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In Section B.1, we shall present the model of measurable dynamic games with

partially perfect information and show the existence of subgame-perfect equilibria in

Proposition B.1. It covers the results in Theorem 3 (Theorem 4) for dynamic games with

almost perfect information (perfect information), and in discounted stochastic games.

In Section B.2, we present Lemmas B.1-B.6 as the mathematical preparations for

proving Theorem 3. We present in Section B.3 a new equilibrium existence result for

discontinuous games with stochastic endogenous sharing rules. The proof of Theorem 3

is given in Section B.4. The proof of Proposition B.1 is provided in Section B.5, which

covers Theorem 4 as a special case. One can skip Sections B.2 and B.3 first, and refer

to the technical results in these two sections whenever necessary.

B.1 Measurable dynamic games with partially perfect informa-

tion

In this section, we will generalize the model of measurable dynamic games in three

directions. The ARM condition is partially relaxed such that (1) perfect information

may be allowed in some stages, (2) the state transitions could have a weakly continuous

component in all other stages, and (3) the state transition in any period can depend on

the action profile in the current stage as well as on the previous history. The first change

allows us to combine the models of dynamic games with perfect and almost perfect

information. The second generalization implies that the state transitions need not be
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norm continuous on the Banach space of finite measures. The last modification covers

the model of stochastic games as a special case.

The changes are described below.

1. The state space is a product space of two Polish spaces; that is, St = Ŝt × S̃t for

each t ≥ 1.

2. For each i ∈ I, the action correspondence Ati from Ht−1 to Xti is measurable,

nonempty and compact valued, and sectionally continuous on X t−1 × Ŝt−1. The

additional component of Nature is given by a measurable, nonempty and closed

valued correspondence Ât0 from Gr(At) to Ŝt, which is sectionally continuous on

X t × Ŝt−1. Then Ht = Gr(Ât0)× S̃t, and H∞ is the subset of X∞ × S∞ such that

(x, s) ∈ H∞ if (xt, st) ∈ Ht for any t ≥ 0.

3. The choice of Nature depends not only on the history ht−1, but also on the action

profile xt in the current stage. The state transition ft0(ht−1, xt) = f̂t0(ht−1, xt) �
f̃t0(ht−1, xt), where f̂t0 is a transition probability from Gr(At) to M(Ŝt) such that

f̂t0(Ât0(ht−1, xt)|ht−1, xt) = 1 for all (ht−1, xt) ∈ Gr(At), and f̃t0 is a transition

probability from Gr(Ât0) to M(S̃t).

4. For each i ∈ I, the payoff function ui is a Borel measurable mapping from H∞ to

R++, which is sectionally continuous on X∞ × Ŝ∞.

As in Subsection 3.3, we allow the possibility for the players to have perfect

information in some stages. For t ≥ 1, let

Nt =


1, if ft0(ht−1, xt) ≡ δst for some st and

|{i ∈ I : Ati is not point valued}| = 1;

0, otherwise.

Thus, if Nt = 1 for some stage t, then the player who is active in the period t is the only

active player and has perfect information.

We will drop the ARM condition in those periods with only one active player, and

weaken the ARM condition in other periods.

Assumption B.1 (ARM′). 1. For any t ≥ 1 with Nt = 1, St is a singleton set {śt}
and λt = δśt.

2. For each t ≥ 1 with Nt = 0, f̂t0 is sectionally continuous on X t × Ŝt−1, where the

range space M(Ŝt) is endowed with topology of weak convergence of measures on
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Ŝt. The probability measure f̃t0(·|ht−1, xt, ŝt) is absolutely continuous with respect

to an atomless Borel probability measure λt on S̃t for all (ht−1, xt, ŝt) ∈ Gr(Ât0),

and ϕt0(ht−1, xt, ŝt, s̃t) is the corresponding density.1

3. The mapping ϕt0 is Borel measurable and sectionally continuous on X t × Ŝt, and

integrably bounded in the sense that there is a λt-integrable function φt : S̃t → R+

such that ϕt0(ht−1, xt, ŝt, s̃t, ) ≤ φt(s̃t) for any (ht−1, xt, ŝt).

The following result shows that the existence result is still true in this more general

setting.

Proposition B.1. If an infinite-horizon dynamic game as described above satisfies

the ARM′ condition and is continuous at infinity, then it possesses a subgame-perfect

equilibrium f . In particular, for j ∈ I and t ≥ 1 such that Nt = 1 and player j is the

only active player in this period, ftj can be deterministic. Furthermore, the equilibrium

payoff correspondence Et is nonempty and compact valued, and essentially sectionally

upper hemicontinuous on X t−1 × Ŝt−1.

Remark B.1. The result above also implies a new existence result of subgame-perfect

equilibria for stochastic games. In the existence result of [6], the state transitions are

assumed to be norm continuous with respect to the actions in the previous stage. They

did not assume the ARM condition. On the contrary, our Proposition B.1 allows the

state transitions to have a weakly continuous component.

B.2 Technical preparations

The following lemma shows that the space of nonempty compact subsets of a Polish

space is still Polish under the Hausdorff metric topology.

Lemma B.1. Suppose that X is a Polish space and K is the set of all nonempty compact

subsets of X endowed with the Hausdorff metric topology. Then K is a Polish space.

Proof. By Theorem 3.88 (2) of [1], K is complete. In addition, Corollary 3.90 and

Theorem 3.91 of [1] imply that K is separable. Thus, K is a Polish space.

The following result presents a variant of Lemma 5 in terms of transition correspon-

dences.

1In this section, a property is said to hold for λt-almost all ht ∈ Ht if it is satisfied for λt-almost all
s̃t ∈ S̃t and all (xt, ŝt) ∈ Ht(s̃

t).

3



Lemma B.2. Let X and Y be Polish spaces, and Z a compact subset of Rl
+. Let G be

a measurable, nonempty and compact valued correspondence from X to M(Y ). Suppose

that F is a measurable, nonempty, convex and compact valued correspondence from X×Y
to Z. Define a correspondence Π from X to Z as follows:

Π(x) = {
∫
Y

f(x, y)g(dy|x) : g is a Borel measurable selection of G,

f is a Borel measurable selection of F}.

If F is sectionally continuous on Y , then

1. the correspondence F̃ : X×M(Y )→ Z as F̃ (x, ν) =
∫
Y
F (x, y)ν(dy) is sectionally

continuous on M(Y ); and

2. Π is a measurable, nonempty and compact valued correspondence.

3. If F and G are both continuous, then Π is continuous.

Proof. (1) For any fixed x ∈ X, the upper hemicontinuity of F̃ (x, ·) follows from

Lemma 7.

Next, we shall show the lower hemicontinuity. Fix any x ∈ X. Suppose that {νj}j≥0 is

a sequence inM(Y ) such that νj → ν0 as j →∞. Pick an arbitrary point z0 ∈ F̃ (x, ν0).

Then there exists a Borel measurable selection f of F (x, ·) such that z0 =
∫
Y
f(y)ν0(dy).

By Lemma 3 (Lusin’s theorem), for each k ≥ 1, there exists a compact subset Dk ⊆ Y

such that f is continuous on Dk and ν0(Y \ Dk) <
1

3kM
, where M > 0 is the bound of

Z. Define a correspondence Fk : Y → Z as follows:

Fk(y) =

{f(y)}, y ∈ Dk;

F (x, y), y ∈ Y \Dk.

Then Fk is nonempty, convex and compact valued, and lower hemicontinuous. By

Theorem 3.22 in [1], Y is paracompact. Then by Lemma 3 (Michael’s selection theorem),

Fk has a continuous selection fk.

For each k, since νj → ν0 and fk is bounded and continuous,
∫
Y
fk(y)νj(dy) →∫

Y
fk(y)ν0(dy) as j → ∞. Thus, there exists a subsequence {νjk} such that {jk} is an

increasing sequence, and for each k ≥ 1,∥∥∥∥∫
Y

fk(y)νjk(dy)−
∫
Y

fk(y)ν0(dy)

∥∥∥∥ < 1

3k
,
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where ‖ · ‖ is the Euclidean norm on Rl.

Since fk coincides with f on Dk, ν0(Y \Dk) <
1

3kM
, and Z is bounded by M ,∥∥∥∥∫

Y

fk(y)ν0(dy)−
∫
Y

f(y)ν0(dy)

∥∥∥∥ < 2

3k
.

Thus, ∥∥∥∥∫
Y

fk(y)νjk(dy)−
∫
Y

f(y)ν0(dy)

∥∥∥∥ < 1

k
.

Let zjk =
∫
Y
fk(y)νjk(dy) for each k. Then zjk ∈ F̃ (x, νjk) and zjk → z0 as k → ∞. By

Lemma 1, F̃ (x, ·) is lower hemicontinuous.

(2) Since G is measurable and compact valued, there exists a sequence of Borel

measurable selections {gk}k≥1 of G such that G(x) = {g1(x), g2(x), . . .} for any x ∈ X
by Lemma 2 (5). For each k ≥ 1, define a correspondence Πk from X to Z by letting

Πk(x) = F̃ (x, gk(x)) =
∫
Y
F (x, y)gk(dy|x). Since F is convex valued, so is Πk. By

Lemma 5, Πk is also measurable, nonempty and compact valued.

Fix any x ∈ X. It is clear that Π(x) = F̃ (x,G(x)) is nonempty valued. Since G(x) is

compact, and F̃ (x, ·) is compact valued and continuous, Π(x) is compact by Lemma 2.

Thus,
⋃
k≥1 Πk(x) ⊆ Π(x).

Fix any x ∈ X and z ∈ Π(x). There exists a point ν ∈ G(x) such that z ∈ F̃ (x, ν).

Since {gk(x)}k≥1 is dense in G(x), it has a subsequence {gkm(x)} such that gkm(x)→ ν.

As F̃ (x, ·) is continuous, F̃ (x, gkm(x))→ F̃ (x, ν). That is,

z ∈
⋃
k≥1

F̃ (x, gk(x)) =
⋃
k≥1

Πk(x).

Therefore,
⋃
k≥1 Πk(x) = Π(x) for any x ∈ X. Lemma 2 (1) and (2) imply that Π is

measurable.

(3) Define a correspondence F̂ : M(X × Y )→ Z as follows:

F̂ (τ) =

{∫
X×Y

f(x, y)τ(d(x, y)) : f is a Borel measurable selection of F

}
.

By (1), F̂ is continuous. Define a correspondence Ĝ : X →M(X×Y ) as Ĝ(x) = {δx⊗ν :

ν ∈ G(x)}. Since Ĝ and F̂ are both nonempty valued, Π(x) = F̂ (Ĝ(x)) is nonempty. As
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Ĝ is compact valued and F̂ is continuous, Π is compact valued by Lemma 2. As Ĝ and

F̂ are both continuous, Π is continuous by Lemma 1 (7).

The following lemma shows that a measurable and sectionally continuous correspon-

dence on a product space is approximately continuous on the product space.

Lemma B.3. Let S, X and Y be Polish spaces endowed with the Borel σ-algebras, and

λ a Borel probability measure on S. Denote S as the completion of the Borel σ-algebra

B(S) of S under the probability measure λ. Suppose that D is a B(S)⊗B(Y )-measurable

subset of S×Y , where D(s) is nonempty and compact for all s ∈ S. Let A be a nonempty

and compact valued correspondence from D to X, which is sectionally continuous on Y

and has a B(S × Y ×X)-measurable graph. Then

(i) Ã(s) = Gr(A(s, ·)) is an S-measurable mapping from S to the set of nonempty and

compact subsets KY×X of Y ×X;

(ii) there exist countably many disjoint compact subsets {Sm}m≥1 of S such that (1)

λ(∪m≥1Sm) = 1, and (2) for each m ≥ 1, Dm = D ∩ (Sm × Y ) is compact, and A

is nonempty and compact valued, and continuous on each Dm.

Proof. (i) A(s, ·) is continuous and D(s) is compact, Gr(A(s, ·)) ⊆ Y ×X is compact by

Lemma 2. Thus, Ã is nonempty and compact valued. Since A has a measurable graph, Ã

is an S-measurable mapping from S to the set of nonempty and compact subsets KY×X
of Y ×X by Lemma 1 (4).

(ii) Define a correspondence D̃ from S to Y such that D̃(s) = {y ∈ Y : (s, y) ∈ D}.
Then D̃ is nonempty and compact valued. As in (i), D̃ is S-measurable. By Lemma 3

(Lusin’s Theorem), there exists a compact subset S1 ⊆ S such that λ(S \ S1) < 1
2
,

D̃ and Ã are continuous functions on S1. By Lemma 1 (3), D̃ and Ã are continuous

correspondences on S1. Let D1 = {(s, y) ∈ D : s ∈ S1, y ∈ D̃(s)}. Since S1 is compact

and D̃ is continuous, D1 is compact (see Lemma 2 (6)).

Following the same procedure, for any m ≥ 1, there exists a compact subset Sm ⊆
S such that (1) Sm ∩ (∪1≤k≤m−1Sk) = ∅ and Dm = D ∩ (Sm × Y ) is compact, (2)

λ(Sm) > 0 and λ (S \ (∪1≤k≤mSm)) < 1
2m

, and (3) A is nonempty and compact valued,

and continuous on Dm. This completes the proof.

The lemma below states an equivalence property for the weak convergence of Borel

probability measures obtained from the product of transition probabilities.
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Lemma B.4. Let S and X be Polish spaces, and λ a Borel probability measure on S.

