Technical Appendix for "Trade Clustering and Power Laws in Financial Markets"

Makoto Nirei* John Stachurski Tsutomu Watanabe
University of Tokyo Australian National University University of Tokyo

January 23, 2020

This technical appendix provides derivations omitted in "Trade Clustering and Power Laws in Financial Markets."

Verification for the signal examples

Example 1: A linear distribution

Consider a signal X that follows

$$
f_{n}^{H}(x)=\frac{1}{2}+\epsilon_{n} x \quad \text { and } \quad f^{L}(x)=\frac{1}{2}, \quad-1 \leq x \leq 1,
$$

where $\epsilon_{n}=n^{-\xi} / 3$ and $0<\xi<1$. In this section, we show that this signal satisfies Assumptions 1,2 and 3 .

Clearly, the densities are strictly positive and continuously differentiable. The likelihood ratio satisfies MLRP, because

$$
\ell_{n}(x)=\frac{f_{n}^{H}(x)}{f^{L}(x)}=1+2 \epsilon_{n} x
$$

[^0]is strictly increasing in x. Moreover, $\ell_{n}(x) \rightarrow 1$ as $n \rightarrow \infty$ uniformly in $x \in[-1,1]$, satisfying Assumption 2. The cumulative distributions are
\[

$$
\begin{aligned}
F_{n}^{H}(x) & =\int_{-1}^{x} \frac{1}{2}+\epsilon_{n} z d z=\frac{x+1}{2}+\frac{x^{2}-1}{2} \epsilon_{n}, \\
F^{L}(x) & =\int_{-1}^{x} \frac{1}{2} d z=\frac{x+1}{2} .
\end{aligned}
$$
\]

Hence, $\lambda_{n}(x)=1+(x-1) \epsilon_{n}$. This implies $\lambda_{n}^{\prime \prime}(x)=0$, satisfying Assumption 3.
Finally, we investigate Assumption 1. We note that

$$
\lim _{x \rightarrow 1} \log \left(\frac{\Lambda_{n}(x)}{\lambda_{n}(x)}\right)=\log \left(\frac{f_{n}^{H}(1)}{f^{L}(1)}\right)=\log \left(1+2 \epsilon_{n}\right)=O\left(\epsilon_{n}\right) .
$$

Thus, in order to show that the signal satisfies Assumption 1, it suffices to show that $\log \left(\Lambda_{n}(x) / \lambda_{n}(x)\right)$ is decreasing in $x \in[-1,1]$. We have

$$
\begin{aligned}
\frac{d}{d x} \log \left(\frac{\Lambda_{n}(x)}{\lambda_{n}(x)}\right) & =\frac{d}{d x}\left[\log \left(\frac{1}{F_{n}^{H}(x)}-1\right)-\log \left(\frac{1}{F^{L}(x)}-1\right)\right] \\
& =\frac{1}{1-F^{L}(x)} \frac{f^{L}(x)}{F^{L}(x)}-\frac{1}{1-F_{n}^{H}(x)} \frac{f_{n}^{H}(x)}{F_{n}^{H}(x)} \\
& =\frac{\left(1-F_{n}^{H}(x)\right) F_{n}^{H}(x) f^{L}(x)-\left(1-F^{L}(x)\right) F^{L}(x) f_{n}^{H}(x)}{\left(1-F^{L}(x)\right) F^{L}(x)\left(1-F_{n}^{H}(x)\right) F_{n}^{H}(x)} .
\end{aligned}
$$

