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In Section B.1, we shall present the model of measurable dynamic games with
partially perfect information and show the existence of subgame-perfect equilibria in
Proposition B.1. It covers the results in Theorem 3 (Theorem 4) for dynamic games with

almost perfect information (perfect information), and in discounted stochastic games.

In Section B.2, we present Lemmas B.1-B.6 as the mathematical preparations for
proving Theorem 3. We present in Section B.3 a new equilibrium existence result for
discontinuous games with stochastic endogenous sharing rules. The proof of Theorem 3
is given in Section B.4. The proof of Proposition B.1 is provided in Section B.5, which
covers Theorem 4 as a special case. One can skip Sections B.2 and B.3 first, and refer

to the technical results in these two sections whenever necessary.

B.1 Measurable dynamic games with partially perfect informa-

tion

In this section, we will generalize the model of measurable dynamic games in three
directions. The ARM condition is partially relaxed such that (1) perfect information
may be allowed in some stages, (2) the state transitions could have a weakly continuous
component in all other stages, and (3) the state transition in any period can depend on
the action profile in the current stage as well as on the previous history. The first change
allows us to combine the models of dynamic games with perfect and almost perfect

information. The second generalization implies that the state transitions need not be
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norm continuous on the Banach space of finite measures. The last modification covers

the model of stochastic games as a special case.

The changes are described below.

1. The state space is a product space of two Polish spaces; that is, S; = S; x S; for
each t > 1.

2. For each ¢ € I, the action correspondence Ay from H;_; to Xj; is measurable,
nonempty and compact valued, and sectionally continuous on X*~! x St=1. The
additional component of Nature is given by a measurable, nonempty and closed
valued correspondence Ay from Gr(A;) to S, which is sectionally continuous on
Xt x St1 Then H, = Gr(flto) x S;, and Hy, is the subset of X x S° such that
(x,s) € Hy if (2!, s") € H; for any ¢ > 0.

3. The choice of Nature depends not only on the history h;_;, but also on the action
profile x; in the current stage. The state transition fio(hi—1,2:) = fto(ht_l,xt) o
fm(ht_l, xt), where fto is a transition probability from Gr(A;) to M(gt) such that
ftg(fltg(ht,l,xt)\ht,l,xt) = 1 for all (hy_1,2¢) € Gr(A4;), and fio is a transition
probability from Gr(Ay) to M(S}).

4. For each ¢ € I, the payoff function w; is a Borel measurable mapping from H., to

R, 1, which is sectionally continuous on X* x S*°.

As in Subsection 3.3, we allow the possibility for the players to have perfect

information in some stages. For ¢t > 1, let

1, if fio(hy_1, ) = ds, for some s; and
Ny = [{i € I: Ay is not point valued}| = 1;

0, otherwise.

Thus, if N; = 1 for some stage t, then the player who is active in the period t is the only

active player and has perfect information.

We will drop the ARM condition in those periods with only one active player, and
weaken the ARM condition in other periods.

Assumption B.1 (ARM'). 1. For any t > 1 with N, = 1, S; is a singleton set {$;}
and Ay = dg,.

2. For eacht > 1 with Ny = 0, ,]Et(] is sectionally continuous on X' x St=1 where the

range space M(S}) 1s endowed with topology of weak convergence of measures on
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S,. The probability measure fro(-|hee1, s, 8¢) is absolutely continuous with respect
to an atomless Borel probability measure A, on S; for all (hi—1, 24, 8) € Gr(flto),

and ©i0(hi_1, T4, 8¢, 5¢) is the corresponding density.!

3. The mapping s is Borel measurable and sectionally continuous on X' x St and
integrably bounded in the sense that there is a \-integrable function ¢,: S, — R
such that pu(hi—1, ¢, 8¢, 8, ) < e(5¢) for any (hy—1, x4, 5¢).

The following result shows that the existence result is still true in this more general

setting.

Proposition B.1. If an infinite-horizon dynamic game as described above satisfies
the ARM condition and is continuous at infinity, then it possesses a subgame-perfect
equilibrium f. In particular, for j € I and t > 1 such that N, = 1 and player j is the
only active player in this period, fi; can be deterministic. Furthermore, the equilibrium
payoff correspondence E; is nonempty and compact valued, and essentially sectionally

upper hemicontinuous on Xt~ x St=1,

Remark B.1. The result above also implies a new existence result of subgame-perfect
equilibria for stochastic games. In the existence result of [6], the state transitions are
assumed to be norm continuous with respect to the actions in the previous stage. They
did not assume the ARM condition. On the contrary, our Proposition B.1 allows the

state transitions to have a weakly continuous component.

B.2 Technical preparations

The following lemma shows that the space of nonempty compact subsets of a Polish

space is still Polish under the Hausdorff metric topology.

Lemma B.1. Suppose that X is a Polish space and KC is the set of all nonempty compact
subsets of X endowed with the Hausdorff metric topology. Then K is a Polish space.

Proof. By Theorem 3.88 (2) of [1], K is complete. In addition, Corollary 3.90 and
Theorem 3.91 of [1] imply that I is separable. Thus, I is a Polish space. ]

The following result presents a variant of Lemma 5 in terms of transition correspon-
dences.

1II~1 this section, a property is said to hold for Af-almost all h; € H, if it is satisfied for Af-almost all
5t € St and all (z!,8") € Hy(s").



Lemma B.2. Let X and Y be Polish spaces, and Z a compact subset of ]RQL. Let G be
a measurable, nonempty and compact valued correspondence from X to M(Y'). Suppose
that F is a measurable, nonempty, convexr and compact valued correspondence from X XY

to Z. Define a correspondence Il from X to Z as follows:

[I(z) = {/ f(z,y)g(dy|x): g is a Borel measurable selection of G,
Y

f is a Borel measurable selection of F'}.
If F is sectionally continuous on'Y, then

1. the correspondence F: X x M(Y) = Z as F(z,v) = [, F( v(dy) is sectionally

continuous on M(Y'); and
2. Il is a measurable, nonempty and compact valued correspondence.

3. If F and G are both continuous, then Il is continuous.

Proof. (1) For any fixed # € X, the upper hemicontinuity of F(z,-) follows from

Lemma 7.

Next, we shall show the lower hemicontinuity. Fix any z € X. Suppose that {v;};>¢ is
a sequence in M(Y") such that v; — 1y as j — oo. Pick an arbitrary point 2z, € F(x ).
Then there exists a Borel measurable selection f of F'(x,-) such that zg = [, f(y)vo(dy).

By Lemma 3 (Lusin’s theorem), for each k > 1, there exists a compact subset D C Y
such that f is continuous on Dy and vy(Y \ Dy) < where M > 0 is the bound of

Z. Define a correspondence Fj: Y — Z as follows:

1
3kM >

{f)}, ye Dy

F(y) =
F(z,y), yeY\ Dy.

Then Fj is nonempty, convex and compact valued, and lower hemicontinuous. By
Theorem 3.22 in [1], Y is paracompact. Then by Lemma 3 (Michael’s selection theorem),

F}. has a continuous selection fy.

For each k, since v; — vy and f; is bounded and continuous, [, fi(y)v;(dy) —
[y fe(y)ro(dy) as j — co. Thus, there exists a subsequence {v;, } such that {ji} is an
increasing sequence, and for each k > 1,

/Y Se(y)vj (dy) — /Y Jr(y)ro(dy)
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where || - || is the Euclidean norm on R!.

Since f; coincides with f on Dy, vo(Y \ Dy) < and Z is bounded by M,

1
3kM >

y)vo(dy) — /f vo(dy) H 3%

/fk(y)vjk(dy)—/ f(y)VO(dy)H = %

Let z;, = [, fr(y)v;,(dy) for each k. Then z;, € F(x,v;,) and zj, — 2 as k — oo. By

Thus,

Lemma 1, F(z,-) is lower hemicontinuous.

(2) Since G is measurable and compact valued, there exists a sequence of Borel
measurable selections {gx}r>1 of G such that G(x) = {g1(x), g2(z),...} for any x € X

by Lemma 2 (5). For each k > 1, define a correspondence IT* from X to Z by letting
I*(z) = F(z, gy(x = [, F(z,y)gx(dy|z). Since F is convex valued, so is IT*. By
Lemma 5, IT* is also measurable, nonempty and compact valued.

Fix any = € X. It is clear that II(z) = F(z, G(z)) is nonempty valued. Since G(z) is
compact, and F(z,-) is compact valued and continuous, II(z) is compact by Lemma 2.
Thus, s, T#(z) C TI().

Fix any € X and z € II(z). There exists a point v € G(z) such that z € F(x,v).
Since {gx(z)}x>1 is dense in G(z), it has a subsequence {gy,, ()} such that gy, (z) — v.
As F(z,-) is continuous, F(z, g, (x)) = F(z,v). That is,

zEUF:cgk UH’f

k>1 k>1

Therefore, |J;», II¥(z) = II(z) for any € X. Lemma 2 (1) and (2) imply that II is

measurable.

(3) Define a correspondence F': M(X x Y) — Z as follows:

F(r) = { fz,y)r(dz,y)): fis a Borel measurable selection of F} :
XxXY

By (1), Fis continuous. Define a correspondence G: X — M(X xY) as G(z) = {6, Qv :
E(

v € G(z)}. Since G and F are both nonempty valued, II(z) = F(G(x)) is nonempty. As



G is compact valued and F'is continuous, IT is compact valued by Lemma 2. As G and

F are both continuous, IT is continuous by Lemma 1 (7). O

The following lemma shows that a measurable and sectionally continuous correspon-

dence on a product space is approximately continuous on the product space.

Lemma B.3. Let S, X and Y be Polish spaces endowed with the Borel o-algebras, and
A a Borel probability measure on S. Denote S as the completion of the Borel o-algebra
B(S) of S under the probability measure \. Suppose that D is a B(S)® B(Y')-measurable
subset of SXY', where D(s) is nonempty and compact for all s € S. Let A be a nonempty
and compact valued correspondence from D to X, which is sectionally continuous on'Y
and has a B(S xY x X)-measurable graph. Then

(i) A(s) = Gr(A(s,-)) is an S-measurable mapping from S to the set of nonempty and
compact subsets Kyyx of Y x X;

(1) there exist countably many disjoint compact subsets { Sy, }m>1 of S such that (1)
AUp>1Sm) = 1, and (2) for each m > 1, D,, = DN (S, X Y) is compact, and A

15 nonempty and compact valued, and continuous on each D,,.

Proof. (i) A(s, ) is continuous and D(s) is compact, Gr(A(s,-)) CY x X is compact by
Lemma 2. Thus, A is nonempty and compact valued. Since A has a measurable graph, A

is an S-measurable mapping from S to the set of nonempty and compact subsets Ky« x
of Y x X by Lemma 1 (4).

(ii) Define a correspondence D from S to Y such that D(s) = {y € Y: (s,y) € D}.
Then D is nonempty and compact valued. As in (i), D is S-measurable. By Lemma 3
(Lusin’s Theorem), there exists a compact subset S; € S such that A(S\ S;) < 3,
D and A are continuous functions on S;. By Lemma 1 (3), D and A are continuous
correspondences on S;. Let Dy = {(s,y) € D: s € Sy,y € D(s)}. Since S; is compact

and D is continuous, D; is compact (see Lemma 2 (6)).

Following the same procedure, for any m > 1, there exists a compact subset S, C
S such that (1) S, N (Ui<g<m-15k) = 0 and D,,, = D N (S,, x Y) is compact, (2)
A(Sm) > 0 and A (S'\ (Ui<p<mSm)) < 5=, and (3) A is nonempty and compact valued,

and continuous on D,,. This completes the proof. O

The lemma below states an equivalence property for the weak convergence of Borel

probability measures obtained from the product of transition probabilities.