Suppose that {Sk}k≥1 is a sequence of disjoint compact subsets of S such that λ(∪k≥1Sk) =

1. For each k, define a probability measure on Sk as λk(D) = λ(D)
λ(Sk)

for any measurable

subset D ⊆ Sk. Let {νm}m≥0 be a sequence of transition probabilities from S to M(X),

and τm = λ � νm for any m ≥ 0. Then τm weakly converges to τ0 if and only if λk � νm
weakly converges to λk � ν0 for each k ≥ 1.

Proof. First, we assume that τm weakly converges to τ0. For any closed subset E ⊆
Sk × X, we have lim supm→∞ τm(E) ≤ τ0(E). That is, lim supm→∞ λ � νm(E) ≤ λ �
ν0(E). For any k, 1

λ(Sk)
lim supm→∞ λ � νm(E) ≤ 1

λ(Sk)
λ � ν0(E), which implies that

lim supm→∞ λk � νm(E) ≤ λk � ν0(E). Thus, λk � νm weakly converges to λk � ν0 for each

k ≥ 1.

Second, we consider the case that λk � νm weakly converges to λk � ν0 for each k ≥ 1.

For any closed subset E ⊆ S × X, let Ek = E ∩ (Sk × X) for each k ≥ 1. Then

{Ek} are disjoint closed subsets and lim supm→∞ λk � νm(Ek) ≤ λk � ν0(Ek). Since

λk � νm(E ′) = 1
λ(Sk)

λ � νm(E ′) for any k, m and measurable subset E ′ ⊆ Sk×X, we have

that lim supm→∞ λ � νm(Ek) ≤ λ � ν0(Ek). Thus,∑
k≥1

lim sup
m→∞

λ � νm(Ek) ≤
∑
k≥1

λ � ν0(Ek) = λ � ν0(E).

Since the limit superior is subadditive, we have∑
k≥1

lim sup
m→∞

λ � νm(Ek) ≥ lim sup
m→∞

∑
k≥1

λ � νm(Ek) = lim sup
m→∞

λ � νm(E).

Therefore, lim supm→∞ λ � νm(E) ≤ λ � ν0(E), which implies that τm weakly converges

to τ0.

The following is a key lemma that allows one to drop the continuity condition on the

state variables through a reference measure in Theorem 3.

Lemma B.5. Suppose that X, Y and S are Polish spaces and Z is a compact metric

space. Let λ be a Borel probability measure on S, and A a nonempty and compact

valued correspondence from Z ×S to X which is sectionally upper hemicontinuous on Z

and has a B(Z × S ×X)-measurable graph. Let G be a nonempty and compact valued,

continuous correspondence from Z to M(X × S). We assume that for any z ∈ Z and

τ ∈ G(z), the marginal of τ on S is λ and τ(Gr(A(z, ·))) = 1. Let F be a measurable,

nonempty, convex and compact valued correspondence from Gr(A)→M(Y ) such that F
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is sectionally continuous on Z×X. Define a correspondence Π from Z toM(X×S×Y )

by letting

Π(z) = {g(z) � f(z, ·) : g is a Borel measurable selection of G,

f is a Borel measurable selection of F}.

Then the correspondence Π is nonempty and compact valued, and continuous.

Proof. Let S be the completion of B(S) under the probability measure λ. By Lemma B.3,

Ã(s) = Gr(A(s, ·)) can be viewed as an S-measurable mapping from S to the set of

nonempty and compact subsets KZ×X of Z × X. For any s ∈ S, the correspondence

Fs = F (·, s) is continuous on Ã(s). By Lemma 3, there exists a measurable, nonempty

and compact valued correspondence F̃ from Z×X×S toM(Y ) and a Borel measurable

subset S ′ of S with λ(S ′) = 1 such that for each s ∈ S ′, F̃s is continuous on Z ×X, and

the restriction of F̃s to Ã(s) is Fs.

By Lemma 3 (Lusin’s theorem), there exists a compact subset S1 ⊆ S ′ such that Ã

is continuous on S1 and λ(S1) > 1
2
. Let K1 = Ã(S1). Then K1 ⊆ Z ×X is compact.

Let C(K1,KM(Y )) be the space of continuous functions from K1 to KM(Y ), where

KM(Y ) is the set of nonempty and compact subsets ofM(Y ). Suppose that the restriction

of S on S1 is S1. Let F̃1 be the restriction of F̃ to K1 × S1. Then F̃1 can be viewed as

an S1-measurable function from S1 to C(K1,KM(Y )) (see Theorem 4.55 in [1]). Again

by Lemma 3 (Lusin’s theorem), there exists a compact subset of S1, say itself, such that

λ(S1) > 1
2

and F̃1 is continuous on S1. As a result, F̃1 is a continuous correspondence

on Gr(A) ∩ (S1 × Z × X), so is F . Let λ1 be a probability measure on S1 such that

λ1(D) = λ(D)
λ(S1)

for any measurable subset D ⊆ S1.

For any z ∈ Z and τ ∈ G(z), the definition of G implies that there exists a transition

probability ν from S to X such that λ � ν = τ . Define a correspondence G1 from Z

to M(X × S) as follows: for any z ∈ Z, G1(z) is the set of all τ1 = λ1 � ν such that

τ = λ � ν ∈ G(z). It can be easily checked that G1 is also a nonempty and compact

valued, and continuous correspondence. Let

Π1(z) = {τ1 � f(z, ·) : τ1 = λ1 � ν ∈ G1(z),

f is a Borel measurable selection of F̃}.

By Lemma 9, Π1 is nonempty and compact valued, and continuous. Furthermore, it is
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easy to see that for any z, Π1(z) coincides with the set

{(λ1 � ν) � f(z, ·) : λ � ν ∈ G(z), f is a Borel measurable selection of F}.

Repeat this procedure, one can find a sequence of compact subsets {St} such that

(1) for any t ≥ 1, St ⊆ S ′, St ∩ (S1 ∪ . . . St−1) = ∅ and λ(S1 ∪ . . . ∪ St) ≥ t
t+1

, (2)

F is continuous on Gr(A) ∩ (St × Z × X), λt is a probability measure on St such that

λt(D) = λ(D)
λ(St)

for any measurable subset D ⊆ St, and (3) the correspondence

Πt(z) = {(λt � ν) � f(z, ·) : λ � ν ∈ G(z),

f is a Borel measurable selection of F}.

is nonempty and compact valued, and continuous.

Pick a sequence {zk}, {νk} and {fk} such that (λ�νk)�fk(zk, ·) ∈ Π(zk), zk → z0 and

(λ � νk) � fk(zk, ·) weakly converges to some κ. It is easy to see that (λt � νk) � fk(zk, ·) ∈
Πt(zk) for each t. As Π1 is compact valued and continuous, it has a subsequence, say

itself, such that zk converges to some z0 ∈ Z and (λ1 � νk) � fk(zk, ·) weakly converges

to some (λ1 � µ1) � f 1(z0, ·) ∈ Π1(z0). Repeat this procedure, one can get a sequence

of {µm} and fm. Let µ(s) = µm(s) and f(z0, s, x) = fm(z0, s, x) for any x ∈ A(z0, s)

when s ∈ Sm. By Lemma B.4, (λ � µ) � f(z0, ·) = κ, which implies that Π is upper

hemicontinuous.

Similarly, the compactness and lower hemicontinuity of Π follow from the compactness

and lower hemicontinuity of Πt for each t.

The next lemma presents the convergence property for the integrals of a sequence of

functions and probability measures.

Lemma B.6. Let S and X be Polish spaces, and A a measurable, nonempty and compact

valued correspondence from S to X. Suppose that λ is a Borel probability measure on

S and {νn}1≤n≤∞ is a sequence of transition probabilities from S to M(X) such that

νn(A(s)|s) = 1 for each s and n. For each n ≥ 1, let τn = λ � νn. Assume that

the sequence {τn} of Borel probability measures on S × X converges weakly to a Borel

probability measure τ∞ on S × X. Let {gn}1≤n≤∞ be a sequence of functions satisfying

the following three properties.

1. For each n between 1 and ∞, gn : S × X → R+ is measurable and sectionally

continuous on X.
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2. For any s ∈ S and any sequence xn → x∞ in X, gn(s, xn)→ g∞(s, x∞) as n→∞.

3. The sequence {gn}1≤n≤∞ is integrably bounded in the sense that there exists a λ-

integrable function ψ : S → R+ such that for any n, s and x, gn(s, x) ≤ ψ(s).

Then we have ∫
S×X

gn(s, x)τn(d(s, x))→
∫
S×X

g∞(s, x)τ∞(d(s, x)).

Proof. By Theorem 2.1.3 in [2], for any integrably bounded function g : S × X → R+

which is sectionally continuous on X, we have∫
S×X

g(s, x)τn(d(s, x))→
∫
S×X

g(s, x)τ∞(d(s, x)). (1)

Let {yn}1≤n≤∞ be a sequence such that yn = 1
n

and y∞ = 0. Then yn → y∞. Define

a mapping g̃ from S × X × {y1, . . . , y∞} such that g̃(s, x, yn) = gn(s, x). Then g̃ is

measurable on S and continuous on X × {y1, . . . , y∞}. Define a correspondence G from

S to X × {y1, . . . , y∞} × R+ such that

G(s) = {(x, yn, c) : c ∈ g̃(s, x, yn), x ∈ A(s), 1 ≤ n ≤ ∞} .

For any s, A(s)× {y1, . . . , y∞} is compact and g̃(s, ·, ·) is continuous. By Lemma 2 (6),

G(s) is compact. By Lemma 1 (2), G can be viewed as a measurable mapping from S

to the space of nonempty compact subsets of X × {y1, . . . , y∞} × R+. Similarly, A can

be viewed as a measurable mapping from S to the space of nonempty compact subsets

of X.

Fix an arbitrary ε > 0. By Lemma 3 (Lusin’s theorem), there exists a compact subset

S1 ⊆ S such that A and G are continuous on S1 and λ(S \ S1) < ε. Without loss of

generality, we can assume that λ(S \S1) is sufficiently small such that
∫
S\S1

ψ(s)λ(ds) <
ε
6
. Thus, for any n,∫

(S\S1)×X
ψ(s)τn(d(s, x)) =

∫
(S\S1)

ψ(s)νn(X)λ(ds) <
ε

6
.

By Lemma 2 (6), the set E = {(s, x) : s ∈ S1, x ∈ A(s)} is compact. Since G

is continuous on S1, g̃ is continuous on E × {y1, . . . , y∞}. Since E × {y1, . . . , y∞} is

compact, g̃ is uniformly continuous on E × {y1, . . . , y∞}. Thus, there exists a positive

integer N1 > 0 such that for any n ≥ N1, |gn(s, x)− g∞(s, x)| < ε
3

for any (s, x) ∈ E.
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By Equation (1), there exists a positive integer N2 such that for any n ≥ N2,∣∣∣∣∫
S×X

g∞(s, x)τn(d(s, x))−
∫
S×X

g∞(s, x)τ∞(d(s, x))

∣∣∣∣ < ε

3
.

Let N0 = max{N1, N2}. For any n ≥ N0,∣∣∣∣∫
S×X

gn(s, x)τn(d(s, x))−
∫
S×X

g∞(s, x)τ∞(d(s, x))

∣∣∣∣
≤
∣∣∣∣∫
S×X

gn(s, x)τn(d(s, x))−
∫
S×X

g∞(s, x)τn(d(s, x))

∣∣∣∣
+

∣∣∣∣∫
S×X

g∞(s, x)τn(d(s, x))−
∫
S×X

g∞(s, x)τ∞(d(s, x))

∣∣∣∣
≤
∣∣∣∣∫
S1×X

gn(s, x)τn(d(s, x))−
∫
S1×X

g∞(s, x)τn(d(s, x))

∣∣∣∣
+

∣∣∣∣∫
(S\S1)×X

gn(s, x)τn(d(s, x))−
∫

(S\S1)×X
g∞(s, x)τn(d(s, x))

∣∣∣∣
+

∣∣∣∣∫
S×X

g∞(s, x)τn(d(s, x))−
∫
S×X

g∞(s, x)τ∞(d(s, x))

∣∣∣∣
≤
∫
E

|gn(s, x)− g∞(s, x)| τn(d(s, x)) + 2 ·
∫

(S\S1)×X
ψ(s)τn(d(s, x))

+

∣∣∣∣∫
S×X

g∞(s, x)τn(d(s, x))−
∫
S×X

g∞(s, x)τ∞(d(s, x))

∣∣∣∣
<
ε

3
+ 2 · ε

6
+
ε

3

= ε.

This completes the proof.

B.3 Discontinuous games with endogenous stochastic sharing

rules

It was proved in [7] that a Nash equilibrium exists in discontinuous games with

endogenous sharing rules. In particular, they considered a static game with a payoff

correspondence P that is bounded, nonempty, convex and compact valued, and upper

hemicontinuous. They showed that there exists a Borel measurable selection p of the

payoff correspondence, namely the endogenous sharing rule, and a mixed strategy profile

α such that α is a Nash equilibrium when players take p as the payoff function (see

Lemma 10).
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In this section, we shall consider discontinuous games with endogenous stochastic

sharing rules. That is, we allow the payoff correspondence to depend on some state

variable in a measurable way as follows:

1. let S be a Borel subset of a Polish space, Y a Polish space, and λ a Borel probability

measure on S;

2. D is a B(S) ⊗ B(Y )-measurable subset of S × Y , where D(s) is compact for all

s ∈ S and λ ({s ∈ S : D(s) 6= ∅}) > 0;

3. X =
∏

1≤i≤nXi, where each Xi is a Polish space;

4. for each i, Ai is a measurable, nonempty and compact valued correspondence from

D to Xi, which is sectionally continuous on Y ;

5. A =
∏

1≤i≤nAi and E = Gr(A);

6. P is a bounded, measurable, nonempty, convex and compact valued correspondence

from E to Rn which is essentially sectionally upper hemicontinuous on Y ×X.

