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In this appendix, we offer some additional examples and discussions that complement

results in the main text. We first give an example of a learning process whereby the agent

learns his type in two periods and the principal can generate higher profits than under the

optimal static mechanism. This two-period learning process allows us to revisit our paper’s

intuitions and to compare our results with those of Krähmer and Strausz (2015). We then

show that the mechanism constructed in Section 5 is not unique by describing a mechanism in

which the transfers and learning process differ from the ones in that section. Third, we revisit

the ex post participation constraint studied in our paper and we contrast it with a weaker

version of the ex post participation constraint. Finally, we revisit the interpretation of the

agent’s utility in our model by studying a model in which the agent’s valuation is subject to

additional shocks, but the agent has no information about these additional shocks.

A Two-Stage Information Disclosure

Consider the model of an indivisible good whose cost is zero:

u(q, θ) = q · θ and c(q, θ) = 0.

We assume that the prior distribution is uniform in [0, 1]. In the optimal static mechanism,

the principal makes a “take it or leave it” offer at a price of 1/2; this yields a expected profits
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of 1/4. We consider the following information disclosure: T = {0, 1} and the signals are

given by:

s0 =

1 if θ ≥ 1/2;

0 if θ < 1/2.

s1 = θ.

(A.1)

That is: in the first period the agent learns a threshold on his type, and in the second period

he learns his exact type.

Consider the following mechanism. At the moment when the agent learns whether his type

is above or below 1/2, the principal offers two contracts. Under the first contract, the agent

buys the object at price 1/2. Under the second contract, the agent – after learning his type –

is allowed with probability ε to buy the object at price 1/4. In other words, under this second

contract, with probability ε the principal offers the good at price 1/4 and with probability

1− ε the principal does not sell the object (at all).

The outcome of the mechanism will be as follows. If the agent’s valuation is above 1/2

then he buys the object at price 1/2. If the agent’s valuation is between 1/4 and 1/2, then he

buys the object at price 1/4 with probability ε. If the agent’s valuation is below 1/4 then he

does not buy the object.

Because types higher than 1/2 are forced to choose before they learn their valuation, they

choose to buy the object because then their expected rent is 1/4 (which, for ε small enough,

is higher than with the lottery). Ex post, however, there are some types close to 1/2 who

wish they had received the lottery outcome. The principal’s expected revenues are (1/2) ·

1/2 + (1/4 · ε) · 1/4, which clearly exceed 1/4 (or the expected profits under the optimal static

mechanism). Formally, we have the following lemma.

Lemma A1 (Two-Stage Information Disclosure).

Under the information disclosure described by (A.1), the principal can obtain expected profits

of (1 + ε2)/4 for ε > 0.

Lemma A1 shows that the principal can do better than under the static mechanism even

if the learning process reveals the agent his type in only two periods. The intuition is similar

to that for Theorem 1. The agent is given a lower bound on his type and must report this

lower bound before he learns his final valuation. The agent’s expected rents from truthfully

reporting that his type is above the threshold are greater than those from misreporting that
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his type is below the threshold.

This example demonstrates that the intuitions behind our model’s results extend to envi-

ronments where the learning process must be simpler – as when it reveals the agent’s type

after two periods rather than continuously. Furthermore, the difference between our results

and Krähmer and Strausz (2015) results does not hinge on our model’s continuous-time learn-

ing process. Although that process allows the principal to maximize her own profits when the

participation constraint must be satisfied ex post, simpler learning processes also allow the

principal to generate more profits than under the optimal static mechanism.

B Non-Uniqueness of Transfers and Information Disclosure

Next we show that the information disclosure and transfers in an optimal mechanism are not

uniquely defined. We maintain the same payoff structure as in Section 5.8.2 – namely,

u(q, θ) = q · θ; c(q, θ) = q2/2; Θ = [0, 1]; f(θ) = 1.

The quantities in the optimal mechanism must remain the same as the q∗(θ) already calculated

in Section 5.8.2 because, by Proposition 3, the quantities are uniquely defined across all

optimal mechanisms. However, we show that the principal can implement these quantities

and generate the same profits using the following transfers:

x̃′(θ) ,

u(q∗(θ), θ) if θ ≤ θ̃
′
,

u(q∗(θ), θ)−
∫ θ
θ̃
′
(∂u(q∗(s),s)

∂θ
+ ε
)
ds if θ > θ̃

′
.

