
Best Experienced Payoff Dynamics and
Cooperation in the Centipede Game:

Online Appendix

William H. Sandholm∗, Segismundo S. Izquierdo†, and Luis R. Izquierdo‡

April 24, 2019

Contents
I Exact and numerical calculation in Mathematica 2

I.1 Algebraic numbers and solutions to polynomial equations 2
I.2 Algorithms from computational algebra . 2
I.3 Numerical evaluation and precision tracking 3

II The BEP Centipede.nb notebook 4
II.1 Exact analysis . 4
II.2 Numerical analysis . 5
II.3 More on computation of approximate rest points and eigenvalues 6

III Numerical evaluation of the interior rest point 7

IV Estimates of the basin of attraction of ξ† for BEP(τall, κ, βmin) dynamics in
Centipede of length d = 4 9

V Saddle points of BEP(τall, κ, βmin) dynamics in Centipede of length d = 4 12

∗Department of Economics, University of Wisconsin.
†Department of Industrial Organization, Universidad de Valladolid.
‡Department of Civil Engineering, Universidad de Burgos.

I. Exact and numerical calculation in Mathematica

In this section we describe the built-in Mathematica functions we use to prove exact
(analytical) results and to obtain numerical evaluations of exact expressions.

I.1 Algebraic numbers and solutions to polynomial equations

To obtain our analytical results, we take advantage of Mathematica’s ability to perform
exact computations using algebraic numbers. As described in Strzeboński (1996, 1997),
Mathematica represents algebraic numbers using Root objects, with Root[poly, k] desig-
nating one of the roots of the minimal polynomial poly. The index k is used to single out a
particular root of poly, with the lowest indices referring to the real roots of poly in increas-
ing order, and the higher indices referring to the complex roots in a more complicated
way. Root objects also contain a hidden third element that specifies an isolating set for the
root, meaning a set containing the root of poly in question and no others.

The forms of isolating sets depend on whether roots are isolated using arbitrary-
precision floating point methods or exact methods. If Mathematica’s default settings are
used, then roots are isolated using arbitrary-precision floating point methods based on the
Jenkins-Traub algorithm (Jenkins (1969), Jenkins and Traub (1970a,b)), the workhorse nu-
merical algorithm for this purpose. While in theory this algorithm always isolates all real
and complex roots of poly in disjoint disks in the complex plane, flawless implementation
of the algorithm is difficult; see Strzeboński (1997, p. 649).

If we instead use the setting

SetOptions[Root,ExactRootIsolation->True]

then Mathematica isolates roots using exact methods—that is, methods that only use ratio-
nal number calculations. Real roots of polynomials are isolated in disjoint intervals using
the Vincent-Akritas-Strzeboński method, which is based on Descartes’ rule of signs and a
classic theorem of Vincent; see Akritas et al. (1994) and Akritas (2010). Complex roots are
isolated in rectangles using the Collins and Krandick (1992) method.

Exact roots of univariate polynomials (and much else) can be computed using the
Mathematica function Reduce. When computing the exact rest points of BEP dynamics, we
apply Reduce to the output of the function GroebnerBasis, described next.

I.2 Algorithms from computational algebra

The Mathematica function GroebnerBasis is an implementation of a proprietary vari-
ation of the algorithm of Buchberger (1965, 1970).1 Choosing the option Method ->
Buchberger causes Mathematica to use the original Buchberger algorithm, which runs
considerably more slowly than the default algorithm; however, there was only one case
in which the default algorithm produced a Gröbner basis and the Buchberger algorithm
failed to terminate.

1An up-to-date presentation of Gröbner basis algorithms, including many improvements on Buch-
berger’s algorithm, can be found in Cox et al. (2015).

