|
Dublin Core |
PKP Metadata Items |
Metadata for this document |
|
1. |
Title |
Title of document |
"Convex preferences": a new definition |
|
2. |
Creator |
Author's name, affiliation |
Michael Richter; Baruch College, Zicklin School of Business and Royal Holloway, University of London |
|
2. |
Creator |
Author's name, affiliation |
Ariel Rubinstein; School of Economics, Tel Aviv Univeristy and Department of Eocnomics, New York University |
|
|
3. |
Subject |
Subject(s) |
Convex preferences, abstract convexity, maxmin utility |
|
3. |
Subject |
Subject classification |
D01, C60 |
|
4. |
Description |
Abstract |
We suggest a concept of convexity of preferences that does not rely on any algebraic structure. A decision maker has in mind a set of orderings interpreted as evaluation criteria. A preference relation is defined to be convex when it satisfies the following: if for each criterion there is an element that is both inferior to b by the criterion and superior to a by the preference relation, then b is preferred to a. This definition generalizes the standard Euclidean definition of convex preferences. It is shown that under general conditions, any strict convex preference relation is represented by a maxmin of utility representations of the criteria. Some economic examples are provided. |
|
5. |
Publisher |
Organizing agency, location |
Econometric Society |
|
6. |
Contributor |
Sponsor(s) |
|
|
7. |
Date |
(YYYY-MM-DD) |
2019-12-02 |
|
8. |
Type |
Status & genre |
Peer-reviewed Article |
|
8. |
Type |
Type |
|
|
9. |
Format |
File format |
pdf
|
|
10. |
Identifier |
Universal Resource Indicator |
https://econtheory.org/ojs/index.php/te/article/view/20191169 |
|
11. |
Source |
Journal/conference title; vol., no. (year) |
Theoretical Economics; Volume 14, Number 4 (November 2019) |
|
12. |
Language |
English=en |
en |
|
15. |
Rights |
Copyright and permissions |
Authors who publish in Theoretical Economics will release their articles under the Creative Commons Attribution-NonCommercial license. This license allows anyone to copy and distribute the article for non-commercial purposes provided that appropriate attribution is given. |