A stochastic sharing rule at (s, y) ∈ D is a Borel measurable selection of the

correspondence P (s, y, ·); i.e., a Borel measurable function p : A(s, y) → Rn such that

p(x) ∈ P (s, y, x) for all x ∈ A(s, y). Given (s, y) ∈ D, P (s, y, ·) represents the set of all

possible payoff profiles, and a sharing rule p is a particular choice of the payoff profile.

Now we shall prove the following proposition.

Proposition B.2. There exists a B(D)-measurable, nonempty and compact valued

correspondence Φ from D to Rn ×M(X)×4(X) such that Φ is essentially sectionally

upper hemicontinuous on Y , and for λ-almost all s ∈ S with D(s) 6= ∅ and y ∈ D(s),

Φ(s, y) is the set of points (v, α, µ) that

1. v =
∫
X
p(s, y, x)α(dx) such that p(s, y, ·) is a Borel measurable selection of

P (s, y, ·);2

2. α ∈ ⊗i∈IM(Ai(s, y)) is a Nash equilibrium in the subgame (s, y) with payoff profile

p(s, y, ·), and action space Ai(s, y) for each player i;

3. µ = p(s, y, ·) ◦ α.3

2Note that we require p(s, y, ·) to be measurable for each (s, y), but p may not be jointly measurable.
3The finite measure µ = p(s, y, ·) ◦ α if µ(B) =

∫
B
p(s, y, x)α(dx) for any Borel subset B ⊆ X.
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In addition, denote the restriction of Φ on the first component Rn as Φ|Rn, which is a

correspondence from D to Rn. Then Φ|Rn is bounded, measurable, nonempty and compact

valued, and essentially sectionally upper hemicontinuous on Y .

Proof. There exists a Borel subset Ŝ ⊆ S with λ(Ŝ) = 1 such that D(s) 6= ∅ for each

s ∈ Ŝ, and P is sectionally upper hemicontinuous on Y when it is restricted onD∩(Ŝ×Y ).

Without loss of generality, we assume that Ŝ = S.

Suppose that S is the completion of B(S) under the probability measure λ. Let D
and E be the restrictions of S ⊗ B(Y ) and S ⊗ B(Y )⊗B(X) on D and E, respectively.

Define a correspondence D̃ from S to Y such that D̃(s) = {y ∈ Y : (s, y) ∈ D}. Then

D̃ is nonempty and compact valued. By Lemma 1 (4), D̃ is S-measurable.

Since D̃(s) is compact and A(s, ·) is upper hemicontinuous for any s ∈ S, E(s)

is compact by Lemma 2 (6). Define a correspondence Γ from S to Y × X × Rn as

Γ(s) = Gr(P (s, ·, ·)). For all s, P (s, ·, ·) is bounded, upper hemicontinuous and compact

valued on E(s), hence it has a compact graph. As a result, Γ is compact valued. By

Lemma 1 (1), P has an S ⊗ B(Y ×X × Rn)-measurable graph. Since Gr(Γ) = Gr(P ),

Gr(Γ) is S ⊗ B(Y × X × Rn)-measurable. Due to Lemma 1 (4), the correspondence Γ

is S-measurable. We can view Γ as a function from S into the space K of nonempty

compact subsets of Y ×X × Rn. By Lemma B.1, K is a Polish space endowed with the

Hausdorff metric topology. Then by Lemma 1 (2), Γ is an S-measurable function from S

to K. One can also define a correspondence Ãi from S to Y ×X as Ãi(s) = Gr(Ai(s, ·)).
It is easy to show that Ãi can be viewed as an S-measurable function from S to the space

of nonempty compact subsets of Y × X, which is endowed with the Hausdorff metric

topology. By a similar argument, D̃ can be viewed as an S-measurable function from S

to the space of nonempty compact subsets of Y .

By Lemma 3 (Lusin’s Theorem), there exists a compact subset S1 ⊆ S such that

λ(S \ S1) < 1
2
, Γ, D̃ and {Ãi}1≤i≤n are continuous functions on S1. By Lemma 1 (3),

Γ, D̃ and Ãi are continuous correspondences on S1. Let D1 = {(s, y) ∈ D : s ∈ S1, y ∈
D̃(s)}. Since S1 is compact and D̃ is continuous, D1 is compact (see Lemma 2 (6)).

Similarly, E1 = E ∩ (S1 × Y ×X) is also compact. Thus, P is an upper hemicontinuous

correspondence on E1. Define a correspondence Φ1 from D1 to Rn ×M(X)×4(X) as

in Lemma 10, then it is nonempty and compact valued, and upper hemicontinuous on

D1.

Following the same procedure, for any m ≥ 1, there exists a compact subset Sm ⊆ S

such that (1) Sm∩ (∪1≤k≤m−1Sk) = ∅ and Dm = D∩ (Sm×Y ) is compact, (2) λ(Sm) > 0

and λ (S \ (∪1≤k≤mSm)) < 1
2m

, and (3) there is a nonempty and compact valued, upper
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hemicontinuous correspondence Φm from Dm to Rn ×M(X) × 4(X), which satisfies

conditions (1)-(3) in Lemma 10. Thus, we have countably many disjoint sets {Sm}m≥1

such that (1) λ(∪m≥1Sm) = 1, (2) Φm is nonempty and compact valued, and upper

hemicontinuous on each Dm, m ≥ 1.

Since Ai is a B(S)⊗B(Y )-measurable, nonempty and compact valued correspondence,

it has a Borel measurable selection ai by Lemma 2 (3). Fix a Borel measurable selection p

of P (such a selection exists also due to Lemma 2 (3)). Define a mapping (v0, α0, µ0) from

D to Rn ×M(X) × 4(X) such that (1) αi(s, y) = δai(s,y) and α0(s, y) = ⊗i∈Iαi(s, y);

(2) v0(s, y) = p(s, y, a1(s, y). . . . , an(s, y)) and (3) µ0(s, y) = p(s, y, ·) ◦ α0. Let D0 =

D \ (∪m≥1Dm) and Φ0(s, y) = {(v0(s, y), α0(s, y), µ0(s, y))} for (s, y) ∈ D0. Then, Φ0 is

B(S)⊗ B(Y )-measurable, nonempty and compact valued.

Let Φ(s, y) = Φm(s, y) if (s, y) ∈ Dm for some m ≥ 0. Then, Φ(s, y) satisfies

conditions (1)-(3) if (s, y) ∈ Dm for m ≥ 1. That is, Φ is B(D)-measurable, nonempty

and compact valued, and essentially sectionally upper hemicontinuous on Y , and satisfies

conditions (1)-(3) for λ-almost all s ∈ S.

Then consider Φ|Rn , which is the restriction of Φ on the first component Rn. Let

Φm|Rn be the restriction of Φm on the first component Rn with the domain Dm for each

m ≥ 0. It is obvious that Φ0|Rn is measurable, nonempty and compact valued. For

each m ≥ 1, Dm is compact and Φm is upper hemicontinuous and compact valued. By

Lemma 2 (6), Gr(Φm) is compact. Thus, Gr(Φm|Rn) is also compact. By Lemma 2 (4),

Φm|Rn is measurable. In addition, Φm|Rn is nonempty and compact valued, and upper

hemicontinuous on Dm. Notice that Φ|Rn(s, y) = Φm|Rn(s, y) if (s, y) ∈ Dm for some m ≥
0. Thus, Φ|Rn is measurable, nonempty and compact valued, and essentially sectionally

upper hemicontinuous on Y .

The proof is complete.

B.4 Proof of Theorem 3

B.4.1 Backward induction

For any t ≥ 1, suppose that the correspondence Qt+1 from Ht to Rn is bounded, measur-

able, nonempty and compact valued, and essentially sectionally upper hemicontinuous

on X t. For any ht−1 ∈ Ht−1 and xt ∈ At(ht−1), let

Pt(ht−1, xt) =

∫
St

Qt+1(ht−1, xt, st)ft0(dst|ht−1)
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=

∫
St

Qt+1(ht−1, xt, st)ϕt0(ht−1, st)λt(dst).

It is obvious that the correspondence Pt is measurable and nonempty valued. Since Qt+1

is bounded, Pt is bounded. For λt-almost all st ∈ St, Qt+1(·, st) is bounded and upper

hemicontinuous on Ht(s
t), and ϕt0(st, ·) is continuous on Gr(At0)(st). As ϕt0 is integrably

bounded, Pt(s
t−1, ·) is also upper hemicontinuous on Gr(At)(st−1) for λt−1-almost all

st−1 ∈ St−1 (see Lemma 4); that is, the correspondence Pt is essentially sectionally upper

hemicontinuous on X t. Again by Lemma 4, Pt is convex and compact valued since λt is

an atomless probability measure. That is, Pt : Gr(At) → Rn is a bounded, measurable,

nonempty, convex and compact valued correspondence which is essentially sectionally

upper hemicontinuous on X t.

By Proposition B.2, there exists a bounded, measurable, nonempty and compact

valued correspondence Φt from Ht−1 to Rn×M(Xt)×4(Xt) such that Φt is essentially

sectionally upper hemicontinuous on X t−1, and for λt−1-almost all ht−1 ∈ Ht−1,

(v, α, µ) ∈ Φt(ht−1) if

1. v =
∫
At(ht−1)

pt(ht−1, x)α(dx) such that pt(ht−1, ·) is a Borel measurable selection of

Pt(ht−1, ·);

2. α ∈ ⊗i∈IM(Ati(ht−1)) is a Nash equilibrium in the subgame ht−1 with payoff

pt(ht−1, ·) and action space
∏

i∈I Ati(ht−1);

3. µ = pt(ht−1, ·) ◦ α.

Denote the restriction of Φt on the first component Rn as Φ(Qt+1), which is a

correspondence from Ht−1 to Rn. By Proposition B.2, Φ(Qt+1) is bounded, measurable,

nonempty and compact valued, and essentially sectionally upper hemicontinuous on

X t−1.

B.4.2 Forward induction

The following proposition presents the result on the step of forward induction.

Proposition B.3. For any t ≥ 1 and any Borel measurable selection qt of Φ(Qt+1),

there exists a Borel measurable selection qt+1 of Qt+1 and a Borel measurable mapping

ft : Ht−1 → ⊗i∈IM(Xti) such that for λt−1-almost all ht−1 ∈ Ht−1,

1. ft(ht−1) ∈ ⊗i∈IM(Ati(ht−1));
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2. qt(ht−1) =
∫
At(ht−1)

∫
St
qt+1(ht−1, xt, st)ft0(dst|ht−1)ft(dxt|ht−1);

3. ft(·|ht−1) is a Nash equilibrium in the subgame ht−1 with action spaces Ati(ht−1), i ∈
I and the payoff functions∫

St

qt+1(ht−1, ·, st)ft0(dst|ht−1).

Proof. We divide the proof into three steps. In step 1, we show that there exist

Borel measurable mappings ft : Ht−1 → ⊗i∈IM(Xti) and µt : Ht−1 → 4(Xt) such that

(qt, ft, µt) is a selection of Φt. In step 2, we obtain a Borel measurable selection gt of Pt

such that for λt−1-almost all ht−1 ∈ Ht−1,

1. qt(ht−1) =
∫
At(ht−1)

gt(ht−1, x)ft(dx|ht−1);

2. ft(ht−1) is a Nash equilibrium in the subgame ht−1 with payoff gt(ht−1, ·) and action

space At(ht−1);

In step 3, we show that there exists a Borel measurable selection qt+1 of Qt+1 such that

for all ht−1 ∈ Ht−1 and xt ∈ At(ht−1),

gt(ht−1, xt) =

∫
St

qt+1(ht−1, xt, st)ft0(dst|ht−1).

Combining Steps 1-3, the proof is complete.

Step 1. Let Ψt : Gr(Φt(Qt+1))→M(Xt)×4(Xt) be

Ψt(ht−1, v) = {(α, µ) : (v, α, µ) ∈ Φt(ht−1)}.

Recall the construction of Φt and the proof of Proposition B.2, Ht−1 can be divided into

countably many Borel subsets {Hm
t−1}m≥0 such that

1. Ht−1 = ∪m≥0H
m
t−1 and

λt−1(∪m≥1projSt−1 (Hm
t−1))

λt−1(projSt−1 (Ht−1))
= 1, where projSt−1(Hm

t−1) and

projSt−1(Ht−1) are projections of Hm
t−1 and Ht−1 on St−1;

2. for m ≥ 1, Hm
t−1 is compact, Φt is upper hemicontinuous on Hm

t−1, and Pt is upper

hemicontinuous on

{(ht−1, xt) : ht−1 ∈ Hm
t−1, xt ∈ At(ht−1)};
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3. there exists a Borel measurable mapping (v0, α0, µ0) from H0
t−1 to Rn ×M(Xt)×

4(Xt) such that Φt(ht−1) ≡ {(v0(ht−1), α0(ht−1), µ0(ht−1))} for any ht−1 ∈ H0
t−1.

Denote the restriction of Φt on Hm
t−1 as Φm

t . For m ≥ 1, Gr(Φm
t ) is compact, and hence

the correspondence Ψm
t (ht−1, v) = {(α, µ) : (v, α, µ) ∈ Φm

t (ht−1)} has a compact graph.

For m ≥ 1, Ψm
t is measurable by Lemma 2 (4), and has a Borel measurable selection ψmt

due to Lemma 2 (3). Define ψ0
t (ht−1, v0(ht−1)) = (α0(ht−1), µ0(ht−1)) for ht−1 ∈ H0

t−1.