The denominator is positive. We inspect the numerator to find it negative:

$$
\begin{aligned}
& \left(1-\frac{x+1}{2}-\frac{x^{2}-1}{2} \epsilon_{n}\right)\left(\frac{x+1}{2}+\frac{x^{2}-1}{2} \epsilon_{n}\right)\left(\frac{1}{2}\right)-\left(1-\frac{x+1}{2}\right)\left(\frac{x+1}{2}\right)\left(\frac{1}{2}+x \epsilon_{n}\right) \\
& =\frac{\left(1-x-\left(x^{2}-1\right) \epsilon_{n}\right)\left((x+1)+\left(x^{2}-1\right) \epsilon_{n}\right)-(1-x)(x+1)\left(1+2 x \epsilon_{n}\right)}{8} \\
& =\frac{x+1}{8}\left[\left(1-x-\left(x^{2}-1\right) \epsilon_{n}\right)\left(1+(x-1) \epsilon_{n}\right)-(1-x)\left(1+2 x \epsilon_{n}\right)\right] \\
& =\frac{(x+1)(1-x)}{8}\left[\left(1+(1+x) \epsilon_{n}\right)\left(1+(x-1) \epsilon_{n}\right)-\left(1+2 x \epsilon_{n}\right)\right] \\
& =\frac{(x+1)(1-x)}{8}\left[(1+x) \epsilon_{n}\left(1+(x-1) \epsilon_{n}\right)-(x+1) \epsilon_{n}\right] \\
& =-\frac{(x+1)^{2}(1-x)^{2} \epsilon_{n}^{2}}{8}<0 .
\end{aligned}
$$

Hence, $\log \left(\Lambda_{n}(x) / \lambda_{n}(x)\right)$ is bounded from below by $\log \left(1+2 \epsilon_{n}\right)$. Thus Assumption 1 is satisfied.

Example 2: An exponential signal

Consider a signal X that follows an exponential distribution with

$$
f^{H}(x)=\frac{\mu e^{-\mu x}}{1-e^{-\mu}} \quad \text { and } \quad f_{n}^{L}(x)=\frac{\left(\mu+\epsilon_{n}\right) e^{-\left(\mu+\epsilon_{n}\right) x}}{1-e^{-\left(\mu+\epsilon_{n}\right)}}, \quad 0 \leq x \leq 1
$$

where $\epsilon_{n}=\delta_{\epsilon} n^{-\xi}$ is a positive sequence, and $\delta_{\epsilon}>0, \mu>2, \xi \in(0,1)$ are constants. In this section, we show that this signal satisfies Assumptions 1, 2 and 3.

The signal has the monotone increasing likelihood ratio: $\ell_{n}(x)=\left(\mu /\left(1-e^{-\mu}\right)((1-\right.$ $\left.\left.e^{-\left(\mu+\epsilon_{n}\right)}\right) /\left(\mu+\epsilon_{n}\right)\right) e^{\epsilon_{n} x}$. Thus, the signal satisfies all the properties assumed in Section 2.2. In particular, f_{n}^{s} is continuously differentiable and strictly positive over common bounded support \mathcal{X} and satisfies $\operatorname{MLRP}\left(\ell_{n}^{\prime}(x)>0\right)$ for any $x \in \mathcal{X}$. Moreover, ℓ_{n} converges to 1 uniformly on \mathcal{X}, and therefore satisfies Assumption 2.

Next we show that the signal satisfies Assumption 1. We have

$$
\begin{aligned}
F^{H}(x) & =\frac{1-e^{-\mu x}}{1-e^{-\mu}}, \quad 1-F^{H}(x)=\frac{e^{-\mu x}-e^{-\mu}}{1-e^{-\mu}}, \\
F_{n}^{L}(x) & =\frac{1-e^{-\left(\mu+\epsilon_{n}\right) x}}{1-e^{-\left(\mu+\epsilon_{n}\right)}}, \quad 1-F_{n}^{L}(x)=\frac{e^{-\left(\mu+\epsilon_{n}\right) x}-e^{-\left(\mu+\epsilon_{n}\right)}}{1-e^{-\left(\mu+\epsilon_{n}\right)}}
\end{aligned}
$$

and $\Lambda_{n}=\left(1-F^{H}\right) /\left(1-F_{n}^{L}\right)$ and $\lambda_{n}=F^{H} / F_{n}^{L}$. Let $\delta_{n}:=\log \left(\Lambda_{n} / \lambda_{n}\right)$. Then,

$$
\begin{aligned}
\delta_{n}\left(x, \epsilon_{n}\right) & =\log \left(\frac{e^{-\mu x}-e^{-\mu}}{e^{-\left(\mu+\epsilon_{n}\right) x}-e^{-\left(\mu+\epsilon_{n}\right)}} \frac{1-e^{-\left(\mu+\epsilon_{n}\right) x}}{1-e^{-\mu x}}\right) \\
& =\log \left(\frac{e^{\left(\mu+\epsilon_{n}\right) x}-1}{e^{\mu x}-1}\right)-\log \left(\frac{e^{\left(\mu+\epsilon_{n}\right)(x-1)}-1}{e^{\mu(x-1)}-1}\right) .
\end{aligned}
$$

