# Supplement to "Stochastic games with hidden states" 

(Theoretical Economics, Vol. 14, No. 3, July 2019, 1115-1167)

Yuichi Yamamoto
Department of Economics, University of Pennsylvania

## S.1. Proof of Lemma B6

Pick an arbitrary belief $\mu$. If

$$
\frac{\left(1-\delta^{2^{[\Omega]}}\right) 2 \bar{g}}{\delta^{[\Omega]} \bar{\pi}^{4^{[\Omega]}}} \geq \bar{g},
$$

then the result obviously holds because we have $\left|\lambda \cdot v^{\omega}\left(\delta, s^{\omega}\right)-\lambda \cdot v^{\mu}\left(\delta, \tilde{s}^{\mu}\right)\right| \leq \bar{g}$. So in what follows, we assume that

$$
\frac{\left(1-\delta^{2^{|\Omega|}}\right) 2 \bar{g}}{\delta^{2^{2 \Omega \mid}} \bar{\pi}^{4^{(\Omega \mid}}}<\bar{g} .
$$

Suppose that the initial prior is $\mu$ and players play the strategy profile $\tilde{s}^{\mu}$. Let $\operatorname{Pr}\left(h^{t} \mid \mu, \tilde{s}^{\mu}\right)$ be the probability of $h^{t}$ given the initial prior $\mu$ and the strategy profile $\tilde{s}^{\mu}$, and let $\mu^{t+1}\left(h^{t} \mid \mu, \tilde{s}^{\mu}\right)$ denote the posterior belief in period $t+1$ given this history $h^{t}$. Let $H^{* t}$ be the set of histories $h^{t}$ such that $t+1$ is the first period at which the support of the posterior belief $\mu^{t+1}$ is in the set $\Omega^{*}$. Intuitively, $H^{* t}$ is the set of histories $h^{t}$ such that players will switch their play to $s^{\mu^{t+1}}$ from period $t+1$ on, according to $\tilde{s}^{\mu}$.

Note that the payoff $v^{\mu}\left(\delta, \tilde{s}^{\mu}\right)$ by the strategy profile $\tilde{s}^{\mu}$ can be represented as the sum of the two terms: The expected payoffs before the switch to $s^{\mu^{t}}$ occurs and the payoffs after the switch. That is, we have

$$
\begin{aligned}
\lambda \cdot v^{\mu}\left(\delta, \tilde{s}^{\mu}\right)= & \sum_{t=1}^{\infty}\left(1-\sum_{\tilde{t}=0}^{t-1} \sum_{h^{t} \in H^{* i}} \operatorname{Pr}\left(h^{\tilde{t}} \mid \mu, \tilde{s}^{\mu}\right)\right)(1-\delta) \delta^{t-1} E\left[\lambda \cdot g^{\omega^{t}}\left(a^{t}\right) \mid \mu, \tilde{s}^{\mu}\right] \\
& +\sum_{t=0}^{\infty} \sum_{h^{t} \in H^{* t}} \operatorname{Pr}\left(h^{t} \mid \mu, \tilde{s}^{\mu}\right) \delta^{t} \lambda \cdot v^{\mu^{t+1}\left(h^{t} \mid \mu, \tilde{s}^{\mu}\right)}\left(\delta, s^{\mu^{t+1}\left(h^{t} \mid, \tilde{s}^{\mu}\right)}\right),
\end{aligned}
$$

where the expectation operator is taken conditional on that the switch has not happened yet. Note that the term $1-\sum_{\tilde{t}=0}^{t-1} \sum_{h^{\tilde{T}} \in H^{* i}} \operatorname{Pr}\left(h^{\tilde{t}} \mid \mu, \tilde{s}^{\mu}\right)$ is the probability that players still randomize all actions in period $t$ because the switch has not happened by then. To simplify the notation, let $\rho^{t}$ denote this probability. From Lemma B5, we know

[^0]that
$$
\lambda \cdot v^{\mu^{t+1}\left(h^{t} \mid \mu, \tilde{s}^{\mu}\right)}\left(\delta, s^{\mu^{t+1}\left(h^{t} \mid \mu, \tilde{s}^{\mu}\right)}\right) \geq v^{*}
$$
for each $h^{t} \in H^{* t}$, where
$$
v^{*}=\lambda \cdot v^{\omega}\left(\delta, s^{\omega}\right)-\frac{\left(1-\delta^{2^{|\Omega|}}\right) 2 \bar{g}}{\delta^{2^{|\Omega|}} \bar{\pi}^{|\Omega|}}
$$