–2–

The Mathematica function CylindricalDecomposition implements the Collins (1975)
cylindrical algebraic decomposition algorithm with various improvements.2 If this func-
tion is run in its default mode, it makes use of arbitrary-precision arithmetic. To force
Mathematica to work with algebraic numbers, one uses the following settings:

SetOptions[Root,ExactRootIsolation->True]

SetSystemOptions[”InequalitySolvingOptions”->”CADDefaultPrecision”->Infinity]

Unfortunately, these settings cause CylindricalDecomposition to run extremely slowly,
and in the case of BEP dynamics in Centipede it only generates a result in cases with 2
dimensions and, for some specifications of the dynamics, 3 dimensions. Even if arbitrary-
precision arithmetic is permitted, the function generates a result for all BEP dynamics in
cases with dimension 2 or 3, but not for higher dimensions.

I.3 Numerical evaluation and precision tracking

When Mathematica performs calculations using arbitrary-precision numbers x, it keeps
track of the digits whose correctness it views as guaranteed. Precision[x] reports the
number of correct base 10 significant digits of x: for instance, if x = d0.d1d2d3d4. . .×10k, the
precision is the number of the correct digits in d0.d1d2d3d4. . . Accuracy[x] is the number of
correct base 10 digits of x to the right of the decimal point. Exact numbers in Mathematica
(e.g., integers, rational numbers, and algebraic numbers) have Precision equal to∞.

To perform certain parts of our analysis (in particular, checking that an eigenvalue of a
derivative matrix has negative real part), we need to numerically evaluate exact numbers
and expressions. We do so using the Mathematica function N. N[expr, n] evaluates expr
as an arbitrary-precision number at guaranteed precision n. When Mathematica performs
computations using arbitrary-precision numbers, it maintains precision and accuracy
guarantees, the values of which can be accessed using the Precision and Accuracy
functions.

While in principle Mathematica’s precision tracking should not make mistakes, there
are at least two reasons for exercising caution when using it in proofs. First, Mathematica’s
precision tracking is not based on interval arithmetic, which represents real and complex
numbers using exact intervals (in R) and rectangles (in C) that contain the numbers in
question, and which relies on theorems that define rules for performing arithmetic and
other mathematical operations on these intervals and rectangles that maintain contain-
ment guarantees (Alefeld and Herzberger (1983), Tucker (2011)). Instead, Mathematica’s
precision bounds are sometimes obtained using faster methods of the Jenkins-Traub vari-
ety (see Section I.1), which work correctly in theory but which are difficult to implement
perfectly. Second, Mathematica’s precision tracking is a black box: the specific algorithms
it employs are proprietary.

We contend with these issues by restricting our use of Mathematica’s numerical evalu-
ation and precision tracking to a few clearly delineated cases: the evaluation of algebraic
numbers, and the basic arithmetic operations of addition, subtraction, multiplication, and

2See reference.wolfram.com/language/tutorial/ComplexPolynomialSystems.html for details.

–3–

division. In particular, we do not use Mathematica for precision tracking in the compu-
tation of matrix inverses or the solution of linear systems, operations for which interval
arithmetic does not generally provide clean answers (Alefeld and Herzberger (1983)).
While one could insist that interval arithmetic be used for all non-exact calculations, we
chose not to do so.

II. The BEP Centipede.nb notebook

In this section we describe the main functions from the BEP Centipede.nb notebook,
which contains all of the procedures we use to analyze BEP dynamics. Section II.1
describes functions used to prove analytical results, and Section II.2 describes the functions
used in numerical analyses and in approximations with error bounds (cf. Appendix C).
More details about the use of these functions are provided in the BEP Centipede.nb
notebook itself. Section II.3 explains the algorithms used to compute numerical values of
rest points of the dynamics and eigenvalues of their derivative matrices.

Unless stated otherwise, the functions described below take a test-set ruleτ ∈ {τall, τtwo, τadj
},

a tie-breaking rule β ∈ {βmin, βstick, βunif
} and a length d of the Centipede game as parame-

ters. All functions besides the last three are for BEP dynamics with number of trials κ = 1.
The BEP Centipede.nb notebook includes examples of the use of each of the functions.

