Theoretical Economics 17 (2022), 1683–1717
Tweet
Maskin meets Abreu and Matsushima
Yi-Chun Chen, Takashi Kunimoto, Yifei Sun, Siyang Xiong
Abstract
The theory of full implementation has been criticized for using
integer/modulo games which admit no equilibrium (Jackson (1992)). To address the critique, we revisit the classical Nash implementation problem due to Maskin (1977, 1999) but allow for the use of lotteries and monetary transfers as in Abreu and Matsushima (1992, 1994). We unify the two well-established but somewhat orthogonal approaches in full implementation theory. We show that Maskin monotonicity is a necessary and sufficient condition for (exact) mixed-strategy Nash
implementation by a finite mechanism. In contrast to previous papers, our
approach possesses the following features: finite mechanisms (with
no integer or modulo game) are used; mixed strategies are handled
explicitly; neither undesirable outcomes nor transfers occur in equilibrium;
the size of transfers can be made arbitrarily small; and our mechanism is
robust to information perturbations.
Keywords: Complete information, full implementation, information perturbations, Maskin monotonicity, mixed-strategy Nash equilibrium, social choice function
JEL classification: C72, D78, D82
Full Text: PRINT VIEW