Omitted Proofs

Observational Learning in Large Anonymous Games

by Ignacio Monzón

Contents

1	Proof of Lemma 6		2
2	Proof of Lemma 7		3
3	Example 4. Standard Observational Learning with Mistakes		5
4	Example 8. Multiple Equilibria in a Coordination Game		6
5	Proof of Lemma 12		8
6	Proof of Lemma 13		13
7	Mar	y States of the World and Many Actions	15
	7.1	The Model	15
	7.2	Results	16
	7.3	Alternative Strategy 1: Always Follow a Given Action	18
	7.4	Alternative Strategy 2: Improve Upon a Sampled Agent	19
	7.5	Proof of Lemma A5	21
	7.6	Strategic Learning	24

1. Proof of Lemma 6

Proof. Take a limit point $x = (x_0, x_1)$ with $v_0(x_0) > 0$ and $v_1(x_1) < 0$. In the limit, agents want their action to go against the state of the world. Now the simple strategy $\tilde{\sigma}^T$ is as follows:

$$\widetilde{\sigma}^{T}\left(\widetilde{\xi},s\right) = \begin{cases} 1 & \text{if } \widetilde{\xi} = 1 \text{ and } l(s) \leq \underline{k}^{T} \equiv \frac{v_{0}(E_{\sigma T}[X_{0}])}{-v_{1}(E_{\sigma T}[X_{1}])} \frac{\mathbf{P}_{\sigma T}\left(\widetilde{\xi}=1|\theta=0\right)}{\mathbf{P}_{\sigma T}\left(\widetilde{\xi}=1|\theta=1\right)} \\ 1 & \text{if } \widetilde{\xi} = 0 \text{ and } l(s) \leq \overline{k}^{T} \equiv \frac{v_{0}(E_{\sigma T}[X_{0}])}{-v_{1}(E_{\sigma T}[X_{1}])} \frac{\mathbf{P}_{\sigma T}\left(\widetilde{\xi}=0|\theta=0\right)}{\mathbf{P}_{\sigma T}\left(\widetilde{\xi}=0|\theta=1\right)} \\ 0 & \text{otherwise} \end{cases}$$
(1)

Given this simple strategy, the approximate improvement is given by:

$$\begin{split} \Delta^{T} &= \frac{1}{2} \sum_{\theta \in \{0,1\}} \left[\mathbf{P}_{\tilde{\sigma}^{T}} \left(a_{i} = 1 \mid \theta \right) - E_{\sigma^{T}} \left[X_{\theta} \right] \right] \cdot v_{\theta} \left(E_{\sigma^{T}} \left[X_{\theta} \right] \right) \\ &= \frac{1}{2} \sum_{\theta \in \{0,1\}} \left[\varepsilon + \left(1 - 2\varepsilon \right) \left[\pi_{\theta}^{T} G_{\theta}(\underline{k}^{T}) + \left(1 - \pi_{\theta}^{T} \right) G_{\theta}(\overline{k}^{T}) \right] - E_{\sigma^{T}} \left[X_{\theta} \right] \right] \cdot v_{\theta} \left(E_{\sigma^{T}} \left[X_{\theta} \right] \right) \\ &= \frac{1}{2} \sum_{\theta \in \{0,1\}} v_{\theta} \left(E_{\sigma^{T}} \left[X_{\theta} \right] \right) \left[\varepsilon + \left(1 - 2\varepsilon \right) \left[\pi_{\theta}^{T} \left[G_{\theta}(\underline{k}^{T}) - 1 \right] + \left(1 - \pi_{\theta}^{T} \right) G_{\theta}(\overline{k}^{T}) \right] \right] \\ &+ v_{\theta} \left(E_{\sigma^{T}} \left[X_{\theta} \right] \right) \left[\left(1 - 2\varepsilon \right) \pi_{\theta} - E_{\sigma^{T}} \left[X_{\theta} \right] \right] \\ &= \frac{1}{2} \sum_{\theta \in \{0,1\}} v_{\theta} \left(E_{\sigma^{T}} \left[X_{\theta} \right] \right) \left[\left(1 - 2\pi_{\theta}^{T} \right) \varepsilon + \left(1 - 2\varepsilon \right) \left[\pi_{\theta}^{T} \left[G_{\theta}(\underline{k}^{T}) - 1 \right] + \left(1 - \pi_{\theta}^{T} \right) G_{\theta}(\overline{k}^{T}) \right] \right] \\ &+ \frac{1}{2} \sum_{\theta \in \{0,1\}} v_{\theta} \left(E_{\sigma^{T}} \left[X_{\theta} \right] \right) \left[\pi_{\theta} - E_{\sigma^{T}} \left[X_{\theta} \right] \right] \end{split}$$

Thus,

$$\begin{split} \Delta^{T} &= \frac{1}{2} \Big[(1 - 2\pi_{0}^{T})\varepsilon + (1 - 2\varepsilon) \left[-\pi_{0}^{T}[1 - G_{0}(\underline{k}^{T})] + (1 - \pi_{0}^{T})G_{0}(\overline{k}^{T}) \right] \Big] \cdot v_{0} \left(E_{\sigma^{T}} \left[X_{0} \right] \right) \\ &+ \frac{1}{2} \Big[(1 - 2\pi_{1}^{T})\varepsilon + (1 - 2\varepsilon) \left[-\pi_{1}^{T}[1 - G_{1}(\underline{k}^{T})] + (1 - \pi_{1}^{T})G_{1}(\overline{k}^{T}) \right] \Big] \cdot v_{1} \left(E_{\sigma^{T}} \left[X_{1} \right] \right) \\ &+ \frac{1}{2} \sum_{\theta \in \{0,1\}} v_{\theta} \left(E_{\sigma^{T}} \left[X_{\theta} \right] \right) \left[\pi_{\theta} - E_{\sigma^{T}} \left[X_{\theta} \right] \right] \\ &= \frac{1}{2} \Big[(1 - 2\varepsilon)(1 - \pi_{0}^{T}) \left[G_{0}(\overline{k}^{T}) - \frac{-v_{1} \left(E_{\sigma^{T}} \left[X_{1} \right] \right)}{v_{0} \left(E_{\sigma^{T}} \left[X_{0} \right] \right)} \frac{(1 - \pi_{1}^{T})}{(1 - \pi_{0}^{T})} G_{1}(\overline{k}^{T}) \right] \Big] \cdot v_{0} \left(E_{\sigma^{T}} \left[X_{0} \right] \right) \end{split}$$

$$\begin{split} &+ \frac{1}{2} \Big[(1 - 2\varepsilon) \pi_1^T \left[\frac{v_0 \left(E_{\sigma^T} \left[X_0 \right] \right)}{-v_1 \left(E_{\sigma^T} \left[X_1 \right] \right)} \frac{\pi_0^T}{\pi_1^T} [1 - G_0(\underline{k}^T)] - [1 - G_1(\underline{k}^T)] \right] \Big] \cdot v_1 \left(E_{\sigma^T} \left[X_1 \right] \right) \\ &+ \frac{1}{2} (1 - 2\pi_0^T) \varepsilon \cdot v_0 \left(E_{\sigma^T} \left[X_0 \right] \right) + \frac{1}{2} (1 - 2\pi_1^T) \varepsilon \cdot v_1 \left(E_{\sigma^T} \left[X_1 \right] \right) \\ &+ \frac{1}{2} \sum_{\theta \in \{0,1\}} v_\theta \left(E_{\sigma^T} \left[X_\theta \right] \right) \left[\pi_\theta - E_{\sigma^T} \left[X_\theta \right] \right] \\ &= \frac{1}{2} \Big[(1 - 2\pi_0^T) \varepsilon + (1 - 2\varepsilon) (1 - \pi_0^T) \left[G_0(\overline{k}^T) - (\overline{k}^T)^{-1} G_1(\overline{k}^T) \right] \right] \cdot v_0 \left(E_{\sigma^T} \left[X_0 \right] \right) \\ &+ \frac{1}{2} \Big[(2\pi_1^T - 1) \varepsilon + (1 - 2\varepsilon) \pi_1^T \left[[1 - G_1(\underline{k}^T)] - \underline{k}^T [1 - G_0(\underline{k}^T)] \right] \Big] \cdot \left(-v_1 \left(E_{\sigma^T} \left[X_1 \right] \right) \right) \\ &+ \frac{1}{2} \sum_{\theta \in \{0,1\}} v_\theta \left(E_{\sigma^T} \left[X_\theta \right] \right) \left[\pi_\theta - E_{\sigma^T} \left[X_\theta \right] \right] \end{split}$$

Thus,

$$\lim_{T \to \infty} \Delta^T = \frac{1}{2} \Big[(1 - 2x_0)\varepsilon + (1 - 2\varepsilon)(1 - x_0) \left[G_0(\bar{k}) - (\bar{k})^{-1} G_1(\bar{k}) \right] \Big] \cdot v_0(x_0) \\ + \frac{1}{2} \Big[(2x_1 - 1)\varepsilon + (1 - 2\varepsilon)x_1 \left[[1 - G_1(\underline{k})] - \underline{k} [1 - G_0(\underline{k})] \right] \Big] \cdot (-v_1(x_1)) \Big]$$

Again, Corollary 2 leads directly to

$$\left[(1-2\varepsilon)(1-x_0) \left[G_0(\overline{k}) - (\overline{k})^{-1} G_1(\overline{k}) \right] - \varepsilon (2x_0 - 1) \right] \cdot v_0(x_0)$$

+
$$\left[(1-2\varepsilon) x_1 \left[[1 - G_1(\underline{k})] - \underline{k} [1 - G_0(\underline{k})] \right] - \varepsilon (1 - 2x_1) \right] \cdot (-v_1(x_1)) \le 0 \blacksquare$$

2. Proof of Lemma 7

Let $\widetilde{NE}_{\delta} = \left\{ x \in [0,1]^2 : d\left(x, NE_{(\underline{L}\overline{l})}\right) \leq \delta \right\}$ be the set of all points which are δ -close to elements of $NE_{(\underline{L}\overline{l})}$ and let L^{ε} denote the set of limit points in a game with mistake probability $\varepsilon > 0$. I show first the following Lemma, which is analogous to Lemma 11 in the paper.

LEMMA A.1. LIMIT SET APPROACHES $NE_{(l,\overline{l})}$. For any $\delta > 0$, $\exists \ \tilde{\epsilon} > 0 : L^{\epsilon} \subseteq \widetilde{NE}_{\delta} \ \forall \epsilon < \tilde{\epsilon}$.