II.1 Exact analysis

The functions for exact analysis of BEP dynamics in Centipede are as follows:

ExactRestPoints Uses GroebnerBasis and Reduce to compute the exact rest points of
the dynamic.

InstabilityOfVertexRestPoint Conducts an analysis of the local stability of the vertex
rest point ξ†. To do this, the function computes the derivative matrix DV (ξ†) of the
dynamic and the eigenvalues and eigenvectors of DV(ξ†), where V : aff(Ξ) → TΞ (see
Appendix A). Finally, the function reports whether one can conclude that ξ† is unstable.
The function was not used explicitly in our analysis. Instead, we used it to determine the
form of the derivative matrix, eigenvalues, and eigenvectors for arbitrary values of d.

LocalStabilityOfInteriorRestPoint Conducts an analysis of the local stability of the
interior rest point ξ∗. To do this, the function computes a rational approximation ξ of
the exact interior rest point ξ∗. The function then evaluates the eigenvalues of DV(ξ),
evaluates a version of the perturbation bound from Proposition C.1, and reports whether
one can conclude that ξ∗ is asymptotically stable.

GlobalStabilityOfInteriorRestPoint Conducts an analysis of the global stability of
the interior rest point ξ∗. To do this, the function uses CylindricalDecomposition to
determine whether the relevant Lyapunov function (see Section 3.3) is a strict Lyapunov
function for the interior rest point ξ∗ on domain Ξ r {ξ†}.

–4–

II.2 Numerical analysis

The following functions from the BEP Centipede.nb are used for numerical analysis
and as subroutines for LocalStabilityOfInteriorRestPoint.

FloatingPointApproximateRestPoint Computes a floating point approximation of the
stable interior rest point of the BEP dynamic. See Section II.3 for details.

RationalApproximateRestPoint Computes a rational approximation of the stable inte-
rior rest point of the BEP dynamic. See Section II.3 for details.

EigenvaluesAtRationalApproximateRestPoint Computes the exact eigenvalues of DV(ξ),
where ξ is the rational approximation to the interior rest point obtained from a call to
RationalApproximateRestPoint. See Section II.3 for details.

NEigenvaluesAtRationalApproximateRestPoint Computes the eigenvalues of DV(ξ̃)
using arbitrary-precision arithmetic, where ξ̃ is a 16-digit precision approximation to
the rational point computed using RationalApproximateRestPoint. See Section II.3 for
details.

NumericalGlobalStabilityOfInteriorRestPointLyapunov Evaluates the time deriva-
tive Λ̇(ξ) = ∇Λ(ξ)′V(ξ) at a floating-point approximation Λ of the appropriate candidate
Lyapunov function L for the interior rest point ξ∗, reporting instances in which the time
derivative is not negative should any exist. The (presumably large number of) states ξ at
which to evaluate Λ̇(ξ) is chosen by the user.

NumericalGlobalStabilityOfInteriorRestPointNDSolve Computes numerical solu-
tions to the BEP dynamic from initial conditions provided by the user, and reports whether
any of these numerical solutions fails to converge to a neighborhood of the interior rest
point ξ∗.

NDSolveMeanDynamics Uses Mathematica’s NDSolve function to compute a numerical
solution to the BEP dynamic from an initial condition provided by the user. The solution
is computed until the time at which the norm of the law of motion is sufficiently small,
where what constitutes sufficiently small can be chosen by the user. The function also
graphs the components of the state as a function of time, and reports the terminal point
and the time at which this point is reached.

FloatingPointApproximateRestPointTestAllMinIfTieManyTrials Uses Mathematica’s
FindRoot function to compute a floating point approximation of a rest point of the
BEP(τall, κ, βmin) dynamic, where the number of trials κ is specified by the user. The
function returns only one rest point. When there is more than one rest point, which one
is computed depends strongly on the initial condition given to the function as an input.
This function was used to produce Figures 3 and 4 in the main paper and to compute the
saddle points shown in Table 5 below.

