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We assume in the main text that contestants are endowed with the same contest technol-

ogy h(·) and effort cost function c(·). In Section 2, we demonstrate that our baseline analysis

would be immune to a variation in which each contestant bears an effort cost c(xi)/di. In

this online appendix, we show that many of our results do not depend on this modeling

specification.

We now allow the heterogeneity in contestants’ contest technologies and effort cost func-

tions to be more generally modeled. Let one’s impact function take the form

fi (xi;αi, βi) = αi · hi (xi) + βi,

and effort cost function be ci(xi), where hi(·) and ci(·) satisfy the following standard regu-

larity conditions.

Assumption A1 (Concave Contest Technology and Convex Effort Cost Func-

tion) The contest technology hi(·) and effort cost function ci(·) are assumed to have the

following properties:

i. hi(·) is twice differentiable, with hi(0) = 0, h′i(x) > 0, and h′′i (x) ≤ 0 for all x > 0;

ii. ci(·) is twice differentiable, with ci(0) = 0, c′i(x) > 0, and c′′i (x) ≥ 0 for all x > 0.

Theorem 1 in our baseline analysis proves the existence and uniqueness of pure-strategy

equilibrium in a regular concave contest, which is established assuming a general concave

∗Department of Strategy and Policy, National University of Singapore, 15 Kent Ridge Drive, Singapore,
119245. Email: bizfq@nus.edu.sg

†School of Economics, Peking University, Beijing, China, 100871. Email: zenan@pku.edu.cn

A1

mailto:bizfq@nus.edu.sg
mailto:zenan@pku.edu.cn


impact function fi(·). This result obviously would not vary when the cost function is het-

erogeneous. To see this, define ĉi := ci(xi), ĉ := (ĉ1 . . . , ĉn), and f̂i(ĉi) := fi(c
−1
i (ĉi)); each

contestant equivalently maximizes an expected payoff

π̂i(ĉ ) :=
f̂i(ĉi)∑n
j=1 f̂j(ĉj)

vi − ĉi.

The transformation leads to a regular concave contest that satisfies the requirements of

Definition 1, and Theorem 1 naturally extends.

Next, we show that Theorems 2-3 and Propositions 1-2 would also remain qualitatively

unchanged. We first obtain the following.

Theorem A1 (Suboptimality of Headstart with Heterogeneous Contest Tech-

nologies and Cost Functions) Suppose that Assumptions 2 and A1 are satisfied. The

optimum can always be achieved by choosing multiplicative biases α only and setting head-

starts β to zero.

Proof. We follow the notation in the main text and denote the optimal contest rule that

maximizes Λ(x,p,v) by (α∗,β∗) ≡
(
(α∗1, . . . , α

∗
n), (β∗1 , . . . , β

∗
n)
)
; denote the correspond-

ing equilibrium effort profile and winning probabilities by x∗ ≡ (x∗1, . . . , x
∗
n) and p∗ ≡

(p∗1, . . . , p
∗
n), respectively.

Suppose to the contrary that β∗t > 0 for some t ∈ N in the optimum. Let us focus on

the case of an active contestant t (i.e., x∗t > 0). The equilibrium condition is given by

p∗t (1− p∗t )vt = c′t(x
∗
t ) ·

α∗tht(x
∗
t ) + β∗t

α∗th
′
t(x
∗
t )

.

Denote by x† the unique solution to the following equation:

c′t(x
∗
t ) ·

α∗tht(x
∗
t ) + β∗t

α∗th
′
t(x
∗
t )

= c′t(x
†) · ht(x

†)

h′t(x
†)
. (A1)

Simple analysis would verify that x† > x∗t , given β∗t > 0. Consider an alternative contest

rule with α̃ ≡ (α̃1, . . . , α̃n) and β̃ ≡ (β̃1, . . . , β̃n), such that

(
α̃i, β̃i

)
:=


(
α∗t ht(x

∗
t )+β

∗
t

ht(x†)
, 0
)

for i = t,

(α∗i , β
∗
i ) for i 6= t.

In words, all contestants are awarded the same identity-dependent treatment as before except

for contestant t. The new contest rule removes the headstart for contestant t. Simple algebra
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verifies that the equilibrium effort profile under the new contest rule (α̃, β̃)—which we denote

by x̃∗ ≡ (x̃∗1, . . . , x̃
∗
n)—is given by

x̃∗i =

{
x† for i = t,

x∗i for i 6= t.

The new contest rule outperforms under Assumption 2. It induces the same winning prob-

ability distribution, because α̃t · ht(x†) + β̃t = α∗t · ht(x∗t ) + β∗t by our construction, while the

effort of contestant t strictly increases because x† > x∗t by Equation (A1).

The proof for the case of inactive contestant t (i.e., x∗t = 0) is similar and is omitted for

brevity. This completes the proof.