Proof. By contradiction. Assume that there exists 1) a sequence of mistake probabilities $\{\varepsilon^n\}_{n=1}^{\infty}$ with $\lim_{n\to\infty} \varepsilon^n = 0$, and 2) an associated sequence $\{x^n\}_{n=1}^{\infty}$ with $x^n \in L^{\varepsilon^n}$ for all n, but 3) $x^n \notin \widetilde{NE}_{\delta}$ for all n. Since $x^n \in [0,1]^2$ for all n, this sequence has a convergent

subsequence $\{x^{n_m}\}_{m=1}^{\infty}$ with $\lim_{m\to\infty} x^{n_m} = \bar{x} = (\bar{x}_0, \bar{x}_1)$. If $v_0(\bar{x}_0) = v_1(\bar{x}_1) = 0$, then $\bar{x} \in NE$, so for *m* large enough, $x^{n_m} \in \widetilde{NE}_{\delta}$. Then, it must be the case that $v_{\theta}(\bar{x}_{\theta}) \neq 0$ for some θ .

Assume that $v_1(\bar{x}_1) > 0$. Pick \tilde{m} large enough so that $v_1(x_1^{n_m}) > 0$ for all $m > \tilde{m}$. For all m with $v_0(x_0^{n_m}) \ge 0$, Lemma 4 implies that $x^{n_m} = (1 - \varepsilon^{n_m}, 1 - \varepsilon^{n_m})$. So if $v_0(x_0^{n_m}) \ge 0$ infinitely often, then $\bar{x} = (1, 1)$. As a result, $\bar{x} \in NE$, so for m large enough, $x^{n_m} \in \widetilde{NE}_{\delta}$.

Take next all *m* with $v_0(x_0^{n_m}) < 0$. By Lemma 5 equation (4) must hold:

$$\frac{-v_{0}(x_{0}^{n_{m}})}{2}\left[\underbrace{(1-2\varepsilon^{n_{m}})}_{2}\overline{\left[\left(1-2\varepsilon^{n_{m}}\right)^{n_{m}}\left[G_{0}\left(\underline{k}^{n_{m}}\right)-\left(\underline{k}^{n_{m}}\right)^{-1}G_{1}\left(\underline{k}^{n_{m}}\right)\right]}_{\geq 0}-\varepsilon\left(1-2x_{0}\right)\right]}_{\geq 0} + \frac{v_{1}(x_{1}^{n_{m}})}{2}\left[\underbrace{(1-2\varepsilon^{n_{m}})}_{\rightarrow 1}\underbrace{\left(1-x_{1}^{n_{m}}\right)\left[\left[1-G_{1}\left(\overline{k}^{n_{m}}\right)\right]-\overline{k}^{n_{m}}\left[1-G_{0}\left(\overline{k}^{n_{m}}\right)\right]\right]}_{\geq 0}\right] \qquad (2)$$

$$-\underbrace{\varepsilon^{n_{m}}\left(2x_{1}^{n_{m}}-1\right)}_{\rightarrow 0}\right] \leq 0$$

Proposition 3 guarantees both that $\left[\left[1-G_1\left(\bar{k}^{n_m}\right)\right]-\bar{k}^{n_m}\left[1-G_0\left(\bar{k}^{n_m}\right)\right]\right] \ge 0$ and that $\left[G_0\left(\underline{k}^{n_m}\right)-\left(\underline{k}^{n_m}\right)^{-1}G_1\left(\underline{k}^{n_m}\right)\right] \ge 0$. Then, as equation (2) shows, when $\varepsilon^{n_m} \to 0$ only non-negative terms may remain. Assume that $\bar{k} = -\left[v_0(\bar{x}_0)(1-\bar{x}_0)\right]/\left[v_1(\bar{x}_1)(1-\bar{x}_1)\right] < \bar{l}$. Then, for ε small enough, $\bar{k}^{n_m} < \bar{l}$. Proposition 3 implies that

$$\lim_{m\to\infty}\left[\left[1-G_1\left(\overline{k}^{n_m}\right)\right]-\overline{k}^{n_m}\left[1-G_0\left(\overline{k}^{n_m}\right)\right]\right]>0.$$

To summarize, whenever $\overline{k} < \overline{l}$, equation (2) is not satisfied for small enough ε^{n_m} . It must be the case then that $\overline{k} \ge \overline{l}$. Similarly, if $\underline{k} > \underline{l}$ then

$$\lim_{m\to\infty} \left[G_0\left(\underline{k}^{n_m}\right) - \left(\underline{k}^{n_m}\right)^{-1} G_1\left(\underline{k}^{n_m}\right) \right] > 0$$

for small enough ε^{n_m} . It must be the case then that $\underline{k} \leq \underline{l}$.

Analogous arguments (using also Lemma 6) lead to the same result for the case with $v_1(\bar{x}_1) < 0$. As a result, $\bar{x} \in NE_{(l,\bar{l})}$, so for *m* large enough, $x^{n_m} \in \widetilde{NE}_{\delta}$.

The rest of the proof is identical to the proof of Proposition 2 in the paper.

3. Example 4. Standard Observational Learning with Mistakes

This corresponds to Example 4 in the paper. Utility is given by u(1, X, 1) = u(0, X, 0) = 1and u(1, X, 0) = u(0, X, 1) = 0. Each agent observes his immediate predecessor: M = 1. The signal structure is described by $v_1[(0,s)] = s^2$ and $v_0[(0,s)] = 2s - s^2$ with $s \in (0,1)$.

Proof.

Let $\pi \equiv \Pr(\xi = 1 \mid \theta = 1)$. An agent who observes $\xi = 1$ chooses action one if and only if $\frac{\pi}{1-\pi} \frac{s}{1-s} \ge 1 \Leftrightarrow s \ge 1-\pi$. Similarly, an agent who observes $\xi = 0$ chooses action one if and only if $\frac{1-\pi}{\pi} \frac{s}{1-s} \ge 1 \Leftrightarrow s \ge \pi$. As a result, the likelihood that somebody who observes a sample (that is, not agent one) will choose the right action is given by:

$$\begin{aligned} \Pr(a_i = 1 \mid \theta = 1, Q(i) \neq 1) &= \frac{1}{T - 1} \sum_{t=2}^{T} \Pr(a_t = 1 \mid \theta = 1) \\ &= \varepsilon + (1 - 2\varepsilon) \left[\pi \Pr(s \ge 1 - \pi) + (1 - \pi) \Pr(s \ge \pi) \right] \\ &= \varepsilon + (1 - 2\varepsilon) \left[\pi [1 - (1 - \pi)^2] + (1 - \pi) [1 - \pi^2] \right] \\ &= \varepsilon + (1 - 2\varepsilon) \left[\pi - \pi (1 + \pi^2 - 2\pi) + 1 - \pi - \pi^2 + \pi^3 \right] \\ &= \varepsilon + (1 - 2\varepsilon) \left[\pi - \pi - \pi^3 + 2\pi^2 + 1 - \pi - \pi^2 + \pi^3 \right] \\ &= \varepsilon + (1 - 2\varepsilon) \left(1 - \pi + \pi^2 \right) \end{aligned}$$

Reordering,

$$\Pr(a_1 = 1 \mid \theta = 1) + \sum_{t=2}^{T} \Pr(a_t = 1 \mid \theta = 1) = \sum_{t=1}^{T-1} \Pr(a_t = 1 \mid \theta = 1) + \Pr(a_T = 1 \mid \theta = 1)$$

Then,

$$\varepsilon + (1 - 2\varepsilon)\left(1 - \pi + \pi^2\right) - \pi - \frac{\Pr(a_T = 1 \mid \theta = 1) - \Pr(a_1 = 1 \mid \theta = 1)}{T - 1} = 0$$
$$\varepsilon + (1 - 2\varepsilon)\left(1 - \pi + \pi^2\right) - \pi - \Delta = 0$$
$$(1 - 2\varepsilon)\pi^2 - 2(1 - \varepsilon)\pi + 1 - \varepsilon - \Delta = 0$$

$$\begin{split} \pi &= \frac{2(1-\varepsilon)\pm\sqrt{4(1-\varepsilon)^2-4(1-2\varepsilon)(1-\varepsilon-\Delta)}}{2(1-2\varepsilon)} \\ &= \frac{1-\varepsilon-\sqrt{(1-\varepsilon)^2-(1-2\varepsilon)(1-\varepsilon-\Delta)}}{1-2\varepsilon} \end{split}$$

As $T \to \infty$, $\Delta \to 0$, then

$$\pi \to \frac{1 - \varepsilon - \sqrt{(1 - \varepsilon)^2 - (1 - 2\varepsilon)(1 - \varepsilon)}}{1 - 2\varepsilon}$$
$$= \frac{1 - \varepsilon}{1 - 2\varepsilon} \left(1 - \sqrt{1 - \frac{1 - 2\varepsilon}{1 - \varepsilon}} \right) = \frac{1 - \varepsilon}{1 - 2\varepsilon} \left(1 - \sqrt{\frac{\varepsilon}{1 - \varepsilon}} \right)$$

Also, as $T \to \infty$, $\pi - \Pr(a_i = 1 \mid \theta) \to 0$. Then, $x_1 = \lim_{T\to\infty} \Pr(a_i = 1 \mid \theta) = \frac{1-\varepsilon}{1-2\varepsilon} \left(1 - \sqrt{\frac{\varepsilon}{1-\varepsilon}}\right)$.

