xg,0)— Y (x§—¢€)-u(axg6)>

aFta*
[1 ~(Na=De—xf — Y (x5— e)] u(a*,xg,0) — (xg—e€)u(a, xg0) =
ata*,aa
[1—e—(1—x§)] u(a*, xp,0) — (x§ — &) u(d xq,0) =

xh—e) [u(a*,xg,0) —u(a, xg0)]

To sum up,
>0

(x3 —€) Tu (a*, xq,0) — u (a,%p,0)] <O

So xg = e. Similarly, if u(a*,x9,60) > u(a, xg,0) for alla € A and for all 0 € O, then
7 =1—(N;—1)e. W

7.4 Alternative Strategy 2: Improve Upon a Sampled Agent

Consider a possible limit point x = (xl, X2,..., xNQ). Assume that action 4 is not optimal
in state 6*: u(a*, xg+,0%) > u(d, x¢+,0"), but it is still played in the limit: xg* > ¢. Asin
the case with two states, let E denote the action of one individual selected at random from

the sample. Consider an alternative simple strategy o, that makes the agent choose the
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following action:

* : ~:~ . > T —1 Nl
i = 0 HEE T and o) 2 = G R (A e ) B (E=il=e)

Ef otherwise

I provide next a version of Lemma 5 in the paper that applies to many actions and
many states.

LEMMA A5. IMPROVEMENT PRINCIPLE. Take any limit point x € L with u(a*, xg,0*) >
u(a, xg«,0%). Then,

Ae) + *le)e [xG - [u(a*, xg-,0%) — u(a, xp+,6")]]
x [[1=Go (B)] =K [1-Gor (R)|| <O )
with
k= —i[(u(a*, xp:,0%) — u (d,xp-,0%)) xg*]_l and
[Z 2[1_ _1x9] (IZ,XQ,G)].
fc@acA

See section 7.5 for the proof.

The term [[1 — Gy (k)] —k [1 — Gp- (I_c)” > 0in equation (4) decreases in k (as shown
later in Proposition A3). Moreover, with signals of unbounded strength, this term is
strictly positive. Then, whenever x} > 0, there is potential for improvement. The exis-
tence of mistakes may present such an improvement. Note however, that lim,_ Ae) = 0.
Then, when mistakes are unlikely the potential for improvement dominates in equa-

tion (4).
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7.5 Proof of Lemma A5

Proof. Let p} (a|d) = Pyr (ai —alp, ¢ = d). In general, the improvement is given by:

— i L L [+ 1= (Na=1e] T pulalePer (£ = a'0)

Neg Pe®@ac A aceA

“En [Xe]} u(a, Eyr [Xo],6)

- [i Y. Y u(a,E,r[Xe),0)

No 42 aca
1—(N,—1) z
P L [ 5 5 o alaRer (= 16) (o o 0]
0 [0c@acAd’ce A
LDy 3 e X u(e, Epr [X0),6)
Ny 60 acA

(N [Z S Er (X4 u(a, Eyr [Xe],6)

Pe®@ac A

Let

ZT(&') = Nig Z Z u(a, E,r [Xg],0) — (N, — 1) [Z Z E,r [XZ] u(a, E,r [Xs],0)

_9€® acA 0cO®@acA
e
= ﬁ Z Z 1 — - (TT [Xe]] ( oT [XQ] /0)
0 [6c@acA
and:
&) =—3—
Then,

u(a, Egr [Xo],6) (5)

pc®@acA [a'cA

AT=AT(e)+](e) Y Y [ Y polala’)Pyr (E=a10) — Epr [Xg]
But

u(a, Eyr [Xe],0)

1 / ! a

aeA
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9[2 Y. X polala)Por (& = [6) u(a, Eor [Xo), 0

Pe@acAa'cA

Ny [Z ZEUT Xf) T[XG]IO)

Pe®@ac A

[2@2 Y polala')Pyr (£ = a'10) u(a, Eyr [%,],0)

[ 2 E,r X@] a’ ,E 1 [Xo],0)

)

Z pg(ala)P <~: a’|9) u(a, E,r [Xq],0)

— Egr [X§ | ula, Eyr [X4],0)

As a result, the improvement in equation (5) can be expressed as:

AT = AT(e) +J(e) Y 5 [Z og(ala" )P, r <§: a'|6> u(a, E,r [Xq],0)

fe@a’'c A lac A

—Ex [Xe] u(a',E,r [Xo],0)

In particular, for the simple strategy o,

AT =AT(e)+J(0) [pew*wm (=a16) ula", Epr [X0],0)

0O

+ 1= po(a*[@)] Pyr (§ = 10) (@, Eyr [Xo] ,0) — Egr [X3] (7, Eor [Xo)],0)

=AT(e)+](e) ¥ [pg(a*m)PUT (5: a|9) [u(a*, E,r [Xq],0) — u(d, E;r [Xq],0)]

0cO®

+ [PUT (E - a|9> —Er [Xg]} u(a, E,r [Xq),0)

Let
A =1 Y [Por (§=10) — Eor [X3]] 4(a, Epr [Xs)],0)