–5–

NDSolveMeanDynamicsTestAllMinIfTieManyTrials Uses Mathematica’s NDSolve func-
tion to compute a numerical solution of the BEP(τall, κ, βmin) dynamic, where the number
of trials κ and the initial condition of the solution are specified by the user. The solution
is computed until the time at which the norm of the law of motion is sufficiently small,
where what constitutes sufficiently small can be chosen by the user. The function also
graphs the components of the state as a function of time, and reports the terminal point
and the time at which this point is reached. The function was used in producing Figure 5.

EstimateSizeOfBasinOfAttractionOfVertexTestAllMinIfTieManyTrials Provides an
estimate of the size of the basin of attraction of the vertex rest point ξ† under the
BEP(τall, κ, βmin) dynamic. To do so, it discretizes the set of population states Ξ into a
grid whose mesh is chosen by the user, and solves the dynamic with these grid points
as initial conditions using Mathematica’s NDSolve function. It returns the set of initial
conditions from which the solution converges to ξ†, and the set of all their neighbors in
the grid. See Section IV for details.

II.3 More on computation of approximate rest points and eigenvalues

The BEP Centipede.nb notebook computes approximate rest points of BEP(τ, 1, β) dy-
namics using the Euler method: {ξt}

T
t=0 is computed starting from an initial condition ξ0

by iteratively applying

(1) ξt+1 = ξt + h V (ξt),

where V : Rs
→ Rs is the (extended) law of motion of the dynamics and h is the step size

of the algorithm. This algorithm is run in two sequential stages, to be described next.
When one of the first two FloatingPointApproximateRestPoint... functions from

Section II.2 is called, algorithm (1) is run using IEEE 754 Standard double-precision
floating-point arithmetic. The step size of the algorithm is set to h = 2−4 by default,
and the initial condition is ξ0 = (x0, y0) ∈ Ξ = (X,Y), where x0 and y0 are the barycenters
of simplices X and Y by default. Several thousand iterations of (1) are run, and the output
of each iteration is projected onto Ξ to minimize the accumulation of roundoff errors from
the floating-point calculation.

The floating-point numbers obtained in this way are very close to the exact quantities
they approximate, but their digits (i.e., the values of the di in x = d0.d1d2d3d4. . . × 10k) may
all be wrong, especially in small numbers, since many of the exact numbers we aim to
approximate lie outside the range of IEEE 754 double-precision.3

To address this issue, the function RationalApproximateRestPoint begins with a call
to FloatingPointApproximateRestPoint, and then uses the output of this procedure to
create the initial condition for a second stage that employs rational arithmetic. This initial
condition is the rational point in Ξ that lies closest to the floating-point output of the

3For example, note that the IEEE 754 double-precision representation of numbers such as 3.78 × 10−681

and 2.18 × 10−20413 (both of which appear in Table 1 below) is 0, since both numbers are well below
2−1074

≈ 4.94 × 10−324, which is the smallest positive IEEE 754 double-precision number.

–6–

first stage. The step size h is set to 1 by default in the second stage, since overshooting
is no longer a problem in the neighborhood of the exact rest point. Increment (1) is
executed repeatedly using rational arithmetic until it locates a rational point ξ∗T that is an
approximate fixed point of (1), in the sense that ξT and ξT+1 = ξT + V (ξT) agree with 6
digits of precision for numbers greater or equal to 10−4, or 3 digits of precision for smaller
numbers. This agrees with the format we use to report rest points in Section III.
NEigenvaluesAtRationalApproximateRestPoint computes the eigenvalues of DV(ξ̃)

using arbitrary-precision arithmetic, where ξ̃ is a 16-digit precision approximation to
the rational point computed by calling RationalApproximateRestPoint. The use of
arbitrary precision allows us to keep track of the precision of the computed eigenvalues.
Proposition C.1 provides a bound on the distances between the eigenvalues of DV(ξ) and
the eigenvalues of DV(ξ∗). In Section III, the reported eigenvalues, which are arbitrary-
precision approximations to the (algebraic-valued) eigenvalues of DV(ξ), are shown with
5 digits of precision for numbers greater or equal to 1, 4 digits of precision for numbers
greater or equal to 10−2, and 3 digits of precision for smaller numbers.