4. Example 8. Multiple Equilibria in a Coordination Game

Proof. Consider a sequence of symmetric strategy profiles $\{\sigma^T(s,\xi)\}$ where $\sigma^T(s,\xi) = \sigma(s,\xi)$ does not change with *T* and is given by:

$$\sigma(s,\xi) = \begin{cases} 1 & \text{if } s = 1 \\ 0 & \text{if } s = 0 \\ \xi & \text{if } s = 1/2 \end{cases}$$

Let $\pi \equiv \Pr(\xi = 1 \mid \theta = 1)$. Under $\sigma(s, \xi)$, the likelihood that somebody who observes a sample (that is, not agent one) chooses action 1 is given by:

$$Pr(a_i = 1 \mid \theta = 1, Q(i) \neq 1) = \frac{1}{T - 1} \sum_{t=2}^{T} Pr(a_t = 1 \mid \theta = 1)$$
$$= \varepsilon + (1 - 2\varepsilon) [Pr(s = 1) + Pr(s = 1/2)\pi]$$
$$= \varepsilon + (1 - 2\varepsilon) [(1 - \gamma)/100 + 99/100\pi]$$

6

So

Reordering,

$$\Pr(a_1 = 1 \mid \theta = 1) + \sum_{t=2}^{T} \Pr(a_t = 1 \mid \theta = 1) = \sum_{t=1}^{T-1} \Pr(a_t = 1 \mid \theta = 1) + \Pr(a_T = 1 \mid \theta = 1)$$

Then,

$$\frac{\sum_{t=2}^{T} \Pr(a_t = 1 \mid \theta = 1)}{T - 1} - \frac{\sum_{t=1}^{T-1} \Pr(a_t = 1 \mid \theta = 1)}{T - 1} = \frac{\Pr(a_T = 1 \mid \theta = 1) - \Pr(a_1 = 1 \mid \theta = 1)}{T - 1}$$

So,

$$\Pr(a_i = 1 \mid \theta = 1, Q(i) \neq 1) - \pi = \frac{\Pr(a_T = 1 \mid \theta = 1) - \Pr(a_1 = 1 \mid \theta = 1)}{T - 1}$$
$$\varepsilon + (1 - 2\varepsilon) \left[(1 - \gamma) / 100 + \frac{99}{100\pi} \right] - \pi = \Delta$$

Then,

$$\begin{split} \varepsilon &- 2\varepsilon \left[(1-\gamma)/100 + 99/100\pi \right] + (1-\gamma)/100 - 1/100\pi = \Delta \\ \varepsilon &- 2\varepsilon (1-\gamma)/100 - \varepsilon 198/100\pi + (1-\gamma)/100 - 1/100\pi = \Delta \\ &+ (1-\gamma)/100 + [1 - (1-\gamma)/50]\varepsilon - (1/100 + 198/100\varepsilon)\pi = \Delta \\ &+ (1-\gamma) + [100 - 2(1-\gamma)]\varepsilon - (1 + 198\varepsilon)\pi = 100\Delta \end{split}$$

Then,

$$\pi = \frac{(1 - \gamma) + [100 - 2(1 - \gamma)]\varepsilon - 100\Delta}{1 + 198\varepsilon}$$

Proposition 1 guarantees that as the number of agents grows large, the average action is close to its expectation. For low enough ε and large enough T, approximately $X_0 | \sigma \xrightarrow{p} \gamma$ and $X_1 | \sigma \xrightarrow{p} 1 - \gamma$. Then,

$$\frac{\Pr(\theta = 1 \mid \xi = 1)}{\Pr(\theta = 0 \mid \xi = 1)} \approx \frac{1 - \gamma}{\gamma}$$

So the sample is informative about the state of the world. To sum up, there is ε small and

T large such that σ is indeed an equilibrium.

5. Proof of Lemma 12

I illustrate first the effect of different values of $\gamma > 1$ on sampling probabilities. Figure 1 presents an agent in position 21. The black line shows the probability of observing a predecessor in position $\tau < 21$ when $\gamma = 8$. With probability higher than 0.998, the agent observes one of his three immediate predecessors. The distribution becomes flatter as γ decreases. The red line shows the distribution when $\gamma = 1.05$. In this case, the agent in position 21 observes his immediate predecessor twice as often as he observes the first agent in the sequence. As $\gamma \rightarrow 1$, sampling approaches uniform random sampling. Instead, as $\gamma \rightarrow \infty$ sampling approaches observing the immediate predecessor.

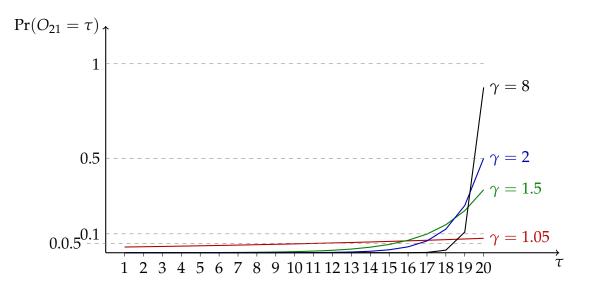


Figure 1: Probabilities of Different Predecessors Being Observed. Geometric Sampling

Next, I present the proof of Lemma 12.

Proof. A strategy σ_i induces $\rho_{\theta}(\xi) = \mathbf{P}_{\sigma_i}(a_i \mid \theta, \xi)$. For the rest of this section, I fix the state of the world θ and drop its index. Then, a strategy σ_i induces a vector $(\rho(\emptyset), \rho(0), \rho(1))$. Because of mistakes, $\varepsilon < \rho(\xi) < 1 - \varepsilon$ for all $\xi \in \{0, 1, \emptyset\}$.

Assume first that $\gamma > 1$. The first agent in the sequence chooses action 1 with proba-

bility $\rho(\emptyset)$. For $t \ge 2$,

$$\begin{aligned} \mathbf{P}_{\sigma}(a_{t}=1) &= \Pr(\xi_{t}=0) \Pr(a_{t}=1 \mid \xi_{t}=0) + \Pr(\xi_{t}=1) \Pr(a_{t}=1 \mid \xi_{t}=1) \\ &= \Pr(\xi_{t}=0)\rho(0) + \Pr(\xi_{t}=1)\rho(1) \\ &= \left[1 - \Pr(\xi_{t}=1)\right]\rho(0) + \Pr(\xi_{t}=1)\rho(1) \\ &= \rho(0) + \left[\rho(1) - \rho(0)\right] \Pr(\xi_{t}=1) \\ &= \rho(0) + \left[\rho(1) - \rho(0)\right] \sum_{\tau < t} \Pr(O_{t}=\tau) \mathbb{1} \left\{a_{\tau} = 1\right\} \\ &= \rho(0) + \left[\rho(1) - \rho(0)\right] \sum_{\tau = 1}^{t-1} \frac{\gamma - 1}{\gamma} \frac{\gamma^{\tau}}{\gamma^{t-1} - 1} a_{\tau} \end{aligned}$$

Define the weighted sum of the past history by $p_t \equiv \sum_{\tau=1}^{t-1} \frac{\gamma^{-1}}{\gamma} \frac{\gamma^{\tau}}{\gamma^{t-1}-1} a_{\tau}$ for $t \ge 2$. This concept plays a key role in the model:

$$\mathbf{P}_{\sigma}(a_t = 1) = \rho(0) + [\rho(1) - \rho(0)] p_t$$

This weighted sum has a recursive nature:

$$p_{t+1} = \sum_{\tau=1}^{t} \frac{\gamma - 1}{\gamma} \frac{\gamma^{\tau}}{\gamma^{t} - 1} a_{\tau} = \frac{\gamma^{t-1} - 1}{\gamma^{t} - 1} \left[\sum_{\tau=1}^{t-1} \frac{\gamma - 1}{\gamma} \frac{\gamma^{\tau}}{\gamma^{t-1} - 1} a_{\tau} \right] + \frac{\gamma - 1}{\gamma} \frac{\gamma^{t}}{\gamma^{t} - 1} a_{t}$$
$$= \frac{\gamma^{t-1} - 1}{\gamma^{t} - 1} p_{t} + \frac{\gamma^{t} - \gamma^{t-1}}{\gamma^{t} - 1} a_{t}$$

In expectation,

$$\begin{split} E\left[p_{t+1} \mid I_t\right] &= \frac{\gamma^{t-1} - 1}{\gamma^t - 1} E\left[p_t \mid I\right] + \frac{\gamma^t - \gamma^{t-1}}{\gamma^t - 1} E\left[a_t \mid I\right] \\ &= \frac{\gamma^{t-1} - 1}{\gamma^t - 1} E\left[p_t \mid I\right] + \frac{\gamma^t - \gamma^{t-1}}{\gamma^t - 1} \left[\rho(0) + \left[\rho(1) - \rho(0)\right] E\left[p_t \mid I\right]\right] \\ &= \frac{\gamma^t - 1 + \gamma^{t-1} - \gamma^t}{\gamma^t - 1} E\left[p_t \mid I\right] + \frac{\gamma^t - \gamma^{t-1}}{\gamma^t - 1} \left[\rho(0) + \left[\rho(1) - \rho(0)\right] E\left[p_t \mid I\right]\right] \\ &= E\left[p_t \mid I\right] + \frac{\gamma^{t-1} - \gamma^t}{\gamma^t - 1} E\left[p_t \mid I\right] + \frac{\gamma^t - \gamma^{t-1}}{\gamma^t - 1} \left[\rho(0) + \left[\rho(1) - \rho(0)\right] E\left[p_t \mid I\right]\right] \\ &= E\left[p_t \mid I\right] + \frac{\gamma^t - \gamma^{t-1}}{\gamma^t - 1} \left[\rho(0) - \left[1 + \rho(0) - \rho(1)\right] E\left[p_t \mid I\right]\right] \end{split}$$

$$= E[p_t \mid I] + \frac{\gamma^t - \gamma^{t-1}}{\gamma^t - 1} [1 + \rho(0) - \rho(1)] [\rho^* - E[p_t \mid I]]$$

Let $ho^*\equiv rac{
ho(0)}{1+
ho(0)ho(1)}.^1$ Then,

$$E[p_{t+1} \mid I] - \rho^* = E[p_t \mid I] - \rho^* - \frac{\gamma^t - \gamma^{t-1}}{\gamma^t - 1} [1 + \rho(0) - \rho(1)] [E[p_t \mid I] - \rho^*]$$

$$= \left[1 - \frac{\gamma^t - \gamma^{t-1}}{\gamma^t - 1} [1 + \rho(0) - \rho(1)]\right] [E[p_t \mid I] - \rho^*]$$

$$= \left[1 - \underbrace{\frac{\gamma - 1}{\gamma}}_{(*)} \underbrace{\frac{\gamma^t - 1}{\gamma^t - 1}}_{(*)} \underbrace{[1 + \rho(0) - \rho(1)]}_{(**)}\right] [E[p_t \mid I] - \rho^*]$$
(3)

I next provide bounds for the terms (*) and (**) in equation (3):

$$2\varepsilon \le 1 +
ho(0) -
ho(1) \le 2 - 2\varepsilon$$

 $\frac{\gamma - 1}{\gamma} \le \frac{\gamma - 1}{\gamma} \frac{\gamma^t}{\gamma^t - 1} \le 1$

With this bounds, I can also bound the whole term in brackets in equation (3):

$$\begin{aligned} \frac{\gamma - 1}{\gamma} 2\varepsilon &\leq \frac{\gamma - 1}{\gamma} \frac{\gamma^t}{\gamma^t - 1} \left[1 + \rho(0) - \rho(1) \right] \leq 2 - 2\varepsilon \\ \frac{\gamma - 1}{\gamma} 2\varepsilon - 1 &\leq \frac{\gamma - 1}{\gamma} \frac{\gamma^t}{\gamma^t - 1} \left[1 + \rho(0) - \rho(1) \right] - 1 \leq 1 - 2\varepsilon \\ \left| 1 - \frac{\gamma - 1}{\gamma} \frac{\gamma^t}{\gamma^t - 1} \left[1 + \rho(0) - \rho(1) \right] \right| &\leq 1 - \frac{\gamma - 1}{\gamma} 2\varepsilon \end{aligned}$$

This leads to a simple bound over time:

$$|E[p_{t+n} | I_t] - \rho^*| = \prod_{\tau=t}^{t+n-1} \left| 1 - \frac{\gamma - 1}{\gamma} \frac{\gamma^t}{\gamma^t - 1} \left[1 + \rho(0) - \rho(1) \right] \right| |E[p_t | I_t] - \rho^*|$$

$$\leq \left(1 - \frac{\gamma - 1}{\gamma} 2\varepsilon \right)^{n-1}$$

¹Note that $\rho(0) > \varepsilon$ and $\rho(1) < 1 - \varepsilon$, so $1 + \rho(0) - \rho(1) \ge 1 + \varepsilon - (1 - \varepsilon) = 2\varepsilon$. So $1 + \rho(0) - \rho(1) \ne 0$.