Note that δ_{n} is an analytic function of ϵ_{n} and converges to 0 as $\epsilon_{n} \rightarrow 0$ for any $x \in \mathcal{X}$. Thus, the first-order Taylor expansion of δ_{n} around $\epsilon_{n}=0$ yields

$$
\begin{align*}
\delta_{n}\left(x, \epsilon_{n}\right) & =\left(\frac{x e^{\mu x}}{e^{\mu x}-1}-\frac{(x-1) e^{\mu(x-1)}}{e^{\mu(x-1)}-1}\right) \epsilon_{n}+O\left(\epsilon_{n}^{2}\right) \\
& =(h(x)-h(x-1)) \epsilon_{n}+O\left(\epsilon_{n}^{2}\right) \tag{}
\end{align*}
$$

where $h(x):=x /\left(1-e^{-\mu x}\right)$. We note that $h(x)$ is strictly increasing in x :

$$
h^{\prime}(x)=\frac{1-e^{-\mu x}-\mu x e^{-\mu x}}{\left(1-e^{-\mu x}\right)^{2}}>0
$$

The inequality holds since $1-e^{-y}-y e^{-y}>0$ for any $y \neq 0$, and also since $h^{\prime}(0)=1 / 2$ by l'Hôpital's rule. Hence $h(x)-h(x-1)$ is bounded below by a positive number uniformly on \mathcal{X}.

The term $O\left(\epsilon_{n}^{2}\right)$ can be made arbitrarily small (say, a half of the lower bound of $(h(x)-$ $h(x-1)) \epsilon_{n}$) for large enough n. Therefore, applying $\epsilon_{n}=\delta_{\epsilon} n^{-\xi}$ to Equation (*) above, we see that there exist constants $\delta>0$ and n_{1} such that $\delta_{n}(x)>\delta n^{-\xi}$ for any $x \in \mathcal{X}$ and for all $n>n_{1}$. This confirms that the signal satisfies Assumption 1.

Finally, we show that the signal satisfies Assumption 3. Let us write $\mu_{L}:=\mu+\epsilon_{n}$. For this particular signal, we have

$$
\begin{aligned}
& \lambda_{n}(x)=\frac{1-e^{-\mu_{L}}}{1-e^{-\mu}} \frac{1-e^{-\mu x}}{1-e^{-\mu_{L} x}} \\
& \lambda_{n}^{\prime}(x)=\frac{1-e^{-\mu_{L}}}{1-e^{-\mu}} \frac{\mu e^{-\mu x}\left(1-e^{-\mu_{L} x}\right)-\mu_{L} e^{-\mu_{L} x}\left(1-e^{-\mu x}\right)}{\left(1-e^{-\mu_{L} x}\right)^{2}} .
\end{aligned}
$$

Thus, we have

$$
\begin{equation*}
\lambda_{n}^{\prime \prime}(x)=\frac{1-e^{-\mu_{L}}}{1-e^{-\mu}} \frac{\left[-\frac{\mu^{2}}{e^{\mu x}-1}+\frac{\mu_{L}^{2}}{e^{\mu_{L} x}-1}\right]\left(1-e^{-\mu_{L} x}\right)-2 \mu_{L} e^{-\mu_{L} x}\left[\frac{\mu}{e^{\mu x}-1}-\frac{\mu_{L}}{e^{\mu_{L} x}-1}\right]}{\left(1-e^{-\mu_{L} x}\right)^{2}\left(1-e^{-\mu x}\right)^{-1}} . \tag{**}
\end{equation*}
$$