Lemma B.4. Let S and X be Polish spaces, and A a Borel probability measure on S.
Suppose that { Sk }r>1 is a sequence of disjoint compact subsets of S such that \N(Ug>1Sk) =
1. For each k, define a probability measure on Sy as \i(D) = % for any measurable
subset D C Sy. Let {vm }m>0 be a sequence of transition probabilities from S to M(X),
and T, = Ao Uy, for any m > 0. Then T, weakly converges to 1o if and only if A\x © v,

weakly converges to A\ o vy for each k > 1.

Proof. First, we assume that 7, weakly converges to 7. For any closed subset £ C
Sk X X, we have limsupm_m Tm(E) < 10(E). That is limsup,,, ;oo A ¢ Un(E) < Ao
v(E). For any k, S A )/\ o 1p(F), which implies that
lim sup,,, .. Ak © Vi (E ) < Ao vp(FE). Thus, A\ o v, weakly converges to i, ¢ 1 for each
E>1.

limsup,, ..o A © Vp(E) <

Second, we consider the case that \; ¢ v, weakly converges to A\ ¢ 1y for each k > 1.
For any closed subset £ C S x X, let B, = EN (S, x X) for each k£ > 1. Then
{Ex} are disjoint closed subsets and limsup,, ,. A\t © Vm(Ex) < Ap © v(Eg). Since
A ovm(E') = /\(S /\oum(E’) for any k, m and measurable subset E' C Sy x X, we have
that lim sup,, .. Ao v (Er) < Ao vy(Ey). Thus,

Zlimsup/\oum(Ek) < Z Aovy(Ex) = Ao(F).
k>1 MO k>1

Since the limit superior is subadditive, we have

Z lim sup A ¢ v, (Ey) > lim sup Z Ao vy (Ey) = limsup A o v, (E).

Therefore, limsup,, , . A ¢ U (E) < Ao 1o(E), which implies that 7, weakly converges
to T0- O

The following is a key lemma that allows one to drop the continuity condition on the

state variables through a reference measure in Theorem 3.

Lemma B.5. Suppose that X,Y and S are Polish spaces and Z is a compact metric
space. Let \ be a Borel probability measure on S, and A a nonempty and compact
valued correspondence from Z x S to X which is sectionally upper hemicontinuous on Z
and has a B(Z x S x X)-measurable graph. Let G be a nonempty and compact valued,
continuous correspondence from Z to M(X x S). We assume that for any z € Z and
7 € G(2), the marginal of T on S is A and 7(Gr(A(z,-))) = 1. Let F' be a measurable,

nonempty, convex and compact valued correspondence from Gr(A) — M(Y') such that F'



is sectionally continuous on Z x X. Define a correspondence Il from Z to M(X x S xY')

by letting

II(z) = {g(2) ¢ f(z,-): g is a Borel measurable selection of G,

f is a Borel measurable selection of F'}.

Then the correspondence 11 is nonempty and compact valued, and continuous.

Proof. Let S be the completion of B(.S) under the probability measure A. By Lemma B.3,
A(s) = Gr(A(s,-)) can be viewed as an S-measurable mapping from S to the set of
nonempty and compact subsets Kzxx of Z x X. For any s € S, the correspondence
F, = F(-,s) is continuous on A(s). By Lemma 3, there exists a measurable, nonempty
and compact valued correspondence F from Z x X x S to M(Y') and a Borel measurable
subset S’ of S with A\(S") = 1 such that for each s € S, F, is continuous on Z x X, and

the restriction of F, to A(s) is Fj.

By Lemma 3 (Lusin’s theorem), there exists a compact subset S; C S’ such that A
is continuous on S; and A(Sy) > % Let K| = fl(Sl). Then K; C Z x X is compact.

Let C(Ky, Kpyy) be the space of continuous functions from K to Kuyy, where
ICam(yy is the set of nonempty and compact subsets of M(Y’). Suppose that the restriction
of S on S is §;. Let Fl be the restriction of F to K, x S;. Then }3’1 can be viewed as
an Sj-measurable function from S to C'(Ky, Kaqy)) (see Theorem 4.55 in [1]). Again
by Lemma 3 (Lusin’s theorem), there exists a compact subset of Sy, say itself, such that
A(S1) > % and Fl is continuous on S;. As a result, ﬁ’l is a continuous correspondence
on Gr(A) N (S; x Z x X), so is F. Let A\; be a probability measure on S; such that

(D

(D) = r&)) for any measurable subset D C 5.

For any z € Z and 7 € G(z), the definition of G implies that there exists a transition
probability v from S to X such that A\ ¢ v = 7. Define a correspondence G; from Z
to M(X x §) as follows: for any z € Z, G1(2) is the set of all 3 = Ay ¢ v such that
T =Aov € G(2). It can be easily checked that G; is also a nonempty and compact

valued, and continuous correspondence. Let

Ii(z) ={nof(z,:): m=XNoveGiz),

f is a Borel measurable selection of F}.

By Lemma 9, IT; is nonempty and compact valued, and continuous. Furthermore, it is



easy to see that for any z, II;(z) coincides with the set

{(Mov)o f(z,:): Aov € G(2), f is a Borel measurable selection of F'}.

Repeat this procedure, one can find a sequence of compact subsets {S;} such that
(1) for any t Z 17 St Q S/, Stﬂ (Sl U "‘St—1> = @ and )\(Sl U USt) 2 H»Ll’ (2)
F is continuous on Gr(A) N (S; x Z x X), A\ is a probability measure on S; such that
(D) = % for any measurable subset D C S;, and (3) the correspondence

i(z) ={(Mov)o f(z,-): Aov € G(z2),

f is a Borel measurable selection of F'}.

is nonempty and compact valued, and continuous.

Pick a sequence {z}, {vx} and { fi} such that (Aovg)< fi(zk, ) € II(2x), zx — 20 and
(Aovg) o fe(zk, -) weakly converges to some k. It is easy to see that (A\; o vy) < fi(zk, ") €
I1;(zx) for each t. As II; is compact valued and continuous, it has a subsequence, say
itself, such that z; converges to some 2o € Z and (A ¢ vy) © fr(2k, ) weakly converges
to some (A\; o pt) o f1(20,+) € II1(20). Repeat this procedure, one can get a sequence
of {u™} and f™. Let u(s) = pu™(s) and f(zo,s,2) = f™(z0,s,x) for any © € A(z, s)
when s € S,,,. By Lemma B.4, (Ao pu) ¢ f(20,-) = k, which implies that II is upper

hemicontinuous.

Similarly, the compactness and lower hemicontinuity of II follow from the compactness
and lower hemicontinuity of II; for each t. ]

The next lemma presents the convergence property for the integrals of a sequence of

functions and probability measures.

Lemma B.6. Let S and X be Polish spaces, and A a measurable, nonempty and compact
valued correspondence from S to X. Suppose that \ is a Borel probability measure on
S and {vn}1<n<co 5 a sequence of transition probabilities from S to M(X) such that
vn(A(s)|s) = 1 for each s and n. For each n > 1, let 7, = Ao v,. Assume that
the sequence {1,} of Borel probability measures on S x X converges weakly to a Borel
probability measure To, on S X X. Let {gn}1<n<co be a sequence of functions satisfying

the following three properties.

1. For each n between 1 and oo, g,: S X X — R, is measurable and sectionally

continuous on X.



2. For any s € S and any sequence T, — Too in X, §n(S,Tn) = Goo(S, Too) aS N — 00.

3. The sequence {gn}1<n<oco S integrably bounded in the sense that there exists a A-

integrable function ¢ : S — Ry such that for any n, s and x, g,(s,z) < (s).

Then we have

/ gn(s, )T (d(s,2)) — Goo(8, )T (d(s, ).
SxX SxX
Proof. By Theorem 2.1.3 in [2], for any integrably bounded function g: S x X — R,

which is sectionally continuous on X, we have

/S I a)m(ds,z) = 9(8, ) Too (d(s, ). (1)

SxX

Let {yn}1<n<oo be a sequence such that y, = % and 9, = 0. Then y,, — yoo. Define

a mapping g from S X X X {y1,...,Yx0} such that g(s,z,y,) = gn(s,z). Then g is
measurable on S and continuous on X X {yi,...,ys}. Define a correspondence G from
Sto X X {y1,..., Y} X Ry such that

G(s) = {(z,yn,0): c € g(s,2,yn),x € A(s),1 <n < oo}.

For any s, A(s) X {y1,...,Ys} is compact and §(s, -, ) is continuous. By Lemma 2 (6),
G(s) is compact. By Lemma 1 (2), G can be viewed as a measurable mapping from S
to the space of nonempty compact subsets of X X {y1,...,¥s} X Ry. Similarly, A can
be viewed as a measurable mapping from S to the space of nonempty compact subsets

of X.

Fix an arbitrary € > 0. By Lemma 3 (Lusin’s theorem), there exists a compact subset
S1 € S such that A and G are continuous on S; and A(S \ S1) < e. Without loss of
generality, we can assume that A(S'\ S;) is sufficiently small such that [ S\t P(s)A(ds) <

& Thus, for any n,

€
[ s = [ wemoads) < &
(5\S1)xX (5\51)
By Lemma 2 (6), the set £ = {(s,z): s € Si,z € A(s)} is compact. Since G
is continuous on Si, § is continuous on E X {y1,...,¥Ys}. Since E X {y1,...,Ys0} IS
compact, ¢ is uniformly continuous on E X {y1,...,%x}. Thus, there exists a positive

integer Ny > 0 such that for any n > Ni, [gn(s, ) — goo(s, z)| < § for any (s,7) € E.
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By Equation (1), there exists a positive integer Ny such that for any n > Ny,

Wl m

[ otsamiats.n) - [ Xxgm<s,x>foo<d<s,x>>\ <

Let No = max{Ny, No}. For any n > Ny,

/Sxxg(sxfn d(s,z)) /SXXgooszoo(d(s x))‘
/Sxxg(smnd(sx /SXXQOOS$Tnd($x))
[ ontsomsa) - [l
<[ atam@sa - [ oo
‘/ s B DA D) = / goo<sw>m(d<s,x>)‘

(S\S1)xX

<

+

+

[ amtsomidsan - [ Xxgm<s,x>7m<d<s,x>>\
< [lons.o) = ool mldso) +2- [ wlopmls.a)

(S\S1)xX

+

/sXx oo (8, @) Ta(d(s, 7)) —

€
<=-+2-
3+

— €.

07l )|

SxX
+

(o> N Ne)
Wl ™

This completes the proof. O

B.3 Discontinuous games with endogenous stochastic sharing

rules

It was proved in [7] that a Nash equilibrium exists in discontinuous games with
endogenous sharing rules. In particular, they considered a static game with a payoff
correspondence P that is bounded, nonempty, convex and compact valued, and upper
hemicontinuous. They showed that there exists a Borel measurable selection p of the
payoff correspondence, namely the endogenous sharing rule, and a mixed strategy profile
a such that « is a Nash equilibrium when players take p as the payoff function (see
Lemma 10).
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In this section, we shall consider discontinuous games with endogenous stochastic
sharing rules. That is, we allow the payoff correspondence to depend on some state

variable in a measurable way as follows:

1. let S be a Borel subset of a Polish space, Y a Polish space, and A\ a Borel probability

measure on S,

2. D is a B(S) ® B(Y)-measurable subset of S x Y, where D(s) is compact for all
se€Sand A({s € S: D(s) #0}) > 0;

3. X = ngz‘gn X;, where each X, is a Polish space;

4. for each i, A; is a measurable, nonempty and compact valued correspondence from
D to X;, which is sectionally continuous on Y

5. A=Tlcic, Ai and E = Gr(A);

6. P is a bounded, measurable, nonempty, convex and compact valued correspondence
from E to R™ which is essentially sectionally upper hemicontinuous on Y x X.