III. Numerical evaluation of the interior rest point

Table 1 presents approximate components of the unique interior rest point of the
BEP(τall, 1, βmin) dynamic in Centipede games of lengths up to d = 20.

Table 2 shows approximate eigenvalues of the derivative matrix DV(ξ∗) at the interior
rest point ξ∗ of BEP(τall, 1, βmin) dynamics in Centipede games of lengths up to d = 20.

–7–

p [6] [5] [4] [3] [2] [1] [0]
3 - - - - - .618034 .381966
4 - - - - .113625 .501712 .384663
5 - - - - .113493 .501849 .384658
6 - - - 3.12 × 10−9 .113493 .501849 .384658
7 - - - 3.12 × 10−9 .113493 .501849 .384658
8 - - 8.23 × 10−137 3.12 × 10−9 .113493 .501849 .384658
9 - - 8.23 × 10−137 3.12 × 10−9 .113493 .501849 .384658
10 - 7.75 × 10−3403 8.23 × 10−137 3.12 × 10−9 .113493 .501849 .384658
11 - 7.75 × 10−3403 8.23 × 10−137 3.12 × 10−9 .113493 .501849 .384658
12 1.06 × 10−122476 7.75 × 10−3403 8.23 × 10−137 3.12 × 10−9 .113493 .501849 .384658
...

...
...

...
...

...
...

...
20 1.06 × 10−122476 7.75 × 10−3403 8.23 × 10−137 3.12 × 10−9 .113493 .501849 .384658

q [6] [5] [4] [3] [2] [1] [0]
3 - - - - .381966 .381966 .236068
4 - - - - .337084 .419741 .243175
5 - - - .001462 .335672 .419706 .243160
6 - - - .001462 .335672 .419706 .243160
7 - - 9.53 × 10−35 .001462 .335672 .419706 .243160
8 - - 9.53 × 10−35 .001462 .335672 .419706 .243160
9 - 3.78 × 10−681 9.53 × 10−35 .001462 .335672 .419706 .243160

10 - 3.78 × 10−681 9.53 × 10−35 .001462 .335672 .419706 .243160
11 2.18 × 10−20413 3.78 × 10−681 9.53 × 10−35 .001462 .335672 .419706 .243160
12 2.18 × 10−20413 3.78 × 10−681 9.53 × 10−35 .001462 .335672 .419706 .243160
...

...
...

...
...

...
...

...
20 2.18 × 10−20413 3.78 × 10−681 9.53 × 10−35 .001462 .335672 .419706 .243160

Table 1: The interior rest point of the BEP(τall, 1, βmin) dynamic for Centipede of lengths d ∈ {3, . . . , 20}. p
denotes the penultimate player, q the last player. The dashed lines separate exact (d ≤ 6) from numerical

(d ≥ 7) results.

–8–

d = 3 −1 ± .3820 −1
d = 4 −1.1411 ± .3277 i −.8589 ± .3277 i
d = 5 −1.1355 ± .3284 i −.8645 ± .3284 i −1.
d = 6 −1.1355 ± .3284 i −.8645 ± .3284 i −1. ± 9.74 × 10−5 i
d = 7 −1.1355 ± .3284 i −.8645 ± .3284 i −1. ± 9.74 × 10−5 i −1.
d = 8 −1.1355 ± .3284 i −.8645 ± .3284 i −1. ± 9.74 × 10−5 i −1. −1.
d = 9 −1.1355 ± .3284 i −.8645 ± .3284 i −1. ± 9.74 × 10−5 i −1. −1. −1.

d = 10 −1.1355 ± .3284 i −.8645 ± .3284 i −1. ± 9.74 × 10−5 i −1. −1. −1. · · ·
...