Now, we have

$$
\frac{d}{d \mu}\left(\frac{\mu}{e^{\mu x}-1}\right)=\frac{e^{\mu x}-1-\mu x e^{\mu x}}{\left(e^{\mu x}-1\right)^{2}}
$$

is negative for $\mu x>0$, because $y-1<y \log y$ for any $y>1$. Hence, the term

$$
-2 \mu_{L} e^{-\mu_{L} x}\left[\frac{\mu}{e^{\mu x}-1}-\frac{\mu_{L}}{e^{\mu_{L} x}-1}\right]
$$

in Equation $\left({ }^{* *}\right)$ is negative since $\mu_{L}>\mu$. Also, we have

$$
\frac{d}{d \mu}\left(\frac{\mu^{2}}{e^{\mu x}-1}\right)=\frac{2 \mu e^{\mu x}\left(1-e^{-\mu x}-\mu x / 2\right)}{\left(e^{\mu x}-1\right)^{2}}
$$

Note that $1-e^{-y}-y / 2$ is strictly negative at $y=2$ and decreasing in y for $y>2$. Hence, for any fixed $\mu>2$, there exists an $x_{c}<1$ such that the above derivative is negative for any $x \in\left[x_{c}, 1\right]$. Thus, $\left[-\frac{\mu^{2}}{e^{\mu x}-1}+\frac{\mu_{L}^{2}}{e^{\mu_{L} x}-1}\right]\left(1-e^{-\mu_{L} x}\right)$ in Equation (**) is negative in $x \in\left[x_{c}, 1\right]$ for any n, since $\mu_{L}>\mu$. Hence, there exists an x_{c} such that, for every $n, \lambda_{n}^{\prime \prime}(x) \leq 0$ holds for any $x \in\left[x_{c}, 1\right]$. Thus we verify that the signal satisfies Assumption 3.

Derivation of $\lambda_{n}^{\prime}\left(x_{a}\right)=\ell_{n}^{\prime}\left(x_{a}\right) / 2$ and $\Lambda_{n}^{\prime}\left(x_{b}\right)=\ell_{n}^{\prime}\left(x_{b}\right) / 2$ for Equations $(8,9)$
Using (8), we obtain

$$
\begin{aligned}
\lim _{x \rightarrow x_{a}} \lambda_{n}^{\prime}(x) & =f_{n}^{L}\left(x_{a}\right) \lim _{x \rightarrow x_{a}} \frac{\ell_{n}(x)-\lambda_{n}(x)}{F_{n}^{L}(x)} \\
& =f_{n}^{L}\left(x_{a}\right) \frac{\ell_{n}^{\prime}\left(x_{a}\right)-\lambda_{n}^{\prime}\left(x_{a}\right)}{f_{n}^{L}\left(x_{a}\right)} \\
& =\ell_{n}^{\prime}\left(x_{a}\right)-\lambda_{n}^{\prime}\left(x_{a}\right)
\end{aligned}
$$

which implies $\lambda_{n}^{\prime}\left(x_{a}\right)=\ell_{n}^{\prime}\left(x_{a}\right) / 2$.
Similarly, using (9) we obtain

$$
\begin{aligned}
\lim _{x \rightarrow x_{b}} \Lambda_{n}^{\prime}(x) & =f_{n}^{L}\left(x_{b}\right) \lim _{x \rightarrow x_{b}} \frac{\Lambda_{n}(x)-\ell_{n}(x)}{1-F_{n}^{L}(x)} \\
& =f_{n}^{L}\left(x_{b}\right) \frac{\Lambda_{n}^{\prime}\left(x_{b}\right)-\ell_{n}^{\prime}\left(x_{b}\right)}{-f_{n}^{L}\left(x_{b}\right)} \\
& =-\left(\Lambda_{n}^{\prime}\left(x_{b}\right)-\ell_{n}^{\prime}\left(x_{b}\right)\right)
\end{aligned}
$$

which implies $\Lambda_{n}^{\prime}\left(x_{b}\right)=\ell_{n}^{\prime}\left(x_{b}\right) / 2$.