A stochastic sharing rule at (s,y) € D is a Borel measurable selection of the
correspondence P(s,y,-); i.e., a Borel measurable function p: A(s,y) — R" such that
p(z) € P(s,y,x) for all x € A(s,y). Given (s,y) € D, P(s,y,-) represents the set of all

possible payoff profiles, and a sharing rule p is a particular choice of the payoft profile.
Now we shall prove the following proposition.

Proposition B.2. There ezists a B(D)-measurable, nonempty and compact valued

correspondence ® from D to R™ x M(X) x A(X) such that ® is essentially sectionally

upper hemicontinuous on'Y', and for A-almost all s € S with D(s) # 0 and y € D(s),
O(s,y) is the set of points (v, «, ) that

1.v = [,p(s,y,x)a(dx) such that p(s,y,-) is a Borel measurable selection of
P(Say>');2

2. a € RietM(Ai(s,y)) is a Nash equilibrium in the subgame (s,y) with payoff profile
p(s,y,-), and action space A;(s,y) for each player i;

9. 1=p(s,y,) o

2Note that we require p(s,y, ) to be measurable for each (s,y), but p may not be jointly measurable.
3The finite measure p = p(s,y,) o o if u(B) = [, p(s,y,z)a(dz) for any Borel subset B C X.
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In addition, denote the restriction of ® on the first component R™ as ®|gn, which is a
correspondence from D to R™. Then ®|gn is bounded, measurable, nonempty and compact

valued, and essentially sectionally upper hemicontinuous on Y .

Proof. There exists a Borel subset S C S with A(S) = 1 such that D(s) # () for each
ses , and P is sectionally upper hemicontinuous on Y when it is restricted on Dﬂ(S‘ xY).

Without loss of generality, we assume that S=28.

Suppose that S is the completion of B(S) under the probability measure A. Let D
and & be the restrictions of S ® B(Y') and S ® B(Y) ® B(X) on D and FE, respectively.

Define a correspondence D from S to Y such that D(s) = {y € Y: (s,y) € D}. Then

D is nonempty and compact valued. By Lemma 1 (4), D is S-measurable.

Since D(s) is compact and A(s,-) is upper hemicontinuous for any s € S, F(s)
is compact by Lemma 2 (6). Define a correspondence I' from S to ¥ x X x R" as
I'(s) = Gr(P(s,-,-)). For all s, P(s,-,-) is bounded, upper hemicontinuous and compact
valued on E(s), hence it has a compact graph. As a result, I' is compact valued. By
Lemma 1 (1), P has an § ® B(Y x X x R™)-measurable graph. Since Gr(I') = Gr(P),
Gr(l') is S ® B(Y x X x R")-measurable. Due to Lemma 1 (4), the correspondence I’
is S-measurable. We can view I' as a function from S into the space K of nonempty
compact subsets of Y x X x R”. By Lemma B.1, K is a Polish space endowed with the
Hausdorff metric topology. Then by Lemma 1 (2), T" is an S-measurable function from S
to K. One can also define a correspondence A; from S to Y x X as A;(s) = Gr(A;(s,-)).
It is easy to show that A; can be viewed as an S-measurable function from S to the space
of nonempty compact subsets of Y x X, which is endowed with the Hausdorff metric
topology. By a similar argument, D can be viewed as an S-measurable function from S

to the space of nonempty compact subsets of Y.

By Lemma 3 (Lusin’s Theorem), there exists a compact subset S; C S such that
AMS\S) <1, T, D and {A;},<i<, are continuous functions on S;. By Lemma 1 (3),
[, D and A; are continuous correspondences on S;. Let D = {(s,y) € D: s € S,y €
D(s)}. Since S is compact and D is continuous, D; is compact (see Lemma 2 (6)).
Similarly, F; = EN(S; x Y x X) is also compact. Thus, P is an upper hemicontinuous
correspondence on E;. Define a correspondence ®; from D; to R" x M(X) x A(X) as
in Lemma 10, then it is nonempty and compact valued, and upper hemicontinuous on
D;.

Following the same procedure, for any m > 1, there exists a compact subset S,, C .S
such that (1) S, N (Ur<k<m—1Sk) = 0 and D,,, = DN (S, xY) is compact, (2) A(S,,) > 0
and A (S\ (Ui<k<mSm)) < 5=, and (3) there is a nonempty and compact valued, upper

2m’
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hemicontinuous correspondence ®,, from D,, to R" x M(X) x A(X), which satisfies
conditions (1)-(3) in Lemma 10. Thus, we have countably many disjoint sets {Sy, }m>1
such that (1) AM(U;>15m) = 1, (2) Py, is nonempty and compact valued, and upper

hemicontinuous on each D,,, m > 1.

Since A; is a B(S)®B(Y)-measurable, nonempty and compact valued correspondence,
it has a Borel measurable selection a; by Lemma 2 (3). Fix a Borel measurable selection p
of P (such a selection exists also due to Lemma 2 (3)). Define a mapping (vg, o, f0) from
D to R" x M(X) x A(X) such that (1) a;(s,y) = da,(s,y) and (s, y) = Ricros(s,y);
(2) vo(s,y) = p(s,y,a1(s,y)....,an(s,y)) and (3) po(s,y) = p(s,y, ) o ap. Let Dy =
D\ (Un>1D,,) and ®g(s,y) = {(vo(s Y), ao(s,9), to(s,y))} for (s,y) € Dy. Then, Py is
B(S) ® B(Y')-measurable, nonempty and compact valued.

Let ®(s,y) = ®,(s,y) if (s,y) € D, for some m > 0. Then, ®(s,y) satisfies
conditions (1)-(3) if (s,y) € D, for m > 1. That is, ® is B(D)-measurable, nonempty
and compact valued, and essentially sectionally upper hemicontinuous on Y, and satisfies
conditions (1)-(3) for A\-almost all s € S.

Then consider ®|g», which is the restriction of ® on the first component R™. Let
®,,|rn be the restriction of ®,, on the first component R"” with the domain D,,, for each
m > 0. It is obvious that ®g|gn is measurable, nonempty and compact valued. For
each m > 1, D,, is compact and ®,, is upper hemicontinuous and compact valued. By
Lemma 2 (6), Gr(®,,) is compact. Thus, Gr(®,,|g) is also compact. By Lemma 2 (4),

®,,|ge is measurable. In addition, ®,,|g~ is nonempty and compact valued, and upper

hemicontinuous on D,,. Notice that ®|gn(s,y) = P |re (S, y) if (s,y) € D, for some m >

0. Thus, ®|g~ is measurable, nonempty and compact valued, and essentially sectionally

upper hemicontinuous on Y.

The proof is complete. O

B.4 Proof of Theorem 3
B.4.1 Backward induction

For any ¢ > 1, suppose that the correspondence ()¢ from H; to R" is bounded, measur-
able, nonempty and compact valued, and essentially sectionally upper hemicontinuous
on X'. For any h;_; € Hy 1 and x; € Ay(hy_1), let

Pt(htfly 377&) = Qt+1(ht717 Tt, St)ft0<d5t|ht71>
St

14



= S Qt+1(ht—1,$t7St)SOto(ht—lySt)/\t(dSt)-

It is obvious that the correspondence P, is measurable and nonempty valued. Since ;1
is bounded, P; is bounded. For A'-almost all s' € S*, Q;41(-, ') is bounded and upper
hemicontinuous on Hy(s'), and ¢y(s’, -) is continuous on Gr(A)(s'). As ¢y is integrably
bounded, P;(s'™!,-) is also upper hemicontinuous on Gr(A?)(s'™!) for A~!-almost all
st=1 € S'1 (see Lemma 4); that is, the correspondence P is essentially sectionally upper
hemicontinuous on X*. Again by Lemma 4, P, is convex and compact valued since ); is
an atomless probability measure. That is, P;: Gr(A") — R™ is a bounded, measurable,
nonempty, convex and compact valued correspondence which is essentially sectionally
upper hemicontinuous on X°.

By Proposition B.2, there exists a bounded, measurable, nonempty and compact
valued correspondence ®; from H;_; to R" x M(X;) x A(X;) such that @, is essentially
sectionally upper hemicontinuous on X®!, and for A~ !-almost all h,_y € H,_i,
(v, a, 1) € Py(hy—y) if

1. v= fAt(ht—l) p(hi—1, x)a(dx) such that p;(hi_1,-) is a Borel measurable selection of
Pt(htfla ')§

2. a € ®ierM(Ay(hi—1)) is a Nash equilibrium in the subgame h;_; with payoff

pe(hi—1,-) and action space [ [,.; Awi(hi—1);

i€l
3. = pi(hi-1,-) o a.

Denote the restriction of ®; on the first component R"™ as ®(Q;;1), which is a
correspondence from H;_; to R™. By Proposition B.2, ®(Q;1) is bounded, measurable,

nonempty and compact valued, and essentially sectionally upper hemicontinuous on
Xt
B.4.2 Forward induction

The following proposition presents the result on the step of forward induction.

Proposition B.3. For any t > 1 and any Borel measurable selection q; of ®(Qy1),
there exists a Borel measurable selection q;11 of Qry1 and a Borel measurable mapping
fr: Hi_1 — QierM(Xy) such that for X'=t-almost all hy_y € Hy_1,

1. fi(hi—1) € @ierM(Agi(he—1));
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2. q(hy—1) = fAt(htfl)fSt Grr1(he—1, @, 8¢) fro(dse | he—1) fi(dae|he—1);

3. fi(-|he—1) is a Nash equilibrium in the subgame hy_1 with action spaces Ay (hy—1),1 €
I and the payoff functions

/ Qt+1(ht71: ) St)fto(d5t|htfl)-
St

Proof. We divide the proof into three steps. In step 1, we show that there exist
Borel measurable mappings fi: Hi 1 — ®;e;M(Xy) and py: Hi—y — A(X;) such that
(Gi, fi, 1) is a selection of ®,. In step 2, we obtain a Borel measurable selection g; of P,
such that for A\*~!-almost all h,_; € H,_;,

L gi(ht) = fAt(htil)gt(ht—lyx)ft(dxmt—l);

2. fi(h4_1) is a Nash equilibrium in the subgame h;_; with payoff g;(h;_1,-) and action
space Ay(hi_1);

In step 3, we show that there exists a Borel measurable selection ¢;y1 of ;41 such that
for all ht—l c Ht—l and Ty € At(ht_1)7

gt(ht—hl‘t) :/ Qt+1(ht—1,$t7St)fto(d8t|ht—1)-
St

Combining Steps 1-3, the proof is complete.

Step 1. Let \Ift: Gr(@t(Qt+1)) — M(Xt) X A(Xt) be

qjt(ht—lvv) = {(O‘mu): (UaO‘?#) € (Dt(ht—l)}'

Recall the construction of ®; and the proof of Proposition B.2, H;_; can be divided into
countably many Borel subsets {H]"; },n>0 such that
_ m Atil(Um21prOjSt—1(Hﬁl))
1. H, = UmZOHtfl and At*l(pl"Ojstﬂ(th))

projgi—1(H;_1) are projections of H;"; and H;_; on S'!;

= 1, where projg-1(H";) and

2. for m > 1, H", is compact, ®; is upper hemicontinuous on H;",, and P, is upper

hemicontinuous on

{(hi—1,24): her € H"y 2 € Ay(hy—1) )
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3. there exists a Borel measurable mapping (vg, ag, to) from HY | to R™ x M(X;) X
A (X}) such that ®(hy_1) = {(vo(hi—1), ao(hi—1), po(hs—1))} for any hyy € HY ;.