Applying this and $\lambda \cdot g^{\omega^{t}}\left(a^{t}\right) \geq-2 \bar{g}$ to the above equation, we obtain

$$
\begin{aligned}
\lambda \cdot v^{\mu}\left(\delta, \tilde{s}^{\mu}\right) \geq & \sum_{t=1}^{\infty} \rho^{t}(1-\delta) \delta^{t-1}(-2 \bar{g}) \\
& +\sum_{t=0}^{\infty} \sum_{h^{t} \in H^{* t}} \operatorname{Pr}\left(h^{t} \mid \mu, \tilde{s}^{\mu}\right) \delta^{t} v^{*}
\end{aligned}
$$

Using $\quad \sum_{t=0}^{\infty} \sum_{h^{t} \in H^{* t}} \operatorname{Pr}\left(h^{t} \mid \mu, \tilde{s}^{\mu}\right) \delta^{t}=\sum_{t=1}^{\infty}(1-\delta) \delta^{t-1} \sum_{\tilde{t}=0}^{t-1} \sum_{h^{\tilde{t}} \in H^{* \tilde{t}}} \operatorname{Pr}\left(h^{\tilde{t}} \mid \mu, \tilde{s}^{\mu}\right)=$ $\sum_{t=1}^{\infty}(1-\delta) \delta^{t-1}\left(1-\rho^{t}\right)$, we obtain

$$
\begin{equation*}
\lambda \cdot v^{\mu}\left(\delta, \tilde{s}^{\mu}\right) \geq(1-\delta) \sum_{t=1}^{\infty} \delta^{t-1}\left\{\rho^{t}(-2 \bar{g})+\left(1-\rho^{t}\right) v^{*}\right\} \tag{S1}
\end{equation*}
$$

According to Lemma B4, the probability that the support reaches $\Omega^{*}$ within $4^{|\Omega|}$ periods is at least $\pi^{*}$. This implies that the probability that players still randomize all actions in period $4^{|\Omega|}+1$ is at most $1-\pi^{*}$. Similarly, for each natural number $n$, the probability that players still randomize all actions in period $n 4^{|\Omega|}+1$ is at most $\left(1-\pi^{*}\right)^{n}$, that is, $\rho^{n 4^{|\Omega|}+1} \leq\left(1-\pi^{*}\right)^{n}$. Then since $\rho^{t}$ is weakly decreasing in $t$, we obtain

$$
\rho^{n 4^{|\Omega|}+k} \leq\left(1-\pi^{*}\right)^{n}
$$

for each $n=0,1, \ldots$ and $k \in\left\{1, \ldots, 4^{|\Omega|}\right\}$. This inequality, together with $-2 \bar{g} \leq v^{*}$, implies that

$$
\rho^{n 4^{|\Omega|}+k}(-2 \bar{g})+\left(1-\rho^{n 4^{|\Omega|}+k}\right) v^{*} \geq\left(1-\pi^{*}\right)^{n}(-2 \bar{g})+\left\{1-\left(1-\pi^{*}\right)^{n}\right\} v^{*}
$$

for each $n=0,1, \ldots$ and $k \in\left\{1, \ldots, 4^{|\Omega|}\right\}$. Plugging this inequality into (S1), we obtain

$$
\lambda \cdot v^{\mu}\left(\delta, \tilde{s}^{\mu}\right) \geq(1-\delta) \sum_{n=1}^{\infty} \sum_{k=1}^{4^{|\Omega|}} \delta^{(n-1) 4^{|\Omega|}+k-1}\left[\begin{array}{l}
-\left(1-\pi^{*}\right)^{n-1} 2 \bar{g} \\
+\left\{1-\left(1-\pi^{*}\right)^{n-1}\right\} v^{*}
\end{array}\right]
$$

Since

$$
\sum_{k=1}^{4^{|\Omega|}} \delta^{(n-1) 4^{|\Omega|}+k-1}=\frac{\delta^{(n-1) 4^{|\Omega|}}\left(1-\delta^{4^{|\Omega|}}\right)}{1-\delta}
$$

we have

$$
\begin{aligned}
\lambda \cdot v^{\mu}\left(\delta, \tilde{s}^{\mu}\right) \geq & \left(1-\delta^{4^{[\Omega]}}\right) \sum_{n=1}^{\infty} \delta^{(n-1) 4^{[\Omega]}}\left[\begin{array}{l}
-\left(1-\pi^{*}\right)^{n-1} 2 \bar{g} \\
+\left\{1-\left(1-\pi^{*}\right)^{n-1}\right\} v^{*}
\end{array}\right] \\
= & -\left(1-\delta^{\left.\delta^{|\Omega|}\right) \sum_{n=1}^{\infty}\left\{\left(1-\pi^{*}\right) \delta^{4^{[\Omega]}}\right\}^{n-1} 2 \bar{g}}\right. \\
& +\left(1-\delta^{4^{[\Omega]}}\right) \sum_{n=1}^{\infty}\left[\left(\delta^{[\Omega \Omega}\right)^{n-1}-\left\{\left(1-\pi^{*}\right) \delta^{4^{[\Omega]}}\right\}^{n-1}\right] v^{*} .
\end{aligned}
$$