Supplement on Proof of Lemma 2

In this section, we show that the probability of $\Gamma(t) / n$ in (15) exceeding $n^{-\nu_{0}}$ for some $\nu_{0}>0$ converges to 0 as $n \rightarrow \infty$.

From Lemma 1, $K_{t} \equiv \Gamma(t+1)-\Gamma(1)$ asymptotically follows a Poisson distribution with mean t. Combining with inequalities $\sqrt{2 \pi} e^{-k} k^{k+0.5} \leq k!\leq e^{1-k} k^{k+0.5}$ for any integer k, we
obtain

$$
\begin{aligned}
\operatorname{Pr}\left(K_{t} \geq k\right) & =\sum_{K_{t}=k}^{\infty} t^{K_{t}} e^{-t} / K_{t}! \\
& =\sum_{s=0}^{\infty} t^{k+s} e^{-t} /(k+s)! \\
& =t^{k} e^{-t} \sum_{s=0}^{\infty} \frac{t^{s}}{s!} \frac{s!}{(k+s)!} \\
& \leq t^{k} e^{-t} \sum_{s=0}^{\infty} \frac{t^{s}}{s!} \frac{e^{1-s} s^{s+0.5}}{\sqrt{2 \pi} e^{-(k+s)}(k+s)^{k+s+0.5}} \\
& =t^{k} e^{-t} \sum_{s=0}^{\infty} \frac{t^{s}}{s!} \frac{e^{k+1}}{\sqrt{2 \pi}(k+s)^{k}}\left(\frac{s}{k+s}\right)^{s+0.5} \\
& \leq t^{k} e^{-t} \sum_{s=0}^{\infty} \frac{t^{s}}{s!} \frac{e^{k+1}}{\sqrt{2 \pi} k^{k}} \\
& =\frac{e}{\sqrt{2 \pi}}\left(\frac{t e}{k}\right)^{k}
\end{aligned}
$$

Now we consider a region $t \in[0, T]$ and let $k=n^{1-\nu_{0}}$ for some $\nu_{0} \in(0,1)$. The upper bound of $\operatorname{Pr}\left(K_{T} \geq k\right)$ becomes $(e / \sqrt{2 \pi})\left(n^{\nu_{0}-1} T e\right)^{n^{1-\nu_{0}}}$, which converges to 0 from above as $n \rightarrow \infty$. Also note that $\Gamma(t)$ is non-decreasing in t. Thus, the probability of events in which $\Gamma(t)$ exceeds $k=n^{1-\nu_{0}}$ declines to 0 as $n \rightarrow \infty$.

Derivation of (13)

This section derives the asymptotic expression (13) from (12) by applying Stirling's formula $m!\sim \sqrt{2 \pi m}(m / e)^{m}$ as $m \rightarrow \infty$.

Substituting Stirling's formula into (12), we obtain

$$
\begin{aligned}
\frac{b_{o}}{m} \frac{e^{-\phi m}(\phi m)^{m-b_{o}}}{\left(m-b_{o}\right)!} & \sim \frac{b_{o}}{m} \frac{e^{-\phi m+m-b_{o}}(\phi m)^{m-b_{o}}}{\sqrt{2 \pi\left(m-b_{o}\right)}\left(m-b_{o}\right)^{m-b_{o}}} \\
& =\frac{b_{o}}{m \sqrt{2 \pi\left(m-b_{o}\right)}} e^{-\phi m+m-b_{o}+\left(m-b_{o}\right) \log \phi}\left(1-\frac{b_{o}}{m}\right)^{-m+b_{o}} \\
& \sim \frac{b_{o}(\phi e)^{-b_{o}}}{m \sqrt{2 \pi\left(m-b_{o}\right)}} e^{-(\phi-1-\log \phi) m} e^{b_{o}} \\
& \sim \frac{b_{o} \phi^{-b_{o}}}{\sqrt{2 \pi}} \frac{e^{-(\phi-1-\log \phi) m}}{m^{1.5}}
\end{aligned}
$$

[^0]: *Address: 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan. Email: nirei@e.u-tokyo.ac.jp.