For (ht−1, v) ∈ Gr(Φ(Qt+1)), let ψt(ht−1, v) = ψmt (ht−1, v) if ht−1 ∈ Hm
t−1. Then ψt is a

Borel measurable selection of Ψt.

Given a Borel measurable selection qt of Φ(Qt+1), let

φt(ht−1) = (qt(ht−1), ψt(ht−1, qt(ht−1))).

Then φt is a Borel measurable selection of Φt. Denote H̃t−1 = ∪m≥1H
m
t−1. By the

construction of Φt, there exists Borel measurable mappings ft : Ht−1 → ⊗i∈IM(Xti) and

µt : Ht−1 →4(Xt) such that for all ht−1 ∈ H̃t−1,

1. qt(ht−1) =
∫
At(ht−1)

pt(ht−1, x)ft(dx|ht−1) such that pt(ht−1, ·) is a Borel measurable

selection of Pt(ht−1, ·);

2. ft(ht−1) ∈ ⊗i∈IM(Ati(ht−1)) is a Nash equilibrium in the subgame ht−1 with payoff

pt(ht−1, ·) and action space
∏

i∈I Ati(ht−1);

3. µt(·|ht−1) = pt(ht−1, ·) ◦ ft(·|ht−1).

Step 2. Since Pt is upper hemicontinuous on {(ht−1, xt) : ht−1 ∈ Hm
t−1, xt ∈ At(ht−1)},

due to Lemma 6, there exists a Borel measurable mapping gm such that (1) gm(ht−1, xt) ∈
Pt(ht−1, xt) for any ht−1 ∈ Hm

t−1 and xt ∈ At(ht−1), and (2) gm(ht−1, xt) = pt(ht−1, xt)

for ft(·|ht−1)-almost all xt. Fix an arbitrary Borel measurable selection g′ of Pt. Define

a Borel measurable mapping from Gr(At) to Rn as

g(ht−1, xt) =

gm(ht−1, xt) if ht−1 ∈ Hm
t−1 for m ≥ 1;

g′(ht−1, xt) otherwise.

Then g is a Borel measurable selection of Pt.

In a subgame ht−1 ∈ H̃t−1, let

Bti(ht−1) = {yi ∈ Ati(ht−1) :

17



∫
At(−i)(ht−1)

gi(ht−1, yi, xt(−i))ft(−i)(dxt(−i)|ht−1) >

∫
At(ht−1)

pti(ht−1, xt)ft(dxt|ht−1)}.

Since g(ht−1, xt) = pt(ht−1, xt) for ft(·|ht−1)-almost all xt,∫
At(ht−1)

g(ht−1, xt)ft(dxt|ht−1) =

∫
At(ht−1)

pt(ht−1, xt)ft(dxt|ht−1).

Thus, Bti is a measurable correspondence from H̃t−1 to Ati(ht−1). Let Bc
ti(ht−1) =

Ati(ht−1) \ Bti(ht−1) for each ht−1 ∈ Ht−1. Then Bc
ti is a measurable and closed valued

correspondence, which has a Borel measurable graph by Lemma 1. As a result, Bti

also has a Borel measurable graph. As ft(ht−1) is a Nash equilibrium in the subgame

ht−1 ∈ H̃t−1 with payoff pt(ht−1, ·), fti(Bti(ht−1)|ht−1) = 0.

Denote βi(ht−1, xt) = minPti(ht−1, xt), where Pti(ht−1, xt) is the projection of

Pt(ht−1, xt) on the i-th dimension. Then the correspondence Pti is measurable and

compact valued, and βi is Borel measurable. Let Λi(ht−1, xt) = {βi(ht−1, xt)}× [0, γ]n−1,

where γ > 0 is the upper bound of Pt. Denote Λ′i(ht−1, xt) = Λi(ht−1, xt) ∩ Pt(ht−1, xt).

Then Λ′i is a measurable and compact valued correspondence, and hence has a Borel

measurable selection β′i. Note that β′i is a Borel measurable selection of Pt. Let

gt(ht−1, xt) =β′i(ht−1, xt) if ht−1 ∈ H̃t−1, xti ∈ Bti(ht−1) and xtj /∈ Btj(ht−1),∀j 6= i;

g(ht−1, xt) otherwise.

Notice that

{(ht−1, xt) ∈ Gr(At) : ht−1 ∈ H̃t−1, xti ∈ Bti(ht−1) and xtj /∈ Btj(ht−1), ∀j 6= i; }

= Gr(At) ∩ ∪i∈I

(
(Gr(Bti)×

∏
j 6=i

Xtj) \ (∪j 6=i(Gr(Btj)×
∏
k 6=j

Xtk))

)
,

which is a Borel set. As a result, gt is a Borel measurable selection of Pt. Moreover,

gt(ht−1, xt) = pt(ht−1, xt) for all ht−1 ∈ H̃t−1 and ft(·|ht−1)-almost all xt.

Fix a subgame ht−1 ∈ H̃t−1. We will show that ft(·|ht−1) is a Nash equilibrium given

the payoff gt(ht−1, ·) in the subgame ht−1. Suppose that player i deviates to some action

x̃ti.
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If x̃ti ∈ Bti(ht−1), then player i’s expected payoff is∫
At(−i)(ht−1)

gti(ht−1, x̃ti, xt(−i))ft(−i)(dxt(−i)|ht−1)

=

∫
∏

j 6=iB
c
tj(ht−1)

gti(ht−1, x̃ti, xt(−i))ft(−i)(dxt(−i)|ht−1)

=

∫
∏

j 6=iB
c
tj(ht−1)

βi(ht−1, x̃ti, xt(−i))ft(−i)(dxt(−i)|ht−1)

≤
∫
∏

j 6=iB
c
tj(ht−1)

pti(ht−1, x̃ti, xt(−i))ft(−i)(dxt(−i)|ht−1)

=

∫
At(−i)(ht−1)

pti(ht−1, x̃ti, xt(−i))ft(−i)(dxt(−i)|ht−1)

≤
∫
At(ht−1)

pti(ht−1, xt)ft(dxt|ht−1)

=

∫
At(ht−1)

gti(ht−1, xt)ft(dxt|ht−1).

The first and the third equalities hold since ftj(Btj(ht−1)|ht−1) = 0 for each j, and

hence ft(−i)(
∏

j 6=iB
c
tj(ht−1)|ht−1) = ft(−i)(At(−i)(ht−1)|ht−1). The second equality and

the first inequality are due to the fact that gti(ht−1, x̃ti, xt(−i)) = βi(ht−1, x̃ti, xt(−i)) =

minPti(ht−1, x̃ti, xt(−i)) ≤ pti(ht−1, x̃ti, xt(−i)) for xt(−i) ∈
∏

j 6=iB
c
tj(ht−1). The second

inequality holds since ft(·|ht−1) is a Nash equilibrium given the payoff pt(ht−1, ·) in the

subgame ht−1. The fourth equality follows from the fact that gt(ht−1, xt) = pt(ht−1, xt)

for ft(·|ht−1)-almost all xt.

If x̃ti /∈ Bti(ht−1), then player i’s expected payoff is∫
At(−i)(ht−1)

gti(ht−1, x̃ti, xt(−i))ft(−i)(dxt(−i)|ht−1)

=

∫
∏

j 6=iB
c
tj(ht−1)

gti(ht−1, x̃ti, xt(−i))ft(−i)(dxt(−i)|ht−1)

=

∫
∏

j 6=iB
c
tj(ht−1)

gi(ht−1, x̃ti, xt(−i))ft(−i)(dxt(−i)|ht−1)

=

∫
At(−i)(ht−1)

gi(ht−1, x̃ti, xt(−i))ft(−i)(dxt(−i)|ht−1)

≤
∫
At(ht−1)

pti(ht−1, xt)ft(dxt|ht−1)

=

∫
At(ht−1)

gti(ht−1, xt)ft(dxt|ht−1).
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The first and the third equalities hold since

ft(−i)

(∏
j 6=i

Bc
tj(ht−1)|ht−1

)
= ft(−i)(At(−i)(ht−1)|ht−1).

The second equality is due to the fact that gti(ht−1, x̃ti, xt(−i)) = gi(ht−1, x̃ti, xt(−i)) for

xt(−i) ∈
∏

j 6=iB
c
tj(ht−1). The first inequality follows from the definition of Bti, and the

fourth equality holds since gt(ht−1, xt) = pt(ht−1, xt) for ft(·|ht−1)-almost all xt.

Thus, player i cannot improve his payoff in the subgame ht by a unilateral change in

his strategy for any i ∈ I, which implies that ft(·|ht−1) is a Nash equilibrium given the

payoff gt(ht−1, ·) in the subgame ht−1.

Step 3. For any (ht−1, xt) ∈ Gr(At),

Pt(ht−1, xt) =

∫
St

Qt+1(ht−1, xt, st)ft0(dst|ht−1).

By Lemma 5, there exists a Borel measurable mapping q from Gr(Pt) × St to Rn such

that

1. q(ht−1, xt, e, st) ∈ Qt+1(ht−1, xt, st) for any (ht−1, xt, e, st) ∈ Gr(Pt)× St;

2. e =
∫
St
q(ht−1, xt, e, st)ft0(dst|ht−1) for any (ht−1, xt, e) ∈ Gr(Pt), where (ht−1, xt) ∈

Gr(At).

Let

qt+1(ht−1, xt, st) = q(ht−1, xt, gt(ht−1, xt), st)

for any (ht−1, xt, st) ∈ Ht. Then qt+1 is a Borel measurable selection of Qt+1.

For (ht−1, xt) ∈ Gr(At),

gt(ht−1, xt) =

∫
St

q(ht−1, xt, gt(ht−1, xt), st)ft0(dst|ht−1)

=

∫
St

qt+1(ht−1, xt, st)ft0(dst|ht−1).

Therefore, we have a Borel measurable selection qt+1 of Qt+1, and a Borel measurable

mapping ft : Ht−1 → ⊗i∈IM(Xti) such that for all ht−1 ∈ H̃t−1, properties (1)-(3) are

satisfied. The proof is complete.
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If a dynamic game has only T stages for some positive integer T ≥ 1, then let

QT+1(hT ) = {u(hT )} for any hT ∈ HT , and Qt = Φ(Qt+1) for 1 ≤ t ≤ T − 1. We can

start with the backward induction from the last period and stop at the initial period,

then run the forward induction from the initial period to the last period. Thus, the

following result is immediate.

Proposition B.4. Any finite-horizon dynamic game with the ARM condition has a

subgame-perfect equilibrium.

B.4.3 Infinite horizon case

Pick a sequence ξ = (ξ1, ξ2, . . .) such that (1) ξm is a transition probability from Hm−1

to M(Xm) for any m ≥ 1, and (2) ξm(Am(hm−1)|hm−1) = 1 for any m ≥ 1 and hm−1 ∈
Hm−1. Denote the set of all such ξ as Υ.

Fix any t ≥ 1, define correspondences Ξt
t and ∆t

t as follows: in the subgame ht−1,

Ξt
t(ht−1) =M(At(ht−1))⊗ λt,

and

∆t
t(ht−1) =M(At(ht−1))⊗ ft0(ht−1).

For any m1 > t, suppose that the correspondences Ξm1−1
t and ∆m1−1

t have been

defined. Then we can define correspondences Ξm1
t : Ht−1 → M

(∏
t≤m≤m1

(Xm × Sm)
)

and ∆m1
t : Ht−1 →M

(∏
t≤m≤m1

(Xm × Sm)
)

as follows:

Ξm1
t (ht−1) ={g(ht−1) � (ξm1(ht−1, ·)⊗ λm1) :

g is a Borel measurable selection of Ξm1−1
t ,

ξm1 is a Borel measurable selection of M(Am1)},

and

∆m1
t (ht−1) ={g(ht−1) � (ξm1(ht−1, ·)⊗ fm10(ht−1, ·)) :

g is a Borel measurable selection of ∆m1−1
t ,

ξm1 is a Borel measurable selection of M(Am1)},

where M(Am1) is regarded as a correspondence from Hm1−1 to the space of Borel

probability measures on Xm1 . For any m1 ≥ t, let ρm1

(ht−1,ξ)
∈ Ξm1

t be the probability

measure on
∏

t≤m≤m1
(Xm×Sm) induced by {λm}t≤m≤m1 and {ξm}t≤m≤m1 , and %m1

(ht−1,ξ)
∈
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∆m1
t be the probability measure on

∏
t≤m≤m1

(Xm × Sm) induced by {fm0}t≤m≤m1 and

{ξm}t≤m≤m1 . Then, Ξm1
t (ht−1) is the set of all such ρm1

(ht−1,ξ)
, while ∆m1

t (ht−1) is the set

of all such %m1

(ht−1,ξ)
. Note that %m1

(ht−1,ξ)
∈ ∆m1

t (ht−1) if and only if ρm1

(ht−1,ξ)
∈ Ξm1

t (ht−1).

Both %m1

(ht−1,ξ)
and ρm1

(ht−1,ξ)
can be regarded as probability measures on Hm1(ht−1).

Similarly, let ρ(ht−1,ξ) be the probability measure on
∏

m≥t(Xm × Sm) induced by

{λm}m≥t and {ξm}m≥t, and %(ht−1,ξ) the probability measure on
∏

m≥t(Xm×Sm) induced

by {fm0}m≥t and {ξm}m≥t. Denote the correspondence

Ξt : Ht−1 →M(
∏
m≥t

(Xm × Sm))

as the set of all such ρ(ht−1,ξ), and

∆t : Ht−1 →M(
∏
m≥t

(Xm × Sm))

as the set of all such %(ht−1,ξ).

The following lemma demonstrates the relationship between %m1

(ht−1,ξ)
and ρm1

(ht−1,ξ)
.