Denote the restriction of ®; on H;™, as ®}*. For m > 1, Gr(®}") is compact, and hence
the correspondence W} (h;—q1,v) = {(a,p): (v, 0, u) € ®7*(hy—1)} has a compact graph.
For m > 1, W}" is measurable by Lemma 2 (4), and has a Borel measurable selection ;"
due to Lemma 2 (3). Define 9 (hi_1,vo(hi—1)) = (co(hs—1), po(he—1)) for hy_y € HY ;.
For (hi_1,v) € Gr(®(Qs11)), let ¥y(hy_1,v) = " (hi_q,v) if hy_1 € H™;. Then 1, is a

Borel measurable selection of W,.

Given a Borel measurable selection ¢; of ®(Q;11), let

Gr(hi—1) = (q(he—1), Ve(Pe1, g (hi-1))).

Then ¢; is a Borel measurable selection of ®,. Denote ]:[t_l = Up>1H",. By the
construction of ®;, there exists Borel measurable mappings f;: Hy_1 — ®;c;M(Xy;) and
e H_y — A(X,) such that for all h,_; € H, 4,

L oqg(hiy) = fAt(ht,l)pt(ht—l’ x) fi(dz|hs_1) such that p;(h;_1,-) is a Borel measurable
selection of P;(h_1,-);

2. fi(hi—1) € ®ierM(Ayi(hi—1)) is a Nash equilibrium in the subgame h;_; with payoff

pe(hi—1,-) and action space [ [,.; Awi(hi—1);

icl

3. e (+|hi1) = pe(he—1,-) o fi(-[he—1).

Step 2. Since P, is upper hemicontinuous on {(h;_1,z;): hy_1 € H", 2, € Ay(hy_1)},
due to Lemma 6, there exists a Borel measurable mapping ¢ such that (1) ¢ (hy_1, ;) €
Py(hi—y,x;) for any hy_y € H™, and z; € Ai(hi—1), and (2) ¢™(hi—1,x1) = pi(hi—1, T4)
for fi(:|h¢—1)-almost all z,. Fix an arbitrary Borel measurable selection ¢’ of P,. Define

a Borel measurable mapping from Gr(A4;) to R" as

g™ (hi—1,2,) if hy_y € H" ) for m > 1;
g(htflyxt) = .
g'(h¢_1,7;) otherwise.

Then ¢ is a Borel measurable selection of P,.

In a subgame h;_| € Ijlt_l, let

Bii(hi—1) = {yi € Avi(he—1):
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/ gi(ht—h yia:Et(—i))ft(—i)(dxt(—i)|ht—1) > / pti(ht—la -Tt)ft(dl"tmt—l)}-
A~y (he—1) At (hi—1)

Since g(hi—1, ;) = pe(he—1, x¢) for fi(-|hi—1)-almost all xy,

/ g(ht—lyxt)ft<dxt|ht—1> = / pt(htfhil?t)ft(dxt’htfl)
A¢(hi—1)

A¢(hi—1)

Thus, B;; is a measurable correspondence from H, ; to Ayi(hi—1). Let Bg(hi—y) =
Ayi(hi—1) \ Bii(hi—q) for each hy_y € H; 1. Then By, is a measurable and closed valued
correspondence, which has a Borel measurable graph by Lemma 1. As a result, By
also has a Borel measurable graph. As f;(h;_1) is a Nash equilibrium in the subgame
he1 € Hy_y with payoff py(hi—1,-), fii(Bei(hi-1)|hi—1) = 0.

Denote B;(hi—1,7;) = min Py(hy_1,x¢), where Py(hs_q1,7¢) is the projection of
P,(h¢—1,x;) on the i-th dimension. Then the correspondence Pj; is measurable and
compact valued, and f3; is Borel measurable. Let A;(hs_1,7¢) = {B;(hi_1,2¢)} x [0,7]" 71,
where v > 0 is the upper bound of P,. Denote Ai(h, 1, x;) = Aj(hi—1,2¢) N Pi(hy_1,x).
Then Al is a measurable and compact valued correspondence, and hence has a Borel

measurable selection ;. Note that ] is a Borel measurable selection of P;. Let
Ge(hi—1, 1) =

Bi(hi—1,2) if hy—y € ﬁt—ljxti € Byi(h—1) and zy; ¢ Byj(hy—1),Vj # i;

g(hi—1,z;) otherwise.
Notice that
{(hi—1,24) € Gr(Ay): hyy € f{t—laxti € Byi(hi—1) and x4 & Byj(he—1),Vj # 4 }
= Gr(Ay) NUier ((Gr(Bti) x [ Xu) \ (Uji(Gr(Byy) % Hth))) ,
J#i k#j
which is a Borel set. As a result, g; is a Borel measurable selection of P,. Moreover,
gt(hi—1, ) = py(hy—1, ;) for all hy_q € H, ; and fi(-|hi—1)-almost all z;.

Fix a subgame h;_; € H,_,. We will show that fi(:]h¢—1) is a Nash equilibrium given
the payoff g;(h;_1,-) in the subgame h;,_;. Suppose that player i deviates to some action

Tt -
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If Z4; € Byi(hy—1), then player i’s expected payoff is

/ gti(ht—la T, $t(7i))ft(fi) (dl't(fi) |ht—1)
Ag(—iy(he—1)

||
T

Gei(Pe—1, Tai, To(—4)) fe(—iy (A (i) Pe—1)
g1 Bij (he—1)

5i(ht717 Ty, -Tt(fi))ft(fi) (dﬂ?t(ﬂ') ’htfl)

g Bij(he=1)

IN

pti(htfly Ty, SUt(—i))ft(—z‘) (dl‘t(—z‘) |ht71)
i Bj(he—1)

—

Pri(he—1, Toi, To(—iy) fi—) (A2e (=) [ he—1)
t(—i) (he—1)

pti(ht—lv xt)ft<dxt|ht—1)
t(hi—1)

/ gti<ht71>xt)ft(dxt’htfl)-
At(hi—1)

IN

The first and the third equalities hold since fi;(By;(hi—1)|hi—1) = 0 for each j, and
hence ft(,i)(]_[#i Bii(hi)lhi—1) = fi—iy(Ae—i(hi-1)|ht—1). The second equality and
the first inequality are due to the fact that gu(hi—1, Zu, Te—s) = Bi(hi—1, Ti, Ty(—i)) =
min Py (hi—1, Tii, y—i)) < prilhu—1, Toi, Ty—sy) for zy_yy € H#i ij(ht,l). The second
inequality holds since f;(-|h;—1) is a Nash equilibrium given the payoff p,(h;_1,-) in the
subgame h;_;. The fourth equality follows from the fact that g,(h;—1,x;) = pe(he—1, x¢)
for fi(-|hi—1)-almost all x;.

If Z4; ¢ Byi(hy—1), then player i’s expected payoff is

/ gti(ht—la T, xt(fi))ft(fi) (da:t(fi) Vlt—l)
Ag—iy(he-1)

||
T~ g

gti(ht—la Ty, xt(fi))ft(fi) (d%:(ﬂ‘) |ht—1)
g Bt (he—1)

gi(htfla Ty, 33t(—z‘))ft(—z‘) (dxt(—i) ‘htfl)
i Bij(h—1)

A
—

gi(ht—la Ty, l‘t(—z‘))ft(—i) (dxt(—i) |ht—1)
t(—i)(ht—1)

Pn’(htfh 37t)ft<d5€t ’htfl)
t(hi—1)

gti(ht—b xt)ft(dxtmt—l)-
t(ht—1)
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The first and the third equalities hold since

Ji(=i) (H ij(ht—1)|ht—1> = fo—i)(Ay—i) (he—1) | he—1).

J#i

The second equality is due to the fact that gu(hi—1,Tu, Te—i)) = Gi(hi—1, Tei, Te—sy) for
Ty € [1 i Bf;(hy—1). The first inequality follows from the definition of By, and the
fourth equality holds since g;(h;—1, z¢) = pi(hy—1, z¢) for fi(-|h,_1)-almost all ;.

Thus, player ¢ cannot improve his payoff in the subgame h; by a unilateral change in
his strategy for any ¢ € I, which implies that f;(-|h,_1) is a Nash equilibrium given the
payoff g;(hi_1,-) in the subgame h;_;.

Step 3. For any (hy_1, ;) € Gr(A,),

Pt(ht—la $t) = Qt—l—l(ht—h Lty St)fto(dstlht—l)-
St

By Lemma 5, there exists a Borel measurable mapping ¢ from Gr(F;) x S; to R" such
that

L. Q(ht—l,xue, St) € Qt+1(ht—1,$t78t) for any (ht—laxhea St) € GF(Pt) X S

2. e = fst q(hi—1, x4, €, 8¢) fro(dse|hy—q) for any (hy_1, x4, €) € Gr(P;), where (hy_1,x;) €
Gr(At).

Let
Qt+1(ht717 Ty, St) = Q(htfla Ty, gt(htfla ﬂUt), St)

for any (h¢_1,x¢, s¢) € Hy. Then ¢4 is a Borel measurable selection of (.

For (h/t—lyxt) € Gr(At>’
Gi(hi—1, ) :/ q(hi—1, e, ge(heo1, 1), 8¢) fro(dse|her)
St

:/ QtJrl(htfl;xt;St)ft(](dst’htfl)-
St

Therefore, we have a Borel measurable selection g1 of Q;11, and a Borel measurable
mapping f;: Hi_1 — ®QierM(Xy;) such that for all hy_y € H,_,, properties (1)-(3) are
satisfied. The proof is complete. ]
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If a dynamic game has only T stages for some positive integer T° > 1, then let
Qri1(hr) = {u(hr)} for any hy € Hp, and Q; = ®(Q441) for 1 < ¢t < T — 1. We can
start with the backward induction from the last period and stop at the initial period,
then run the forward induction from the initial period to the last period. Thus, the

following result is immediate.

Proposition B.4. Any finite-horizon dynamic game with the ARM condition has a

subgame-perfect equilibrium.

B.4.3 Infinite horizon case

Pick a sequence £ = (&1,&,...) such that (1) &, is a transition probability from H,,
to M(X,,) for any m > 1, and (2) &, (Am(hm—1)|hm-1) = 1 for any m > 1 and h,,—; €
H,, 1. Denote the set of all such £ as T.

Fix any t > 1, define correspondences = and Al as follows: in the subgame h;_1,
=i (hi-1) = M(Ae(he1)) @ A,
and
Af(hi—1) = M(Ay(hy-1)) @ fio(he-1).