(B.2)

Here ε is small (in the numerical example, ε = 0.2). The transfers are constructed as in (23a)

but, for θ > θ̃
′
, they grow more rapidly than the rate dictated by the envelope theorem. The

threshold θ̃
′

is found much as before; it is the unique solution to

Efθ

[{∫ θ

θ̃
′

(
∂u(q∗(s), s)

∂θ
ds+ ε

)}+]
= max

θ′∈Θ
Efθ [{u(q∗(θ′), θ)]− u(q∗(θ′), θ′)}+]. (B.3)

The LHS of this equality represents the agent’s expected rents under truth telling, while the

RHS is the lower bound (as characterized in Lemma 2) on the agent’s rents.
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The learning process is as follows:

st(θ) =

1 if [t < θ̃
′

and θ = t] or [t ≥ θ̃
′

and θ = (1 + θ̃
′ − t)],

0 otherwise.
(B.4)

In other words, the learning process for types t ≤ θ̃
′

is the same as in upward disclosure: at

each moment in time, the agent learns a lower bound on his type. After time θ̃
′

(i.e., when

t ≥ θ̃
′
), the learning process becomes downward disclosure – which is the natural counterpart

of upward disclosure. Under downward disclosure, higher types learn their type earlier. For

example, type θ = 1 learns his type at time t = θ̃
′

and type θ = θ̃
′

learns his type at time

t = 1.

The IC constraints when the information disclosure is (B.4) can be written analogously to

those in Lemma 3. Toward that end, we define the function τ as

τ(θ) ,

θ if θ < θ̃
′
,

1− θ + θ̃
′

if θ ≥ θ̃
′
.

Thus τ(θ) gives the time at which type θ learn his type. For the learning process described

by (B.4), an allocation policy {q(θ), x(θ)}θ∈Θ is incentive compatible if and only if each of the

following statements holds:

∀θ′′, θ′ ∈ Θ with τ(θ′) ≥ τ(θ′′), u(q(θ′), θ′′)− x(θ′) ≤ u(q(θ′′), θ′′)− x(θ′′); (B.5)

∀θ′ ∈ Θ, Efθ [u(q(θ′), θ)− x(θ′)|τ(θ) ≥ τ(θ′)] ≤ Efθ [u(q(θ), θ)− x(θ)|τ(θ) ≥ τ(θ′)]. (B.6)

In other words, type θ′′ can pretend to be any type θ′ that learns his type later (i.e., τ(θ′) >

τ(θ′′)). But if a type θ′′ mimics a type θ′ that learns earlier (i.e., τ(θ′) < τ(θ′′)), then the

agent must mimic type θ′ without knowing the exact realization of his type (since he knows

only that his type satisfies τ(θ) > τ(θ′)).

It is easy to check numerically, using (B.5) and (B.6), that the mechanism is incentive

compatible when ε = 0.2. In Figure 1 we plot the rents and transfers in a mechanism in which

the learning is as in (B.4) and the transfers are as in (B.2). We compare this with the transfers

and rents obtained under the optimal mechanism in Section 5.8.2. For low types, the transfers
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Figure 1: Quadratic Cost Model. Plotted in blue are the transfers and agent’s rents in the optimal mechanism
under upward disclosure; in red, the transfers dictated by (B.2) with ε = 0.2.

are the same and the agent earns zero rents; in fact, we have proved that this statement holds

for all optimal mechanisms (see Proposition 3). For high types, in contrast, the rents and

informational rents differ: the transfers (B.2) yield higher (resp. lower) informational rents for

high types (resp. low types). Nonetheless, the agent’s ex ante expected rents are the same

under both transfers, which is to be expected given that the principal’s profits must remain

unchanged.

C Ex Post Participation Constraint

We now compare the participation constraint studied in our paper with a weaker version of the

ex post participation constraint. In this weaker version of the ex post participation constraint

the mechanism must offer the agent a strategy that leaves him with nonnegative rents ex post;

however the mechanism may leave the agent with negative rents if he uses a strategy different

than the one “suggested” by the principal.

We now provide a formal expression of the principal’s problem when he needs to satisfy

this weaker form of the participation constraint. We denote by supp(µ) ⊂ Θ×ST the support

of the distribution µ ∈ ∆(Θ × ST ).1 The principal’s profit-maximization problem when he

1That is, supp(µ) ⊂ Θ× ST is the smallest closed such that it has measure one under µ.
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needs to satisfy this weaker version of the ex post participation constraint is:

Π , max
M∈M

Eµ(θ,s)

[
x(σ̃(s))− c(q(σ̃(s)), θ)

]
(C.7a)

s.t. σ̃ ∈ arg max
σ∈Σ

Eµ(θ,s)

[
u(q(σ(s)), θ)− x(σ(s))

]
(C.7b)

u(q(σ̃(s)), θ)− x(σ̃(s)) ≥ 0 for all (θ, s) ∈ supp(µ) (C.7c)

Here the strategy σ̃ leaves the agent with nonnegative rents (this is (C.7c)) and it is optimal

for the agent to use the strategy σ̃ (this is (C.7b)).2 However, if the agent uses a different

strategy, then the agent may be left with nonnegative rents. Here we would say that σ̃ (that

solves (C.7b)) is the strategy that the principal “suggests” to the agent (or, the truth-telling

strategy in a direct mechanism).