...
...

...
...

...
... · · ·

d = 20 −1.1355 ± .3284 i −.8645 ± .3284 i −1. ± 9.74 × 10−5 i −1. −1. −1. · · ·

Table 2: Approximate eigenvalues of DV(ξ∗) for the BEP(τall, 1, βmin) dynamic. The symbol “−1.” is used as
a shorthand for −1.0000. The dashed lines separate exact (d ≤ 6) from numerical (d ≥ 7) results.

IV. Estimates of the basin of attraction ofξ† for BEP(τall, κ, βmin)
dynamics in Centipede of length d = 4

In this section, we provide estimates of the basin of attraction of the backward induction
state ξ† in Centipede games of length d = 4 under BEP(τall, κ, βmin) dynamics. We do so for
numbers of trials ranging from κ = 5, the smallest number for which ξ† is asymptotically
stable (see Proposition 4.1) to κ = 34 and for selected larger values.

We estimated the size of the basin by numerically computing solutions to the BEP(τall, κ, βmin)
dynamics from points in a grid of initial conditions of mesh 1

50 in the set of population

states Ξ. This grid contains a total of
(52

50

)2
= 1,758,276 points, so an exhaustive exploration

is not feasible. The algorithm we used to decide which points in the grid to explore aims at
“growing” the basin of attraction from ξ† outwards. Specifically, we start at the vertex ξ†

and extend outward, recursively visiting all neighboring points in the grid until obtaining
a “boundary” two-grid-points thick in which no solution converges to ξ†.

For κ ∈ {5, . . . , 34}, Table 3 presents all of the grid points from which solutions of
BEP(τall, κ, βmin) dynamics converge to ξ†. Table 4 presents the total number of such
points, as well as the sum of the number of such points and the number of neighbors of
such points; these numbers provide lower and upper bounds on the size of the basin.

We make two observations about these results. First, Table 3 shows that state ξ† is not
at all robust to changes in the behavior of population 1. This point is reinforced in Table
5, which shows that the saddle points of the dynamics all place mass of at least .998 on
strategy 1. Second, Table 4 shows that the estimated size of the basin is very small. For
instance, for κ = 100, the lower and upper estimates of the size of the basin are 51 and 166
grid points, out of the total of 1,758,276 grid points.

–9–

Condition on κ x1 x2 x3 y1 y2 y3

1 0 0 1 0 0
κ ≥ 6 1 0 0 0.98 0.02 0

κ = 7 or κ ≥ 9 1 0 0 0.96 0.04 0
κ ≥ 9 1 0 0 0.94 0.06 0
κ ≥ 10 1 0 0 0.98 0 0.02

κ = 10 or κ ≥ 12 1 0 0 0.96 0.02 0.02
κ = 10 or κ ≥ 12 1 0 0 0.92 0.08 0

κ ≥ 12 1 0 0 0.94 0.04 0.02
κ = 12, 13 or κ ≥ 15 1 0 0 0.9 0.1 0

κ ≥ 15 1 0 0 0.92 0.06 0.02
κ = 15, 16 or κ ≥ 18 1 0 0 0.88 0.12 0

κ = 15, 16, 17, 18 or κ ≥ 20 1 0 0 0.96 0 0.04
κ ≥ 17 1 0 0 0.9 0.08 0.02

κ = 17 or κ ≥ 20 1 0 0 0.94 0.02 0.04
κ = 18, 19 or κ ≥ 21 1 0 0 0.88 0.1 0.02
κ = 18 or κ ≥ 21 1 0 0 0.86 0.14 0