Then,

~ =T
AT =AT(e) + A

+ J(e) 9% po(a™|@)P, 1 (5: ﬁ]@) [u(a®, E,r [Xg],0) — u(d, E,r [Xg] ,9)]]

_AT(e)+ A

+J©) | X [eola|a)Pyr (E = o) [u(a", Eyr [Xo),0) — u(a, Egr [Xo],0)]]
0cO,0-40

+ 0o (@* 1)1 (£ = al6") [u(@”, Eyr [Xo:],0%) — (@, Eyr [Xp:] ,e*n]

Now, let

—1

min u(a,xqg,0) —u(d, xg,0
a€A,a €AH€0,xg€(0,1)Na [ ( 0 ) ( 0 )]

This minimum exists since there is a finite number of states and actions, and the utility

functions are continuous in X. Then,

[u(a*, E v [Xe+],0") — u(d, E,r [Xe<],0")] > —i

Then,
_ =T ~
AT = RT(e) + A +J(e)Pyr (& =al6") [u(a”, Eor [Xo:],0%) = u(a, Egr [X:],67)]
1Y 9o 046" [Pa(ﬂ*|ﬁ)PaT (5: ﬁ|9>] -
X |~ - + po- (")
Por (&= al6") [u(a®, Egr [Xp:],6°) — u(a, Er [Xo-),0%)]

~ =T

= AT(e)+A +J(e)Pr (5: a|9*) [u(a*, E,r [Xo:],0%) — u(d, E v [Xo:],0%)]

)

[Pe*(ﬂ*’ﬁ) - @/29#* [pola”|a)P,r (&= are)}]
>ZT(e)+ZT+](s)P (5:519*) [u(a*, E,r [Xg+],0%) — u(d, E,r [Xg],0%)]
= oT r LT [ 0%, r Lo [A0% ],

% |pe(a*a) — kT ) Pe(a*lﬁ)]

0cO,040*
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= AT =AT(e) + A +](e)P,r (5: ﬁ\e*) [u(a*, E,r [Xo+],0%) — u(d, Er [Xo:],07)]

[l ()] 4 10 ()]

Note that lim7_,o A = 0. Let A(¢) = limr_,, AT (¢). Finally, note that, as in proof in
the paper, limr_, kT = k. Then,

. ~ 1—(N;—1)e
T a

— A -
Thrn A* (5) + N9

% |[1= Gy (R)] =K |1 Gp- (K)]| m

[xG. [u(a*, xg,0%) — u(, xg+,6")]]

7.6 Strategic Learning

Lemmas A4 and A5 are the main building blocks to show how Proposition 2 also applies

to a context with many states and many actions. I present this formally.

PROPOSITION A2. STRATEGIC LEARNING. Assume signals are of unbounded strength.

Then there is strategic learning.

The proof of Proposition A3 requires modifying Proposition 3 and Lemma 11 in the
paper. With these results in hand, the proof of Proposition A2 is analogous to the proof of
Proposition 2 in the main text. Lemma 11 extends directly to a context with many actions
and many states. I present next a version of Proposition 3 in the paper that applies to

many states of the world.

PROPOSITION A3. Foralll € (L,1), Gy(l) satisfies:

Go(!) 1-Gq(!)
I > é@(l) and | < 1= Gol) (6)
Moreover, if k' > k then,
1— Gy (k)] —k[1=Go (k)] > [1— Gy (K)] = K [1 = Go (K)] ?)

Proof. The proof follows that from Proposition 11 in Monzén and Rapp [2014], but

here the likelihood ratio Gy indicates how likely state 6, relative to all other states. Note
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first that

dF5
- Yl - OB
640 00ls 640 dFG
dFy(s =Y dFy(s)
)

dF@ = 19 S) Z ng
040

Recall that Gy(L) = Y59 r(lp(s) < L| 0).

Go(L) =

s) ) dFs(s)

646

<ASGS!G Ly LD R =LY | dF;(s)

620 i29 7 (5eSla(s)<L)

dFy = l
/{SES:lg(s)<L} f /{SESZZQ(S)<L} 9(

= LGy(L)

Similarly,

1—Gy(L) = dEy = I dF;
o(L) /{568:19(5)>L} ’ /{SGS:le(s)>L} "(3)9;9 o)

LY diys) =LY [ dF;(s)

g/
{SeS:ly(s)>L} G40 640 {SeS:ly(s)>L}

=L [1 - ég(L)}
This shows that equation (6) holds. I mover next to the second part. Take K’ > k.

[1 =G (k)] = [1 = Go (K)] = Gy (k') — Go (k) = /SGS:kgle(s)Sk' o

= lo(S) ) _ dF;

SeS:k<lg(S)<k 620

>k dF; = k |Gy (K') — Gy (k
- SeS:kglg(S)gk’é;) 8 [ o (K) = Go )]

— k[1 = Go ()] —k [1 = Go (k)]
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> k [1 — Gy (k)] —K [1 — Gy (k’)]
Then,

[1—Go (k)] = [1= Go (k)] = k [1 =Gy (k)| =K [1=Go (K]
(1= Go ()] =k |1 =Gy (k)| = [1 = Go (K)] =K [1 - Go (k)|

This shows that equation (7) holds. B
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