For any m; > t, suppose that the correspondences =™ ' and A7"~! have been
defined. Then we can define correspondences =Z"': H, ; — M (Htgmgml(Xm X Sm))
and A7 : Hyy = M ([T,cppem, (Xm X Sm)) as follows:

= (he—1) ={g(he-1) © (Emi (-1, 7) @ Ay )
g is a Borel measurable selection of =,

&m, is a Borel measurable selection of M(A,,,)},

and

A;nl (htfl) :{g(htfl) <& (€m1 (hft717 '> ® fmﬂ)(htfl: )) .
g is a Borel measurable selection of A?”_l,

&m, is a Borel measurable selection of M(A,,,)},

where M(A4,,,) is regarded as a correspondence from H,,, _; to the space of Borel
probability measures on X,,,. For any m; > ¢, let ,07(7;_1 ¢ € =" be the probability

measure on Htgmgml(Xm X Sy,) induced by { A\ b<mem, and {&n b e<m<m,, and Qm_hé) €
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A" be the probability measure on Htgmgml(Xm X Sp) induced by {fino}i<m<m, and
{&n}i<mem,. Then, =" (hy_1) is the set of all such pﬁt—l,f)’ while A{™ (hy_1) is the set
of all such o) | . Note that o} . € A" (he—1) if and only if pj3} | o € E{" (he).
Both o' . and p{;. . can be regarded as probability measures on Hy, (hi—1).

Similarly, let pg, ,¢) be the probability measure on [[,,(Xm X Sp) induced by
{Antmee and {§m }m>t, and o, _, ¢) the probability measure on [, 5, (X, x S,,) induced
by {fmo}m>t and {&, }m>t. Denote the correspondence

= Hy oy — M(H(Xm X Sn))

m>t

as the set of all such p,,_, ¢), and

Ay He oy — M(H(Xm X Sn))

m>t

as the set of all such o, ¢).

The following lemma demonstrates the relationship between g?;;_l 6 and p?;‘;_l 6)-
Lemma B.7. For any my >t and hy_1 € Hy_4,
m _ m 4
Ohe1,6) = ( [T emolhus, ')> © Plhy_1.6)
t<m<my

Proof. Fix £ € T, and Borel subsets C,, C X,,, and D,,, C S,, for m > t. First, we have

Ohe1.6)(Cr X Dy) = &(Cilhy—1) - fro(Delhi1)

:/X . Lo, xn, (e, 5¢) 10 (Pe—1, 80)(§e(he1) @ M) (d(y, 51)),

which implies that Ql(thtfl,g) = @(hi_1,) 0 pléht—hf)'{s

4For m >t >1and hy_; € H;_1, the function ,,0(h¢_1,-) is defined on H,,_1(h¢_1) X Sy, which
is measurable and sectionally continuous on Ht<k<m_1 Xj. By Lemma 3, @,,0(hi—1, ) can be extended
to be a measurable function @,,0(ht—1,) on the product space (Ht<k<m71 Xk) X (Ht<k<m Sk), which
is also sectionally continuous on Htgkgm—le' Given any & € T, sir.lce p?;:b:n—lvf). .concentra"ces on
H,,(hi—1), pmo(hi—1,") © p?;lt—17€) = Gmo(hi—1,") © p?}“ihg). For notational simplicity, we still use
©mo(hi—1,), instead of Ho(hi—1,-), to denote the above extension. Similarly, we can work with a

suitable extension of the payoff function u as needed.
For a set A in a space X, 14 is the indicator function of A, which is one on A and zero on X \ A.
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Suppose that Q?;Lj_hg) = (Ht§m§m2 Omo(he—1, )) o 'O?;i_l,é) for some mqy > t. Then

Q?}Lj—"_ll’g) ( H (Cm X Dm)>

t<m<mao+1

- Q?;Lifuﬁ) © (£m2+1(ht*1’ ) ® f(m2+1)0(ht717 )) ( H (Cm X Dm))

t<m<ma+1
= / / 1Ht§mgm2+1(CmXDM)(xt7 co s Tmo41, Sty - vy sz-‘rl)'
Htﬁmfmz (XmXSm) Xm2+1><5m2+1
§m2+1 ® f(m2+1)0(d(33m2+1, 8m2+1)|ht—17 Tty vooy Timgs Sty - - - 7Sm2)
ma2
Q(ht_hg)(d(xt? <oy Tmgy Sty e e vy Sm2)|ht—1)
- / / / 1Ht§m§m2+1(CmXDm)($t’ ooy Tmg41, Sty - - - ,Sm2+1)'
[i<me<my (XmxSm) J Smyt1 J Xmy 11
P(ma+1) (ht*b Lty ooy Tmgy Sty - - - 3m2+1)€m2+1(dxm2+1‘ht*17 Ttseoos Tmgs Sty -+ oy Sm2)

/\(mg-l—l d8m2+1 | | QDmO ht 1y Lty s Tm—1y Sty -+« Sm)
t<m<myo

Plney o)A@ty Ty Sty -y Smy) 1)

/ 1Ht§m§m2+1(CmXDm)(l‘t7 co oy Lo 41y Sty - - oy Sm2+1)'
Ht§m§m2+l(Xm><S’m)

H me(](ht—laxtw"Jxm—lustv”'a )p(ht 15)(d(xt7"'7xm275t7"'75m2)|ht—1)7

t<m<mo+1

which implies that

mao+1 att
Q(hi:,ﬁ) B < H gpm()(htl")) O’O(hi+1’£)

t<m<ma-+1

The proof is thus complete.

]

The next lemma shows that the correspondences A;™ and A; are nonempty and

compact valued, and sectionally continuous.

Lemma B.8. 1. For anyt > 1, the correspondence AJ"' is nonempty and compact

valued, and sectionally continuous on X! for any m; > t.

2. For any t > 1, the correspondence A; is nonempty and compact valued, and

sectionally continuous on X' 1.

Proof. (1) We first show that the correspondence =" is nonempty and compact valued,
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and sectionally continuous on X*~! for any m; > t.

Consider the case m; =t > 1, where

Ei(he-1) = M(Ag(he-1)) @ A

Since A;; is nonempty and compact valued, and sectionally continuous on X'~ ! =! is
i1 ) ) t

nonempty and compact valued, and sectionally continuous on X*~1.

—mse

Now suppose that Z;** is nonempty and compact valued, and sectionally continuous
on Xt ! for some ms >t > 1. Notice that

= (o) ={g(r-1) © Emya (1) © Mg
g is a Borel measurable selection of =2,

Ema+1 18 a Borel measurable selection of M(A,,,11)}-

First, we claim that H;(sg,s1,...,s;) is compact for any (sg,s1,...,5:) € S*. We

prove this claim by induction.

1. Notice that Hy(sg) = X for any sq € Sy, which is compact.

2. Suppose that H,(So, 51, .,Sm) is compact for some 0 < m’ < t — 1 and any

(50,81, 8m) € S™.

3. Since A,41(+, S0, 81, - -+, Sm) 1s continuous and compact valued, it has a compact
graph by Lemma 2 (6), which is H,,11(S0, S1, - - -, Spw11) for any (sg, s1,. .., Spry1) €
SmiHL

Thus, we prove the claim.

Define a correspondence Al from H; 1 x S; to X; as AL(hy_1,8;) = Ai(hi—1). Then
Al is nonempty and compact valued, sectionally continuous on X; 1, and has a B(X" x
S?)-measurable graph. Since the graph of Al(- sg,s1,...,8:) is Hy(so, S1,...,8;) and
Hy(sg, 81, - --,8¢) is compact, AL(- sg,$1,...,8;) has a compact graph. For any h; ; €
H; 1 and 7 € Zf(hy_1), the marginal of 7 on S; is A, and 7(Gr(AL(h_1,-))) = 1.

For any m, > t, suppose that the correspondence

has been defined such that
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1. it is nonempty and compact valued, sectionally upper hemicontinuous on X; 1,
and has a B(X™~! x S™~1)measurable graph;
2. for any (sg, 51, .. -Smi—1), A" (-, 80,51, ... .5m,—1) has a compact graph;

3. for any hy_; € H,_y and 7 € 2" '(h,_,), the marginal of 7 on Ht§m§m1—1 S, 1s

®t<m<my—1Am and T(Gr(A;nl_l(ht_l, ) =1
We define a correspondence Ay"': Hy 1 X Ht§m§m1 S, — Ht§m§m1 X,,, as follows:

AT (hy1, Sty e ey Smy) ={(@g, oo Ty )
LTy € Aml(ht—la Lty ov oy Tmg—15Sty - -+ Sm1—1)7

(Ttr- s T 1) € AT By 1,50,y S 1)}

It is obvious that A" is nonempty valued. For any (s, s1,. .., Sm, ), since A" (-, 50, 51, . . .

has a compact graph and A, (-, S0, S1, .., 8m,—1) is continuous and compact valued,
A7 (-, S0, 515 - - - -Smy ) has a compact graph by Lemma 2 (6), which implies that A" is
compact valued and sectionally upper hemicontinuous on X;_;. In addition, Gr(A;"') =
Gr(A,,,) X Sp,, which is B(X™ x S™)-measurable. For any h, ; € H; ; and
7 € E{" (hi-1), it is obvious that the marginal of 7 on [[,.,,<, Sm 18 ®t<mem, Am and
T(Gr(A7" (hi—1,+))) = 1.

By Lemma B.5, Z/>™ is nonempty and compact valued, and sectionally continuous
on X1

Now we show that the correspondence A;™ is nonempty and compact valued, and
sectionally continuous on X*~! for any m; > t.

Given s7! and a sequence {xf, x5, ... 2F |} € H,_((s77!) for 1 <k < oo. Let hf | =
(s (xk, b ... aF |)). Tt is obvious that A" is nonempty valued, we first show that
A" is sectionally upper hemicontinuous on X*~!. Suppose that QE’Z}G ey € AT (hE )

t—1°
for 1 <k <oocand (zf,2F,... 28 ) = (25°,25°,...,2%°,), we need to show that there
exists some £*° such that a subsequence of QZLL}g €5
t—1>
Q’ET;"%ED&OO) € AP (hi2y).

1

weakly converges to g’(?é.iléoo) and

Since 2" is sectionally upper hemicontinuous on X*®~! there exists some £ such

mi1 : mi 1
that a subsequence of Pk, gvyr S itself, weakly converges to Plhe , £ and Pl , ey €

=7 (1), Then ke ey € AP (%)),
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For any bounded continuous function ¢ on [[,<,,<,n, (Xm X Sm), let
Xk(xt7 A 7‘/'Um17 St? et Sml) =
k
V(T o Ty Sty v e vy Sy ) - H Omo(hy 1, Tty oo T, Sty oo oy Sm)-
t<m<my

Then {xx} is a sequence of functions satisfying the following three properties.

1. For each k, xy is jointly measurable and sectionally continuous on Ht<m<m1 Xon-

k k (o) 0 ;
2. Forany (st,...,8m,) and any sequence (z7, ..., 2y, ) = (5%, ..., 20 ) in [, Xom,
k k 00 oo
Xk(ZF s T S5 Smy) = Xoo (20, .o, T58 5, oo, 5y ) @8 k — 00.

3. The sequence {xx}i<k<oo is integrably bounded in the sense that there exists a
function X" [[,<p<pm, Sm — Ry such that X' is ®s<m<m, Am-integrable and for any

kEand (4, ..., Tmyy Sty Smy )y Xk(Tes ooy Tings Sty e vy Sy ) < X (Sty -+ s Sy )-

By Lemma B.6, as kK — o0,

Xk(xta <oy Tmyy Sty e ey Sml)p?flllitl,fk)<d(xt’ <oy Tmyy Sty e ey Sm1>)

/Ht<m<m1(xm><5m)

— Xoo(Tty oy Tonys Sty v+ vy Sy ) P11 h°° %) (d(a:t,...,mml,st,...,sml)).
Htsm§m1(Xm><Sm)

Then by Lemma B.7,

/]‘[ s )w(a:t, ey Ty Sty - 75m1)97(7;%7175k)(d(37t= e Ty Sty - -y Smy))
t<m<my XOm

- w<xt7 ce s Ly Sty - vy Sml)Q?}g’ipéoo)(d('xta ce sy Ty Sty - - >Sm1))7
Ht<m<m1 (XmXSm)
which implies that Q(hk ) weakly converges to QZLZ},O £y Therefore, A;™ is sectionally
1
upper hemicontinuous on X*~!. If one chooses hi | = h? | =--- = h$°,, then we indeed

show that AJ"' is compact valued.