Lemma B.7. For any m1 ≥ t and ht−1 ∈ Ht−1,

%m1

(ht−1,ξ)
=

( ∏
t≤m≤m1

ϕm0(ht−1, ·)

)
◦ ρm1

(ht−1,ξ)
.4

Proof. Fix ξ ∈ Υ, and Borel subsets Cm ⊆ Xm and Dm ⊆ Sm for m ≥ t. First, we have

%t(ht−1,ξ)
(Ct ×Dt) = ξt(Ct|ht−1) · ft0(Dt|ht−1)

=

∫
Xt×St

1Ct×Dt(xt, st)ϕt0(ht−1, st)(ξt(ht−1)⊗ λt)(d(xt, st)),

which implies that %t(ht−1,ξ)
= ϕt0(ht−1, ·) ◦ ρt(ht−1,ξ)

.5

4For m ≥ t ≥ 1 and ht−1 ∈ Ht−1, the function ϕm0(ht−1, ·) is defined on Hm−1(ht−1) × Sm, which
is measurable and sectionally continuous on

∏
t≤k≤m−1Xk. By Lemma 3, ϕm0(ht−1, ·) can be extended

to be a measurable function ϕ́m0(ht−1, ·) on the product space
(∏

t≤k≤m−1Xk

)
×
(∏

t≤k≤m Sk

)
, which

is also sectionally continuous on
∏
t≤k≤m−1Xk. Given any ξ ∈ Υ, since ρm(ht−1,ξ)

concentrates on

Hm(ht−1), ϕm0(ht−1, ·) ◦ ρm(ht−1,ξ)
= ϕ́m0(ht−1, ·) ◦ ρm(ht−1,ξ)

. For notational simplicity, we still use

ϕm0(ht−1, ·), instead of ϕ́m0(ht−1, ·), to denote the above extension. Similarly, we can work with a
suitable extension of the payoff function u as needed.

5For a set A in a space X, 1A is the indicator function of A, which is one on A and zero on X \A.
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Suppose that %m2

(ht−1,ξ)
=
(∏

t≤m≤m2
ϕm0(ht−1, ·)

)
◦ ρm2

(ht−1,ξ)
for some m2 ≥ t. Then

%m2+1
(ht−1,ξ)

( ∏
t≤m≤m2+1

(Cm ×Dm)

)

= %m2

(ht−1,ξ)
� (ξm2+1(ht−1, ·)⊗ f(m2+1)0(ht−1, ·))

( ∏
t≤m≤m2+1

(Cm ×Dm)

)

=

∫
∏

t≤m≤m2
(Xm×Sm)

∫
Xm2+1×Sm2+1

1∏
t≤m≤m2+1(Cm×Dm)(xt, . . . , xm2+1, st, . . . , sm2+1)·

ξm2+1 ⊗ f(m2+1)0(d(xm2+1, sm2+1)|ht−1, xt, . . . , xm2 , st, . . . , sm2)

%m2

(ht−1,ξ)
(d(xt, . . . , xm2 , st, . . . , sm2)|ht−1)

=

∫
∏

t≤m≤m2
(Xm×Sm)

∫
Sm2+1

∫
Xm2+1

1∏
t≤m≤m2+1(Cm×Dm)(xt, . . . , xm2+1, st, . . . , sm2+1)·

ϕ(m2+1)0(ht−1, xt, . . . , xm2 , st, . . . , sm2+1)ξm2+1(dxm2+1|ht−1, xt, . . . , xm2 , st, . . . , sm2)

λ(m2+1)0(dsm2+1)
∏

t≤m≤m2

ϕm0(ht−1, xt, . . . , xm−1, st, . . . , sm)

ρm2

(ht−1,ξ)
(d(xt, . . . , xm2 , st, . . . , sm2)|ht−1)

=

∫
∏

t≤m≤m2+1(Xm×Sm)

1∏
t≤m≤m2+1(Cm×Dm)(xt, . . . , xm2+1, st, . . . , sm2+1)·∏

t≤m≤m2+1

ϕm0(ht−1, xt, . . . , xm−1, st, . . . , sm)ρm2+1
(ht−1,ξ)

(d(xt, . . . , xm2 , st, . . . , sm2)|ht−1),

which implies that

%m2+1
(ht−1,ξ)

=

( ∏
t≤m≤m2+1

ϕm0(ht−1, ·)

)
◦ ρm2+1

(ht−1,ξ)
.

The proof is thus complete.

The next lemma shows that the correspondences ∆m1
t and ∆t are nonempty and

compact valued, and sectionally continuous.

Lemma B.8. 1. For any t ≥ 1, the correspondence ∆m1
t is nonempty and compact

valued, and sectionally continuous on X t−1 for any m1 ≥ t.

2. For any t ≥ 1, the correspondence ∆t is nonempty and compact valued, and

sectionally continuous on X t−1.

Proof. (1) We first show that the correspondence Ξm1
t is nonempty and compact valued,
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and sectionally continuous on X t−1 for any m1 ≥ t.

Consider the case m1 = t ≥ 1, where

Ξt
t(ht−1) =M(At(ht−1))⊗ λt.

Since Ati is nonempty and compact valued, and sectionally continuous on X t−1, Ξt
t is

nonempty and compact valued, and sectionally continuous on X t−1.

Now suppose that Ξm2
t is nonempty and compact valued, and sectionally continuous

on X t−1 for some m2 ≥ t ≥ 1. Notice that

Ξm2+1
t (ht−1) ={g(ht−1) � (ξm2+1(ht−1, ·)⊗ λ(m2+1)) :

g is a Borel measurable selection of Ξm2
t ,

ξm2+1 is a Borel measurable selection of M(Am2+1)}.

First, we claim that Ht(s0, s1, . . . , st) is compact for any (s0, s1, . . . , st) ∈ St. We

prove this claim by induction.

1. Notice that H0(s0) = X0 for any s0 ∈ S0, which is compact.

2. Suppose that Hm′(s0, s1, . . . , sm′) is compact for some 0 ≤ m′ ≤ t − 1 and any

(s0, s1, . . . , sm′) ∈ Sm
′
.

3. Since Am′+1(·, s0, s1, . . . , sm′) is continuous and compact valued, it has a compact

graph by Lemma 2 (6), which isHm′+1(s0, s1, . . . , sm′+1) for any (s0, s1, . . . , sm′+1) ∈
Sm

′+1.

Thus, we prove the claim.

Define a correspondence Att from Ht−1 × St to Xt as Att(ht−1, st) = At(ht−1). Then

Att is nonempty and compact valued, sectionally continuous on Xt−1, and has a B(X t ×
St)-measurable graph. Since the graph of Att(·, s0, s1, . . . , st) is Ht(s0, s1, . . . , st) and

Ht(s0, s1, . . . , st) is compact, Att(·, s0, s1, . . . , st) has a compact graph. For any ht−1 ∈
Ht−1 and τ ∈ Ξt

t(ht−1), the marginal of τ on St is λt and τ(Gr(Att(ht−1, ·))) = 1.

For any m1 > t, suppose that the correspondence

Am1−1
t : Ht−1 ×

∏
t≤m≤m1−1

Sm →
∏

t≤m≤m1−1

Xm

has been defined such that
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1. it is nonempty and compact valued, sectionally upper hemicontinuous on Xt−1,

and has a B(Xm1−1 × Sm1−1)-measurable graph;

2. for any (s0, s1, . . . .sm1−1), Am1−1
t (·, s0, s1, . . . .sm1−1) has a compact graph;

3. for any ht−1 ∈ Ht−1 and τ ∈ Ξm1−1
t (ht−1), the marginal of τ on

∏
t≤m≤m1−1 Sm is

⊗t≤m≤m1−1λm and τ(Gr(Am1−1
t (ht−1, ·))) = 1.

We define a correspondence Am1
t : Ht−1 ×

∏
t≤m≤m1

Sm →
∏

t≤m≤m1
Xm as follows:

Am1
t (ht−1, st, . . . , sm1) ={(xt, . . . , xm1) :

xm1 ∈ Am1(ht−1, xt, . . . , xm1−1, st, . . . , sm1−1),

(xt, . . . , xm1−1) ∈ Am1−1
t (ht−1, st, . . . , sm1−1)}.

It is obvious thatAm1
t is nonempty valued. For any (s0, s1, . . . , sm1), sinceAm1−1

t (·, s0, s1, . . . .sm1−1)

has a compact graph and Am1(·, s0, s1, . . . , sm1−1) is continuous and compact valued,

Am1
t (·, s0, s1, . . . .sm1) has a compact graph by Lemma 2 (6), which implies that Am1

t is

compact valued and sectionally upper hemicontinuous on Xt−1. In addition, Gr(Am1
t ) =

Gr(Am1) × Sm1 , which is B(Xm1 × Sm1)-measurable. For any ht−1 ∈ Ht−1 and

τ ∈ Ξm1
t (ht−1), it is obvious that the marginal of τ on

∏
t≤m≤m1

Sm is ⊗t≤m≤m1λm and

τ(Gr(Am1
t (ht−1, ·))) = 1.

By Lemma B.5, Ξm2+1
t is nonempty and compact valued, and sectionally continuous

on X t−1.

Now we show that the correspondence ∆m1
t is nonempty and compact valued, and

sectionally continuous on X t−1 for any m1 ≥ t.

Given st−1 and a sequence {xk0, xk1, . . . , xkt−1} ∈ Ht−1(st−1) for 1 ≤ k ≤ ∞. Let hkt−1 =

(st−1, (xk0, x
k
1, . . . , x

k
t−1)). It is obvious that ∆m1

t is nonempty valued, we first show that

∆m1
t is sectionally upper hemicontinuous on X t−1. Suppose that %m1

(hkt−1,ξ
k)
∈ ∆m1

t (hkt−1)

for 1 ≤ k < ∞ and (xk0, x
k
1, . . . , x

k
t−1) → (x∞0 , x

∞
1 , . . . , x

∞
t−1), we need to show that there

exists some ξ∞ such that a subsequence of %m1

(hkt−1,ξ
k)

weakly converges to %m1

(h∞t−1,ξ
∞) and

%m1

(h∞t−1,ξ
∞) ∈ ∆m1

t (h∞t−1).

Since Ξm1
t is sectionally upper hemicontinuous on X t−1, there exists some ξ∞ such

that a subsequence of ρm1

(hkt−1,ξ
k)

, say itself, weakly converges to ρm1

(h∞t−1,ξ
∞) and ρm1

(h∞t−1,ξ
∞) ∈

Ξm1
t (h∞t−1). Then %m1

(h∞t−1,ξ
∞) ∈ ∆m1

t (h∞t−1).
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For any bounded continuous function ψ on
∏

t≤m≤m1
(Xm × Sm), let

χk(xt, . . . , xm1 , st, . . . , sm1) =

ψ(xt, . . . , xm1 , st, . . . , sm1) ·
∏

t≤m≤m1

ϕm0(hkt−1, xt, . . . , xm−1, st, . . . , sm).

Then {χk} is a sequence of functions satisfying the following three properties.

1. For each k, χk is jointly measurable and sectionally continuous on
∏

t≤m≤m1
Xm.

2. For any (st, . . . , sm1) and any sequence (xkt , . . . , x
k
m1

)→ (x∞t , . . . , x
∞
m1

) in
∏

t≤m≤m1
Xm,

χk(x
k
t , . . . , x

k
m1
, st, . . . , sm1)→ χ∞(x∞t , . . . , x

∞
m1
, st, . . . , sm1) as k →∞.

3. The sequence {χk}1≤k≤∞ is integrably bounded in the sense that there exists a

function χ′ :
∏

t≤m≤m1
Sm → R+ such that χ′ is ⊗t≤m≤m1λm-integrable and for any

k and (xt, . . . , xm1 , st, . . . , sm1), χk(xt, . . . , xm1 , st, . . . , sm1) ≤ χ′(st, . . . , sm1).

By Lemma B.6, as k →∞,∫
∏

t≤m≤m1
(Xm×Sm)

χk(xt, . . . , xm1 , st, . . . , sm1)ρ
m1

(hkt−1,ξ
k)

(d(xt, . . . , xm1 , st, . . . , sm1))

→
∫
∏

t≤m≤m1
(Xm×Sm)

χ∞(xt, . . . , xm1 , st, . . . , sm1)ρ
m1

(h∞t−1,ξ
∞)(d(xt, . . . , xm1 , st, . . . , sm1)).

Then by Lemma B.7,∫
∏

t≤m≤m1
(Xm×Sm)

ψ(xt, . . . , xm1 , st, . . . , sm1)%
m1

(hkt−1,ξ
k)

(d(xt, . . . , xm1 , st, . . . , sm1))

→
∫
∏

t≤m≤m1
(Xm×Sm)

ψ(xt, . . . , xm1 , st, . . . , sm1)%
m1

(h∞t−1,ξ
∞)(d(xt, . . . , xm1 , st, . . . , sm1)),

which implies that %m1

(hkt−1,ξ
k)

weakly converges to %m1

(h∞t−1,ξ
∞). Therefore, ∆m1

t is sectionally

upper hemicontinuous on X t−1. If one chooses h1
t−1 = h2

t−1 = · · · = h∞t−1, then we indeed

show that ∆m1
t is compact valued.

In the argument above, we indeed proved that if ρm1

(hkt−1,ξ
k)

weakly converges to

ρm1

(h∞t−1,ξ
∞), then %m1

(hkt−1,ξ
k)

weakly converges to %m1

(h∞t−1,ξ
∞).

