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Verification for the signal examples

Example 1: A linear distribution

Consider a signal X that follows

fHn (x) =
1

2
+ εnx and fL(x) =

1

2
, −1 ≤ x ≤ 1,

where εn = n−ξ/3 and 0 < ξ < 1. In this section, we show that this signal satisfies Assump-

tions 1, 2 and 3.

Clearly, the densities are strictly positive and continuously differentiable. The likelihood

ratio satisfies MLRP, because

`n(x) =
fHn (x)

fL(x)
= 1 + 2εnx
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is strictly increasing in x. Moreover, `n(x)→ 1 as n→∞ uniformly in x ∈ [−1, 1], satisfying

Assumption 2. The cumulative distributions are

FHn (x) =

∫ x

−1

1

2
+ εnz dz =

x+ 1

2
+
x2 − 1

2
εn,

FL(x) =

∫ x

−1

1

2
dz =

x+ 1

2
.

Hence, λn(x) = 1 + (x− 1)εn. This implies λ′′n(x) = 0, satisfying Assumption 3.

Finally, we investigate Assumption 1. We note that

lim
x→1

log

(
Λn(x)

λn(x)

)
= log

(
fHn (1)

fL(1)

)
= log(1 + 2εn) = O(εn).

Thus, in order to show that the signal satisfies Assumption 1, it suffices to show that

log (Λn(x)/λn(x)) is decreasing in x ∈ [−1, 1]. We have

d

dx
log

(
Λn(x)

λn(x)

)
=

d

dx

[
log

(
1

FHn (x)
− 1

)
− log

(
1

FL(x)
− 1

)]
=

1

1− FL(x)

fL(x)

FL(x)
− 1

1− FHn (x)

fHn (x)

FHn (x)

=
(1− FHn (x))FHn (x)fL(x)− (1− FL(x))FL(x)fHn (x)

(1− FL(x))FL(x)(1− FHn (x))FHn (x)
.

The denominator is positive. We inspect the numerator to find it negative:(
1− x+ 1

2
− x2 − 1

2
εn

)(
x+ 1

2
+
x2 − 1

2
εn

)(
1

2

)
−
(

1− x+ 1

2

)(
x+ 1

2

)(
1

2
+ xεn

)
=

(
1− x− (x2 − 1)εn

) (
(x+ 1) + (x2 − 1)εn

)
− (1− x) (x+ 1)(1 + 2xεn)

8

=
x+ 1

8

[(
1− x− (x2 − 1)εn

)
(1 + (x− 1)εn)− (1− x) (1 + 2xεn)

]
=

(x+ 1)(1− x)

8
[(1 + (1 + x)εn) (1 + (x− 1)εn)− (1 + 2xεn)]

=
(x+ 1)(1− x)

8
[(1 + x)εn (1 + (x− 1)εn)− (x+ 1)εn]

= −(x+ 1)2(1− x)2ε2n
8

< 0.

Hence, log(Λn(x)/λn(x)) is bounded from below by log(1 + 2εn). Thus Assumption 1 is

satisfied.
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Example 2: An exponential signal

Consider a signal X that follows an exponential distribution with

fH(x) =
µe−µx

1− e−µ
and fLn (x) =

(µ+ εn)e−(µ+εn)x

1− e−(µ+εn)
, 0 ≤ x ≤ 1,

where εn = δεn
−ξ is a positive sequence, and δε > 0, µ > 2, ξ ∈ (0, 1) are constants. In this

section, we show that this signal satisfies Assumptions 1, 2 and 3.

The signal has the monotone increasing likelihood ratio: `n(x) = (µ/(1 − e−µ)((1 −

e−(µ+εn))/(µ + εn))eεnx. Thus, the signal satisfies all the properties assumed in Section 2.2.

In particular, f sn is continuously differentiable and strictly positive over common bounded

support X and satisfies MLRP (`′n(x) > 0) for any x ∈ X . Moreover, `n converges to 1

uniformly on X , and therefore satisfies Assumption 2.

Next we show that the signal satisfies Assumption 1. We have

FH(x) =
1− e−µx

1− e−µ
, 1− FH(x) =

e−µx − e−µ

1− e−µ
,

FLn (x) =
1− e−(µ+εn)x

1− e−(µ+εn)
, 1− FLn (x) =

e−(µ+εn)x − e−(µ+εn)

1− e−(µ+εn)

and Λn = (1− FH)/(1− FLn ) and λn = FH/FLn . Let δn := log(Λn/λn). Then,

δn(x, εn) = log

(
e−µx − e−µ

e−(µ+εn)x − e−(µ+εn)
1− e−(µ+εn)x

1− e−µx

)

= log

(
e(µ+εn)x − 1

eµx − 1

)
− log

(
e(µ+εn)(x−1) − 1

eµ(x−1) − 1

)
.

Note that δn is an analytic function of εn and converges to 0 as εn → 0 for any x ∈ X . Thus,

the first-order Taylor expansion of δn around εn = 0 yields

δn(x, εn) =

(
xeµx

eµx − 1
− (x− 1)eµ(x−1)

eµ(x−1) − 1

)
εn +O(ε2n)

= (h(x)− h(x− 1))εn +O(ε2n) (*)
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where h(x) := x/(1− e−µx). We note that h(x) is strictly increasing in x:

h′(x) =
1− e−µx − µxe−µx

(1− e−µx)2
> 0.