In the argument above, we indeed proved that if p7} weakly converges to

(h§71 7£k)

m1i 11
Pl | ey then Ok 60 weakly converges to Q(hoo £%)

The left is to show that A" is sectionally lower hemicontinuous on X*™1. Suppose

that (zf b, ... 2% ) — (25, 2%,...,2%°,) and Q’(Z}ilém) e A" (h2,), we need to
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show that there exists a subsequence {(zf™, z%™, ... aF)} of {(zk, 2% ... zF )} and

" € A7 (b)) for each k,, such that o”

Q(hkm £hm) weakly converges to g(

(h’“m Ehm) h°° 1:€%°)

=mi1

Since g(hoo =) € A (hi2y), we have piy (hee, £) € =7 (h2y). Because =" is section-

ally lower hemicontinuous on X*~! there ex1sts a subsequence of {(af z% ... 2F )},
€ E?“(hfﬁl) for each k such that p?;ﬁ )
t—1>
weakly converges to g?,;tol £o)) which implies that A} is
t—1°

say itself, and pZ‘L}C weakly converges to

£F)

p(hoo £)- Asaresult g LR

sectionally lower hemlcontlnuous on X1,
Therefore, A"* is nonempty and compact valued, and sectionally continuous on X*~*

for any m, > t.

(2) We show that A, is nonempty and compact valued, and sectionally continuous

on X' 1.
It is obvious that A; is nonempty valued, we first prove that it is compact valued.

Given h;_; and a sequence {7*} C A;(h;_;), there exists a sequence of {¢¥};>; such
that £&¥ = (£§,&5,...) € T and 7% = g3, , ¢x) for each k.

By (1), Zf is compact. Then there exists a measurable mapping g; such that (1) ¢* =
(& 6196641, --.) € T, and (2) a subsequence of {pfht—hfk)}’ say {pzht,l,fkll)}lzl’
which weakly converges to pfht_h g Note that {¢f.1} is a Borel measurable selection
of M(A;11). By Lemma B.5, there is a Borel measurable selection g4 of M(Ay 1)
such that there is a subsequence of {p(ht 5k11)}l21’ say {pzjih gkzz)}lzlv which weakly
CONverges to p(h 1,9t+1)? where g (51’ s 76151—17 9ts 9t+1, §t1+27 . ) eT.

Repeat this procedure, one can construct a Borel measurable mapping g such that

Plho_1,611)s Plhy_1,6522)5 Plhy 1 ,ks3), - - - Weakly converges to pm, , g). That is, pp, ) 1s a
convergent point of {p(, , ¢r)}, which implies that o, , 4 is a convergent point of

{0169}

The sectional upper hemicontinuity of A; follows a similar argument as above. In

particular, given s'~! and a sequence {zf,x%, ... 2F |} C H; 1(s'1) for k > 0. Let
hffl = (St_17 (xlgu xlfa ce 7‘1”7]&{;1))' Suppose that (l’]g, xlfv ce 7‘7"1]521) - (1’8, x(l)7 ce ngfl)‘ If

{mF} C Ay(hE ) for k > 1 and 7% — 7°, then one can show that 70 € A;(h) ,) by

repeating a similar argument as in the proof above.

Finally, we consider the sectional lower hemicontinuity of A;. Suppose that 70 €

Ay(h?_ ). Then there exists some ¢ € T such that 70 = 0wy ,.¢)- Denote 7™ = 0/Go o €
—1> +—17

A™(RY_,) for m > t. As AT is continuous, for each m, there exists some ™ € T such

that d(o™ ,7™) < =+ for ky, sufficiently large, where d is the Prokhorov metric. Let

O(pfem, gmy
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™ = O(hkm emy- Then 7™ weakly converges to 7°, which implies that A, is sectionally

lower hemicontinuous. O]

Define a correspondence Q7 : H;_; — R’} as follows:
Qf (hy—1) =

{meZt(X’mXSm) u(ht*hx? S)Q(htq,ﬁ)(d(xv 3)): O(ht—1,6) € At(ht*ﬁ}; >
(I)(QtTH)(ht—l) t<T.

The lemma below presents several properties of the correspondence ()] .

Lemma B.9. For any t,7 > 1, Q] is bounded, measurable, nonempty and compact

valued, and essentially sectionally upper hemicontinuous on X' 1.

Proof. We prove the lemma in three steps.

Step 1. Fix t > 7. We will show that )] is bounded, nonempty and compact valued,

and sectionally upper hemicontinuous on X1

The boundedness and nonemptiness of ()7 are obvious. We shall prove that () is sec-
tionally upper hemicontinuous on X*~!. Given s'! and a sequence {xf, 2% ... 2F |} C
H; 1(st71) for k > 0. Let hf | = (s, (xf, 2%, ..., 2F |)). Suppose that a* € Q7 (h} )
for k > 1, (af 2% ... 2F ) — (28,29,...,2% ) and a* — a°
a’ € Q7 (hy_,).

By the definition, there exists a sequence {£¥},>; such that

, we need to show that

o = / w1, 7, 8)00s . ety (A, 5)),
[T>(Xm X Sm)

where &8 = (&b ¢k ..)) € Y for each k. As A; is compact valued and sectionally
continuous on X'~ there exist some g(0_ co) € A¢(hy_;) and a subsequence of O(hk_ ks

say itself, which weakly converges to g0  ¢o) for O =(,8,..)eT.
We shall show that

o = / u(h) 1.2, 8)aus - ez 5)).
Hmzt(XmXSm)

For this aim, we only need to show that for any ¢ > 0,

o~ [ (b, 5)eq. (A, 9)| < ®)
Hmzt(X"” XS"L)
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Since the game is continuous at infinity, there exists a positive integer M > ¢ such
that w™ < %(5 for any m > M.

For each j > M, by Lemma 3, there exists a measurable selection & of M(A;)
such that &} is sectionally continuous on X7~'. Let pu: Hyy — [, 5(Xim X Sp) be the

transition probability which is induced by ( ;\ZH’ §\~4+2, ...) and {f(M+1)0> fori2)00 - -}

By Lemma 9, i is measurable and sectionally continuous on X M Let
Vig(he—1,@ey oo Ty, Sty oo, Syp) =

/ W(he—1, Tey ooy Tygy Sty vy Syps @5 8) A, S|hy—1, Tty oo gy Sty v vy Sp7)-
ILs 5 (Xm X Sm)

Then Vj; is bounded and measurable. In addition, V; is sectionally continuous on X M
by Lemma B.6.

For any k£ > 0, we have

|/ (s, 5)eq o (09))
[L5(XmXSm)

_\/1_[ (X S )VM(hf—17xt""71‘]\2’875""78](4)@%?17£k)(d-('rt7"'7xM7St;"'7SM))|
t<m< i1 (KXmXOm
< wM+1
1
< 0.
5)

: M
Since O(nk_, ¢¥) weakly converges to O(ho_, £0) and Ok, )

is the marginal of or ek

on [[,c,,<ir(Xm X Sp,) for any & > 0, the sequence Q?Zk ) also weakly converges to
<m< ko

1:E"

Qé\}{g_pﬁo). By Lemma B.6, we have

‘ I (XS )VM(hf_l’xt""’xM’St""’S]\;[)Qé\}{fl,fk)(d(:[;t?"'7xM7St7"'7S]\;[))
t<m< i (KXmXom

_/H s )VM(h?1;371‘,7...,Z'Mast,...,sj\?[)@?}{g1750)((1(1'1/,...,:L'M,St"”,sM))’
t<m< M \AmXOm

1
< =0

5

for k > Ky, where K is a sufficiently large positive integer. In addition, there exists a
positive integer K5 such that [a" — a®| < 20 for k > K.
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Fix k > max{K;, K»}. Combining the inequalities above, we have

0

/1;[ (X 3 )u(htflwr?é)é(h? 1750)(d(l’,8)) —Qa

m>t m XOm -

< ‘ / (X S )U(ht 1> ’ ) (hg_17§0)(:l(:[73))
m>t m XOm

_ / Vig(hY L xe, w, 8, SM)Q?]{?_Pgo)(d(ZL‘t, T S Sy)|
HiSWLSM(XmXSm)

‘ H (X S ) ~(ht—17xt7--'7vast>'"75]\2)&?]{?71760)((1(1'159'"75[](473757'-" Z\Zf))
t<m<M mXOm S
/ ( ) )‘/M(hf_l,l‘t7-..,ZEM,St,-..,SM)Q?}{? L k)((]‘(ajt"‘W'IM)st,--.,9M))|
IIt<m<1\~4 ‘<m)< m — E
—}—’ ( . )‘/~(]’Lic 1’1',57...,.’L'M,Sty-..,sM)Q?}{f l’fk)(d(xt,...,.TM,St7...,SM))
IIt<m<]V_I Xm X Sm -

-/ by 5)og, e o 9)|
[15 ¢ (XmxSm)
T / u(ht 1, 7, 8o ony(dz, ) — o)
[1,5 ¢ (XmXxSm)
< 0.

Thus, we proved inequality (2), which implies that @7 is sectionally upper hemicontinu-

ous on X! fort > 7.

Furthermore, to prove that ()] is compact valued, we only need to consider the case

that {xf, %, ... 2F |} ={28,29,...,2) |} for any k > 0, and repeat the above proof.

Step 2. Fix t > 7, we will show that )] is measurable.

Fix a sequence (£1,&5, .. .), where £} is a selection of M(A;) measurable in s7~1 and

continuous in 27~! for each j. For any M > ¢, let

M
Wi (he—1,Tey o Tagy Sy ey SM) =

/ u<ht—l> Ttye o s TM5 Sty -+ SM, T,y S)Q(htq,rrt,-~~790M,St,~~-,8M,5’)(d(ajv 3)) .
[Ts a (Xm X Sm)

By Lemma 9, 0(h,_, a:,...o0150,..50,¢") 15 Measurable from Hy to M (Hm>M(Xm X Sm)),
and sectionally continuous on X*. Thus, W is bounded, measurable, nonempty,

convex and compact valued. By Lemma B.6, W}/ is sectionally continuous on X*.

30



Suppose that for some t < 57 < M, WJ{/[ has been defined such that it is bounded,
measurable, nonempty, convex and compact valued, and sectionally continuous on X7,
Let

Jj—1 —
WM (ht,1,$t, e L1, Sty ey 8j,1> =

{ /X ) Wiy (M1, ey oo, T4, St - - 7Sj)Qth,l,mt,...,zj_l,st,‘..,sj_l,g)(d(xjv si)):
S

J
¢ < Aj<ht717xt7 RN 71}]‘,1,St, RN ,Sj,l),

Q(ht71ﬂﬁt,m@j—l,St,-n,sj—l, )

w), is a Borel measurable selection of W3, }.
Let S; = S;.% Since
J ‘ Vol g

/ (TR P AR ¢ FR )

X;xS;

, N -y
/ /X s ht LTty ee ey Ly Sty e vy SJ)p(ht_l,xt,...,xj,l,st,...7sj,1,g)(d(xj’ 35))
X

. (;OjO(ht—la Tyoo oy Lj—1ySty -+ -, S]))\J(dsj)v

we have

ht 17xt7'"axj—lasty"'asj—1> =
{/ / ht 17'It7~--7$ja8t7"'aSj)tht_l@t,m’xjil7St7,,,73j71’€)(d(xjvéj))
X ><S

. SOjO(ht—la Tyonn ,l’j_l, Styeny Sj))\j(de) .