We thus verify the robustness of Theorem 2 in the extended setting, which allows us

to simplify the optimization problem by focusing on only the optimal choice of α. By

Theorem A1, the following must hold in an equilibrium:

pi(1− pi)vi = c′i(xi) ·
hi(xi)

h′i(xi)
,∀ i ∈ N . (A2)

Define the inverse of log(c′i(x) · hi(x)/h′i(x)) as gi(·). Then the correspondence (A2) can be

rewritten as

xi = gi

(
log(pi

(
1− pi)

)
+ log(vi)

)
,∀ i ∈ N . (A3)

We further obtain the following, which, together with the correspondence, reinstates our

optimization approach.

Theorem A2 (Implementing Winning Probabilities by Setting Biases with Het-

erogeneous Contest Technologies and Cost Functions) Fix any equilibrium winning

probability distribution p ≡ (p1, . . . , pn) ∈ ∆n−1.

i. If pj = 1 for some j ∈ N , then p ≡ (p1, . . . , pn) can be induced by the following set of

biases α(p) ≡
(
α1(p), . . . , αn(p)

)
:

αi(p) =

{
1 if i = j,

0 if i 6= j.

ii. If there exist at least two active contestants, then p ≡ (p1, . . . , pn) can be induced by

the following set of biases α(p) ≡
(
α1(p), . . . , αn(p)

)
:

αi(p) =


pi

hi

(
gi

(
log(pi(1−pi))+log(vi)

)) if pi > 0,

0 if pi = 0.

(A4)
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Proof. Part (i) of the theorem is trivial, and it remains to show part (ii). It is clear that

xi = 0 is a strictly dominant strategy if αi = 0. For (pi, pj) > (0, 0), we must have (xi, xj) >

(0, 0). Therefore, the following first-order conditions must be satisfied by Equation (A3):

xi = gi

(
log(pi

(
1− pi)

)
+ log(vi)

)
,

xj = gi

(
log(pj

(
1− pj)

)
+ log(vj)

)
.

Note that Equation (1) implies that

pi
pj

=

αi·hi(xi)∑n
k=1 αk·hk(xk)
αj ·hi(xj)∑n

k=1 αk·hk(xk)

=
αi · hi(xi)
αj · hj(xj)

.

Combining the above conditions, we can obtain that

αi
αj

=
pi/hi(xi)

pj/hj(xj)
=

pi

hi

(
gi

(
log(pi(1−pi))+log(vi)

))
pj

hj

(
gj

(
log(pj(1−pj))+log(vj)

)) .

The last equation clearly holds for the set of weights specified in Equation (A4). This

completes the proof.

This restores Theorem 3 in our baseline setting, which states that any winning probability

distribution can be induced in equilibrium by an α. We then proceed to apply our approach

to optimal design for the maximization of total effort and the expected winner’s effort.

Proposition A1 (Total-effort-maximizing Contests with Heterogeneous Contest

Technologies and Cost Functions) Suppose that n ≥ 2, Assumption A1 is satisfied, and

the designer aims to maximize total effort. Then the following statements hold:

i. The optimal contest allows for at least three active players if possible.

ii. The optimal contest does not allow any contestant to win with a probability more than

1/2, i.e., p∗i ≤ 1/2, ∀ i ∈ N , with equality if and only n = 2.

Proof. The same logic as that in the main text would reveal p∗1 = p∗2 = 1
2

in the optimum

when n = 2. We now verify the claim for the case of n ≥ 3. We first prove part (i) of the

proposition. Suppose, to the contrary, that only two players remain active in the optimal

contest. It is clear that p∗1 = p∗2 = 1
2

in the optimum. Without loss of generality, assume that

contestants 1 and 2 are active. Now consider the following profile of equilibrium winning
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probabilities p = (1
2
, 1
2
− ε, ε, 0, . . . , 0). It can be verified that the total effort under p is equal

to

Λ(x,p,v) = g1

(
log(

1

4
) + log(v1)

)
+g2

(
log(

1

4
− ε2) + log(v2)

)
+g3

((
log(ε(1− ε)

)
+ log(v3)

)
.

Simple algebra shows that ∂Λ/∂ε > 0 when ε is sufficiently small. Therefore, at least three

players will remain active in the optimum.

Next, we prove part (ii). Suppose, to the contrary, that p∗i ≥ 1
2

for some i ∈ N . If

p∗i >
1
2
, then the contest designer can assign probability 1−p∗i to contestant i and probability

p∗j +(2p∗i −1) to an arbitrary contestant j 6= i. Because at least three players remain active in

the optimum, we must have p∗i +p
∗
j < 1. This in turn implies that |p∗j+(2p∗i−1)− 1

2
| < |p∗j− 1

2
|,

and thus contestant j’s effort strictly increases. Furthermore, it follows from Equation (A3)

that contestant i’s effort remains the same. Therefore, the total effort strictly increases after

the adjustment. If p∗i = 1
2
, then there exists an active player j ∈ N such that pj ∈ (0, 1

2
),

because at least three players remain active in the optimum. In such a scenario, the designer

can increase the total effort by reducing p∗i by a sufficiently small amount and increasing p∗j
by the same amount. This completes the proof.

The result of Proposition 1 in the baseline analysis is perfectly preserved. We then

examine the case of maximizing the expected winner’s effort.

Proposition A2 (Optimal Contest that Maximizes the Expected Winner’s Ef-

fort with Heterogeneous Contest Technologies and Cost Functions) Suppose that

Assumption A1 is satisfied and the designer aims to maximize the expected winner’s effort.