The problem we solve (4) imposes a stronger constraint on the principal’s maximization

problem than (C.7). While under some conditions on the learning process both versions of

the ex post participation constraint coincide, in general, they are not equivalent.3 We believe

that the strong version of the participation constraint (i.e., the version we studied in the main

text) is more adequate to model situations in which the agent can opt out of the mechanism

ex post, for example, due to consumer protection laws.

We now show via an example that, when the principal’s problem is given by (C.7), she may

achieve higher profits than when her problem is given by (4). Thus, both problems are not

equivalent. Moreover, using this example we also show that, when the principal’s problem is

given by (C.7), upward disclosure may fail to be an optimal learning process.

Suppose the agent’s type-space is Θ = [0, 1] ∪ {−M}, where M ∈ R is a large positive

number. We assume that, with probability ε, the agent’s type is θ = −M and with probability

(1 − ε) his type is uniformly distributed in [0, 1]. The set of feasible quantities is Q = [0, 1].

The agent’s utility is u(θ, q) = q · θ. The learning process is as follows. Time is indexed by

2Note that strategy σ̃ leaves the agent with nonnegative rents for every history of signals and types that is in the support of µ.
These events have probability one of occurring, so if the agent uses strategy σ̃ he is left with nonnegative rents with probability
one.

3For example, under the learning processes studied by Krähmer and Strausz (2015) both versions of the participation constraint
are equivalent. The class of learning processes studied by them had the following characteristics: there were two periods, the agent
learns his type with the second signal (i.e., s2 = θ) and the distribution over signals has full support. Without loss of generality,
they focus on direct mechanisms. The full support assumption implies that every possible sequence of reports is consistent with
being a truthful report. Therefore, the optimal mechanism that solves (C.7) must guarantee that the agent gets nonnegative rents
after any sequence of reports. For this reason, in the optimal mechanism that solves (C.7), the agent would never opt out of the
mechanism ex post in any case (that is, regardless of the messages he sends to the principal). Thus, the optimal mechanism that
solves (C.7) could also be implemented when the principal’s problem is (4) (where a priori the ex post participation constraint is
stronger). For this reason, even if they studied the weaker version of the ex post participation constraint (as in (C.7)), the agent
would still be guaranteed nonnegative rents ex post regardless of the messages he sends to the principal.
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T = [0, 1] ∪ {2} and the signal observed by the agent at time t is given by:

st(θ) =


1 if t = θ;

1 if t = 2 and θ = −M ;

0 otherwise.

(C.8)

In other words, the agent first learns whether his type is in [0,1] as in upward disclosure, and

then he learns whether his type is θ = −M. We remark that this learning process is not equal

to upward disclosure because when the agent’s type is θ = −M , the agent does not know his

type until the end of the mechanism (i.e., t = 2).

We assume that the message space is Z = {0, 1}. We construct a mechanism in which the

allocation implemented depends only on the first time the agent reports z = 1. In other words,

if the agent reports z = 1 at more than one t, then the allocation only depends on the first

time in which z = 1 was reported. We denote by {(q(t), x(t))}t∈T the allocation implemented

when the agent reports z = 1 for the first time at t. We consider the following allocation rule:

q(t) =

1 if t ∈ [0, 1];

0 otherwise,
(C.9)

x(t) =

t if t ∈ [0, 1];

0 otherwise.
(C.10)

If the agent reports z = 1 (for the first time) at t ∈ [0, 1] then q(t) = 1 and x(t) = t. If the

agent never reports z = 1 or he reports z = 1 at t = 2, then q = x = 0.

The agent’s strategy consists in finding the optimal time to report z = 1 given the history

of signals he has observed. If the agent reports z = 1 when st = 1 then we say the agent

reported truthfully. If the agent reports truthfully, then the allocation implemented would be

efficient and the principal would get the full surplus.

If the agent can opt out of the mechanism ex post regardless of the reported messages (as

in (4)) then the agent’s optimal strategy would report σ(t) = 1 at t = 0. This implies that the

outcome of the mechanism would be q = 1 at a transfer x = 0. If the realization of his type is

θ = −M then he would opt out of the mechanism ex post. We conclude that the mechanism

is not incentive compatible when the agent can opt out of the mechanism ex post. We remark
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that, under this mechanism, if the agent can opt out of the mechanism ex post (as in (4))

then the mechanism would be efficient but the agent would get the full surplus.