In particular,

$$|E[p_{t+n} | a_t = 1] - \rho^*| \le \left(1 - \frac{\gamma - 1}{\gamma} 2\varepsilon\right)^{n-1}$$
$$|E[p_{t+n}] - \rho^*| \le \left(1 - \frac{\gamma - 1}{\gamma} 2\varepsilon\right)^{t+n-1}$$

So finally,

$$\begin{aligned} |E[p_{t+n} | I_t] - E[p_{t+n}]| &\leq |E[p_{t+n} | a_t = 1] - \rho^*| + |E[p_{t+n}] - \rho^*| \\ &\leq \left(1 - \frac{\gamma - 1}{\gamma} 2\varepsilon\right)^{n-1} + \left(1 - \frac{\gamma - 1}{\gamma} 2\varepsilon\right)^{t+n-1} \\ &\leq 2\left(1 - \frac{\gamma - 1}{\gamma} 2\varepsilon\right)^{n-1} \end{aligned}$$

And turning this into probabilities,

$$\begin{aligned} |\mathbf{P}_{\sigma}(a_{t+n} = 1 \mid a_t = 1) - \mathbf{P}_{\sigma}(a_{t+n} = 1)| &= \left| \rho(0) + [\rho(1) - \rho(0)]E\left[p_{t+n} \mid a_t = 1\right] \\ &- [\rho(0) + [\rho(1) - \rho(0)]E\left[p_{t+n}\right]\right] \\ &= \left| [\rho(1) - \rho(0)]\left[E\left[p_{t+n} \mid a_t = 1\right] - E\left[p_{t+n}\right]\right] \right| \\ &\leq 2 \left| \left[E\left[p_{t+n} \mid a_t = 1\right] - E\left[p_{t+n}\right]\right] \right| \\ &\leq 4 \left(1 - \frac{\gamma - 1}{\gamma} 2\varepsilon\right)^{n-1} \\ &\leq \frac{4}{1 - \frac{\gamma - 1}{\gamma} 2\varepsilon} \left(1 - \frac{\gamma - 1}{\gamma} 2\varepsilon\right)^n \end{aligned}$$

Next, assume that $\gamma = 1$. Then,

$$\mathbf{P}_{\sigma}(a_t = 1) = \rho(0) + \left[\rho(1) - \rho(0)\right] \frac{1}{t - 1} \sum_{\tau=1}^{t-1} a_{\tau}$$

Define now $p_t \equiv \frac{1}{t-1} \sum_{\tau=1}^{t-1} a_{\tau}$ for $t \ge 2$, which leads to:

$$p_{t+1} = \frac{1}{t} \sum_{\tau=1}^{t} a_{\tau} = \frac{t-1}{t} \sum_{\tau=1}^{t-1} a_{\tau} + \frac{1}{t} a_{t} = \frac{t-1}{t} p_{t} + \frac{1}{t} a_{t}$$

In expectation,

$$E[p_{t+1} \mid I_t] = \frac{t-1}{t} E[p_t \mid I] + \frac{1}{t} E[a_t \mid I]$$

= $\frac{t-1}{t} E[p_t \mid I] + \frac{1}{t} E[\rho(0) + [\rho(1) - \rho(0)] p_t \mid I]$
= $\frac{1}{t} [t-1+\rho(1) - \rho(0)] E[p_t \mid I] + \frac{1}{t} \rho(0)$

So in this case:

$$E[p_{t+1} | I_t] - \rho^* = \frac{1}{t} [t - 1 + \rho(1) - \rho(0)] E[p_t | I] + \frac{1}{t} \rho(0) - \rho^*$$

= $\frac{1}{t} [\rho(0) - [1 + \rho(0) - \rho(1)] E[p_t | I]] + E[p_t | I] - \rho^*$
= $\frac{1}{t} [1 + \rho(0) - \rho(1)] [\rho^* - E[p_t | I]] + E[p_t | I] - \rho^*$
= $\left[1 - \frac{1}{t} [1 + \rho(0) - \rho(1)]\right] [E[p_t | I] - \rho^*]$

Then,

$$E[p_{t+n} \mid I_t] - \rho^* = [E[p_t \mid I] - \rho^*] \prod_{\tau=0}^n \left[1 - \frac{1}{t+\tau} \left[1 + \rho(0) - \rho(1) \right] \right]$$

I present without proof the following remark:

REMARK 1. Let $0 < a_n < 1$ for all n. Then, $\prod_{\tau=0}^{\infty} a_n > 0 \Leftrightarrow \sum_{\tau=0}^{\infty} (1 - a_n) < \infty$. Then, it suffices to show that:

$$\sum_{\tau=0}^{n} \frac{1}{t+\tau} \left[1+\rho(0)-\rho(1) \right] = \left[1+\rho(0)-\rho(1) \right] \sum_{\tau=0}^{n} \frac{1}{t+\tau} = \infty$$

and follow the same steps as in the case with $\gamma > 1$.

6. Proof of Lemma 13

Proof. I show Proposition 1 by proving that $X|\sigma^T - E[X|\sigma^T]$ converges to zero in L^2 norm. The variance $V(\sigma^{\tau})$ as defined by equation (6) is bounded above by

$$V(\sigma^{\tau}) \leq \frac{1}{T} \left(1 + 4 \left(1 - 2\varepsilon^{M} \right)^{-1} \frac{\left(1 - 2\varepsilon^{M} \right)^{\frac{1}{M}}}{1 - \left(1 - 2\varepsilon^{M} \right)^{\frac{1}{M}}} \right).$$

Note that $\lim_{T\to\infty} 4\left(1-2\varepsilon^{M(T)}\right)^{-1} = 4$ and $\lim_{T\to\infty} \left(1-2\varepsilon^{M(T)}\right)^{\frac{1}{M(T)}} = 1$. Then, the bound converges to zero whenever $\lim_{T\to\infty} T\left[1-\left(1-2\varepsilon^{M(T)}\right)^{\frac{1}{M(T)}}\right] = \infty$. I need to show that for any $K < \infty$, there exists a $\widetilde{T} < \infty$ such that: $T\left[1-\left(1-2\varepsilon^{M(T)}\right)^{\frac{1}{M(T)}}\right] \ge K$ for all $T \ge \widetilde{T}$. This simplifies to

$$\left(1-\frac{K}{T}\right)^{M(T)} \ge 1-2\varepsilon^{M(T)} \quad \forall T \ge \widetilde{T}.$$

Since $(1 - \frac{K}{T})^{M(T)} \ge 1 - \frac{KM}{T}$, it suffices to show that:

$$1 - \frac{KM}{T} \ge 1 - 2\varepsilon^{M(T)} \quad \Leftrightarrow \quad \frac{\varepsilon^{M(T)}}{M} \ge \frac{K}{2}\frac{1}{T}$$

M(T) is $o(\log(T))$. Then, for any constant $c \ge 0$ there is T large enough such that $M(T) \le c \log(T)$. Pick $c = (-2\log(\varepsilon))^{-1}$. Note next that the function ε^x / x is decreasing. Then, for T large, $\frac{\varepsilon^{M(T)}}{M(T)} \ge \frac{\varepsilon^{(-2\log(\varepsilon))^{-1}\log(T)}}{(-2\log(\varepsilon))^{-1}\log(T)}$. As a result, it suffices to show that for T large enough:

$$\begin{split} \frac{\varepsilon^{\left[(-2\log(\varepsilon))^{-1}\log(T)\right]}}{(-2\log(\varepsilon))^{-1}\log(T)} &\geq \frac{K}{2}\frac{1}{T}\\ \varepsilon^{(-2\log(\varepsilon))^{-1}\log(T)} &\geq \frac{K}{2}\frac{1}{T}\left(-2\log(\varepsilon)\right)^{-1}\log(T)\\ T^{(-2\log(\varepsilon))^{-1}\log(\varepsilon)} &\geq \frac{1}{-4\log(\varepsilon)}K\frac{\log(T)}{T}\\ T^{-\frac{1}{2}} &\geq \frac{1}{-4\log(\varepsilon)}K\frac{\log(T)}{T} \end{split}$$

$$\frac{T^{\frac{1}{2}}}{\log(T)} \ge \frac{1}{-4\log(\varepsilon)}K$$

The left hand side goes to the infinity, and the right hand side is constant. Then, there always exists a *T* such that this holds. This shows the first part of Proposition 1.

Next, I focus on the second part of Proposition 1. Equation (7) in the paper now becomes:

$$\Pr\left(\left|X|\sigma^{T}-X|\widetilde{\sigma}^{T}\right| \geq \frac{n}{T}\right) \leq \left[\left(1-2\varepsilon^{M(T)}\right)^{\frac{1}{M(T)}}\right]^{n},$$

which holds for all *n*.