The left is to show that ∆m1
t is sectionally lower hemicontinuous on X t−1. Suppose

that (xk0, x
k
1, . . . , x

k
t−1) → (x∞0 , x

∞
1 , . . . , x

∞
t−1) and %m1

(h∞t−1,ξ
∞) ∈ ∆m1

t (h∞t−1), we need to
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show that there exists a subsequence {(xkm0 , xkm1 , . . . , xkmt−1)} of {(xk0, xk1, . . . , xkt−1)} and

%m1

(hkmt−1,ξ
km )
∈ ∆m1

t (hkmt−1) for each km such that %m1

(hkmt−1,ξ
km )

weakly converges to %m1

(h∞t−1,ξ
∞).

Since %m1

(h∞t−1,ξ
∞) ∈ ∆m1

t (h∞t−1), we have ρm1

(h∞t−1,ξ
∞) ∈ Ξm1

t (h∞t−1). Because Ξm1
t is section-

ally lower hemicontinuous on X t−1, there exists a subsequence of {(xk0, xk1, . . . , xkt−1)},
say itself, and ρm1

(hkt−1,ξ
k)
∈ Ξm1

t (hkt−1) for each k such that ρm1

(hkt−1,ξ
k)

weakly converges to

ρm1

(h∞t−1,ξ
∞). As a result, %m1

(hkt−1,ξ
k)

weakly converges to %m1

(h∞t−1,ξ
∞), which implies that ∆m1

t is

sectionally lower hemicontinuous on X t−1.

Therefore, ∆m1
t is nonempty and compact valued, and sectionally continuous on X t−1

for any m1 ≥ t.

(2) We show that ∆t is nonempty and compact valued, and sectionally continuous

on X t−1.

It is obvious that ∆t is nonempty valued, we first prove that it is compact valued.

Given ht−1 and a sequence {τ k} ⊆ ∆t(ht−1), there exists a sequence of {ξk}k≥1 such

that ξk = (ξk1 , ξ
k
2 , . . .) ∈ Υ and τ k = %(ht−1,ξk) for each k.

By (1), Ξt
t is compact. Then there exists a measurable mapping gt such that (1) gt =

(ξ1
1 , . . . , ξ

1
t−1, gt, ξ

1
t+1, . . .) ∈ Υ, and (2) a subsequence of {ρt

(ht−1,ξk)
}, say {ρt

(ht−1,ξ
k1l )
}l≥1,

which weakly converges to ρt(ht−1,gt)
. Note that {ξkt+1} is a Borel measurable selection

of M(At+1). By Lemma B.5, there is a Borel measurable selection gt+1 of M(At+1)

such that there is a subsequence of {ρt+1
(ht−1,ξ

k1l )
}l≥1, say {ρt+1

(ht−1,ξ
k2l )
}l≥1, which weakly

converges to ρt+1
(ht−1,gt+1), where gt+1 = (ξ1

1 , . . . , ξ
1
t−1, gt, gt+1, ξ

1
t+2, . . .) ∈ Υ.

Repeat this procedure, one can construct a Borel measurable mapping g such that

ρ(ht−1,ξk11 ), ρ(ht−1,ξk22 ), ρ(ht−1,ξk33 ), . . . weakly converges to ρ(ht−1,g). That is, ρ(ht−1,g) is a

convergent point of {ρ(ht−1,ξk)}, which implies that %(ht−1,g) is a convergent point of

{%(ht−1,ξk)}.

The sectional upper hemicontinuity of ∆t follows a similar argument as above. In

particular, given st−1 and a sequence {xk0, xk1, . . . , xkt−1} ⊆ Ht−1(st−1) for k ≥ 0. Let

hkt−1 = (st−1, (xk0, x
k
1, . . . , x

k
t−1)). Suppose that (xk0, x

k
1, . . . , x

k
t−1) → (x0

0, x
0
1, . . . , x

0
t−1). If

{τ k} ⊆ ∆t(h
k
t−1) for k ≥ 1 and τ k → τ 0, then one can show that τ 0 ∈ ∆t(h

0
t−1) by

repeating a similar argument as in the proof above.

Finally, we consider the sectional lower hemicontinuity of ∆t. Suppose that τ 0 ∈
∆t(h

0
t−1). Then there exists some ξ ∈ Υ such that τ 0 = %(h0t−1,ξ)

. Denote τ̃m = %m
(h0t−1,ξ)

∈
∆m
t (h0

t−1) for m ≥ t. As ∆m
t is continuous, for each m, there exists some ξm ∈ Υ such

that d(%m
(hkmt−1,ξ

m)
, τ̃m) ≤ 1

m
for km sufficiently large, where d is the Prokhorov metric. Let
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τm = %(hkmt−1,ξ
m). Then τm weakly converges to τ 0, which implies that ∆t is sectionally

lower hemicontinuous.

Define a correspondence Qτ
t : Ht−1 → Rn

++ as follows:

Qτ
t (ht−1) ={

∫∏
m≥t(Xm×Sm)

u(ht−1, x, s)%(ht−1,ξ)(d(x, s)) : %(ht−1,ξ) ∈ ∆t(ht−1)}; t > τ ;

Φ(Qτ
t+1)(ht−1) t ≤ τ.

The lemma below presents several properties of the correspondence Qτ
t .

Lemma B.9. For any t, τ ≥ 1, Qτ
t is bounded, measurable, nonempty and compact

valued, and essentially sectionally upper hemicontinuous on X t−1.

Proof. We prove the lemma in three steps.

Step 1. Fix t > τ . We will show that Qτ
t is bounded, nonempty and compact valued,

and sectionally upper hemicontinuous on X t−1.

The boundedness and nonemptiness of Qτ
t are obvious. We shall prove that Qτ

t is sec-

tionally upper hemicontinuous on X t−1. Given st−1 and a sequence {xk0, xk1, . . . , xkt−1} ⊆
Ht−1(st−1) for k ≥ 0. Let hkt−1 = (st−1, (xk0, x

k
1, . . . , x

k
t−1)). Suppose that ak ∈ Qτ

t (h
k
t−1)

for k ≥ 1, (xk0, x
k
1, . . . , x

k
t−1) → (x0

0, x
0
1, . . . , x

0
t−1) and ak → a0, we need to show that

a0 ∈ Qτ
t (h

0
t−1).

By the definition, there exists a sequence {ξk}k≥1 such that

ak =

∫
∏

m≥t(Xm×Sm)

u(hkt−1, x, s)%(hkt−1,ξ
k)(d(x, s)),

where ξk = (ξk1 , ξ
k
2 , . . .) ∈ Υ for each k. As ∆t is compact valued and sectionally

continuous on X t−1, there exist some %(h0t−1,ξ
0) ∈ ∆t(h

0
t−1) and a subsequence of %(hkt−1,ξ

k),

say itself, which weakly converges to %(h0t−1,ξ
0) for ξ0 = (ξ0

1 , ξ
0
2 , . . .) ∈ Υ.

We shall show that

a0 =

∫
∏

m≥t(Xm×Sm)

u(h0
t−1, x, s)%(h0t−1,ξ

0)(d(x, s)).

For this aim, we only need to show that for any δ > 0,∣∣∣∣∣a0 −
∫
∏

m≥t(Xm×Sm)

u(h0
t−1, x, s)%(h0t−1,ξ

0)(d(x, s))

∣∣∣∣∣ < δ. (2)
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Since the game is continuous at infinity, there exists a positive integer M̃ ≥ t such

that wm < 1
5
δ for any m > M̃ .

For each j > M̃ , by Lemma 3, there exists a measurable selection ξ′j of M(Aj)

such that ξ′j is sectionally continuous on Xj−1. Let µ : HM̃ →
∏

m>M̃(Xm × Sm) be the

transition probability which is induced by (ξ′
M̃+1

, ξ′
M̃+2

, . . .) and {f(M̃+1)0, f(M̃+2)0, . . .}.
By Lemma 9, µ is measurable and sectionally continuous on XM̃ . Let

VM̃(ht−1, xt, . . . , xM̃ , st, . . . , sM̃) =∫
∏

m>M̃ (Xm×Sm)

u(ht−1, xt, . . . , xM̃ , st, . . . , sM̃ , x, s) dµ(x, s|ht−1, xt, . . . , xM̃ , st, . . . , sM̃).

Then VM̃ is bounded and measurable. In addition, VM̃ is sectionally continuous on XM̃

by Lemma B.6.

For any k ≥ 0, we have

∣∣ ∫∏
m≥t(Xm×Sm)

u(hkt−1, x, s)%(hkt−1,ξ
k)(d(x, s))

−
∫
∏

t≤m≤M̃ (Xm×Sm)

VM̃(hkt−1, xt, . . . , xM̃ , st, . . . , sM̃)%M̃(hkt−1,ξ
k)(d(xt, . . . , xM̃ , st, . . . , sM̃))

∣∣
≤ wM̃+1

<
1

5
δ.

Since %(hkt−1,ξ
k) weakly converges to %(h0t−1,ξ

0) and %M̃
(hkt−1,ξ

k)
is the marginal of %(hkt−1,ξ

k)

on
∏

t≤m≤M̃(Xm × Sm) for any k ≥ 0, the sequence %M̃
(hkt−1,ξ

k)
also weakly converges to

%M̃
(h0t−1,ξ

0)
. By Lemma B.6, we have

|
∫
∏

t≤m≤M̃ (Xm×Sm)

VM̃(hkt−1, xt, . . . , xM̃ , st, . . . , sM̃)%M̃(hkt−1,ξ
k)(d(xt, . . . , xM̃ , st, . . . , sM̃))

−
∫
∏

t≤m≤M̃ (Xm×Sm)

VM̃(h0
t−1, xt, . . . , xM̃ , st, . . . , sM̃)%M̃(h0t−1,ξ

0)(d(xt, . . . , xM̃ , st, . . . , sM̃))|

<
1

5
δ

for k ≥ K1, where K1 is a sufficiently large positive integer. In addition, there exists a

positive integer K2 such that |ak − a0| < 1
5
δ for k ≥ K2.
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Fix k > max{K1, K2}. Combining the inequalities above, we have∣∣∣∣∣
∫
∏

m≥t(Xm×Sm)

u(h0
t−1, x, s)%(h0t−1,ξ

0)(d(x, s))− a0

∣∣∣∣∣
≤
∣∣ ∫∏

m≥t(Xm×Sm)

u(h0
t−1, x, s)%(h0t−1,ξ

0)(d(x, s))

−
∫
∏

t≤m≤M̃ (Xm×Sm)

VM̃(h0
t−1, xt, . . . , xM̃ , st, . . . , sM̃)%M̃(h0t−1,ξ

0)(d(xt, . . . , xM̃ , st, . . . , sM̃))
∣∣

+
∣∣ ∫∏

t≤m≤M̃ (Xm×Sm)

VM̃(h0
t−1, xt, . . . , xM̃ , st, . . . , sM̃)%M̃(h0t−1,ξ

0)(d(xt, . . . , xM̃ , st, . . . , sM̃))

−
∫
∏

t≤m≤M̃ (Xm×Sm)

VM̃(hkt−1, xt, . . . , xM̃ , st, . . . , sM̃)%M̃(hkt−1,ξ
k)(d(xt, . . . , xM̃ , st, . . . , sM̃))

∣∣
+
∣∣ ∫∏

t≤m≤M̃ (Xm×Sm)

VM̃(hkt−1, xt, . . . , xM̃ , st, . . . , sM̃)%M̃(hkt−1,ξ
k)(d(xt, . . . , xM̃ , st, . . . , sM̃))

−
∫
∏

m≥t(Xm×Sm)

u(hkt−1, x, s)%(hkt−1,ξ
k)(d(x, s))

∣∣
+
∣∣ ∫∏

m≥t(Xm×Sm)

u(hkt−1, x, s)%(hkt−1,ξ
k)(d(x, s))− a0

∣∣
< δ.

Thus, we proved inequality (2), which implies that Qτ
t is sectionally upper hemicontinu-

ous on X t−1 for t > τ .

Furthermore, to prove that Qτ
t is compact valued, we only need to consider the case

that {xk0, xk1, . . . , xkt−1} = {x0
0, x

0
1, . . . , x

0
t−1} for any k ≥ 0, and repeat the above proof.

Step 2. Fix t > τ , we will show that Qτ
t is measurable.

Fix a sequence (ξ′1, ξ
′
2, . . .), where ξ′j is a selection of M(Aj) measurable in sj−1 and

continuous in xj−1 for each j. For any M ≥ t, let

WM
M (ht−1, xt, . . . , xM , st, . . . , sM) ={∫

∏
m>M (Xm×Sm)

u(ht−1, xt, . . . , xM , st, . . . , sM , x, s)%(ht−1,xt,...,xM ,st,...,sM ,ξ′)(d(x, s))

}
.

By Lemma 9, %(ht−1,xt,...,xM ,st,...,sM ,ξ′) is measurable from HM to M
(∏

m>M(Xm × Sm)
)
,

and sectionally continuous on XM . Thus, WM
M is bounded, measurable, nonempty,

convex and compact valued. By Lemma B.6, WM
M is sectionally continuous on XM .
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Suppose that for some t ≤ j ≤ M , W j
M has been defined such that it is bounded,

measurable, nonempty, convex and compact valued, and sectionally continuous on Xj.

Let

W j−1
M (ht−1, xt, . . . , xj−1, st, . . . , sj−1) ={∫

Xj×Sj

wjM(ht−1, xt, . . . , xj, st, . . . , sj)%
j
(ht−1,xt,...,xj−1,st,...,sj−1,ξ)

(d(xj, sj)) :

%j(ht−1,xt,...,xj−1,st,...,sj−1,ξ)
∈ ∆j

j(ht−1, xt, . . . , xj−1, st, . . . , sj−1),

wjM is a Borel measurable selection of W j
M

}
.