Plugging in $\sum_{n=1}^{\infty}\left\{\left(1-\pi^{*}\right) \delta^{4^{[\Omega]}}\right\}^{n-1}=1 /\left\{1-\left(1-\pi^{*}\right) \delta^{4^{|\Omega|}}\right\}$ and $\sum_{n=1}^{\infty}\left(\delta^{4^{[\Omega]}}\right)^{n-1}=1 /(1-$ $\delta^{4^{[\Omega \mid}}$ ) gives

$$
\lambda \cdot v^{\mu}\left(\delta, \tilde{s}^{\mu}\right) \geq-\frac{\left(1-\delta^{4^{[\Omega \mid}}\right) 2 \bar{g}}{1-\left(1-\pi^{*}\right) \delta^{4^{[\Omega \mid}}}+\frac{\delta^{4^{|\Omega|}} \pi^{*}}{1-\left(1-\pi^{*}\right) \delta^{4^{[\Omega \mid}}} v^{*}
$$

Subtracting both sides from $\lambda \cdot v^{\omega}\left(\delta, s^{\omega}\right)$, we have

$$
\begin{aligned}
& \lambda \cdot v^{\omega}\left(\delta, s^{\omega}\right)-\lambda \cdot v^{\mu}\left(\delta, \tilde{s}^{\mu}\right) \\
& \quad \leq \frac{\left(1-\delta^{4^{|\Omega|}}\right) 2 \bar{g}}{1-\left(1-\pi^{*}\right) \delta^{4^{[\Omega \mid}}}+\frac{\delta^{4^{[\Omega \mid}} \pi^{*}\left(1-\delta^{2^{[\Omega \mid}}\right) 2 \bar{g}}{\left\{1-\left(1-\pi^{*}\right) \delta^{4^{|\Omega|}}\right\} \delta^{2^{|\Omega|}} \overline{\pi^{[\Omega \mid}}}-\frac{\left(1-\delta^{4^{[\Omega \mid}}\right) \lambda \cdot v^{\omega}\left(\delta, s^{\omega}\right)}{1-\left(1-\pi^{*}\right) \delta^{4^{|\Omega|}}} .
\end{aligned}
$$

Since $\lambda \cdot v^{\omega}\left(\delta, s^{\omega}\right) \geq-\bar{g}$, then

$$
\begin{aligned}
\lambda & \cdot v^{\omega}\left(\delta, s^{\omega}\right)-\lambda \cdot v^{\mu}\left(\delta, \tilde{s}^{\mu}\right) \\
& \leq \frac{\left(1-\delta^{4^{|\Omega|}}\right) 2 \bar{g}}{1-\left(1-\pi^{*}\right) \delta^{4^{[\Omega \mid}}+\frac{\delta^{4^{|\Omega|}} \pi^{*}\left(1-\delta^{2^{|\Omega|}}\right) 2 \bar{g}}{\left\{1-\left(1-\pi^{*}\right) \delta^{4^{|\Omega|}}\right\} \delta^{2^{|\Omega|}} \bar{\pi}^{4^{|\Omega|}}}+\frac{\left(1-\delta^{4^{|\Omega|}}\right) \bar{g}}{1-\left(1-\pi^{*}\right) \delta^{4^{|\Omega|}}}} \begin{aligned}
& \leq \frac{\left(1-\delta^{4^{|\Omega|}}\right) 3 \bar{g}}{1-\left(1-\pi^{*}\right)}+\frac{\pi^{*}\left(1-\delta^{2^{[\Omega \mid}}\right) 2 \bar{g}}{\left\{1-\left(1-\pi^{*}\right)\right\} \delta^{2^{[\Omega \mid}} \overline{\pi^{[\Omega \mid}}} \\
& =\frac{\left(1-\delta^{4^{|\Omega|}}\right) 3 \bar{g}}{\pi^{*}}+\frac{\left(1-\delta^{2^{|\Omega|}}\right) 2 \bar{g}}{\delta^{2^{|\Omega|}} \bar{\pi}^{4^{[\Omega \mid}}} .
\end{aligned} .
\end{aligned}
$$

Hence, the result follows.