Let $n = \left[(-2\log(\varepsilon))^{-1}\log(T)T^{\frac{3}{4}} \right]$. As $(1 - 2\varepsilon^M)^{\frac{1}{M}} \le 1$, then:

$$\begin{aligned} \Pr\left(\left|X|\sigma^{T}-X|\widetilde{\sigma}^{T}\right| \geq \frac{n}{T}\right) \leq \left[\left(1-2\varepsilon^{M(T)}\right)^{\frac{1}{M(T)}}\right]^{n} \\ \leq \left[\left(1-2\varepsilon^{M(T)}\right)^{\frac{1}{M(T)}}\right]^{(-2\log(\varepsilon))^{-1}\log(T)T^{\frac{3}{4}}} \\ \leq \left(1-2\varepsilon^{(-2\log(\varepsilon))^{-1}\log(T)}\right)^{\frac{(-2\log(\varepsilon))^{-1}\log(T)T^{\frac{3}{4}}}{(-2\log(\varepsilon))^{-1}\log(T)}} \\ = \left(1-2T^{-\frac{1}{2}}\right)^{T^{\frac{3}{4}}} \end{aligned}$$

where I have used the fact that M(T) is $o(\log(T))$, so $M(T) \leq (-2\log(\varepsilon))^{-1}\log(T)$ for T large enough. Moreover, I also used the fact that $(1 - 2\varepsilon^M)^{\frac{1}{M}}$ is increasing in M.

I need to show that for all b > 0, there exists \widetilde{T} , such that $\Pr\left(|X|\sigma^T - X|\widetilde{\sigma}^T| \ge b\right) < b$ for all $T > \widetilde{T}$. Then, it suffices to show that $\lim_{T\to\infty} \frac{n}{T} = 0$ and $\lim_{T\to\infty} \left(1 - 2T^{-\frac{1}{2}}\right)^{T\frac{3}{4}} = 0$. So first, note that:

$$\frac{n}{T} \le \frac{(-2\log(\varepsilon))^{-1}\log(T)T^{\frac{3}{4}} + 1}{T} = \frac{1}{(-2\log(\varepsilon))}\frac{\log(T)}{T^{\frac{1}{4}}} + \frac{1}{T} \to 0,$$

so $\lim_{T\to\infty}\frac{n}{T}=0$.

Second, note that $\lim_{T\to\infty} \left(1-2T^{-\frac{1}{2}}\right)^{T^{\frac{3}{4}}} = 0 \Leftrightarrow \lim_{T\to\infty} T^{\frac{3}{4}} \log\left(1-2T^{-\frac{1}{2}}\right) = -\infty.$

So using L'Hôpital's rule:

$$\lim_{T \to \infty} \frac{\log\left(1 - 2T^{-\frac{1}{2}}\right)}{T^{-\frac{3}{4}}} = \lim_{T \to \infty} \frac{\frac{1}{1 - 2T^{-\frac{1}{2}}}(-2)\left(-\frac{1}{2}\right)T^{-\frac{3}{2}}}{-\frac{3}{4}T^{-\frac{7}{4}}} = \lim_{T \to \infty} -\frac{4}{3}\frac{T^{\frac{1}{4}}}{1 - 2T^{-\frac{1}{2}}} = -\infty$$

This finishes the proof of the second part of Proposition 1.

Lemma 10 also needs some adjustment to allow for *M* to grow with *T*. Equation (9) from the paper becomes:

$$\pi_{\theta}^{T} - E_{\sigma^{T}} \left[X_{\theta} \right] = \frac{1}{T} \left[\sum_{\tau=1}^{M(T)-1} \mathbf{P}_{\sigma^{T}} \left(a_{\tau} = 1 \right) \left(\sum_{t=\tau}^{\tau+M(T)-1} \mathbf{f}_{\tau-1}^{\leq 1} \right) - \sum_{\tau=T-M(T)+1}^{T} \mathbf{P}_{\sigma^{T}} \left(a_{\tau} = 1 \right) \underbrace{ \left(1 - \frac{T-\tau}{M(T)} \right) }_{\leq 1} \right]$$
$$\leq \frac{2M(T)}{T}$$

Since M(T) is $o(\log(T))$, then, $\pi_{\theta}^T - E_{\sigma^T} \to 0$. This adapts Lemma 10 to the case with growing *M*. The rest of Proposition 2 does not change.

7. Many States of the World and Many Actions

7.1 The Model

States and Actions

There are N_{θ} equally likely states of the world $\theta \in \Theta = \{1, 2, ..., N_{\theta}\}$. Agents must choose between N_a possible actions $a \in \mathcal{A} = \{1, 2, ..., N_a\}$. Let $X^a \equiv \frac{1}{T} \sum_{j \in \mathcal{I}} \mathbb{1} \{a_j = a\}$ denote the proportion of agents who choose action a, with realizations $x^a \in [0, 1]$. The vector $X = (X^1, X^2, ..., X^{N_a})$ denotes the proportion of agents choosing each action. Agent iobtains utility $u(a_i, X, \theta) : \mathcal{A} \times [0, 1] \times \Theta \to \mathbb{R}$, where $u(a_i, X, \theta)$ is a continuous function in X.

Private Signals

Conditional on the true state of the world, signals are i.i.d. across individuals and distributed according to F_{θ} . I assume that F_{θ} and $F_{\tilde{\theta}}$ are mutually absolutely continuous for any two $\theta, \tilde{\theta} \in \Theta$. Then, no perfectly-revealing signals occur with positive probability, and the following likelihood ratio (Radon-Nikodym derivative) exists $l_{\tilde{\theta},\theta}(s) \equiv \frac{dF_{\tilde{\theta}}}{dF_{\theta}}(s)$. I also define a likelihood ratio that indicates how likely one state is, relative to all other states:

$$l_{ heta}(s) = \left(\sum_{ ilde{ heta}
eq heta} l_{ ilde{ heta}, heta}(s)
ight)^{-1}$$

Let $G_{\theta}(l) \equiv \Pr(l_{\theta}(S) \leq l \mid \theta)$. I modify the assumption of signals being of unbounded strength as follows:

DEFINITION. SIGNAL STRENGTH. Signal strength is unbounded if $0 < G_{\theta}(l) < 1$ for all likelihood ratios $l \in (0, \infty)$, and for all states $\theta \in \Theta$.

Sampling, Strategies and Mistakes

The sampling rule does not change. A strategy is now a function $\sigma_i : S \times \Xi \rightarrow [\varepsilon, 1 - (N_a - 1)\varepsilon]^{N_a}$ that specifies a probability vector $\sigma_i(s, \xi)$ for choosing each action given the information available. For example, $\sigma_i^a(s, \xi)$ indicates the probability of choosing action $a \in A$, after receiving signal *s* and sample ξ .

Definition of Social Learning

I modify the definition of *NE* to allow for many states and actions. I say that x_{θ} corresponds to a Nash Equilibrium of the stage game (and denote it by $x_{\theta} \in NE^{\theta}$) whenever $u(a, x_{\theta}, \theta) > u(a^*, x_{\theta}, \theta)$ for some $a, a^* \in \mathcal{A} \Rightarrow x_{\theta}^{a^*} = 0$. Then, $x \in NE$ whenever $x_{\theta} \in NE^{\theta}$ for all $\theta \in \Theta$.

7.2 Results

Existence and Convergence of Average Action

The proofs of Lemma 1 and Proposition 1 extend directly to a context with many actions and many states. I need to adapt the notation. The random variable $X|\sigma$ is now a matrix. Each element $X^a_{\theta}|\sigma$ is a random variable that denotes the proportion of agents choosing action *a* in state θ . So the random variable $X|\sigma = (X_1|\sigma, X_2|\sigma, \dots, X_{N_{\theta}}|\sigma)$ has

realizations $x = (x_1, x_2, ..., x_{N_{\theta}})$, where each x_{θ} is itself a vector: $x_{\theta} = (x_{\theta}^1, x_{\theta}^2, ..., x_{\theta}^{N_{\theta}})$. Utility Convergence

In what follows, I provide modified expressions for the expected utility, the utility of the expected average action, and the approximate utility of a deviation. These expressions apply to contexts with many actions and many states.

Agents' expected utility under symmetric profile σ^T is simply

$$u(\sigma^{T}) \equiv E_{\sigma^{T}} \left[u\left(a_{i}, X, \theta\right) \right] = \frac{1}{N_{\theta}} \sum_{\theta \in \Theta} E_{\sigma^{T}} \left[\sum_{a \in \mathcal{A}} X_{\theta}^{a} \cdot u\left(a, X_{\theta}, \theta\right) \right].$$

Define the *utility of the expected average action* \bar{u}^T by

$$\bar{u}^{T} \equiv \frac{1}{N_{\theta}} \sum_{\theta \in \Theta} \sum_{a \in \mathcal{A}} E_{\sigma^{T}} \left[X_{\theta}^{a} \right] \cdot u \left(a, E_{\sigma^{T}} \left[X_{\theta} \right], \theta \right).$$

Define the *approximate utility of the deviation* \tilde{u}^T by

$$\widetilde{u}^{T} \equiv \frac{1}{N_{\theta}} \sum_{\theta \in \Theta} \sum_{a \in \mathcal{A}} \mathbf{P}_{\widetilde{\sigma}^{T}} \left(a_{i} = a \mid \theta \right) \cdot u \left(a, E_{\sigma^{T}} \left[X_{\theta} \right], \theta \right).$$

The proofs of Lemmas 2 and 3, as well as Corollary 1, extend directly to a context with many actions and many states.

Corollary 2: The Approximate Improvement

Let the *approximate improvement* Δ^T be given now by

$$\Delta^{T} \equiv \tilde{u}^{T} - \bar{u}^{T} = \frac{1}{N_{\theta}} \sum_{\theta \in \Theta} \sum_{a \in \mathcal{A}} \left[\mathbf{P}_{\tilde{\sigma}^{T}} \left(a_{i} = a \mid \theta \right) - E_{\sigma^{T}} \left[X_{\theta}^{a} \right] \right] \cdot u \left(a, E_{\sigma^{T}} \left[X_{\theta} \right], \theta \right)$$

The proof of Corollary 2 extends directly to a context with many actions and many states.

7.3 Alternative Strategy 1: Always Follow a Given Action

I present next a version of Lemma 4 that applies to many actions and many states. Let action $a^* \in A$ be weakly dominant if

 $u(a^*, x_{\theta}, \theta) \ge u(a, x_{\theta}, \theta)$ for all $a \in \mathcal{A}$ and for all $\theta \in \Theta$.