The inequality holds since 1 − e−y − ye−y > 0 for any y 6= 0, and also since h′(0) = 1/2 by

l’Hôpital’s rule. Hence h(x)− h(x− 1) is bounded below by a positive number uniformly on

X .

The term O(ε2n) can be made arbitrarily small (say, a half of the lower bound of (h(x)−

h(x − 1))εn) for large enough n. Therefore, applying εn = δεn
−ξ to Equation (*) above, we

see that there exist constants δ > 0 and n1 such that δn(x) > δn−ξ for any x ∈ X and for all

n > n1. This confirms that the signal satisfies Assumption 1.

Finally, we show that the signal satisfies Assumption 3. Let us write µL := µ + εn. For

this particular signal, we have

λn(x) =
1− e−µL
1− e−µ

1− e−µx

1− e−µLx

λ′n(x) =
1− e−µL
1− e−µ

µe−µx(1− e−µLx)− µLe−µLx(1− e−µx)

(1− e−µLx)2
.

Thus, we have

λ′′n(x) =
1− e−µL
1− e−µ

[
− µ2

eµx−1 +
µ2L

eµLx−1

]
(1− e−µLx)− 2µLe

−µLx
[

µ
eµx−1 −

µL
eµLx−1

]
(1− e−µLx)2(1− e−µx)−1

. (**)

Now, we have
d

dµ

(
µ

eµx − 1

)
=
eµx − 1− µxeµx

(eµx − 1)2

is negative for µx > 0, because y − 1 < y log y for any y > 1. Hence, the term

−2µLe
−µLx

[
µ

eµx − 1
− µL
eµLx − 1

]
in Equation (**) is negative since µL > µ. Also, we have

d

dµ

(
µ2

eµx − 1

)
=

2µeµx (1− e−µx − µx/2)

(eµx − 1)2
.
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Note that 1 − e−y − y/2 is strictly negative at y = 2 and decreasing in y for y > 2. Hence,

for any fixed µ > 2, there exists an xc < 1 such that the above derivative is negative for any

x ∈ [xc, 1]. Thus,
[
− µ2

eµx−1 +
µ2L

eµLx−1

]
(1 − e−µLx) in Equation (**) is negative in x ∈ [xc, 1]

for any n, since µL > µ. Hence, there exists an xc such that, for every n, λ′′n(x) ≤ 0 holds for

any x ∈ [xc, 1]. Thus we verify that the signal satisfies Assumption 3.

Derivation of λ′n(xa) = `′n(xa)/2 and Λ′n(xb) = `′n(xb)/2 for Equations (8,9)

Using (8), we obtain

lim
x→xa

λ′n(x) = fLn (xa) lim
x→xa

`n(x)− λn(x)

FLn (x)

= fLn (xa)
`′n(xa)− λ′n(xa)

fLn (xa)

= `′n(xa)− λ′n(xa)

which implies λ′n(xa) = `′n(xa)/2.

Similarly, using (9) we obtain

lim
x→xb

Λ′n(x) = fLn (xb) lim
x→xb

Λn(x)− `n(x)

1− FLn (x)

= fLn (xb)
Λ′n(xb)− `′n(xb)

−fLn (xb)

= −(Λ′n(xb)− `′n(xb))

which implies Λ′n(xb) = `′n(xb)/2.

Supplement on Proof of Lemma 2

In this section, we show that the probability of Γ(t)/n in (15) exceeding n−ν0 for some ν0 > 0

converges to 0 as n→∞.

From Lemma 1, Kt ≡ Γ(t+ 1)− Γ(1) asymptotically follows a Poisson distribution with

mean t. Combining with inequalities
√

2πe−kkk+0.5 ≤ k! ≤ e1−kkk+0.5 for any integer k, we
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obtain

Pr(Kt ≥ k) =
∞∑

Kt=k

tKte−t/Kt!

=
∞∑
s=0

tk+se−t/(k + s)!

= tke−t
∞∑
s=0

ts

s!

s!

(k + s)!

≤ tke−t
∞∑
s=0

ts

s!

e1−sss+0.5

√
2πe−(k+s)(k + s)k+s+0.5

= tke−t
∞∑
s=0

ts

s!

ek+1

√
2π(k + s)k

(
s

k + s

)s+0.5

≤ tke−t
∞∑
s=0

ts

s!

ek+1

√
2πkk

=
e√
2π

(
te

k

)k
.

Now we consider a region t ∈ [0, T ] and let k = n1−ν0 for some ν0 ∈ (0, 1). The upper

bound of Pr(KT ≥ k) becomes (e/
√

2π)(nν0−1Te)n
1−ν0 , which converges to 0 from above as

n→∞. Also note that Γ(t) is non-decreasing in t. Thus, the probability of events in which

Γ(t) exceeds k = n1−ν0 declines to 0 as n→∞.

Derivation of (13)

This section derives the asymptotic expression (13) from (12) by applying Stirling’s formula

m! ∼
√

2πm(m/e)m as m→∞.
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Substituting Stirling’s formula into (12), we obtain

bo
m

e−φm(φm)m−bo

(m− bo)!
∼ bo
m

e−φm+m−bo(φm)m−bo√
2π(m− bo)(m− bo)m−bo

=
bo

m
√

2π(m− bo)
e−φm+m−bo+(m−bo) log φ

(
1− bo

m

)−m+bo

∼ bo(φe)
−bo

m
√

2π(m− bo)
e−(φ−1−log φ)mebo

∼ boφ
−bo

√
2π

e−(φ−1−log φ)m

m1.5
.

7