If the agent can incur in losses when he reports untruthfully (as in (C.7)), then this mech-

anism would be incentive compatible. To prove this, first observe that:

∀θ ∈ Θ, q(θ) · θ − x(θ) = 0.

So, if the agent reports truthfully, then he gets weakly positive rents ex post. Now observe

that, if the agent reports z = 1 at time t < θ (i.e., he reports z = 1 before he has observed

the signal st = 1), then

E[q(t) · θ − x(t)|θ 6∈ [0, t]] ≤ q(t)((1− ε) + ε(−M))− x(t) < 0,

where the last inequality is satisfy if M is large enough. In other words, if there is a positive

probability that the agent’s type can be θ = −M (and M is large enough), then he cannot

profits from misreporting his type to pay a lower transfer. The agent cannot profitably misre-

port his type because the losses when his type is θ = −M are larger than the expected rents

when his type is θ ∈ [0, 1]. In this case, the mechanism would be incentive compatible and

so the principal would be able to extract the full surplus.4 We conclude that this mechanism

solves (C.7).

We give some final remarks. First, our discussion shows that when the principal’s problem

is given by (C.7) she may achieve higher profits than when her problem is given by (4). Second,

if the learning process was upward disclosure (instead of (C.8)), the principal would not be

able to extract the full surplus when the participation constraint is as in (C.7c). Therefore,

upward disclosure may not be the optimal information disclosure when the principal’s problem

is given by (C.7). Third, the existence of a type that derives negative utility from having the

good (i.e., θ = −M) is not critical for the arguments. Essentially the same argument goes

through if the type space was Θ = [M,M + 1] ∪ {0}, with M large enough. (We use the

negative number because it is more suggestive of the arguments we make.)

4We only showed that the agent does not profit from misreporting a type lower than his true type (i.e., reporting z = 1 when
he has not yet observed st = 1). However, it is straightforward that the agent does not profit from misreporting a type higher
than his true type.
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D Discussion of the Agent’s Ex Post Valuation.

In this section, we revisit the interpretation of the agent’s utility. Suppose that the agent’s

valuation is determined by a two-dimensional type (θ, φ) ∈ R2, and the two types are inde-

pendently distributed with densities f and g, respectively. We denote the agent’s utility by

ũ(q, θ, φ), and let

u(q, θ) , Egφ[ũ(q, θ, φ)].

In other words, u(q, θ) is the agent’s expected utility conditional on θ. We continue to assume

that the principal’s cost depends only on θ (we assume this only to simplify the exposition).

Furthermore, suppose that the principal must design a learning process that is independent

of φ (i.e., the signals {st}t∈T are independent of φ). In other words, the shock φ affects the

agent’s utility, but he cannot learn about this shock from the signals he observes. The rest of

the description of the model remains the same as in Section 2.

The analysis in our paper goes through completely unchanged in this augmented version

of the model because the uncertainty about φ is irrelevant for the design of the mechanism.

Formally, the addition of φ into the model does not change the agent’s optimal strategy. The

agent’s expected utility conditional on any set of signals {st′}t′≤t can be written as follows:

Eµ,g(θ,s),φ[ũ(q, θ, φ) | {st′}t′≤t] = Eµ(θ,s)[E
g
φ[ũ(q, θ, φ)] | {st′}t′≤t] = Ef(θ,s)[u(q, θ) | {st′}t′≤t].

The first equality is implied by the assumption that φ is independent of θ and {st′}t′≤t; the

second equality is by the definition of u(q, θ). Thus, the agent’s maximization problem is the

same as simply replacing ũ(q, θ, φ) with u(q, θ). In this augmented model u(q, θ) is the agent’s

estimate utility conditional on all the information available to him and the principal. This

utility may still be subject to shocks after he commits to buying the good (modeled by φ).

The ex post participation constraint dictates that the principal must disclose all the infor-

mation about the good to the agent before he decides to opt out of the mechanism (summarized

by θ). In the real estate example discussed in the introduction, the type θ is interpreted as the

agent’s estimate valuation of the house at the moment he buys the house. Because the buyer

can inspect the house before committing to buying it, the principal cannot conceal information

about the house at the time the buyer commits to buying the house. Of course, after buying

the house, unexpected contingencies may arise that may change the buyer’s valuation (e.g.,
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due to an earthquake). These contingencies would be represented by φ. However, they are ir-

relevant from the perspective of the mechanism’s design because the buyer cannot learn about

these contingencies. In other words, after he buys the house his valuation may change, but

the principal cannot conceal any information from the agent at the time the agents commits

to paying the house.
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