=J ) .
p(htflwta---axj—l75t7---75j—1=f) € '_'j(ht_l’ Lty ooy Tjm1s St - - - ’83_1>’

w), is a Borel measurable selection of W3, }.

Let
177 _
WM(ht—la Ty ,l’j_l, Sty onn ,Sj) =

{ /X ; Wiy (-1, Tey oo T, Sty oy S5) - pihtfl,zt,...,xj,l,sm...,sjq,é) (d(z;,54)):
3

=J . .
p(htfl,It,m,fﬂjfl7St,~~-,8j717§) S ‘—‘j(h’t—b Ly 7'/17]—17 Sty .- 7SJ—1)7

6We will need to use Lemma B.2 below, which requires the continuity of the correspondences in terms
of the integrated variables. Since W7, is only measurable, but not continuous, in s;, we add a dummy

variable §; so that W73, is trivially continuous in such a variable.
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w), is a Borel measurable selection of W3, }.

Since Wi, (ht—1, ¢, ..., Tj, St, ..., s;) is continuous in x; and does not depend on §;, it is
continuous in (x;, 3;). In addition, W3, is bounded, measurable, nonempty, convex and
compact valued. By Lemma B.2, W, is bounded, measurable, nonempty and compact

valued, and sectionally continuous on X771,

It is easy to see that

Jj—1 _
WM (ht—la Ty ,Z’j_l, Sty 8]’_1) =

/ W]]\%(ht—ly Ty ,[Ej_l, Sty .nn ,Sj)(pjo(ht_l, Ty ,l’j_l, Styeny Sj))\j(de).
Sj

By Lemma 4, it is bounded, measurable, nonempty and compact valued, and sectionally
continuous on X7~!. By induction, one can show that ngl is bounded, measurable,

nonempty and compact valued, and sectionally continuous on X*~ .

Let Wit = Uy Wit That is, Wt is the closure of Uy Wi, which is

measurable due to Lemma 2.

First, W1 C Q7 because Wi, ' C Q7 for each M >t and Q7 is compact valued.
Second, fix h;_1 and ¢ € Q] (h;—1). Then there exists a mapping £ € T such that

q = / U/(ht_l?x?S)Q(htflvf)(d(x78))'
Hmzt(XmXSm)

For M > t, let
VM(ht—laxtw"7'rM78t7"'7SM) -

/ u(htfla Tty oo oy TMyStye -, SMy Ty 8>Q(ht71773t7---733]\/115ta---751v115) ($, S)
[T a1 (X X Sm)

and

M = / Var(hi-1, 2, S)Q%t_l,g)(d(% s))-
[i<m<ns (XmxSm)

Hence, gy € W;, ! Because the dynamic game is continuous at infinity, ¢a; — ¢, which
implies that ¢ € W 1(h;_1) and Q7 C WL

Therefore, W1 = Q7, and hence Q7 is measurable for ¢ > 7.

Step 3. For t < 7, we can start with QQ7,,. Repeating the backward induction in

Subsection B.4.1, we have that ()] is also bounded, measurable, nonempty and compact
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valued, and essentially sectionally upper hemicontinuous on X*~!. [

Denote
i_lv i ﬁ7'21 Qz — @a

Nr>1Q7, otherwise.

Q=

The following three lemmas show that Qf°(hi—1) = ®(Q53,)(hi—1) = Ei(hy—1) for A'71-
almost all hy_q € H;_;.7

Lemma B.10. 1. The correspondence Q5° is bounded, measurable, nonempty and

compact valued, and essentially sectionally upper hemicontinuous on Xt1.

2. Forany t > 1, Q°(hi—1) = ®(Q%1) (he—1) for X~ -almost all hy—y € Hy_1.

Proof. (1) Tt is obvious that Q% is bounded. By the definition of Q7, for A'"!-almost
all hy—y € Hiq, Q7' (hy—1) C Q7 (hy—1) for 74 > 7. Since @] is nonempty and compact
valued, Q° = N,>1Q7 is nonempty and compact valued for \X'"!-almost all h;_; € H;_;.
If N;51Q7 = 0, then Q¥ = Q!~'. Thus, Q*(h;_1) is nonempty and compact valued
for all hy—y € H;—1. By Lemma 2 (2), N;>1Q7 is measurable, which implies that Q° is

measurable.

Fix any s'~! € S! such that Q] (-, s"" ') is upper hemicontinuous on H; ;(s'!) for
any 7. By Lemma 2 (7), Q7(-,s""!) has a closed graph for each 7, which implies that
Q> (-, s'™1) has a closed graph. Referring to Lemma 2 (7) again, Q°(-,s*"!) is upper
hemicontinuous on H; ;(s'™!). Since Q7 is essentially upper hemicontinuous on X*~! for

each 7, Q% is essentially upper upper hemicontinuous on X1,

(2) For any 7 > 1 and A '-almost all by € Hy_1, ®(Q%,)(hi—1) C ®(Qy ) (he—1) C

Q7 (h-1), and hence ®(Q7;)(hi-1) € QF°(he-1).

The space {1,2,...00} is a countable compact set endowed with the following metric:
d(k,m) = |t —L|forany 1 < k,m < co. The sequence {Q7 1 }1<r<c can be regarded as a
correspondence Q41 from Hy x {1,2,... 00} to R™, which is measurable, nonempty and
compact valued, and essentially sectionally upper hemicontinuous on X* x {1,2,...,00}.
The backward induction in Subsection B.4.1 shows that ®(Qy1) is measurable,
nonempty and compact valued, and essentially sectionally upper hemicontinuous on

Xt x{1,2,...,00}.

"The proofs for Lemmas B.10 and B.12 follow the standard ideas with various modifications; see, for
example, [3], [4] and [5].
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Since ®(Qy41) is essentially sectionally upper hemicontinuous on X* x {1,2,..., 00},
there exists a measurable subset S*' C S*' such that A~'(S*™') = 1, and
B(Qus1)(-,-, 57 ") is upper hemicontinuous for any 5! € S*~!. Fix 5! € S*~!. For
hey = (271,87 € Hiy and a € Q®(hi_y), by its definition, a € Qf(h1) =
O(Q7,1)(hy—1) for 7 > t. Thus, a € P(Q% ) (hu—1)-

In summary, Q3°(hi—1) = ®(Q53,)(hi—1) for X'~ '-almost all hy_1 € Hy_;. O

Though the definition of )] involves correlated strategies for 7 < ¢, the following
lemma shows that one can work with mixed strategies in terms of equilibrium payoffs

via the combination of backward and forward inductions in multiple steps.

Lemma B.11. If ¢; is a measurable selection of ®(Qy%,), then ci(hi—1) is a subgame-

perfect equilibrium payoff vector for Xt=‘-almost all hy_, € H;_;.

Proof. Without loss of generality, we only prove the case t = 1.

Suppose that ¢; is a measurable selection of ®(Q5°). Apply Proposition B.3
recursively to obtain Borel measurable mappings { fi}ier for & > 1. That is, for any
k > 1, there exists a Borel measurable selection ¢ of Q7° such that for \;_;-almost all
hp—1 € Hi1,

1. fe(hg—1) is a Nash equilibrium in the subgame h;_;, where the action space is

Api(hy—1) for player ¢ € I, and the payoff function is given by

/ Crr1(Pi—1, -, Sk) fro(dsg|hk—1)-
Sk

Ck(hkz—l):/ / Cht1(P—1, Tk, Sk) fro(dsk|he—1) fi(dag|hk—1).
A (hr—1) v Sk

We need to show that ¢;(hg) is a subgame-perfect equilibrium payoff vector for Ag-almost
all hg € Hy.

Step 1. We show that for any k£ > 1 and A\y_;-almost all by € Hy_4,

cp(hg—1) = / w(hi—1,2,5) 0, ,,p)(dx,s)).
[Tk (Xim X Sm)

Since the game is continuous at infinity, there exists some positive integer M > k such
that w? is sufficiently small. By Lemma B.10, cx(hr—1) € Q°(hr—1) = Nr>1Q%(hr_1)
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for A\y_j-almost all hy_y € Hj_q. Since Qp = " FHQr ) for k < 7, cp(hy—1) €
ﬂTZkéT‘kH( ;+1)(hk_1) - (I)M_k+1(Q%+1)(hk_1) for A\p_j-almost all hp_y € Hj_q.
Thus, there exists a Borel measurable selection w of Q}7,, and some £ € T such that

for A\pr_1-almost all hy;_1 € Hyr_q,

i. far(hpr—1) is a Nash equilibrium in the subgame hj;_1, where the action space is

Anri(har—1) for player i € I, and the payoff function is given by
/w(hMla'75M)fM0(d3M’hM1);
Sm
ii.

CM(hM—l):/ / w(hM—laxM7SM)fMO(dSM|hM—1)fM<d17M‘hM—1>;
Aprr(hpi—1) Y Sm

iii. w(hy) = mezMH(meSm) w(har, ©, 8)0(hay ) (A, 9)).

Then for A\i_i-almost all hyp_1 € Hj_1,
cr(he—1) = / u(hg-1,2,8)owm,_, pry(dz, s)),
HmZk(meSm)
where fM is f if k < M, and & if k > M + 1. Since the game is continuous at infinity,

/ U(hk,1,$, S)Q(hk_l,fM)(d(x7 S))
HnLZk(X"LXSm)

converges to

/ U(hk—lvxvS)Q(hk_l,f)(d(x7s))
[Ln>k (XmXSm)

when M goes to infinity. Thus, for A\y_j-almost all h,_; € Hy 4,

cr(hi-1) = / u(h—1,7,8)0(h,_,,p)(dz, 5)). (3)
ngk(XmXSm)

Step 2. Below, we show that { fx;}ics is a subgame-perfect equilibrium.