Let Šj = Sj.
6 Since∫

Xj×Sj

W j
M(ht−1, xt, . . . , xj, st, . . . , sj)%

j
(ht−1,xt,...,xj−1,st,...,sj−1,ξ)

(d(xj, sj))

=

∫
Sj

∫
Xj×Šj

W j
M(ht−1, xt, . . . , xj, st, . . . , sj)ρ

j
(ht−1,xt,...,xj−1,st,...,sj−1,ξ)

(d(xj, šj))

· ϕj0(ht−1, xt, . . . , xj−1, st, . . . , sj)λj(dsj),

we have

W j−1
M (ht−1, xt, . . . , xj−1, st, . . . , sj−1) ={∫

Sj

∫
Xj×Šj

wjM(ht−1, xt, . . . , xj, st, . . . , sj)ρ
j
(ht−1,xt,...,xj−1,st,...,sj−1,ξ)

(d(xj, šj))

· ϕj0(ht−1, xt, . . . , xj−1, st, . . . , sj)λj(dsj) :

ρj(ht−1,xt,...,xj−1,st,...,sj−1,ξ)
∈ Ξj

j(ht−1, xt, . . . , xj−1, st, . . . , sj−1),

wjM is a Borel measurable selection of W j
M

}
.

Let

W̌ j
M(ht−1, xt, . . . , xj−1, st, . . . , sj) ={∫

Xj×Šj

wjM(ht−1, xt, . . . , xj, st, . . . , sj) · ρj(ht−1,xt,...,xj−1,st,...,sj−1,ξ)
(d(xj, šj)) :

ρj(ht−1,xt,...,xj−1,st,...,sj−1,ξ)
∈ Ξj

j(ht−1, xt, . . . , xj−1, st, . . . , sj−1),

6We will need to use Lemma B.2 below, which requires the continuity of the correspondences in terms
of the integrated variables. Since W j

M is only measurable, but not continuous, in sj , we add a dummy

variable s̃j so that W j
M is trivially continuous in such a variable.
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wjM is a Borel measurable selection of W j
M

}
.

Since W j
M(ht−1, xt, . . . , xj, st, . . . , sj) is continuous in xj and does not depend on šj, it is

continuous in (xj, šj). In addition, W j
M is bounded, measurable, nonempty, convex and

compact valued. By Lemma B.2, W̌ j
M is bounded, measurable, nonempty and compact

valued, and sectionally continuous on Xj−1.

It is easy to see that

W j−1
M (ht−1, xt, . . . , xj−1, st, . . . , sj−1) =∫

Sj

W̌ j
M(ht−1, xt, . . . , xj−1, st, . . . , sj)ϕj0(ht−1, xt, . . . , xj−1, st, . . . , sj)λj(dsj).

By Lemma 4, it is bounded, measurable, nonempty and compact valued, and sectionally

continuous on Xj−1. By induction, one can show that W t−1
M is bounded, measurable,

nonempty and compact valued, and sectionally continuous on X t−1.

Let W t−1 = ∪M≥tW t−1
M . That is, W t−1 is the closure of ∪M≥tW t−1

M , which is

measurable due to Lemma 2.

First, W t−1 ⊆ Qτ
t because W t−1

M ⊆ Qτ
t for each M ≥ t and Qτ

t is compact valued.

Second, fix ht−1 and q ∈ Qτ
t (ht−1). Then there exists a mapping ξ ∈ Υ such that

q =

∫
∏

m≥t(Xm×Sm)

u(ht−1, x, s)%(ht−1,ξ)(d(x, s)).

For M ≥ t, let

VM(ht−1, xt, . . . , xM , st, . . . , sM) =∫
∏

m>M (Xm×Sm)

u(ht−1, xt, . . . , xM , st, . . . , sM , x, s)%(ht−1,xt,...,xM ,st,...,sM ,ξ)(x, s)

and

qM =

∫
∏

t≤m≤M (Xm×Sm)

VM(ht−1, x, s)%
M
(ht−1,ξ)

(d(x, s)).

Hence, qM ∈ W t−1
M . Because the dynamic game is continuous at infinity, qM → q, which

implies that q ∈ W t−1(ht−1) and Qτ
t ⊆ W t−1.

Therefore, W t−1 = Qτ
t , and hence Qτ

t is measurable for t > τ .

Step 3. For t ≤ τ , we can start with Qτ
τ+1. Repeating the backward induction in

Subsection B.4.1, we have that Qτ
t is also bounded, measurable, nonempty and compact
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valued, and essentially sectionally upper hemicontinuous on X t−1.

Denote

Q∞t =

Qt−1
t , if ∩τ≥1 Q

τ
t = ∅;

∩τ≥1Q
τ
t , otherwise.

The following three lemmas show that Q∞t (ht−1) = Φ(Q∞t+1)(ht−1) = Et(ht−1) for λt−1-

almost all ht−1 ∈ Ht−1.7

Lemma B.10. 1. The correspondence Q∞t is bounded, measurable, nonempty and

compact valued, and essentially sectionally upper hemicontinuous on X t−1.

2. For any t ≥ 1, Q∞t (ht−1) = Φ(Q∞t+1)(ht−1) for λt−1-almost all ht−1 ∈ Ht−1.

Proof. (1) It is obvious that Q∞t is bounded. By the definition of Qτ
t , for λt−1-almost

all ht−1 ∈ Ht−1, Qτ1
t (ht−1) ⊆ Qτ2

t (ht−1) for τ1 ≥ τ2. Since Qτ
t is nonempty and compact

valued, Q∞t = ∩τ≥1Q
τ
t is nonempty and compact valued for λt−1-almost all ht−1 ∈ Ht−1.

If ∩τ≥1Q
τ
t = ∅, then Q∞t = Qt−1

t . Thus, Q∞t (ht−1) is nonempty and compact valued

for all ht−1 ∈ Ht−1. By Lemma 2 (2), ∩τ≥1Q
τ
t is measurable, which implies that Q∞t is

measurable.

Fix any st−1 ∈ St−1 such that Qτ
t (·, st−1) is upper hemicontinuous on Ht−1(st−1) for

any τ . By Lemma 2 (7), Qτ
t (·, st−1) has a closed graph for each τ , which implies that

Q∞t (·, st−1) has a closed graph. Referring to Lemma 2 (7) again, Q∞t (·, st−1) is upper

hemicontinuous on Ht−1(st−1). Since Qτ
t is essentially upper hemicontinuous on X t−1 for

each τ , Q∞t is essentially upper upper hemicontinuous on X t−1.

(2) For any τ ≥ 1 and λt−1-almost all ht−1 ∈ Ht−1, Φ(Q∞t+1)(ht−1) ⊆ Φ(Qτ
t+1)(ht−1) ⊆

Qτ
t (ht−1), and hence Φ(Q∞t+1)(ht−1) ⊆ Q∞t (ht−1).

The space {1, 2, . . .∞} is a countable compact set endowed with the following metric:

d(k,m) = | 1
k
− 1
m
| for any 1 ≤ k,m ≤ ∞. The sequence {Qτ

t+1}1≤τ≤∞ can be regarded as a

correspondence Qt+1 from Ht×{1, 2, . . . ,∞} to Rn, which is measurable, nonempty and

compact valued, and essentially sectionally upper hemicontinuous on X t×{1, 2, . . . ,∞}.
The backward induction in Subsection B.4.1 shows that Φ(Qt+1) is measurable,

nonempty and compact valued, and essentially sectionally upper hemicontinuous on

X t × {1, 2, . . . ,∞}.
7The proofs for Lemmas B.10 and B.12 follow the standard ideas with various modifications; see, for

example, [3], [4] and [5].
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Since Φ(Qt+1) is essentially sectionally upper hemicontinuous on X t×{1, 2, . . . ,∞},
there exists a measurable subset Št−1 ⊆ St−1 such that λt−1(Št−1) = 1, and

Φ(Qt+1)(·, ·, št−1) is upper hemicontinuous for any št−1 ∈ Št−1. Fix št−1 ∈ Št−1. For

ht−1 = (xt−1, št−1) ∈ Ht−1 and a ∈ Q∞t (ht−1), by its definition, a ∈ Qτ
t (ht−1) =

Φ(Qτ
t+1)(ht−1) for τ ≥ t. Thus, a ∈ Φ(Q∞t+1)(ht−1).

In summary, Q∞t (ht−1) = Φ(Q∞t+1)(ht−1) for λt−1-almost all ht−1 ∈ Ht−1.

Though the definition of Qτ
t involves correlated strategies for τ < t, the following

lemma shows that one can work with mixed strategies in terms of equilibrium payoffs

via the combination of backward and forward inductions in multiple steps.

Lemma B.11. If ct is a measurable selection of Φ(Q∞t+1), then ct(ht−1) is a subgame-

perfect equilibrium payoff vector for λt−1-almost all ht−1 ∈ Ht−1.

Proof. Without loss of generality, we only prove the case t = 1.

Suppose that c1 is a measurable selection of Φ(Q∞2 ). Apply Proposition B.3

recursively to obtain Borel measurable mappings {fki}i∈I for k ≥ 1. That is, for any

k ≥ 1, there exists a Borel measurable selection ck of Q∞k such that for λk−1-almost all

hk−1 ∈ Hk−1,

1. fk(hk−1) is a Nash equilibrium in the subgame hk−1, where the action space is

Aki(hk−1) for player i ∈ I, and the payoff function is given by∫
Sk

ck+1(hk−1, ·, sk)fk0(dsk|hk−1).

2.

ck(hk−1) =

∫
Ak(hk−1)

∫
Sk

ck+1(hk−1, xk, sk)fk0(dsk|hk−1)fk(dxk|hk−1).

We need to show that c1(h0) is a subgame-perfect equilibrium payoff vector for λ0-almost

all h0 ∈ H0.

Step 1. We show that for any k ≥ 1 and λk−1-almost all hk−1 ∈ Hk−1,

ck(hk−1) =

∫
∏

m≥k(Xm×Sm)

u(hk−1, x, s)%(hk−1,f)(d(x, s)).

Since the game is continuous at infinity, there exists some positive integer M > k such

that wM is sufficiently small. By Lemma B.10, ck(hk−1) ∈ Q∞k (hk−1) = ∩τ≥1Q
τ
k(hk−1)
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for λk−1-almost all hk−1 ∈ Hk−1. Since Qτ
k = Φτ−k+1(Qτ

τ+1) for k ≤ τ , ck(hk−1) ∈
∩τ≥kΦτ−k+1(Qτ

τ+1)(hk−1) ⊆ ΦM−k+1(QM
M+1)(hk−1) for λk−1-almost all hk−1 ∈ Hk−1.

Thus, there exists a Borel measurable selection w of QM
M+1 and some ξ ∈ Υ such that

for λM−1-almost all hM−1 ∈ HM−1,

i. fM(hM−1) is a Nash equilibrium in the subgame hM−1, where the action space is

AMi(hM−1) for player i ∈ I, and the payoff function is given by∫
SM

w(hM−1, ·, sM)fM0(dsM |hM−1);

ii.

cM(hM−1) =

∫
AM (hM−1)

∫
SM

w(hM−1, xM , sM)fM0(dsM |hM−1)fM(dxM |hM−1);

iii. w(hM) =
∫∏

m≥M+1(Xm×Sm)
u(hM , x, s)%(hM ,ξ)(d(x, s)).

Then for λk−1-almost all hk−1 ∈ Hk−1,

ck(hk−1) =

∫
∏

m≥k(Xm×Sm)

u(hk−1, x, s)%(hk−1,fM )(d(x, s)),

where fMk is fk if k ≤M , and ξk if k ≥M + 1. Since the game is continuous at infinity,∫
∏

m≥k(Xm×Sm)

u(hk−1, x, s)%(hk−1,fM )(d(x, s))

converges to ∫
∏

m≥k(Xm×Sm)

u(hk−1, x, s)%(hk−1,f)(d(x, s))

when M goes to infinity. Thus, for λk−1-almost all hk−1 ∈ Hk−1,

ck(ht−1) =

∫
∏

m≥k(Xm×Sm)

u(hk−1, x, s)%(hk−1,f)(d(x, s)). (3)

Step 2. Below, we show that {fki}i∈I is a subgame-perfect equilibrium.

Fix a player i and a strategy gi = {gki}k≥1. For each k ≥ 1, define a new strategy f̃ki
as follows: f̃ki = (g1i, . . . , gki, f(k+1)i, f(k+2)i, . . .). That is, we simply replace the initial k

stages of fi by gi. Denote f̃k = (f̃ki , f−i).
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Fix k ≥ 1 and a measurable subset Dk ⊆ Sk such that (1) and (2) of step 1 and

Equation (3) hold for all sk ∈ Dk and xk ∈ Hk(s
k), and λk(Dk) = 1. For each M̃ > k, by

the Fubini property, there exists a measurable subset EM̃
k ⊆ Sk such that λk(EM̃

k ) = 1

and ⊗k+1≤j≤M̃λj(D
M̃(sk)) = 1 for all sk ∈ EM̃

k , where

DM̃(sk) = {(sk+1, . . . , sM̃) : (sk, sk+1, . . . , sM̃) ∈ DM̃}.

Let D̂k = (∩M̃>kE
M̃
k ) ∩Dk. Then λk(D̂k) = 1.