Let action $a^* \in A$ be strictly dominant if

 $u(a^*, x_{\theta}, \theta) > u(a, x_{\theta}, \theta)$ for all $a \in \mathcal{A}$ and for all $\theta \in \Theta$.

LEMMA A4. DOMINANCE. If action $a^* \in A$ is strictly dominant, then $x_{\theta}^{a^*} = 1 - (N_a - 1)\varepsilon$ for all $\theta \in \Theta$. Assume instead that action $a^* \in A$ is weakly dominant. If there exists state $\theta \in \Theta$ with $u(a^*, x_{\theta}, \theta) > u(\tilde{a}, x_{\theta}, \theta)$, then $x_{\theta}^{\tilde{a}} = \varepsilon$.

Proof. Consider the alternative strategy of always choosing action a^* . Because of mistakes this means a^* is chosen with probability $1 - (N_a - 1)\varepsilon$. Then the improvement is as follows:

$$\Delta^{T} = \frac{1}{N_{\theta}} \sum_{\theta \in \Theta} \left[\left[1 - (N_{a} - 1)\varepsilon - x_{\theta}^{a^{*}} \right] u\left(a^{*}, x_{\theta}, \theta\right) + \sum_{a \neq a^{*}} \left(\varepsilon - x_{\theta}^{a}\right) \cdot u\left(a, x_{\theta}, \theta\right) \right]$$
$$= \frac{1}{N_{\theta}} \sum_{\theta \in \Theta} \left[\left[1 - (N_{a} - 1)\varepsilon - x_{\theta}^{a^{*}} \right] u\left(a^{*}, x_{\theta}, \theta\right) - \sum_{a \neq a^{*}} \left(x_{\theta}^{a} - \varepsilon\right) \cdot u\left(a, x_{\theta}, \theta\right) \right]$$

Note, that $x_{\theta}^{a} - \varepsilon \geq 0$ for all a, θ . Then,

$$\begin{bmatrix} 1 - (N_a - 1)\varepsilon - x_{\theta}^{a^*} \end{bmatrix} u(a^*, x_{\theta}, \theta) - \sum_{a \neq a^*} (x_{\theta}^a - \varepsilon) \cdot u(a, x_{\theta}, \theta) \ge \\ \begin{bmatrix} 1 - (N_a - 1)\varepsilon - x_{\theta}^{a^*} \end{bmatrix} u(a^*, x_{\theta}, \theta) - \sum_{a \neq a^*} (x_{\theta}^a - \varepsilon) \cdot u(a^*, x_{\theta}, \theta) = \\ \begin{bmatrix} \left[1 - (N_a - 1)\varepsilon - x_{\theta}^{a^*} \right] - \sum_{a \neq a^*} (x_{\theta}^a - \varepsilon) \end{bmatrix} \cdot u(a^*, x_{\theta}, \theta) = \\ \underbrace{\left[1 - (N_a - 1)\varepsilon - \sum_{a \in \mathcal{A}} x_{\theta}^a + (N_a - 1)\varepsilon \right]}_{=0} \cdot u(a^*, x_{\theta}, \theta) = 0$$

Recall that $\Delta^T \leq 0$, by Corollary 2. Moreover, $\Delta^T \geq 0$. Then, $\Delta^T = 0$. Also, as each term in Δ^T is weakly positive, then all terms in Δ^T must be zero:

$$\left[1-(N_a-1)\varepsilon-x_{\theta}^{a^*}\right]u\left(a^*,x_{\theta},\theta\right)-\sum_{a\neq a^*}\left(x_{\theta}^a-\varepsilon\right)\cdot u\left(a,x_{\theta},\theta\right)=0$$

Assume next that for some action $\tilde{a} \in A$ in some state $\theta \in \Theta$, $u(a^*, x_{\theta}, \theta) > u(\tilde{a}, x_{\theta}, \theta)$. Then,

$$0 = \left[1 - (N_a - 1)\varepsilon - x_{\theta}^{a^*}\right] u(a^*, x_{\theta}, \theta) - \sum_{a \neq a^*} (x_{\theta}^a - \varepsilon) \cdot u(a, x_{\theta}, \theta) \ge \left[1 - (N_a - 1)\varepsilon - x_{\theta}^{a^*} - \sum_{a \neq a^*, a \neq \tilde{a}} (x_{\theta}^a - \varepsilon)\right] u(a^*, x_{\theta}, \theta) - (x_{\theta}^{\tilde{a}} - \varepsilon) u(\tilde{a}, x_{\theta}, \theta) = \left[1 - \varepsilon - (1 - x_{\theta}^{\tilde{a}})\right] u(a^*, x_{\theta}, \theta) - (x_{\theta}^{\tilde{a}} - \varepsilon) u(\tilde{a}, x_{\theta}, \theta) = (x_{\theta}^{\tilde{a}} - \varepsilon) u(a^*, x_{\theta}, \theta) - (x_{\theta}^{\tilde{a}} - \varepsilon) u(\tilde{a}, x_{\theta}, \theta) = (x_{\theta}^{\tilde{a}} - \varepsilon) u(a^*, x_{\theta}, \theta) - (x_{\theta}^{\tilde{a}} - \varepsilon) u(\tilde{a}, x_{\theta}, \theta) = (x_{\theta}^{\tilde{a}} - \varepsilon) [u(a^*, x_{\theta}, \theta) - u(\tilde{a}, x_{\theta}, \theta)]$$

To sum up,

$$\left(x_{\theta}^{\tilde{a}}-\varepsilon\right)\left[\overbrace{u\left(a^{*},x_{\theta},\theta\right)-u\left(\tilde{a},x_{\theta},\theta\right)\right]}^{>0}\leq0$$

So $x_{\theta}^{\tilde{a}} = \varepsilon$. Similarly, if $u(a^*, x_{\theta}, \theta) > u(a, x_{\theta}, \theta)$ for all $a \in \mathcal{A}$ and for all $\theta \in \Theta$, then $x_{\theta}^{a^*} = 1 - (N_a - 1)\varepsilon$.

7.4 Alternative Strategy 2: Improve Upon a Sampled Agent

Consider a possible limit point $x = (x_1, x_2, ..., x_{N_{\theta}})$. Assume that action \tilde{a} is not optimal in state θ^* : $u(a^*, x_{\theta^*}, \theta^*) > u(\tilde{a}, x_{\theta^*}, \theta^*)$, but it is still played in the limit: $x_{\theta^*}^{\tilde{a}} > \varepsilon$. As in the case with two states, let $\tilde{\xi}$ denote the action of one individual selected at random from the sample. Consider an alternative simple strategy $\tilde{\sigma}$, that makes the agent choose the following action:

$$a_{i}(\tilde{\xi},s) = \begin{cases} a^{*} & \text{if } \tilde{\xi} = \tilde{a} \text{ and } l_{\theta^{*}}(s) \geq k^{T} \equiv \frac{-\tilde{u}}{u\left(a^{*},E_{\sigma^{T}}[X_{\theta^{*}}],\theta^{*}\right) - u\left(\tilde{a},E_{\sigma^{T}}[X_{\theta^{*}}],\theta^{*}\right)} \frac{1}{\mathbf{P}_{\sigma^{T}}\left(\tilde{\xi} = \tilde{a}|\theta = \theta^{*}\right)} \\ \tilde{\xi} & \text{otherwise} \end{cases}$$

I provide next a version of Lemma 5 in the paper that applies to many actions and many states.

LEMMA A5. IMPROVEMENT PRINCIPLE. Take any limit point $x \in L$ with $u(a^*, x_{\theta^*}, \theta^*) > u(\tilde{a}, x_{\theta^*}, \theta^*)$. Then,

$$\widetilde{\Delta}(\varepsilon) + \frac{1 - (N_a - 1)\varepsilon}{N_{\theta}} \left[x_{\theta^*}^{\tilde{a}} \cdot \left[u(a^*, x_{\theta^*}, \theta^*) - u(\tilde{a}, x_{\theta^*}, \theta^*) \right] \right] \\ \times \left[\left[1 - G_{\theta^*}\left(\bar{k}\right) \right] - \bar{k} \left[1 - \widetilde{G}_{\theta^*}\left(\bar{k}\right) \right] \right] \le 0$$
(4)

with

$$\bar{k} = -\bar{u} \left[\left(u \left(a^*, x_{\theta^*}, \theta^* \right) - u \left(\tilde{a}, x_{\theta^*}, \theta^* \right) \right) x_{\theta^*}^{\tilde{a}} \right]^{-1} \quad and$$
$$\widetilde{\Delta}(\varepsilon) = \frac{\varepsilon}{N_{\theta}} \left[\sum_{\theta \in \Theta} \sum_{a \in \mathcal{A}} \left[1 - \left(N_a - 1 \right) x_{\theta}^{a} \right] u(a, x_{\theta}, \theta) \right].$$

See section 7.5 for the proof.

The term $\left[\left[1 - G_{\theta^*}\left(\bar{k}\right)\right] - \bar{k}\left[1 - \widetilde{G}_{\theta^*}\left(\bar{k}\right)\right]\right] \ge 0$ in equation (4) decreases in \bar{k} (as shown later in Proposition A3). Moreover, with signals of unbounded strength, this term is strictly positive. Then, whenever $x_{\theta}^{\tilde{a}} > 0$, there is potential for improvement. The existence of mistakes may present such an improvement. Note however, that $\lim_{\epsilon \to 0} \widetilde{\Delta}(\epsilon) = 0$. Then, when mistakes are unlikely the potential for improvement dominates in equation (4).