Fix a player i and a strategy g; = {gri}x>1. For each k > 1, define a new strategy fik
as follows: f¥ = (g1, ..., ri, fte+1yis fk42)i» - - -). That is, we simply replace the initial &
stages of f; by ¢;. Denote f* = (fF, f_).
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Fix k > 1 and a measurable subset D* C S* such that (1) and (2) of step 1 and
Equation (3) hold for all s, € D* and 2 € Hy(s*), and A*(D¥) = 1. For each M > k, by
the Fubini property, there exists a measurable subset E,Jfl C S* such that \* (E,i‘/[ ) =1
and ®,, 1< (DM (s¥)) = 1 for all s* € EM where

DM (%) = {(sp1s- -5 857): (8% sk, ..., 85) € DMY.
Let DF = (N5- E}) 0 D*. Then \(DF) = 1.
For any hy, = (2%, s*) such that s* € D* and 2% € Hy(s*), we have
/ lh7,9)00.p (A 5)
Hm>k+1(X'm><Sm)

= / / Clkr2)i Py T 1, k1) fie1)0 (AS ki1 k) frogr (i [ )
Apg1(hg) v Skt

> / / Cl+2)i (Pes Tt Sk) Firr 1o (At [B) (Firn)(—i) @ Goesryi) (Apsr )
Agt1(hg) J Sp4a

=/ / / / Clh+3)i (P, Tha 1, Skt Tht2, Skt2)
Apy1(he) I Skr1 Y Agyo(hi,Tri1,8641) Y Sk

Joer2y0(dskralhi, Trgts Ski1) frr2) (=) @ frer2)i(dTrgal by Trg1, Ska1)

Je+nyo(dser1|he) frr1)(—i) @ gt 1)i(ATrgr|r)

Z/ / / / Clit3)i (M Thog 1, Skt 1, Thy2, Skg2)
Apy1(he) I Sky1 Y Ao (hi,Tri1,5041) Y Sk

Je+2)0(dspp2| P, Trot, Skt1) Fier2)(—i) @ grr2)i(ATpgal P, Thgrs Spa1)

Joer1yo(dse1|Pe) fer1) =) @ gog1yi(ATrgr|r)

— / u(hg, z, 8)og, freoy(d, s)).
H'm>k+l(Xm><Sm)

The first and the last equalities follow from Equation (3) in the end of step 1. The second

equality is due to (2) in step 1. The first inequality is based on (1) in step 1. The second
inequality holds by the following arguments:

i. by the choice of hy and (1) in step 1, for A\xii-almost all s;1 € Spyq and all
Tpy1 € Xpy1 such that (hg, Tri1, Skr1) € Her1, we have

/ / C(k+3)i (P, Thoy1, Skr1, Thop2, Skp2)
Apqo(hrTrt1,56+1) 7 Skyo

Joe+2)0(dSk2| ks Trs1, Se1) ety —i) @ foet2)i(dTrral i, Trgt, Skt1)
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> / / Clkt3)i (ks Thg 1, Skt 1, Thoy2, Skt2)
Apt2(hisZrt1,5k+1) J Sky2

Joer2y0(dskralhi, Trgt, Ska1) fer2) (i) @ rr2)i(ATra|hi, Tigr,s Spg1);

ii. since f(x41)0 is absolutely continuous with respect to Ax;1, the above inequality
also holds for f(xi1)0(hi)-almost all spy1 € Sipy1 and all 41 € Xy such that

(his Thg1s Skg1) € Hiqa.

Repeating the above argument, one can show that
/ ulls . 8)0(n 1) (. )
| I
Z/H U(hka$73)9(hk7fz\“4+1)(d(xa s))

for any M > k. Since

/ u(hk,x, S)Q(hk’fz\71+1)(d($73))
Hm2k+1(Xm><Sm)

converges to

/ u(hkhxvS)Q(hky(guffi))@(x?‘g))
Hm2k+1(Xm><Sm)

as M goes to infinity, we have

/ u(hk7xvs)9(hk,f)(d(l‘7 5))

Hm2k+1(Xm><Sm)

> / w(hi, T, 8) (ke (g3, 1-0) (AT, 8)).
[Ln> kg1 (Xm X Sm)

Therefore, { fyi}icr is a subgame-perfect equilibrium. ]

By Lemma B.10 and Proposition B.2, the correspondence ®(Q79,) is measurable,
nonempty and compact valued. By Lemma 2 (3), it has a measurable selection. Then

Theorem 3 follows from the above lemma.

Fort > 1and h;_1 € H;_, recall that E;(h,_1) is the set of payoff vectors of subgame-
perfect equilibria in the subgame h; ;. The following lemma shows that FE;(h; 1) is

essentially the same as Q7°(h;—1).

Lemma B.12. For anyt > 1, E;(hi_1) = Q°(hi_1) for X" -almost all hy_1 € Hy_;.
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Proof. (1) We will first prove the following claim: for any ¢ and 7, if Ey1(h:) € Q7. (he)
for A-almost all hy € Hy, then Ey(hy_1) C Q7 (hy_1) for X=*-almost all hy_; € H;_;. We
only need to consider the case that ¢t < 7.

By the construction of ®(Q7, ) in Subsection B.4.1, there exists a measurable subset
St=1 C St with A=1(S*~1) = 1 such that for any ¢, and hy_y = (z'~1, §"1) € H,_, with
sl e St if

Lo = fAt(htfl)fSt Gry1(he—1, 74, 8¢) fro(dsi|he—1)a(dz;), where gip1(hi—1,-) is mea-
surable and g1 (hi—1,2¢,5:) € Q7 1(hi—1,2¢,5;) for A-almost all s, € S; and
xp € Ay(hi—r);

2. @ € ®iegM(Ay;(hi—1)) is a Nash equilibrium in the subgame h;_; with payoff
fst Gr1(hi—1, -, 5¢) fro(dsi|hy—1) and action space Hig Agi(he—1),

then Ct € (I)(Q;,_l)(h't—l)-
Fix a subgame hy_; = (2'~1, §"1) such that §~! € S*~1. Pick a point ¢; € Ey(§1).
There exists a strategy profile f such that f is a subgame-perfect equilibrium in the

subgame h;_; and the payoff is ¢;. Let ¢;11(hi—1, 24, s¢) be the payoff vector induced by
{fti}ier in the subgame (hy, x4, s;) € Gr(A;) x S;. Then we have

L ¢ = fAt(ht—l)fSt Ct+1(ht—1;$taSt)fto(d3t|ht—1)ft(d$t|ht—1)§

2. fi(-|ht—1) is a Nash equilibrium in the subgame h;_; with action space A;(h;—1)
and payoff fSt Cir1(Pe_1, -, 8¢) fro(dsg|he_1).

Since f is a subgame-perfect equilibrium in the subgame h; 1, ciq(hi1, 2, 8) €
Eii(hi—1, w6, 8¢) C Q7 i (he—1, 24, 5¢) for A-almost all s, € Sy and x¢ € A(hy—y), which
implies that ¢; € ®(Q7,,)(hi—1) = QF (h4—1).

Therefore, Ey(h;_1) C QF (hs—1) for X'~ '-almost all h,_y € H; ;.

(2) For any t > 7, E, C Q7. If t < 7, we can start with E.,; C Q7. and repeat
the argument in (1), then we can show that Fy(h; 1) C Q7 (hs_1) for A"!-almost all
hi_y € Hy_y. Thus, Ey(hi_1) C Q°(hs—y) for X'"!-almost all by € H;_;.

(3) Suppose that c; is a measurable selection from ®(Q7%,). Apply Proposition B.3
recursively to obtain Borel measurable mappings { fxi}ies for £ > t. By Lemma B.11,
ct(hy_1) is a subgame-perfect equilibrium payoff vector for AX*~!-almost all h; | € H; ;.
Consequently, ®(Q2%,)(hi—1) C Ei(hi—1) for N~'-almost all b,y € H;_y.

By Lemma B.10, Ei(hi—1) = Q°(hi—1) = ®(Q%1)(he—1) for N -almost all hy_y €
H; ;. [
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B.5 Proof of Proposition B.1

We will highlight the needed changes in comparison with the proofs presented in
Subsections B.4.1-B.4.3.

1. Backward induction. We first consider stage ¢ with N; = 1.
If Ny =1, then S; = {s;}. Thus, Pi(hi_1,2¢) = Qir1(he_1, x4, ), which is nonempty

and compact valued, and essentially sectionally upper hemicontinuous on X* x St-=1,

Notice that P, may not be convex valued.

We first assume that P, is upper hemicontinuous. Suppose that j is the player who
is active in this period. Consider the correspondence ®;: H; 1 — R" x M(X;) x A(X;)
defined as follows: (v, a, ) € ®y(hy_q) if

Lov = pi(hi1, Ay—jy(he-1),x3;) such that pi(h;1,-) is a measurable selection of
Py(hi—1, ‘);8

2. xj; € Ay(hi1) is a maximization point of player j given the payoff function
Ptj(hi—1, Ay—j)(he—1),-) and the action space Ay(hi—1), & = 0a,(n,_,) for i # j

and o = 5%;
3. p= 5pt(ht—17At(—j)(ht—l)vx;(j)'

This is a single agent problem. We need to show that ®; is nonempty and compact

valued, and upper hemicontinuous.

If P, is nonempty, convex and compact valued, and upper hemicontinuous, then we
can use Lemma 10, the main result of [7], to prove the nonemptiness, compactness,
and upper hemicontinuity of ®,. In [7], the only step they need the convexity of P,
for the proof of their main theorem is Lemma 2 therein. However, the one-player pure-
strategy version of their Lemma 2, stated in the following, directly follows from the upper
hemicontinuity of P, without requiring the convexity.

Let Z be a compact metric space, and {z, }n>0 € Z. Let P: Z — Ry be a bounded,
upper hemicontinuous correspondence with nonempty and compact values. For
each n > 1, let ¢, be a Borel measurable selection of P such that ¢, (z,) = d,. If

zn, converges to zg and d,, converges to some dy, then dy € P(zp).

Repeat the argument in the proof of the main theorem of [7], one can show that ®,

is nonempty and compact valued, and upper hemicontinuous.

8Note that Ay(—j) is point valued since all players other than j are inactive.
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Then we go back to the case that P, is nonempty and compact valued, and essentially
sectionally upper hemicontinuous on X* x St=1. Recall that we proved Proposition B.2
based on Lemma 10. If P, is essentially sectionally upper hemicontinuous on X x S’t_l,
we can show the following result based on a similar argument as in Sections B.3: there
exists a bounded, measurable, nonempty and compact valued correspondence ®; from
H; 1 to R" X M(X;) x A(X;) such that ®, is essentially sectionally upper hemicontinuous
on X1 x §=1 and for N*~l-almost all h,_; € H,_;, (v, 1) € Dy(hy_y) if

L v = pi(hi1, Ay—jy(he-1),x3;) such that py(h;1,-) is a measurable selection of
Pt(htfla ');

2. xj; € Ag(hi1) is a maximization point of player j given the payoff function
Ptj(he—1, Ay—j)(he—1),-) and the action space Ay(hi—1), & = 0a,(n,_,) for i # j

and o = 5@],;
3. p= 5pt(ht—17At(fj)(ht—l)vx;‘)'

Next we consider the case that N; = 0. Suppose that the correspondence ;.
from H; to R™ is bounded, measurable, nonempty and compact valued, and essentially

sectionally upper hemicontinuous on X* x S*. For any (h,_y,x¢, 8;) € Gr(4,), let

Rt(h't717 Tt, §t> = B Qt+1(ht717 L, gtu gt)fto (d§t|ht717 T, §t)
St
:/ Qt+1(ht—1,$t,§t,§t)90t0(ht—1,fft>§t,§t))\t(d§t)'
St

Then following the same argument as in Subsection B.4.1, one can show that R; is a
nonempty, convex and compact valued, and essentially sectionally upper hemicontinuous

correspondence on X! x St

For any h; 1 € H;_1 and z; € Ay(hy—1), let

Pt(ht—b $t> = / Rt(ht—b T, §t)ft0(d§t|ht—1a il?t)-

Ago(ht—1,2t)

By Lemma 7, P, is nonempty, convex and compact valued, and essentially sectionally
upper hemicontinuous on X! x St=1 The rest of the step remains the same as in
Subsection B.4.1.

2. Forward induction: unchanged.
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3. Infinite horizon: we need to slightly modify the definition of =™ for any m; >

t > 1. Fix any ¢t > 1. Define a correspondence Z! as follows: in the subgame h;_1,
(1) = (M(Ay(hy_r)) © fto(ht—la ) ® Ay

For any m; > t, suppose that the correspondence Z" ! has been defined. Then we can
define a correspondence =" : H; 1 = M (Htgmgml (Xm X Sm)) as follows:

=7 (hit) ={g(he-1) © (Em (-1, © Frmolhi1,)) @ Ay ) :

. . —mq—1
g is a Borel measurable selection of =" ™",

&m, is a Borel measurable selection of M(A,,,)}.

Then the result in Subsection B.4.3 is true with the above =™ .

Consequently, a subgame-perfect equilibrium exists.
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