## S.1.1 Proof of Lemma B11

Pick a belief $\mu$ whose support is robustly accessible. Suppose that the initial prior is $\mu^{* *}$, the opponents play $\tilde{s}_{-i}^{\mu}$, and player $i$ plays a best reply. Let $\rho^{t}$ denote the probability that players $-i$ still randomize actions in period $t$. Then as in the proof of Lemma B6, we have

$$
v_{i}^{\mu^{* *}}\left(\tilde{s}_{-i}^{\mu}\right) \leq \sum_{t=1}^{\infty} \delta^{t-1}\left\{\rho^{t} \bar{g}+\left(1-\rho^{t}\right) K_{i}^{\mu}\right\}
$$

because the stage-game payoff before the switch to $s_{-i}^{\mu}$ is bounded from above by $\bar{g}$ and the continuation payoff after the switch is bounded from above by $K_{i}^{\mu}=$ $\max _{\tilde{\mu} \in \Delta^{\mu}} v_{i}^{\tilde{\mu}}\left(s_{-i}^{\mu}\right)$.

As in the proof of Lemma B6, we have

$$
\rho^{n 4^{|\Omega|}+k} \leq\left(1-\pi^{*}\right)^{n}
$$

for each $n=0,1, \ldots$ and $k \in\left\{1, \ldots, 4^{|\Omega|}\right\}$. This inequality, together with $\bar{g} \geq K_{i}^{\mu}$, implies that

$$
\rho^{n 4^{|\Omega|}+k} \bar{g}+\left(1-\rho^{n 4^{[\Omega \mid}+k}\right) v_{i}^{*} \leq\left(1-\pi^{*}\right)^{n} \bar{g}+\left\{1-\left(1-\pi^{*}\right)^{n}\right\} K_{i}^{\mu}
$$

for each $n=0,1, \ldots$ and $k \in\left\{1, \ldots, 4^{|\Omega|}\right\}$. Plugging this inequality into the first inequality, we obtain

$$
v_{i}^{\mu^{* *}}\left(\tilde{s}_{-i}^{\mu}\right) \leq(1-\delta) \sum_{n=1}^{\infty} \sum_{k=1}^{4^{|\Omega|}} \delta^{(n-1) 4^{[\Omega \mid}+k-1}\left[\begin{array}{l}
\left(1-\pi^{*}\right)^{n-1} \bar{g} \\
+\left\{1-\left(1-\pi^{*}\right)^{n-1}\right\} K_{i}^{\mu}
\end{array}\right] .
$$

Then as in the proof of Lemma B6, the standard algebra shows

$$
v_{i}^{\mu^{* *}}\left(\tilde{s}_{-i}^{\mu}\right) \leq \frac{\left(1-\delta^{4^{|\Omega|}}\right) \bar{g}}{1-\left(1-\pi^{*}\right) \delta^{[\Omega \mid}}+\frac{\delta^{4^{|\Omega|}} \pi^{*} K_{i}^{\mu}}{1-\left(1-\pi^{*}\right) \delta^{4^{[\Omega]}}}
$$

Since

$$
\frac{\delta^{4^{[\Omega \mid}} \pi^{*}}{1-\left(1-\pi^{*}\right) \delta^{4^{[\Omega \mid}}}=1-\frac{1-\delta^{4^{[\Omega]}}}{1-\left(1-\pi^{*}\right) \delta^{4^{\Omega \Omega \mid}}}
$$

we have

$$
v_{i}^{\mu^{* *}}\left(\tilde{s}_{-i}^{\mu}\right) \leq K_{i}^{\mu}+\frac{\left(1-\delta^{4^{[\Omega \mid}}\right)\left(\bar{g}-K_{i}^{\mu}\right)}{1-\left(1-\pi^{*}\right) \delta^{4^{[\Omega \mid}}} .
$$

Since $1-\left(1-\pi^{*}\right) \delta^{4^{\lfloor\Omega \mid}}>1-\left(1-\pi^{*}\right)=\pi^{*}$ and $K_{i}^{\mu} \geq-\bar{g}$, the result follows.
Co-editor Simon Board handled this manuscript.
Manuscript received 13 November, 2017; final version accepted 2 December, 2018; available online 17 December, 2018.


[^0]:    Yuichi Yamamoto: yyam@sas.upenn. edu
    © 2019 The Author. Licensed under the Creative Commons Attribution-NonCommercial License 4.0. Available at http:// econtheory.org. https:// doi.org/10.3982/TE3068