7.5 Proof of Lemma A5

Proof. Let $\rho_{\theta}^{T}(a|\tilde{a}) \equiv \mathbf{P}_{\sigma^{T}}\left(a_{i}=a|\theta, \tilde{\xi}=\tilde{a}\right)$. In general, the improvement is given by:

$$\begin{split} \Delta^{T} &= \frac{1}{N_{\theta}} \sum_{\theta \in \Theta} \sum_{a \in \mathcal{A}} \left[\varepsilon + \left[1 - (N_{a} - 1)\varepsilon \right] \sum_{a' \in \mathcal{A}} \rho_{\theta}(a|a') \mathbf{P}_{\sigma^{T}} \left(\tilde{\xi} = a'|\theta \right) \\ &- E_{\sigma^{T}} \left[X_{\theta}^{a} \right] \right] u(a, E_{\sigma^{T}} \left[X_{\theta} \right], \theta) \\ &= \left[\frac{\varepsilon}{N_{\theta}} \sum_{\theta \in \Theta} \sum_{a \in \mathcal{A}} u(a, E_{\sigma^{T}} \left[X_{\theta} \right], \theta) \right] \\ &+ \frac{1 - (N_{a} - 1)\varepsilon}{N_{\theta}} \left[\sum_{\theta \in \Theta} \sum_{a \in \mathcal{A}} \sum_{a' \in \mathcal{A}} \rho_{\theta}(a|a') \mathbf{P}_{\sigma^{T}} \left(\tilde{\xi} = a'|\theta \right) u(a, E_{\sigma^{T}} \left[X_{\theta} \right], \theta) \right] \\ &- \frac{1 - (N_{a} - 1)\varepsilon}{N_{\theta}} \left[\sum_{\theta \in \Theta} \sum_{a \in \mathcal{A}} E_{\sigma^{T}} \left[X_{\theta}^{a} \right] u(a, E_{\sigma^{T}} \left[X_{\theta} \right], \theta) \right] \\ &- \frac{(N_{a} - 1)\varepsilon}{N_{\theta}} \left[\sum_{\theta \in \Theta} \sum_{a \in \mathcal{A}} E_{\sigma^{T}} \left[X_{\theta}^{a} \right] u(a, E_{\sigma^{T}} \left[X_{\theta} \right], \theta) \right] \end{split}$$

Let

$$\widetilde{\Delta}^{T}(\varepsilon) \equiv \frac{\varepsilon}{N_{\theta}} \left[\sum_{\theta \in \Theta} \sum_{a \in \mathcal{A}} u(a, E_{\sigma^{T}} [X_{\theta}], \theta) - (N_{a} - 1) \left[\sum_{\theta \in \Theta} \sum_{a \in \mathcal{A}} E_{\sigma^{T}} [X_{\theta}^{a}] u(a, E_{\sigma^{T}} [X_{\theta}], \theta) \right] \right]$$
$$= \frac{\varepsilon}{N_{\theta}} \left[\sum_{\theta \in \Theta} \sum_{a \in \mathcal{A}} \left[1 - (N_{a} - 1)E_{\sigma^{T}} [X_{\theta}^{a}] \right] u(a, E_{\sigma^{T}} [X_{\theta}], \theta) \right]$$

and:

$$J(\varepsilon) \equiv \frac{1 - (N_a - 1)\varepsilon}{N_{\theta}}$$

Then,

$$\Delta^{T} = \widetilde{\Delta}^{T}(\varepsilon) + J(\varepsilon) \sum_{\theta \in \Theta} \sum_{a \in \mathcal{A}} \left[\sum_{a' \in \mathcal{A}} \rho_{\theta}(a|a') \mathbf{P}_{\sigma^{T}} \left(\widetilde{\xi} = a'|\theta \right) - E_{\sigma^{T}} \left[X_{\theta}^{a} \right] \right] u(a, E_{\sigma^{T}} \left[X_{\theta} \right], \theta)$$
(5)

But

$$= \frac{1}{N_{\theta}} \sum_{\theta \in \Theta} \sum_{a \in \mathcal{A}} \left[\sum_{a' \in \mathcal{A}} \rho_{\theta}(a|a') \mathbf{P}_{\sigma^{T}} \left(\widetilde{\xi} = a'|\theta \right) - E_{\sigma^{T}} \left[X_{\theta}^{a} \right] \right] u(a, E_{\sigma^{T}} \left[X_{\theta} \right], \theta)$$

$$= \frac{1}{N_{\theta}} \left[\sum_{\theta \in \Theta} \sum_{a \in \mathcal{A}} \sum_{a' \in \mathcal{A}} \rho_{\theta}(a|a') \mathbf{P}_{\sigma^{T}} \left(\tilde{\xi} = a'|\theta \right) u(a, E_{\sigma^{T}} [X_{\theta}], \theta) \right] - \frac{1}{N_{\theta}} \left[\sum_{\theta \in \Theta} \sum_{a \in \mathcal{A}} E_{\sigma^{T}} [X_{\theta}^{a}] u(a, E_{\sigma^{T}} [X_{\theta}], \theta) \right] = \frac{1}{N_{\theta}} \left[\sum_{\theta \in \Theta} \sum_{a \in \mathcal{A}} \sum_{a' \in \mathcal{A}} \rho_{\theta}(a|a') \mathbf{P}_{\sigma^{T}} \left(\tilde{\xi} = a'|\theta \right) u(a, E_{\sigma^{T}} [X_{\theta}], \theta) \right] - \frac{1}{N_{\theta}} \left[\sum_{\theta \in \Theta} \sum_{a' \in \mathcal{A}} E_{\sigma^{T}} \left[X_{\theta}^{a'} \right] u(a', E_{\sigma^{T}} [X_{\theta}], \theta) \right] = \frac{1}{N_{\theta}} \sum_{\theta \in \Theta} \sum_{a' \in \mathcal{A}} \left[\sum_{a \in \mathcal{A}} \rho_{\theta}(a|a') \mathbf{P}_{\sigma^{T}} \left(\tilde{\xi} = a'|\theta \right) u(a, E_{\sigma^{T}} [X_{\theta}], \theta) - E_{\sigma^{T}} \left[X_{\theta}^{a'} \right] u(a', E_{\sigma^{T}} [X_{\theta}], \theta) \right]$$

As a result, the improvement in equation (5) can be expressed as:

$$\Delta^{T} = \widetilde{\Delta}^{T}(\varepsilon) + J(\varepsilon) \sum_{\theta \in \Theta} \sum_{a' \in \mathcal{A}} \left[\sum_{a \in \mathcal{A}} \rho_{\theta}(a|a') \mathbf{P}_{\sigma^{T}} \left(\widetilde{\xi} = a'|\theta \right) u(a, E_{\sigma^{T}} [X_{\theta}], \theta) - E_{\sigma^{T}} \left[X_{\theta}^{a'} \right] u(a', E_{\sigma^{T}} [X_{\theta}], \theta) \right]$$

In particular, for the simple strategy $\tilde{\sigma}$,

$$\begin{split} \Delta^{T} &= \widetilde{\Delta}^{T}(\varepsilon) + J(\varepsilon) \sum_{\theta \in \Theta} \left[\rho_{\theta}(a^{*}|\tilde{a}) \mathbf{P}_{\sigma^{T}} \left(\widetilde{\xi} = \tilde{a}|\theta \right) u(a^{*}, E_{\sigma^{T}} \left[X_{\theta} \right], \theta) \right. \\ &+ \left[1 - \rho_{\theta}(a^{*}|\tilde{a}) \right] \mathbf{P}_{\sigma^{T}} \left(\widetilde{\xi} = \tilde{a}|\theta \right) u(\tilde{a}, E_{\sigma^{T}} \left[X_{\theta} \right], \theta) - E_{\sigma^{T}} \left[X_{\theta}^{\tilde{a}} \right] u(\tilde{a}, E_{\sigma^{T}} \left[X_{\theta} \right], \theta) \right] \\ &= \widetilde{\Delta}^{T}(\varepsilon) + J(\varepsilon) \sum_{\theta \in \Theta} \left[\rho_{\theta}(a^{*}|\tilde{a}) \mathbf{P}_{\sigma^{T}} \left(\widetilde{\xi} = \tilde{a}|\theta \right) \left[u(a^{*}, E_{\sigma^{T}} \left[X_{\theta} \right], \theta) - u(\tilde{a}, E_{\sigma^{T}} \left[X_{\theta} \right], \theta) \right] \\ &+ \left[\mathbf{P}_{\sigma^{T}} \left(\widetilde{\xi} = \tilde{a}|\theta \right) - E_{\sigma^{T}} \left[X_{\theta}^{\tilde{a}} \right] \right] u(\tilde{a}, E_{\sigma^{T}} \left[X_{\theta} \right], \theta) \right] \end{split}$$

Let

$$\widetilde{\widetilde{\Delta}}^{T} \equiv J(\varepsilon) \sum_{\theta \in \Theta} \left[\mathbf{P}_{\sigma^{T}} \left(\widetilde{\widetilde{\xi}} = \widetilde{a} | \theta \right) - E_{\sigma^{T}} \left[X_{\theta}^{\widetilde{a}} \right] \right] u(\widetilde{a}, E_{\sigma^{T}} \left[X_{\theta} \right], \theta) \right]$$

Then,

$$\begin{split} \Delta^{T} &= \widetilde{\Delta}^{T}(\varepsilon) + \widetilde{\widetilde{\Delta}}^{T} \\ &+ J(\varepsilon) \sum_{\theta \in \Theta} \left[\rho_{\theta}(a^{*} | \widetilde{a}) \mathbf{P}_{\sigma^{T}} \left(\widetilde{\xi} = \widetilde{a} | \theta \right) \left[u(a^{*}, E_{\sigma^{T}} \left[X_{\theta} \right], \theta \right) - u(\widetilde{a}, E_{\sigma^{T}} \left[X_{\theta} \right], \theta) \right] \right] \\ &= \widetilde{\Delta}^{T}(\varepsilon) + \widetilde{\widetilde{\Delta}}^{T} \\ &+ J(\varepsilon) \left[\sum_{\theta \in \Theta, \theta \neq \theta^{*}} \left[\rho_{\theta}(a^{*} | \widetilde{a}) \mathbf{P}_{\sigma^{T}} \left(\widetilde{\xi} = \widetilde{a} | \theta \right) \left[u(a^{*}, E_{\sigma^{T}} \left[X_{\theta} \right], \theta \right) - u(\widetilde{a}, E_{\sigma^{T}} \left[X_{\theta} \right], \theta) \right] \right] \\ &+ \rho_{\theta^{*}}(a^{*} | \widetilde{a}) \mathbf{P}_{\sigma^{T}} \left(\widetilde{\xi} = \widetilde{a} | \theta^{*} \right) \left[u(a^{*}, E_{\sigma^{T}} \left[X_{\theta^{*}} \right], \theta^{*}) - u(\widetilde{a}, E_{\sigma^{T}} \left[X_{\theta^{*}} \right], \theta^{*}) \right] \right] \end{split}$$

Now, let

$$-\bar{u} \equiv \min_{a \in \mathcal{A}, a' \in \mathcal{A}, \theta \in \Theta, x_{\theta} \in [0,1]^{N_a}} \left[u(a, x_{\theta}, \theta) - u(a', x_{\theta}, \theta) \right]$$