For any hk = (xk, sk) such that sk ∈ D̂k and xk ∈ Hk(s
k), we have∫

∏
m≥k+1(Xm×Sm)

u(hk, x, s)%(hk,f)(d(x, s))

=

∫
Ak+1(hk)

∫
Sk+1

c(k+2)i(hk, xk+1, sk+1)f(k+1)0(dsk+1|hk)fk+1(dxk+1|hk)

≥
∫
Ak+1(hk)

∫
Sk+1

c(k+2)i(hk, xk+1, sk+1)f(k+1)0(dsk+1|hk)
(
f(k+1)(−i) ⊗ g(k+1)i

)
(dxk+1|hk)

=

∫
Ak+1(hk)

∫
Sk+1

∫
Ak+2(hk,xk+1,sk+1)

∫
Sk+2

c(k+3)i(hk, xk+1, sk+1, xk+2, sk+2)

f(k+2)0(dsk+2|hk, xk+1, sk+1)f(k+2)(−i) ⊗ f(k+2)i(dxk+2|hk, xk+1, sk+1)

f(k+1)0(dsk+1|hk)f(k+1)(−i) ⊗ g(k+1)i(dxk+1|hk)

≥
∫
Ak+1(hk)

∫
Sk+1

∫
Ak+2(hk,xk+1,sk+1)

∫
Sk+2

c(k+3)i(hk, xk+1, sk+1, xk+2, sk+2)

f(k+2)0(dsk+2|hk, xk+1, sk+1)f(k+2)(−i) ⊗ g(k+2)i(dxk+2|hk, xk+1, sk+1)

f(k+1)0(dsk+1|hk)f(k+1)(−i) ⊗ g(k+1)i(dxk+1|hk)

=

∫
∏

m≥k+1(Xm×Sm)

u(hk, x, s)%(hk,f̃k+2)(d(x, s)).

The first and the last equalities follow from Equation (3) in the end of step 1. The second

equality is due to (2) in step 1. The first inequality is based on (1) in step 1. The second

inequality holds by the following arguments:

i. by the choice of hk and (1) in step 1, for λk+1-almost all sk+1 ∈ Sk+1 and all

xk+1 ∈ Xk+1 such that (hk, xk+1, sk+1) ∈ Hk+1, we have∫
Ak+2(hk,xk+1,sk+1)

∫
Sk+2

c(k+3)i(hk, xk+1, sk+1, xk+2, sk+2)

f(k+2)0(dsk+2|hk, xk+1, sk+1)f(k+2)(−i) ⊗ f(k+2)i(dxk+2|hk, xk+1, sk+1)
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≥
∫
Ak+2(hk,xk+1,sk+1)

∫
Sk+2

c(k+3)i(hk, xk+1, sk+1, xk+2, sk+2)

f(k+2)0(dsk+2|hk, xk+1, sk+1)f(k+2)(−i) ⊗ g(k+2)i(dxk+2|hk, xk+1, sk+1);

ii. since f(k+1)0 is absolutely continuous with respect to λk+1, the above inequality

also holds for f(k+1)0(hk)-almost all sk+1 ∈ Sk+1 and all xk+1 ∈ Xk+1 such that

(hk, xk+1, sk+1) ∈ Hk+1.

Repeating the above argument, one can show that∫
∏

m≥k+1(Xm×Sm)

u(hk, x, s)%(hk,f)(d(x, s))

≥
∫
∏

m≥k+1(Xm×Sm)

u(hk, x, s)%(hk,f̃M̃+1)(d(x, s))

for any M̃ > k. Since ∫
∏

m≥k+1(Xm×Sm)

u(hk, x, s)%(hk,f̃M̃+1)(d(x, s))

converges to ∫
∏

m≥k+1(Xm×Sm)

u(hk, x, s)%(hk,(gi,f−i))(d(x, s))

as M̃ goes to infinity, we have∫
∏

m≥k+1(Xm×Sm)

u(hk, x, s)%(hk,f)(d(x, s))

≥
∫
∏

m≥k+1(Xm×Sm)

u(hk, x, s)%(hk,(gi,f−i))(d(x, s)).

Therefore, {fki}i∈I is a subgame-perfect equilibrium.

By Lemma B.10 and Proposition B.2, the correspondence Φ(Q∞t+1) is measurable,

nonempty and compact valued. By Lemma 2 (3), it has a measurable selection. Then

Theorem 3 follows from the above lemma.

For t ≥ 1 and ht−1 ∈ Ht−1, recall that Et(ht−1) is the set of payoff vectors of subgame-

perfect equilibria in the subgame ht−1. The following lemma shows that Et(ht−1) is

essentially the same as Q∞t (ht−1).

Lemma B.12. For any t ≥ 1, Et(ht−1) = Q∞t (ht−1) for λt−1-almost all ht−1 ∈ Ht−1.
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Proof. (1) We will first prove the following claim: for any t and τ , if Et+1(ht) ⊆ Qτ
t+1(ht)

for λt-almost all ht ∈ Ht, then Et(ht−1) ⊆ Qτ
t (ht−1) for λt−1-almost all ht−1 ∈ Ht−1. We

only need to consider the case that t ≤ τ .

By the construction of Φ(Qτ
t+1) in Subsection B.4.1, there exists a measurable subset

Śt−1 ⊆ St−1 with λt−1(Śt−1) = 1 such that for any ct and ht−1 = (xt−1, śt−1) ∈ Ht−1 with

śt−1 ∈ Śt−1, if

1. ct =
∫
At(ht−1)

∫
St
qt+1(ht−1, xt, st)ft0(dst|ht−1)α(dxt), where qt+1(ht−1, ·) is mea-

surable and qt+1(ht−1, xt, st) ∈ Qτ
t+1(ht−1, xt, st) for λt-almost all st ∈ St and

xt ∈ At(ht−1);

2. α ∈ ⊗i∈IM(Ati(ht−1)) is a Nash equilibrium in the subgame ht−1 with payoff∫
St
qt+1(ht−1, ·, st)ft0(dst|ht−1) and action space

∏
i∈I Ati(ht−1),

then ct ∈ Φ(Qτ
t+1)(ht−1).

Fix a subgame ht−1 = (xt−1, śt−1) such that śt−1 ∈ Śt−1. Pick a point ct ∈ Et(śt−1).

There exists a strategy profile f such that f is a subgame-perfect equilibrium in the

subgame ht−1 and the payoff is ct. Let ct+1(ht−1, xt, st) be the payoff vector induced by

{fti}i∈I in the subgame (ht, xt, st) ∈ Gr(At)× St. Then we have

1. ct =
∫
At(ht−1)

∫
St
ct+1(ht−1, xt, st)ft0(dst|ht−1)ft(dxt|ht−1);

2. ft(·|ht−1) is a Nash equilibrium in the subgame ht−1 with action space At(ht−1)

and payoff
∫
St
ct+1(ht−1, ·, st)ft0(dst|ht−1).

Since f is a subgame-perfect equilibrium in the subgame ht−1, ct+1(ht−1, xt, st) ∈
Et+1(ht−1, xt, st) ⊆ Qτ

t+1(ht−1, xt, st) for λt-almost all st ∈ St and xt ∈ At(ht−1), which

implies that ct ∈ Φ(Qτ
t+1)(ht−1) = Qτ

t (ht−1).

Therefore, Et(ht−1) ⊆ Qτ
t (ht−1) for λt−1-almost all ht−1 ∈ Ht−1.

(2) For any t > τ , Et ⊆ Qτ
t . If t ≤ τ , we can start with Eτ+1 ⊆ Qτ

τ+1 and repeat

the argument in (1), then we can show that Et(ht−1) ⊆ Qτ
t (ht−1) for λt−1-almost all

ht−1 ∈ Ht−1. Thus, Et(ht−1) ⊆ Q∞t (ht−1) for λt−1-almost all ht−1 ∈ Ht−1.

(3) Suppose that ct is a measurable selection from Φ(Q∞t+1). Apply Proposition B.3

recursively to obtain Borel measurable mappings {fki}i∈I for k ≥ t. By Lemma B.11,

ct(ht−1) is a subgame-perfect equilibrium payoff vector for λt−1-almost all ht−1 ∈ Ht−1.

Consequently, Φ(Q∞t+1)(ht−1) ⊆ Et(ht−1) for λt−1-almost all ht−1 ∈ Ht−1.

By Lemma B.10, Et(ht−1) = Q∞t (ht−1) = Φ(Q∞t+1)(ht−1) for λt−1-almost all ht−1 ∈
Ht−1.
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B.5 Proof of Proposition B.1

We will highlight the needed changes in comparison with the proofs presented in

Subsections B.4.1-B.4.3.

1. Backward induction. We first consider stage t with Nt = 1.

If Nt = 1, then St = {śt}. Thus, Pt(ht−1, xt) = Qt+1(ht−1, xt, śt), which is nonempty

and compact valued, and essentially sectionally upper hemicontinuous on X t × Ŝt−1.

Notice that Pt may not be convex valued.

We first assume that Pt is upper hemicontinuous. Suppose that j is the player who

is active in this period. Consider the correspondence Φt : Ht−1 → Rn ×M(Xt)×4(Xt)

defined as follows: (v, α, µ) ∈ Φt(ht−1) if

1. v = pt(ht−1, At(−j)(ht−1), x∗tj) such that pt(ht−1, ·) is a measurable selection of

Pt(ht−1, ·);8

2. x∗tj ∈ Atj(ht−1) is a maximization point of player j given the payoff function

ptj(ht−1, At(−j)(ht−1), ·) and the action space Atj(ht−1), αi = δAti(ht−1) for i 6= j

and αj = δx∗tj ;

3. µ = δpt(ht−1,At(−j)(ht−1),x∗tj).

This is a single agent problem. We need to show that Φt is nonempty and compact

valued, and upper hemicontinuous.

If Pt is nonempty, convex and compact valued, and upper hemicontinuous, then we

can use Lemma 10, the main result of [7], to prove the nonemptiness, compactness,

and upper hemicontinuity of Φt. In [7], the only step they need the convexity of Pt
for the proof of their main theorem is Lemma 2 therein. However, the one-player pure-

strategy version of their Lemma 2, stated in the following, directly follows from the upper

hemicontinuity of Pt without requiring the convexity.

Let Z be a compact metric space, and {zn}n≥0 ⊆ Z. Let P : Z → R+ be a bounded,

upper hemicontinuous correspondence with nonempty and compact values. For

each n ≥ 1, let qn be a Borel measurable selection of P such that qn(zn) = dn. If

zn converges to z0 and dn converges to some d0, then d0 ∈ P (z0).

Repeat the argument in the proof of the main theorem of [7], one can show that Φt

is nonempty and compact valued, and upper hemicontinuous.

8Note that At(−j) is point valued since all players other than j are inactive.
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Then we go back to the case that Pt is nonempty and compact valued, and essentially

sectionally upper hemicontinuous on X t × Ŝt−1. Recall that we proved Proposition B.2

based on Lemma 10. If Pt is essentially sectionally upper hemicontinuous on X t × Ŝt−1,

we can show the following result based on a similar argument as in Sections B.3: there

exists a bounded, measurable, nonempty and compact valued correspondence Φt from

Ht−1 to Rn×M(Xt)×4(Xt) such that Φt is essentially sectionally upper hemicontinuous

on X t−1 × Ŝt−1, and for λt−1-almost all ht−1 ∈ Ht−1, (v, α, µ) ∈ Φt(ht−1) if

1. v = pt(ht−1, At(−j)(ht−1), x∗tj) such that pt(ht−1, ·) is a measurable selection of

Pt(ht−1, ·);

2. x∗tj ∈ Atj(ht−1) is a maximization point of player j given the payoff function

ptj(ht−1, At(−j)(ht−1), ·) and the action space Atj(ht−1), αi = δAti(ht−1) for i 6= j

and αj = δx∗tj ;

3. µ = δpt(ht−1,At(−j)(ht−1),x∗tj).

Next we consider the case that Nt = 0. Suppose that the correspondence Qt+1

from Ht to Rn is bounded, measurable, nonempty and compact valued, and essentially

sectionally upper hemicontinuous on X t × Ŝt. For any (ht−1, xt, ŝt) ∈ Gr(Ât), let

Rt(ht−1, xt, ŝt) =

∫
S̃t

Qt+1(ht−1, xt, ŝt, s̃t)f̃t0(ds̃t|ht−1, xt, ŝt)

=

∫
S̃t

Qt+1(ht−1, xt, ŝt, s̃t)ϕt0(ht−1, xt, ŝt, s̃t)λt(ds̃t).

Then following the same argument as in Subsection B.4.1, one can show that Rt is a

nonempty, convex and compact valued, and essentially sectionally upper hemicontinuous

correspondence on X t × Ŝt.

For any ht−1 ∈ Ht−1 and xt ∈ At(ht−1), let

Pt(ht−1, xt) =

∫
Ât0(ht−1,xt)

Rt(ht−1, xt, ŝt)f̂t0(dŝt|ht−1, xt).

By Lemma 7, Pt is nonempty, convex and compact valued, and essentially sectionally

upper hemicontinuous on X t × Ŝt−1. The rest of the step remains the same as in

Subsection B.4.1.

2. Forward induction: unchanged.
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3. Infinite horizon: we need to slightly modify the definition of Ξm1
t for any m1 ≥

t ≥ 1. Fix any t ≥ 1. Define a correspondence Ξt
t as follows: in the subgame ht−1,

Ξt
t(ht−1) = (M(At(ht−1)) � f̂t0(ht−1, ·))⊗ λt.

For any m1 > t, suppose that the correspondence Ξm1−1
t has been defined. Then we can

define a correspondence Ξm1
t : Ht−1 →M

(∏
t≤m≤m1

(Xm × Sm)
)

as follows:

Ξm1
t (ht−1) =

{
g(ht−1) �

(
(ξm1(ht−1, ·) � f̂m10(ht−1, ·))⊗ λm1

)
:

g is a Borel measurable selection of Ξm1−1
t ,

ξm1 is a Borel measurable selection of M(Am1)
}
.

Then the result in Subsection B.4.3 is true with the above Ξm1
t .

Consequently, a subgame-perfect equilibrium exists.
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