κ ≥ 20 1 0 0 0.92 0.04 0.04
κ = 20 or κ ≥ 25 1 0 0 0.94 0 0.06
κ = 21 or κ ≥ 24 1 0 0 0.86 0.12 0.02
κ = 22 or κ ≥ 24 1 0 0 0.9 0.06 0.04
κ = 24 or κ ≥ 27 1 0 0 0.84 0.16 0

κ ≥ 26 1 0 0 0.88 0.08 0.04
κ = 27 or κ ≥ 30 1 0 0 0.92 0.02 0.06
κ = 27 or κ ≥ 30 1 0 0 0.84 0.14 0.02

κ ≥ 30 1 0 0 0.86 0.1 0.04
κ = 30 or κ ≥ 33 1 0 0 0.82 0.18 0

κ ≥ 32 1 0 0 0.9 0.04 0.06
κ = 33 1 0 0 0.82 0.16 0.02

Table 3: Initial conditions in a grid of mesh 1
50 from which solutions of BEP(τall, κ, βmin) dynamics converge

to ξ† (κ ∈ {5, . . . , 34}).

–10–

κ # in-basin points
in-basin points

and their
out-of-basin neighbors

5 1 5
6 2 9
7 3 13
8 2 9
9 4 17
10 7 27
11 5 20
12 9 34
13 9 34
14 8 30
15 12 44
16 12 44
17 13 46
18 15 54
19 13 47
20 16 56
21 18 63
22 18 63
23 17 60
24 20 70
25 20 69
26 21 72
27 24 82
28 22 76
29 22 76
30 26 89
31 25 85
32 26 88
33 28 95
34 27 92
50 35 116

100 51 166

Table 4: Number of initial conditions in a grid of mesh 1
50 from which solutions of BEP(τall, κ, βmin)

dynamics converge to ξ†, and the total number of such points and their neighbors.

–11–

V. Saddle points of BEP(τall, κ, βmin) dynamics in Centipede of
length d = 4

Table 5 presents approximate components of saddle points of BEP(τall, κ, βmin) dynam-
ics for Centipede games of length d = 4 for various κ.

x1 x2 x3

5 .999417 .000333 .000250
6 .999374 8.23 × 10−6 .000617
7 .999093 6.76 × 10−5 .000839
8 .999474 3.20 × 10−5 .000494
9 .999649 1.93 × 10−7 .000351

10 .998505 .000137 .001358
11 .998889 9.75 × 10−5 .001013
12 .998404 4.76 × 10−5 .001549
13 .998759 3.35 × 10−5 .001207
14 .998926 3.65 × 10−5 .001038
15 .998396 3.72 × 10−5 .001567
16 .998629 3.45 × 10−5 .001337
17 .998367 .000180 .001453
18 .998551 1.69 × 10−5 .001432
19 .998578 3.19 × 10−5 .001390
20 .998447 .000109 .001444
21 .998540 1.58 × 10−5 .001444
22 .998380 6.61 × 10−5 .001554
23 .998535 6.48 × 10−5 .001400
24 .998484 2.03 × 10−5 .001495
25 .998484 4.05 × 10−5 .001476
30 .998544 1.69 × 10−5 .001439
35 .998612 4.21 × 10−5 .001345
40 .998669 2.03 × 10−5 .001310
45 .998726 1.04 × 10−5 .001264
50 .998782 2.29 × 10−5 .001195

100 .999169 2.75 × 10−6 .000828
150 .999368 5.23 × 10−7 .000632
200 .999487 2.93 × 10−7 .000513

y1 y2 y3

5 .994197 .002904 .002899
6 .992520 .003747 .003733
7 .987382 .006326 .006292
8 .991613 .004201 .004186
9 .993702 .003154 .003144