This minimum exists since there is a finite number of states and actions, and the utility functions are continuous in *X*. Then,

$$\left[u(a^*, E_{\sigma^T}\left[X_{\theta^*}\right], \theta^*) - u(\tilde{a}, E_{\sigma^T}\left[X_{\theta^*}\right], \theta^*)\right] \geq -\bar{u}$$

Then,

$$\begin{split} \Delta^{T} &\geq \widetilde{\Delta}^{T}(\varepsilon) + \widetilde{\widetilde{\Delta}}^{T} + J(\varepsilon) \mathbf{P}_{\sigma^{T}} \left(\widetilde{\xi} = \tilde{a} | \theta^{*} \right) \left[u(a^{*}, E_{\sigma^{T}} \left[X_{\theta^{*}} \right], \theta^{*} \right) - u(\tilde{a}, E_{\sigma^{T}} \left[X_{\theta^{*}} \right], \theta^{*}) \right] \\ &\times \left[- \frac{\tilde{u} \sum_{\theta \in \Theta, \theta \neq \theta^{*}} \left[\rho_{\theta}(a^{*} | \tilde{a}) \mathbf{P}_{\sigma^{T}} \left(\widetilde{\xi} = \tilde{a} | \theta \right) \right]}{\mathbf{P}_{\sigma^{T}} \left(\widetilde{\xi} = \tilde{a} | \theta^{*} \right) \left[u(a^{*}, E_{\sigma^{T}} \left[X_{\theta^{*}} \right], \theta^{*}) - u(\tilde{a}, E_{\sigma^{T}} \left[X_{\theta^{*}} \right], \theta^{*}) \right]} + \rho_{\theta^{*}}(a^{*} | \tilde{a}) \right] \\ &= \widetilde{\Delta}^{T}(\varepsilon) + \widetilde{\widetilde{\Delta}}^{T} + J(\varepsilon) \mathbf{P}_{\sigma^{T}} \left(\widetilde{\xi} = \tilde{a} | \theta^{*} \right) \left[u(a^{*}, E_{\sigma^{T}} \left[X_{\theta^{*}} \right], \theta^{*}) - u(\tilde{a}, E_{\sigma^{T}} \left[X_{\theta^{*}} \right], \theta^{*}) \right] \\ &\times \left[\rho_{\theta^{*}}(a^{*} | \tilde{a}) - k^{T} \sum_{\theta \in \Theta, \theta \neq \theta^{*}} \left[\rho_{\theta}(a^{*} | \tilde{a}) \mathbf{P}_{\sigma^{T}} \left(\widetilde{\xi} = \tilde{a} | \theta \right) \right] \right] \\ &\geq \widetilde{\Delta}^{T}(\varepsilon) + \widetilde{\widetilde{\Delta}}^{T} + J(\varepsilon) \mathbf{P}_{\sigma^{T}} \left(\widetilde{\xi} = \tilde{a} | \theta^{*} \right) \left[u(a^{*}, E_{\sigma^{T}} \left[X_{\theta^{*}} \right], \theta^{*}) - u(\tilde{a}, E_{\sigma^{T}} \left[X_{\theta^{*}} \right], \theta^{*}) \right] \\ &\times \left[\rho_{\theta^{*}}(a^{*} | \tilde{a}) - k^{T} \sum_{\theta \in \Theta, \theta \neq \theta^{*}} \rho_{\theta}(a^{*} | \tilde{a}) \right] \end{split}$$

$$= \Delta_*^T \equiv \widetilde{\Delta}^T(\varepsilon) + \widetilde{\widetilde{\Delta}}^T + J(\varepsilon) \mathbf{P}_{\sigma^T} \left(\widetilde{\xi} = \widetilde{a} | \theta^* \right) \left[u(a^*, E_{\sigma^T} \left[X_{\theta^*} \right], \theta^*) - u(\widetilde{a}, E_{\sigma^T} \left[X_{\theta^*} \right], \theta^*) \right] \\ \times \left[\left[1 - G_{\theta^*} \left(k^T \right) \right] - k^T \left[1 - \widetilde{G}_{\theta^*} \left(k^T \right) \right] \right]$$

Note that $\lim_{T\to\infty} \widetilde{\Delta}^T = 0$. Let $\widetilde{\Delta}(\varepsilon) \equiv \lim_{T\to\infty} \widetilde{\Delta}^T(\varepsilon)$. Finally, note that, as in proof in the paper, $\lim_{T\to\infty} k^T = \overline{k}$. Then,

$$\lim_{T \to \infty} \Delta^T_* = \widetilde{\Delta}(\varepsilon) + \frac{1 - (N_a - 1)\varepsilon}{N_{\theta}} \left[x^{\widetilde{a}}_{\theta^*} \left[u(a^*, x_{\theta^*}, \theta^*) - u(\widetilde{a}, x_{\theta^*}, \theta^*) \right] \right] \\ \times \left[\left[1 - G_{\theta^*} \left(\overline{k} \right) \right] - \overline{k} \left[1 - \widetilde{G}_{\theta^*} \left(\overline{k} \right) \right] \right] \blacksquare$$

7.6 Strategic Learning

Lemmas A4 and A5 are the main building blocks to show how Proposition 2 also applies to a context with many states and many actions. I present this formally.

PROPOSITION A2. STRATEGIC LEARNING. *Assume signals are of unbounded strength. Then there is strategic learning.*

The proof of Proposition A3 requires modifying Proposition 3 and Lemma 11 in the paper. With these results in hand, the proof of Proposition A2 is analogous to the proof of Proposition 2 in the main text. Lemma 11 extends directly to a context with many actions and many states. I present next a version of Proposition 3 in the paper that applies to many states of the world.

PROPOSITION A3. For all $l \in (\underline{l}, \overline{l})$, $G_{\theta}(l)$ satisfies:

$$l > \frac{G_{\theta}(l)}{\widetilde{G}_{\theta}(l)} \quad and \quad l < \frac{1 - G_1(l)}{1 - G_0(l)} \tag{6}$$

Moreover, if $k' \ge k$ *then,*

$$[1 - G_1(k)] - k [1 - G_0(k)] \ge [1 - G_1(k')] - k' [1 - G_0(k')]$$
(7)

Proof. The proof follows that from Proposition 11 in Monzón and Rapp [2014], but here the likelihood ratio G_{θ} indicates how likely state θ , relative to all other states. Note

first that

$$l_{\theta}(s)^{-1} = \sum_{\tilde{\theta} \neq \theta} l_{\tilde{\theta},\theta}(s) = \sum_{\tilde{\theta} \neq \theta} \frac{dF_{\tilde{\theta}}}{dF_{\theta}}(s)$$
$$dF_{\theta}(s)l_{\theta}(s)^{-1} = \sum_{\tilde{\theta} \neq \theta} dF_{\tilde{\theta}}(s)$$
$$dF_{\theta}(s) = l_{\theta}(s) \sum_{\tilde{\theta} \neq \theta} dF_{\tilde{\theta}}(s)$$

Recall that $\widetilde{G}_{\theta}(L) \equiv \sum_{\tilde{\theta} \neq \theta} \Pr(l_{\theta}(s) \leq L \mid \tilde{\theta}).$

$$\begin{aligned} G_{\theta}(L) &= \int_{\{S \in \mathcal{S}: l_{\theta}(s) \leq L\}} dF_{\theta} = \int_{\{S \in \mathcal{S}: l_{\theta}(s) \leq L\}} l_{\theta}(s) \sum_{\tilde{\theta} \neq \theta} dF_{\tilde{\theta}}(s) \\ &< \int_{\{S \in \mathcal{S}: l_{\theta}(s) \leq L\}} L \sum_{\tilde{\theta} \neq \theta} dF_{\tilde{\theta}}(s) = L \sum_{\tilde{\theta} \neq \theta} \int_{\{S \in \mathcal{S}: l_{\theta}(s) \leq L\}} dF_{\tilde{\theta}}(s) \\ &= L \widetilde{G}_{\theta}(L) \end{aligned}$$

Similarly,

$$1 - G_{\theta}(L) = \int_{\{S \in \mathcal{S}: l_{\theta}(s) > L\}} dF_{\theta} = \int_{\{S \in \mathcal{S}: l_{\theta}(s) > L\}} l_{\theta}(s) \sum_{\tilde{\theta} \neq \theta} dF_{\tilde{\theta}}(s)$$
$$> \int_{\{S \in \mathcal{S}: l_{\theta}(s) > L\}} L \sum_{\tilde{\theta} \neq \theta} dF_{\tilde{\theta}}(s) = L \sum_{\tilde{\theta} \neq \theta} \int_{\{S \in \mathcal{S}: l_{\theta}(s) > L\}} dF_{\tilde{\theta}}(s)$$
$$= L \left[1 - \widetilde{G}_{\theta}(L) \right]$$

This shows that equation (6) holds. I mover next to the second part. Take k' > k.

$$[1 - G_{\theta}(k)] - [1 - G_{\theta}(k')] = G_{\theta}(k') - G_{\theta}(k) = \int_{S \in \mathcal{S}: k \le l_{\theta}(S) \le k'} dF_{\theta}$$
$$= \int_{S \in \mathcal{S}: k \le l_{\theta}(S) \le k'} l_{\theta}(S) \sum_{\tilde{\theta} \neq \theta} dF_{\tilde{\theta}}$$
$$\ge k \int_{S \in \mathcal{S}: k \le l_{\theta}(S) \le k'} \sum_{\tilde{\theta} \neq \theta} dF_{\tilde{\theta}} = k \left[\widetilde{G}_{\theta}(k') - \widetilde{G}_{\theta}(k) \right]$$
$$= k \left[1 - \widetilde{G}_{\theta}(k) \right] - k \left[1 - \widetilde{G}_{\theta}(k') \right]$$

$$\geq k\left[1-\widetilde{G}_{ heta}\left(k
ight)
ight]-k'\left[1-\widetilde{G}_{ heta}\left(k'
ight)
ight]$$

Then,

$$[1 - G_{\theta}(k)] - [1 - G_{\theta}(k')] \ge k \left[1 - \widetilde{G}_{\theta}(k)\right] - k' \left[1 - \widetilde{G}_{\theta}(k')\right]$$
$$[1 - G_{\theta}(k)] - k \left[1 - \widetilde{G}_{\theta}(k)\right] \ge [1 - G_{\theta}(k')] - k' \left[1 - \widetilde{G}_{\theta}(k')\right]$$

This shows that equation (7) holds. \blacksquare

References

MONZÓN, I. AND M. RAPP (2014): "Observational Learning with Position Uncertainty," Journal of Economic Theory, 154, 375–402.