Then only two contestants would remain active in the optimal contest.

Proof. It is useful to first prove the following intermediate result.

Lemma A1 Consider a contest with three players who are indexed by i, j, and k. Suppose

that the contest designer aims to maximize the expected winner’s effort. Then setting pi =

pj = pk = 1
3

is suboptimal.

Proof. Without loss of generality, we assume that

gi

(
log

(
2

9

)
+ log(vi)

)
≥ gj

(
log

(
2

9

)
+ log(vj)

)
≥ gk

(
log

(
2

9

)
+ log(vk)

)
.

The difference between the expected winner’s effort under (pi, pj, pk) = (1
2
, 1
2
, 0) and that
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under (pi, pj, pk) = (1
3
, 1
3
, 1
3
) can be derived as1

2
gi

(
log

(
1

4

)
+ log(vi)

)
+

1

2
gj

(
log

(
1

4

)
+ log(vj)

)
−

1

3
gi

(
log

(
2

9

)
+ log(vi)

)
+

1

3
gj

(
log

(
2

9

)
+ log(vj)

)
+

1

3
gk

(
log

(
2

9

)
+ log(vk)

)
>

1

6

gi(log

(
2

9

)
+ log(vi)

)
− gj

(
log

(
2

9

)
+ log(vj)

)
≥ 0,

where the strict inequality follows from 1
4
> 2

9
, gj

(
log
(
2
9

)
+ log(vj)

)
≥ gk

(
log
(
2
9

)
+ log(vk)

)
,

and the monotonicity of gi(·), gj(·), and gk(·). Therefore, setting pi = pj = pk = 1
3

is subop-

timal. This completes the proof.

Now we can prove the proposition. Suppose, to the contrary, that three or more players

remain active in the optimal contest. Then there exist i, j, k ∈ N such that p∗∗i ≥ p∗∗j > 0 and

p∗∗i ≥ p∗∗k > 0. Lemma A1 implies that min{2p∗∗j + p∗∗k , p
∗∗
j + 2p∗∗k } < 1. Let p∗∗jk := p∗∗j + p∗∗k .

Without loss of generality, suppose that

gj

(
log
(
p∗∗jk(1− p∗∗jk)

)
+ log(vj)

)
≥ gk

(
log
(
p∗∗jk(1− p∗∗jk)

)
+ log(vk)

)
.

It follows immediately that

gj

(
log
(
p∗∗jk(1− p∗∗jk)

)
+ log(vj)

)
≥ gk

(
log
(
p∗∗jk(1− p∗∗jk)

)
+ log(vk)

)
> gk

(
log
(
p∗∗k (1− p∗∗k )

)
+ log(vk)

)
, (A5)

where the strict inequality follows from min{2p∗∗j +p∗∗k , p
∗∗
j +2p∗∗k } < 1 and the monotonicity

of gk(·). Suppose that the contest designer assigns probability p∗∗jk := p∗∗j +p∗∗k to player j and

0 to player k, and does not change the equilibrium winning probability of all other players.

Then the difference between the expected winner’s effort under the new profile of winning
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probabilities and that under p∗∗ ≡ (p∗∗1 , . . . , p
∗∗
n ) can be derived as

(p∗∗j + p∗∗k )gj

(
log
(
p∗∗jk(1− p∗∗jk)

)
+ log(vj)

)
−

[
p∗∗j gj

(
log
(
p∗∗j (1− p∗∗j )

)
+ log(vj)

)
+ p∗∗k gk

(
log
(
p∗∗k (1− p∗∗k )

)
+ log(vk)

)]

= p∗∗j

[
gj

(
log
(
p∗∗jk(1− p∗∗jk)

)
+ log(vj)

)
− gj

(
log
(
p∗∗j (1− p∗∗j )

)
+ log(vj)

)]

+ p∗∗k

[
gj

(
log
(
p∗∗jk(1− p∗∗jk)

)
+ log(vj)

)
− gk

(
log
(
p∗∗k (1− p∗∗k )

)
+ log(vk)

)]
> 0,

where the strict inequality follows from min{2p∗∗j + p∗∗k , p
∗∗
j + 2p∗∗k } < 1, the monotonicity

of gj(·), and (A5). A contradiction. Therefore, only two contestants would remain active in

the optimal contest. This completes the proof.

Proposition 2 states that only two active contestants remain in the optimum. This

continues to hold in the extended setting.

In conclusion, most of our results would qualitatively hold when the heterogeneity in

contest technologies and effort cost functions are generally modeled. However, encapsulating

contestants’ heterogeneity into the difference in their prize valuations—or the cost parameter

di as in the isomorphic setting—provides a convenient measure or definition of contestants’

strength and allows for handy and lucid comparative statics, which gives rise to Theorem 4

(the general exclusion principle), one part of Proposition 2 (winning probability ranking for

the maximization of the expected winner’s effort), and Proposition 3 (winning probability

ranking under total-effort maximization). All of these results provide comparative statics of

winning probability rankings with respect to the difference in contestants’ prize valuations.
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