10 .970561 .014810 .014629
11 .975875 .012124 .012001
12 .962408 .018963 .018629
13 .968257 .015991 .015752
14 .970372 .014917 .014711
15 .953015 .023757 .023228
16 .957068 .021686 .021246
17 .946117 .027235 .026647
18 .949167 .025733 .025100
19 .947422 .026621 .025958
20 .939865 .030463 .029672
21 .940517 .030176 .029308
22 .931278 .034908 .033814
23 .934926 .033024 .032050
24 .929859 .035671 .034470
25 .927065 .037100 .035835
30 .916397 .042658 .040945
35 .907601 .047209 .045190
40 .899161 .051657 .049182
45 .891781 .055554 .052664
50 .885579 .058794 .055627

100 .847323 .079244 .073433
150 .827851 .089787 .082362
200 .815327 .096613 .088061

Table 5: Saddle points of BEP(τall, κ, βmin) dynamics for Centipede of length d = 4.

–12–

References

Akritas, A. G. (2010). Vincent’s theorem of 1836: Overview and future research. Journal of
Mathematical Sciences, 168:309–325.

Akritas, A. G., Bocharov, A., and Strzeboński, A. W. (1994). Implementation of real root
isolation algorithms in Mathematica. In Abstracts of the International Conference on Interval
and Computer-Algebraic Methods in Science and Engineering (Interval ’94), pages 23–27, St.
Petersburg.

Alefeld, G. and Herzberger, J. (1983). Introduction to Interval Computations. Academic Press,
New York.

Buchberger, B. (1965). Ein Algorithmus zum Auffinden der Basiselemente des Restklassenrings
nach einem nulldimensionalen Polynomideal. PhD thesis, University of Innsbruck. Trans-
lated by M.P. Abramson as “An algorithm for finding the basis elements of the residue
class ring of a zero-dimensional polynomial ideal” in Journal of Symbolic Computation 41
(2006), 475–511.

Buchberger, B. (1970). Ein algorithmisches Kriterium für die Lösbarkeit eines algebrais-
chen Gleichungssystems. Aequationes mathematicae, pages 374–383. Translated by M.
P. Abramson and R. Lumbert as “An algorithmic criterion for the solvability of alge-
braic systems of equations” in B. Buchberger and F. Winkler, editors, Gröbner Bases and
Applications, p. 535–545, 1998, Cambridge University Press.

Collins, G. E. (1975). Quantifier elimination for the theory of real closed fields by cylin-
drical algebraic decomposition. In Second GI Conference on Automata Theory and Formal
Languages, volume 33 of Lecture Notes in Computer Science, pages 134–183. Springer,
Berlin.

Collins, G. E. and Krandick, W. (1992). An efficient algorithm for infallible polynomial
complex root isolation. In Wang, P. S., editor, Proceedings of the International Symposium
on Symbolic and Algebraic Computation (ISSAC ’92), pages 189–194, Berkeley.

Cox, D., Little, J., and O’Shea, D. (2015). Ideals, Varieties, and Algorithms: An Introduction
to Computational Algebraic Geometry and Commutative Algebra. Springer International,
Cham, Switzerland, fourth edition.

Jenkins, M. A. (1969). Three-stage variable-shift iterations for the solution of polynomial equations
with a posteriori error bounds for the zeros. PhD thesis, Stanford University.

Jenkins, M. A. and Traub, J. F. (1970a). A three-stage algorithm for real polynomials using
quadratic iteration. SIAM Journal on Numerical Analysis, 7:545–566.

Jenkins, M. A. and Traub, J. F. (1970b). A three-stage variable-shift iteration for polynomial
zeros and its relation to generalized Rayleigh iteration. Numerische Mathematik, 14:252–
263.

–13–

Strzeboński, A. W. (1996). Algebraic numbers in Mathematica 3.0. Mathematica Journal,
6:74–80.

Strzeboński, A. W. (1997). Computing in the field of complex algebraic numbers. Journal
of Symbolic Computation, 24:647–656.

Tucker, W. (2011). Validated Numerics: A Short Introduction to Rigorous Computations. Prince-
ton University Press, Princeton.

–14–

